Yet Another RSA attack

October 7, 2019

RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes $N=p q$.
2. Alice computes $\phi(N)=\phi(p q)=(p-1)(q-1)$. Denote by R
3. Alice picks an $e \in\left\{\frac{R}{3}, \ldots, \frac{2 R}{3}\right\}$ that is relatively prime to R. Alice finds d such that $e d \equiv 1(\bmod R)$.
4. Alice broadcasts (N, e). (Bob and Eve both see it.)
5. Bob: To send $m \in\{1, \ldots, N-1\}$, send $m^{e}(\bmod N)$.
6. If Alice gets $m^{e}(\bmod N)$ she computes

$$
\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{e d \bmod R} \equiv m^{1 \bmod R} \equiv m
$$

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks Response Rand Pad time.

Note items 1 and 2:
e same but N 's Different
How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks Response Rand Pad time.

Note items 1 and 2:
e same but N's Different

How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!
Or can it!

Review of RSA Attacks

1. If same $e, e \leq L$. Low-e attack. Response Large e.
2. If same $e, m^{e}<N_{1} \cdots N_{L}$. Low-e attack. Response Pad m.
3. NY,NY problem. Leaks info. Response Rand Pad m
4. Timing Attacks Response Rand Pad time.

Note items 1 and 2:
e same but N's Different

How about

$$
N \text { same but e's Different }
$$

Surely that can't be a problem!
Or can it!
Won't bother with a vote, onto the next slide.

For this Attack \equiv means $\equiv(\bmod N)$

For this Attack \equiv means $\equiv(\bmod N)$

Same N, Rel Prime e's, 2 People. Example

1. Zelda is sending messages to Alice using $(1147,341)$
2. Zelda is sending messages to Bob using $(1147,408)$
3. Note that 341 and 408 are relatively prime. Bad idea?

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{341}(\bmod 1147)$
2. $m^{408}(\bmod 1147)$

341 and 408 are rel prime

341, 407 are relatively prime. Lets find combo that adds to 1 . $408=1 \times 341+67$
$341=67 \times 5+6$
$67=6 \times 11+1$

$$
\begin{gathered}
1=67-6 \times 11=67-(341-67 \times 5) \times 11=56 \times 67-11 \times 341 \\
=56 \times(408-341)-11 \times 341=56 \times 408-67 \times 341 \\
1=56 \times 408-67 \times 341
\end{gathered}
$$

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.
4. $1=56 \times 408-67 \times 341$

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.
4. $1=56 \times 408-67 \times 341$

Eve does the following:

- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.
4. $1=56 \times 408-67 \times 341$

Eve does the following:

- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.
- Compute mod 1147:

$$
\left(m^{408}\right)^{56} \times\left(m^{-341}\right)^{67} \equiv m^{56 \times 408-67 \times 341} \equiv m^{1} \equiv m
$$

Example Continued

1. Zelda \& Alice use: $(1147,341)$. Zelda \& Bob use $(1147,408)$.
2. Zelda sends m to Alice via $m^{341}(\bmod 1147)$.
3. Zelda sends m to Bob via $m^{408}(\bmod 1147)$.
4. $1=56 \times 408-67 \times 341$

Eve does the following:

- Find inverse of $m^{341} \bmod 1147$. We call this m^{-341}.
- Compute mod 1147:

$$
\left(m^{408}\right)^{56} \times\left(m^{-341}\right)^{67} \equiv m^{56 \times 408-67 \times 341} \equiv m^{1} \equiv m
$$

Wow! Eve found m without factoring.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right?

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$ If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)
Theorem If a, b, c are rel prime then there exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=1$.

Same N, Rel Prime e's, 3 People. Example

1. Zelda is sending messages to Alice using $(1147,35)$
2. Zelda is sending messages to Bob using $(1147,100)$
3. Zelda is sending messages to Carol using $(1147,126)$

If some pair was rel prime then can use prior slide technique.

$$
35=5 \times 7 \quad 100=2^{2} \times 5^{2} \quad 126=2 \times 3^{2} \times 7
$$

No pair is rel prime. Must be safe, right? Wrong.
Definition A set of numbers is relatively prime if no number divides all of them. (We have so far just used sets of size 2.)
Theorem If a, b, c are rel prime then there exists x_{1}, x_{2}, x_{3} such that $a x_{1}+b x_{2}+c x_{3}=1$.

$$
\text { Example } 27 \times 35-17 \times 100+6 \times 126=1
$$

Example Continued

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Example Continued

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Recall: $27 \times 35-17 \times 100+6 \times 126=1$

Example Continued

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Recall: $27 \times 35-17 \times 100+6 \times 126=1$
Eve does the following:

- Find inverse of $m^{100} \bmod 1147$. We call this m^{-100}.

Example Continued

Zelda sends m to both Alice and Bob. Eve sees

1. $m^{35}(\bmod 1147)$
2. $m^{100}(\bmod 1147)$
3. $m^{126}(\bmod 1147)$

Recall: $27 \times 35-17 \times 100+6 \times 126=1$
Eve does the following:

- Find inverse of $m^{100} \bmod 1147$. We call this m^{-100}.
- Compute mod 1147:

$$
\left(m^{35}\right)^{27} \times\left(m^{-100}\right)^{17} \times\left(m^{126}\right)^{6} \equiv m^{27 \times 35-17 \times 100+6 \times 126} \equiv m^{1} \equiv m
$$

Wow! Eve found m without factoring.

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1})
2. Zelda is sending messages to Bob using (N, e_{2})
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice, Bob, and Carol. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1})
2. Zelda is sending messages to Bob using (N, e_{2})
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice, Bob, and Carol. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1})
2. Zelda is sending messages to Bob using (N, e_{2})
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice, Bob, and Carol. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1})
2. Zelda is sending messages to Bob using (N, e_{2})
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice, Bob, and Carol. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.

Same N, Rel Prime e's, 2 People. General

1. Zelda is sending messages to Alice using (N, e_{1})
2. Zelda is sending messages to Bob using (N, e_{2})
3. e_{1}, e_{2} are rel prime (Bad idea!).

Zelda sends m to both Alice, Bob, and Carol. Eve sees

1. $m^{e_{1}}(\bmod N)$
2. $m^{e_{2}}(\bmod N)$
e_{1}, e_{2} rel prime, so find $x_{1}, x_{2} \in \mathbb{Z}: e_{1} x_{1}+e_{2} x_{2}=1$.

$$
\left(m^{e_{1}}\right)^{x_{1}} \times\left(m^{e_{2}}\right)^{x_{2}} \equiv m^{e_{1} x_{1}+e_{2} x_{2}} \equiv m^{1} \equiv m \quad(\bmod N)
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.
Wow Eve found m without factoring N.

Recap of What We've Done So Far

We did

1. Concrete example with Zelda sending to 2 people.
2. Concrete example with Zelda sending to 3 people.
3. General case with Zelda sending to 2 people.

We did not do

1. General case with Zelda Sending to 3 people.
2. General case with Zelda Sending to L people.

Work on the L-case is with your neighbor.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{n} e_{i} x_{i}=1$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{n} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{n} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N) .
$$

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{n} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{n} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N) .
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$.

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{n} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{n} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N) .
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$. Big Caveat How to find x_{1}, \ldots, x_{L} ? (Next Slide)

Same N, Rel Prime e's, L People. General

1. Zelda is sending messages to A_{i} using (N, e_{i})
2. e_{1}, \ldots, e_{L} are rel prime (Bad idea!).

Zelda sends m to A_{1}, \ldots, A_{L}. Eve sees, for $1 \leq i \leq L, m^{e_{i}}$ $(\bmod N)$.
e_{1}, \ldots, e_{L} rel prime, so $\exists x_{1}, \ldots, x_{L} \in \mathbb{Z}, \sum_{i=1}^{n} e_{i} x_{i}=1$. Eve finds x_{1}, \ldots, x_{L} and then computes

$$
\left(m^{e_{1}}\right)^{x_{1}} \times \cdots \times\left(m^{e_{L}}\right)^{x_{L}} \equiv m^{\sum_{i=1}^{n} e_{i} x_{i}} \equiv m^{1} \equiv m \quad(\bmod N) .
$$

Caveat if $x_{i}<0$ need $m^{e_{i}}$ to have inverse $\bmod N$. Big Caveat How to find x_{1}, \ldots, x_{L} ? (Next Slide)
Wow Eve found m without factoring N.

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.
Your thoughts on this?

Finding x_{1}, \ldots, x_{L}

Problem Given e_{1}, \ldots, e_{L} rel prime, find $x_{1}, \ldots, x_{L} \in \mathbb{Z}$ such that $\sum_{i=1}^{L} x_{i} e_{i}=1$.

Your thoughts on this?
What you should be thinking Bill, do an example!

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$.
Generalized Let $d=\operatorname{GCD}(a, b)$. Then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=d$. Good News Euclidean Alg finds $d, x_{1}, x_{2} y$.

An Example

Recall If a, b rel prime then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=1$.
Generalized Let $d=\operatorname{GCD}(a, b)$. Then exists $x_{1}, x_{2}, a x_{1}+b x_{2}=d$. Good News Euclidean Alg finds $d, x_{1}, x_{2} y$. 35, 100, 126.

1. Find x_{1}, x_{2} such that $35 x_{1}+100 x_{2}=5$ (5 is GCD of 35 and 100)

$$
35 \times 3-100=5
$$

2. Find y_{1}, y_{2} such that $5 y_{1}+126 y_{2}=1$

$$
-25 \times 5+126=1
$$

3.

$$
\begin{gathered}
-25 \times(35 \times 3-100)+126=1 \\
-75 \times 35+25 \times 100+1 \times 126=1
\end{gathered}
$$

Note This is diff sol then got earlier. There are many solutions.

Algorithm for x_{1}, x_{2}, x_{3}

1. Input e_{1}, e_{2}, e_{3}
2. Find y_{1}, y_{2} such that $e_{1} y_{1}+e_{2} y_{2}=d$ where $d=\operatorname{GCD}\left(e_{1}, e_{2}\right)$.
3. Find z_{1}, z_{2} such that $d z_{1}+e_{3} z_{2}=1$.
4.

$$
\begin{gathered}
d z_{1}+e_{3} z_{2}=1 \\
\left(e_{1} y_{1}+e_{2} y_{2}\right) z_{1}+e_{3} z_{2}=1 \\
e_{1}\left(y_{1} z_{1}\right)+e_{2}\left(y_{2} z_{1}\right)+e_{3} z_{2}=1
\end{gathered}
$$

5. $x_{1}=y_{1} z_{1}, x_{2}=y_{2} z_{1}, x_{3}=z_{2}$

Note Leave general case to the reader.

Advice for Zelda When she uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. Either e_{i} 's different or if all are e, then e large.
2. If all the $e^{\prime} s$ are the same, pad m so m^{e} large.
3. Either N_{i} different or if all are N, e_{i} 's not rel prime.
4. Randomly pad m for NY,NY problem.
5. Randomly pad time to ward of timing attacks.

Another Attack: Factoring Algorithms

October 7, 2019

Factoring Algorithm Ground Rules

- We only consider algorithms that, given N, find a non-trivial factor of N.
- We measure the run time as a function of $\lg N$ which is the length of the input. We may use L for this.
- We count,,$+- \times, \div$ as ONE step. A more refined analysis would count them as $(\lg x)^{2}$ steps where x is larger number you are dealing with.
- We leave out the O-of but always mean O-of
- We leave out the expected time but always mean it. Our algorithms are randomized.
- I will just give one factoring algorithm now since its point is more advice for Alice and Bob. Will give others later.
Multiplication HS Algorithm is $\lg x^{2}$ time. Tell Kolmogorov story.

Easy Factoring Algorithm

1. $\operatorname{Input}(N)$
2. For $x=2$ to $\left\lfloor N^{1 / 2}\right\rfloor$

If x divides N then return x (and jump out of loop!).
This takes time $N^{1 / 2}=2^{L / 2}$.

Easy Factoring Algorithm

1. $\operatorname{Input}(N)$
2. For $x=2$ to $\left\lfloor N^{1 / 2}\right\rfloor$

If x divides N then return x (and jump out of loop!).
This takes time $N^{1 / 2}=2^{L / 2}$.
Goal Do much better than time $N^{1 / 2}$.

Pollard's p-1 Algorithm for Factoring (1974)

October 7, 2019

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .
4. So $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$ divides 11227.

Lets find $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$. Good idea?

An Example That Does Not Quite Work

Want to factor 11227.
If p is a prime factor of 11227

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. So $\operatorname{GCD}\left(2^{p-1}-1,11227\right)$ divides 11227 .
4. So $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$ divides 11227.

Lets find $\operatorname{GCD}\left(2^{p-1}-1 \bmod 11227,11227\right)$. Good idea?
We do not know p :-(If we did know p we would be done.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
5. Hope that $p-1$ has only small factors, say 2,3 . that only appear a small number of times, say ≤ 3.

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
5. Hope that $p-1$ has only small factors, say 2,3 . that only appear a small number of times, say ≤ 3.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$

$$
=\operatorname{GCD}(1417,11227)=109
$$

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
5. Hope that $p-1$ has only small factors, say 2,3 . that only appear a small number of times, say ≤ 3.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$ $=\operatorname{GCD}(1417,11227)=109$
Great! We got a factor of 11227 without having to factor!

Making the Example Work

Want to factor 11227.
If p is a prime factor of 11227 . We do not know p.

1. p divides 11227
2. p divides $2^{p-1}-1$ (this is always true by Fermat's little Thm)
3. p divides $2^{k(p-1)}-1 \bmod 11227$ for any k
4. Raise 2 to a power that we hope has $p-1$ as a divisor.
5. Hope that $p-1$ has only small factors, say 2,3 . that only appear a small number of times, say ≤ 3.
$\operatorname{GCD}\left(2^{2^{3} \times 3^{3}}-1 \bmod 11227,11227\right)=\operatorname{GCD}\left(2^{216}-1 \bmod 11227,11227\right)$ $=\operatorname{GCD}(1417,11227)=109$
Great! We got a factor of 11227 without having to factor! Why Worked 109 was a factor and $108=2^{2} \times 3^{3}$, small factors.

General Idea

Fermat's Little Theorem if p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.

General Idea

Fermat's Little Theorem if p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.
Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then

- p divides $a^{p-1}-1$ (always)
- p divides N (our hypothesis)
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

General Idea

Fermat's Little Theorem if p is prime and a is coprime to p then $a^{p-1} \equiv 1(\bmod p)$.
Idea $a^{p-1}-1 \equiv 0(\bmod p)$. Pick an a at random. If p is a factor of N then

- p divides $a^{p-1}-1$ (always)
- p divides N (our hypothesis)
- Hence $\operatorname{GCD}\left(a^{p-1}-1 \bmod N, N\right)$ will be a factor of N.

Two problems

- The GCD might be 1 or N. Thats okay- we can try another a.
- We don't have p. If we did, we'd be done!

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors. Hope that $p-1$ is one of them. Pick a at random
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.

Do You Believe in Hope?

$a^{p-1} \equiv 1(\bmod p)$. So for all $k, a^{k(p-1)} \equiv 1(\bmod p)$.
Idea Let M be a number with LOTS of factors. Hope that $p-1$ is one of them. Pick a at random
$\operatorname{GCD}\left(a^{M}-1, N\right)$ is non-trivial factor of N if Hope is correct.
How could we not get a non-trivial factor?
$-\operatorname{GCD}\left(a^{M}-1, N\right)=1$. So $p-1$ does not divide M. M needs to have more factors in it.
$-\operatorname{GCD}\left(a^{M}-1, N\right)=N$. So $a^{M}-1$ has $p-1$ and $\frac{N}{p-1}$ in it. Need M to have less factors.
Want M to have lots of small factors so avoids prob 1.
Want M to have not so many factors so avoids prob 2.

Do You Believe in Hope?

Hope Want pick M with many small factors, but might adjust.
Let B be a parameter. Will let

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

- If B is big then gets lots of factors.
- If B is small then do not get that many factors.
- Goldilocks Problem-want B that is just right.
- Can't quite do that. Instead we try a B and then adjust it.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=4$. So 2^{4}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=4$. So 2^{4}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=4$. So 2^{4}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=4$. So 2^{4}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

Example of B, M

Let B be a parameter.

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil} .
$$

If $B=10$
$q=2,\left\lceil\log _{2}(10)\right\rceil=4$. So 2^{4}.
$q=3,\left\lceil\log _{3}(10)\right\rceil=4$. So 3^{4}.
$q=5,\left\lceil\log _{5}(10)\right\rceil=2$. So 5^{2}.
$q=7,\left\lceil\log _{7}(10)\right\rceil=2$. So 7^{2}.

$$
M=2^{4} \times 3^{4} \times 5^{2} \times 7^{2}
$$

If $p-1$ only has factors $2,3,5,7$, and if 2 appears ≤ 4 times, 3 appears ≤ 4 times, 5 appears ≤ 2 times, 7 appears ≤ 2 times then

$$
\operatorname{GCD}\left(a^{M}-1, N\right) \text { Will be a multiple of } p .
$$

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1, \mathrm{~N}\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1,N) then FOUND=TRUE
output(d)

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1, \mathrm{~N}\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1,N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1, \mathrm{~N}\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1,N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.
FACT B big then runtime Bad but prob works.

Do You Believe in Hope? The Algorithm

Parameter B and hence also

$$
M=\prod_{q \leq B, q \text { prime }} q^{\left\lceil\log _{q}(B)\right\rceil}
$$

FOUND = FALSE
while NOT FOUND
$a=\operatorname{RAND}(1, N-1)$
$\mathrm{d}=\mathrm{GCD}\left(\mathrm{a}^{\wedge} \mathrm{M}-1, \mathrm{~N}\right)$
if $d=1$ then increase B
if $d=N$ then decrease B
if (d NE 1,N) then FOUND=TRUE
output(d)
FACT If $p-1$ has all factors $\leq B$ then runtime is $B \log B(\log N)^{2}$.
FACT B big then runtime Bad but prob works.
FACT Works well if $p-1$ only has small factors.

In Practice

A rule-of-thumb in practice is to take $B \sim N^{1 / 6}$.

1. Fairly big so the M will be big enough.
2. Run time $N^{1 / 6}(\log N)^{3}$ pretty good, though still \exp in $\log N$.
3. Warning This does not mean we have an $N^{1 / 6}(\log N)^{3}$ algorithm for factoring. It only means we have that if $p-1$ has all factors $\leq N^{1 / 6}$.

Advice for Zelda When she uses RSA

Zelda will use RSA with people A_{1}, \ldots, A_{L}.
Zelda is sending messages to A_{i} using ($N_{i}=p_{i} q_{i}, e_{i}$)

1. When pick $N_{i}=p_{i} q_{i}$, make sure $p_{i}-1$ and $q_{i}-1$ have some large factors.
2. Either e_{i} 's different or if all are e, then e large.
3. If all the $e^{\prime} s$ are the same, pad m so m^{e} large.
4. Either N_{i} different or if all are N, e_{i} 's not rel prime.
5. Randomly pad m for NY,NY problem.
6. Randomly pad time to ward of timing attacks.
