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Final Review-Admin

1) Final is Saturday Dec 14 1:30-3:30 in IRB 0318.

2) Can bring one sheet of notes.
Can: use both sides, type it, put what you want on it.
Can: copy a classmates, cram entire course–Bad Ideas
Can: cram THIS talk on it-Bad Idea
3) No calculators allowed.
4) Coverage: Slides/HW. Comprehensive.
5) Not on Exam: LWE, Bridge Cheating, My Book Talk,
NSA talk.
6) We hope to grade it and post it Saturday Afternoon.
7) If can’t take the exam tell me ASAP.
8) Advice: Understand rather than memorize.
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Alice, Bob, and Eve

É Alice sends a message to Bob in code.
É Eve overhears it.
É We want Eve to not get any information.

There are many aspects to this:
É Information-Theoretic Security.
É Comp-Theoretic Security (Hardness Assumption)
É NY,NY problem.
É Private Key or Public key
É Kerckhoff’s principle: Eve knows cryptosystem.



Private Key Ciphers



Single Letter Sub Ciphers

1. Shift cipher: f (x) = x+ s. s ∈ {0, . . . ,25}.
2. Affine cipher: f (x) = ax+ b. a,b ∈ {0, . . . ,25}. a rel

prime 26.
3. Keyword Shift: From keyword and shift create

random-looking perm of {a, . . . , z}.
4. Keyword Mixed: From keyword create

random-looking perm of {a, . . . , z}.
5. Gen Sub Cipher: Take random perm of {a, . . . , z}.



All Single Letter Sub Ciphers Crackable

Important: Algorithm Is-English.
1. Input(T) a text
2. Find fT, the freq vector of T
3. Find x = fT · fE where fE is freq vector for English
4. If x ≥ 0.06 then output YES. If x ≤ 0.04 then output

NO. If 0.04 < x < 0.06 then something is wrong.

How to Use:
1. Shift , Affine have small key space: can try all keys

and see when Is-English says YES.
2. For others use freq analysis.
3. If message Credit Cards or ASCII there are patterns;

use freq analysis.



Randomized Shift

How to avoid NY,NY Problem:
Randomized shift: Key is a function f : S→ S.
1. To send message (m1, . . . ,mL) (each mi is a

character)
1.1 Pick random r1, . . . , rL ∈ S. For 1 ≤ i ≤ L compute

si = f (ri).
1.2 Send ((r1;m1 + s1), . . . , (rL;mL + sL))

2. To decode message ((r1;c1), . . . , (rL;cL))
2.1 For 1 ≤ i ≤ L si = f (ri).
2.2 Find (c1 − s1, . . . ,cL − sL)
Note: Can be cracked.



More Advanced Ciphers

1. Vigenère cipher (Can get more out of the phrase
using LCM)

2. Book Cipher
3. Matrix Cipher
4. Playfair, Railfence, Autokey
5. General 2-letter sub.

All have their PROS and CONS but all are, in the real
world, crackable (today).



One-time pad

1. Let M = {0,1}n

2. Gen: choose a uniform key k ∈ {0,1}n

3. Enck(m) = k ⊕m

4. Deck(c) = k ⊕ c

5. Proof of Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m
=m



PROS AND CONS Of One-time pad

1. If Key is N bits long can only send N bits.
2. ⊕ is FAST!
3. The one-time pad is uncrackable. YEAH!
4. Generating truly random bits is hard. BOO!
5. Pseudo-random can be insecure – I did example of

cracking linear Congruential generators.



Public Key Ciphers
Eve can go . . .



Public Key Cryptography

Alice and Bob never have to meet!



Number Theory Algs needed for Public Key

The following can be done quickly.

1. Given (a,n,p) compute an (mod p). Repeated
Squaring. (1) ≤ 2 lgn always, (2) ≤ lgn+O(1) if n
close to 22m.

2. Given n, find a safe prime of length n and a
generator g.

3. Given a,b rel prime find inverse of a mod b:
Euclidean alg.

4. Given a1, . . . ,aL and b1, . . . ,bL with bi’s rel prime,
find x ≡ ai (mod bi).

5. Given (a,p) find
p
a’s. We did p ≡ 3 (mod 4) case.

6. Given (a,N) and p,q such that N = pq, find
p
a

(mod p) (there will probably be two of them and you
an find both).
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Number Theory Assumptions

1. Discrete Log is hard.
2. Factoring is hard.
3. Given (a,N), find

p
a without being given factors of

N is hard. (This is equiv to factoring.)
Note: We usually don’t assume these but instead
assume close cousins.



The Diffie-Helman Key Exchange
Alice and Bob will share a secret s. Security parameter
L.

1. Alice finds a (p,g), p of length L, g gen for Zp.
2. Alice sends (p,g) to Bob in the clear (Eve sees

(p,g)).
3. Alice picks random a ∈ {1, . . . ,p− 1}, computes ga

and sends it to Bob in the clear (Eve sees ga).
4. Bob picks random b ∈ {1, . . . ,p− 1}, computes gb

and sends it to Alice in the clear (Eve sees gb).
5. Alice computes (gb)a = gab.
6. Bob computes (ga)b = gab.
7. gab is the shared secret.

Definition
Let f be f (p,g,ga,gb) = gab.

Hardness assumption: f is hard to compute.
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ElGamal Uses DH So Can Control Message

1. Alice and Bob do Diffie Helman.
2. Alice and Bob share secret s = gab.
3. Alice and Bob compute (gab)−1 (mod p).
4. To send m, Alice sends c =mgab

5. To decrypt, Bob computes
c(gab)−1 ≡mgab(gab)−1 ≡m

We omit discussion of Hardness assumption (HW)



RSA

Let L be a security parameter

1. Alice picks two primes p,q of length L and
computes N = pq.

2. Alice computes ϕ(N) = ϕ(pq) = (p− 1)(q− 1).
Denote by R

3. Alice picks an e ∈ {R
3 , . . . ,

2R
3 } that is relatively

prime to R. Alice finds d such that ed ≡ 1 (mod R).
4. Alice broadcasts (N,e). (Bob and Eve both see it.)
5. Bob: To send m ∈ {1, . . . ,N− 1}, send me (mod N).
6. If Alice gets me (mod N) she computes

(me)d ≡med ≡med (mod R) ≡m1 (mod R) ≡m
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Hardness Assumption for RSA

Recall If Alice and Bob do RSA and Eve observes:

1. Eve sees (N,e,me). The message is m.
2. Eve knows that there exists primes p,q such that

N = pq, but she does not know what p,q are.
3. Eve knows that e is relatively prime to (p− 1)(q− 1).

Definition: Let f be f (N,e,me) =m, where N = pq and e
has an inverse mod (p− 1)(q− 1).
Hardness assumption (HA): f is hard to compute.
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Plain RSA Bytes!

The RSA given above is referred to as Plain RSA.
Insecure! m is always coded as me (mod N).

Make secure by padding: m ∈ {0,1}L1, r ∈ {0,1}L2.

To send m ∈ {0,1}L1, pick rand r ∈ {0,1}L2, send (rm)e.
(NOTE- rm means r CONCAT with m here and
elsewhere.)
DEC: Alice finds rm and takes rightmost L1 bits.
Caveat: RSA still has issues when used in real world.
They have been fixed. Maybe.



Attacks on RSA

1. Factoring Algorithms. Pollard p− 1, Pollard ρ, QS.
Response: Pick larger p,q

2. If Zelda give Ai (Ni,e):
2.1 Low-e attack: Response: High e. Duh.
2.2 me < N1 · · ·NL: Response: Pad m.

3. If Zelda give Ai (N,ei) and two of the ei’s are rel
prime, then Euclidean Alg Attack: Response: Give
everyone diff N’s. Duh.

4. Timing Attacks: Response: Pad time used.
Caveat: Theory says use different e’s. Practice says use
e = 216 + 1 for speed.
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Other Public Key Schemes

1. Rabin PRO- equiv to factoring, CON- Alice cannot
decode uniquely. CAVEAT-Blum-Williams Variant
enables unique decoding.

2. GM PRO- equiv to hardness of sqrt mod pq.
CON-Can only send one bit.

3. BG PRO- equiv to factoring. No real CON. Might
have caught on if history was different.
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Factoring
Algorithms: Pollard

p− 1



Pollard p− 1 algorithm
Parameter B and hence also

M =
∏

q≤B,q prime
qd logq(B)e .

FOUND = FALSE
while NOT FOUND

a=RAND(1,N-1)
d=GCD(a^M-1,N)
if d=1 then increase B
if d=N then decrease B
if (d NE 1,N) then FOUND=TRUE

output(d)

KEY If p− 1 divides M then aM − 1 ≡ 0 (mod N) so
GCD(aM − 1,N) will yield factor.
NOTE Works well if p− 1 only has small factors so more
likely p− 1 divides M.
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Factoring
Algorithms: Pollard

rho



Birthday Paradox

Concrete Scenario If you have 23 people in a room than
the prob that there are two with the same birthday is
≥ 1

2 . Note that there are 365 birthdays. View this as
putting 23 people into 365 buckets.

General Scenario If you put 2
p
n balls into n buckets the

prob that there are 2 balls in the same bucket is ≥ 1
2 .
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2 . Note that there are 365 birthdays. View this as
putting 23 people into 365 buckets.
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Pollard ρ Algorithm

Define fc(x)← x∗ x+ c. Looks random.

x← RAND(0,N− 1), c← RAND(0,N− 1), y← fc(x)
while TRUE

x← fc(x)
y← fc(fc(y))
d← GCD(x− y,N)
if d 6= 1 and d 6= N then break

output(d)



Pollard ϕ Algorithm: Though Exp

Let p be the least prime that div N. We do not know p.

The sequence x, fc(x), f (fc(x)), . . . is random-looking.

Put each element of the seq into its ≡ class mod p.

View the ≡-classes as buckets at the sequence as balls.

By Bday Paradox there will 2 elements of the seq in
same bucket within the first 2

p
p ≤ 2N1/4 with high prob.

By Thm there is an i such that the ith element in same
bucket as 2ith element, some i ≤ 3

p

N1/4), with high
prob.

Hence (∃x,y)[x ≡ y (mod p)] so GCD(x− y,N) 6= 1.

Caveat Need the sequence to be truly random to prove
it works. Don’t have that, but it works in practice.
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Factoring
Algorithms: Quad

Sieve



Quad Sieve Alg
Given N let x =

�p
N
�

. All ≡ are mod N. B,M are params.

(x+ 0)2 ≡ y0 Try to B-Factor y0 to get parity ~v0
...

...
(x+M)2 ≡ yM Try to B-Factor yM to get parity ~vM

Some of the yi were B-factored, but some were not.
Let I be the set of all i such that yi was B-factored.

Find J ⊆ I such that
∑

i∈J ~vi ≡ ~0 (mod 2).

Hence
∏

i∈J yi has all even exponents.
Important! Since

∏

i∈J yi has all even exponents, there
exists Y such that
∏

i∈J yi = Y2. From this can get X2 ≡ Y2 (mod N). DONE!
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IDEA: Do the Factoring in Bulk

New Problem Given N,B,M,x, want to B-factor
(x+ 0)2 (mod N)
(x+ 1)2 (mod N)

...
...

(x+M)2 (mod N)
We do an example on the next slide.



QS Example: N = 1147, M = 10,
�p

N
�

= 34

For which 0 ≤ i ≤ 10 is ((34+ i)2 mod N) ≡ 0 (mod 2)?

Need to know what (34+ i)2 (mod N) is.
Key We show 1147 < (34+ i)2 ≤ 2× 1147 and hence

(34+ i)2 (mod N) = (34+ i)2 − 1147

(34+ i)2 is min: i = 0. Its 342 = 1156 > 1147.
(34+ i)2 is max:i = 10. Its 442 = 1936 < 2× 1147.

(34+ i)2 mod 1147 = (34+ i)2 − 1147 ≡ i2 − 1 (mod 2).
i2 − 1 ≡ 0 (mod 2) if i ≡ 1 (mod 2).

Can do similar for any prime p.
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Quad Sieve Alg
Given N let x =

�p
N
�

. All ≡ are mod N. B,M are params.

B-factor (x+0)2 (mod N), . . ., (x+M)2 (mod N) by Quad S.

Let I ⊆ {0, . . . ,M} so that (∀i ∈ I), yi is B-factored. Find
J ⊆ I such that

∑

i∈J ~vi = ~0. Hence
∏

i∈J yi has all even
exponents, so there exists Y

∏

i∈J
yi = Y2

(
∏

i∈J
(x+ i))2 ≡

∏

i∈J
yi = Y2 (mod N)

Let X =
∏

i∈J(x+ i) (mod N) and Y =
∏

i∈J q
ei
i (mod N).

X2 − Y2 ≡ 0 (mod N).

GCD(X − Y,N), GCD(X+ Y,N) should yield factors.



Secret Sharing



Threshold Secret Sharing

Zelda has a secret s ∈ {0,1}n.

Def: Let 1 ≤ t ≤m. (t,L)-secret sharing is a way for
Zelda to give strings to A1, . . . ,AL such that:
1. If any t get together than they can learn the secret.
2. If any t − 1 get together they cannot learn the

secret.



Threshold Secret Sharing Caveats

Cannot learn the secret. Two flavors:
1. info-theoretic
2. computational.

Note: Access Structure is a set of sets of students
closed under superset. Can also look at Secret Sharing
with other access structures.



Methods For Secret Sharing

Assume |s| = n.
1. Random String Method.

PRO: Can be used for ANY access structure.
CON: For Threshold Zelda may have to give Alice
LOTS of strings

2. Poly Method. Uses: t points det poly of deg t − 1.
PRO: Zelda gives Alice a share of exactly n. Simple.
CON: Only used for threshold secret sharing
CAVEAT: For exactly n need fields. Get n+ 1 with
mod p.



Short Shares

If demand Info-theoretic security then shares have to
be ≥ |s|.

We did that in class.

So we go to comp theoretic, next slide.



Short Shares

Thm: Assume there exists an α-SES. Assume that for
message of length n, it is secure. Then, for all 1 ≤ t ≤ L
there is a (t,L)-scheme for |s| = n where each share is of
size n

t + αn.

1. Zelda does k← GEN(n). Note |k| = αn.
2. u = ENCk(s). Let u = u0 · · ·ut−1, |ui| ∼ n

t .

3. Let p ∼ 2n/t. Zelda forms poly over Zp:

f (x) = ut−1x
t−1 + · · ·+ u1x+ u0

4. Let q ∼ 2αn. Zelda forms poly over Zq by choosing
rt−1, . . . , r1 ∈ {0, . . . ,q− 1} at random and then:

g(x) = rt−1x
t−1 + · · ·+ r1x+ k

5. Zelda gives Ai, (f (i),g(i)). Length: ∼ n
t + αn.
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Verifiable Secret Sharing VSS

Cannot do it if demand info-theoretic security.
That was a HW.
So we go to comp theoretic, next slide.



Verifiable Secret Sharing

1. Secret is s, |s| = n. Zelda finds p ∼ n.
2. Zelda finds a generator g for Zp.
3. Zelda picks rand rt−1, . . . , r1,

f (x) = rt−1xt−1 + · · ·+ r1x+ s.
4. For 1 ≤ i ≤ L Zelda gives Ai f (i).
5. Zelda gives to EVERYONE the values gr1, . . . ,

grt−1 ,gs,g.
(We think discrete log is HARD so ri not revealed.)

Recover: The usual – any group of t can blah blah.
Verify: Ai reveals f (i) = 17. Group computes:
1) g17.
2) (grt−1)i

t−1 × (grt−2)i
t−2 × · · · (gr1)i1 × (gs)i

0
= gf (i)

If this is g17 then Ai is truthful. If not then Ai is dirty
stinking liar.



Alice and Bob and
Love



The Problem

1. Alice has bit a, Bob has bit b, and they want to
compute a∧ b. They have a many decks of cards.
At the end of the protocol:
1.1 They both know a∧ b.
1.2 If a = 0 then A does not know b.
1.3 If b = 0 then B does not know a.
1.4 If a = 1 then since A knows a and a∧ b, A knows b.
1.5 If b = 1 then since B knows b and a∧ b, B knows a.

2. Alice, Bob, Cards, and Love is Fair Game for the
final. For example, I could ask you to extend to
a∧ b∧ c.



The 3-Card Solution by Karun Singh

All cards are face down.
1. The cards ♣♣♥ are on the table.

2. Bob is not in the room.
A-YES: Switch cards 2&3. A-NO: No switch.

3. Alice is not in the room.
B-YES: Switch cards 1 and 2. B-NO: No switch.

4. Not done yet, but let’s see what we got.
A B After A After B
Y Y ♣♥♣ ♥♣♣
Y N ♣♥♣ ♣♥♣
N Y ♣♣♥ ♣♣♥
N N ♣♣♥ ♣♣♥
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The 3-Card Solution by Singh, cont

The cards are face down.

A B After A After B
Y Y ♣♥♣ ♥♣♣
Y N ♣♥♣ ♣♥♣
N Y ♣♣♥ ♣♣♥
N N ♣♣♥ ♣♣♥

Just reveal the first card:
É If it’s ♥ then 2nd date!
É If not then no 2nd date!



Good Luck on the Exam

Good Luck on the Exam!


