Defeating the German Enigma

CRYPTOLOGY

Cryptology

The study of making and breaking ciphers

CRYPTOLOGY

Cryptology

The study of making and breaking ciphers

- Cryptography: The study of making ciphers.

CRYPTOLOGY

Cryptology
The study of making and breaking ciphers

- Cryptography: The study of making ciphers.
- Cryptanalysis: The study of breaking ciphers.

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

- Shift each letter by a fixed amount.

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

- Shift each letter by a fixed amount.
- Originally, Caesar shifted by 3. $A \rightarrow D, B \rightarrow E$, etc.

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

- Shift each letter by a fixed amount.
- Originally, Caesar shifted by 3. $A \rightarrow D, B \rightarrow E$, etc.
- What is the size of the key space?

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

- Shift each letter by a fixed amount.
- Originally, Caesar shifted by 3. $A \rightarrow D, B \rightarrow E$, etc.
- What is the size of the key space? 26.

THE CAESAR SHIFT

LEHWBRXFDQUHDGWKLV

- Shift each letter by a fixed amount.
- Originally, Caesar shifted by 3. $A \rightarrow D, B \rightarrow E$, etc.
- What is the size of the key space? 26.
- How hard is it to guess?

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV

 MFIXCSYGERVIEHXLMW
LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV MFIXCSYGERVIEHXLMW NGJYDTZHFSWJFIYMNX

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV MFIXCSYGERVIEHXLMW NGJYDTZHFSWJFIYMNX OHKZEUAIGTXKGJZNOY

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV MFIXCSYGERVIEHXLMW NGJYDTZHFSWJFIYMNX OHKZEUAIGTXKGJZNOY PILAFVBJHUYLHKAOPZ QJMBGWCKIVZMILBPQA RKNCHXDLJWANJMCQRB SLODIYEMKXBOKNDRSC TMPEJZFNLYCPLOESTD UNQFKAGOMZDQMPFTUE VORGLBHPNAERNQGUVF WPSHMCIQOBFSORHVWG XQTINDJRPCGTPSIWXH

YRUJOEKSQDHUQTJXYI ZSVKPFLTREIVRUKYZJ ATWLQGMUSFJWSVLZAK BUXMRHNVTGKXTWMABL CVYNSIOWUHLYUXNBCM DWZOTJPXVIMZVYOCDN
EXAPUKQYWJNAWZPDEO
FYBQVLRZXKOBXAQEFP
GZCRWMSAYLPCYBRFGQ
HADSXNTBZMQDZCSGHR
IBETYOUCANREADTHIS
JCFUZPVDBOSFBEUIJT
KDGVAQWECPTGCFVJKU

LEHWBRXFDQUHDGWKLV

LEHWBRXFDQUHDGWKLV MFIXCSYGERVIEHXLMW NGJYDTZHFSWJFIYMNX OHKZEUAIGTXKGJZNOY PILAFVBJHUYLHKAOPZ QJMBGWCKIVZMILBPQA RKNCHXDLJWANJMCQRB SLODIYEMKXBOKNDRSC TMPEJZFNLYCPLOESTD UNQFKAGOMZDQMPFTUE VORGLBHPNAERNQGUVF WPSHMCIQOBFSORHVWG XQTINDJRPCGTPSIWXH

YRUJOEKSQDHUQTJXYI ZSVKPFLTREIVRUKYZJ ATWLQGMUSFJWSVLZAK BUXMRHNVTGKXTWMABL CVYNSIOWUHLYUXNBCM DWZOTJPXVIMZVYOCDN
EXAPUKQYWJNAWZPDEO
FYBQVLRZXKOBXAQEFP
GZCRWMSAYLPCYBRFGQ
HADSXNTBZMQDZCSGHR
IBETYOUCANREADTHIS
JCFUZPVDBOSFBEUIJT
KDGVAQWECPTGCFVJKU

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

> NOT JUST A SIMPLE SHIFT
> bvx zjhx k hgneqf haglx

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

> NOT JUST A SIMPLE SHIFT
> bvx zjhx k hgneqf haglx

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT
bvx zjhx k hgneqf haglx
- What is the size of the key space?

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT
bvx zjhx k hgneqf haglx
- What is the size of the key space? $26!\approx 10^{26}=100$ septillion.

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT bvx zjhx k hgneqf haglx
- What is the size of the key space? $26!\approx 10^{26}=100$ septillion.
- How do you manage so many keys?

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT bvx zjhx k hgneqf haglx
- What is the size of the key space? $26!\approx 10^{26}=100$ septillion.
- How do you manage so many keys? Use a keyword/phrase:

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krustyheclownpqvxzabdfgijm

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT bvx zjhx k hgneqf haglx
- What is the size of the key space? $26!\approx 10^{26}=100$ septillion.
- How do you manage so many keys? Use a keyword/phrase:

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krustyheclownpqvxzabdfgijm

Monoalphabetic Substitution Ciphers

Use a full permutation of the alphabet.

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krusfltagzmqnbveophxjywcid

- NOT JUST A SIMPLE SHIFT bvx zjhx k hgneqf haglx
- What is the size of the key space? $26!\approx 10^{26}=100$ septillion.
- How do you manage so many keys? Use a keyword/phrase:

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: krustyheclownpqvxzabdfgijm

- Monoalphs remained secure for centuries. Arab cryptanalysts discovered frequency analysis around 800 A.D.

Frequency of Letters in English

Letter	Percentage		Letter	Percentage
A	8.2		N	6.7
B	1.5		O	7.5
C	2.8		P	1.9
D	4.3		Q	0.1
E	12.7		R	6.0
F	2.2		S	6.3
G	2.0		T	9.1
H	6.1		U	2.8
I	7.0		V	1.0
J	0.2		W	2.4
K	0.8		X	0.2
L	4.0		Y	2.0
M	2.4		Z	0.1

- (Source: H. Beker and F. Piper, Cipher Systems: The Protection of Communication.)

Example of Frequency Analysis and Language Modelling

LXV TWJ RXZGR KL TVSZJGBJ WJTBEZXG EX EIZN Z PJTG EIZN ZN TG
TVSZJGBJ EITE ZN WTZNJS XG EJYJMZNZXG EIJZW NETGSTWSN ITMJ KJJG
yXDJWJS XMJW EIJ LJTWN LXV HGXD EIJNJ RVLN NZE ZG AWXGE XA EIJZW
NJEN TGS EIJ RTPPT WTLN JTE EIJ DIZEJ KYXXS BJYYn XA EIJZW
KWTZGN XVE VI LXV HGXD Z FVZE

A:0.013	B:0.017	C:0.000	D:0.017
E:0.098	F:0.004	G:0.071	H:0.008
I:0.058	J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	R:0.017	S:0.035	T:0.080
$U: 0.000$	V:0.040	W:0.058	X:0.080
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LXV TWJ RXZGR KL TVSZJGBJ WJTBEZXG EX EIZN Z PJTG EIZN ZN TG TVSZJGBJ EITE ZN WTZNJS XG EJYJMZNZXG EIJZW NETGSTWSN ITMJ KJJG YXDJWJS XMJW EIJ LJTWN LXV HGXD EIJNJ RVLN NZE ZG AWXGE XA EIJZW NJEN TGS EIJ RTPPT WTLN JTE EIJ DIZEJ KYXXS BJYYN XA EIJZW KWTZGN XVE VI LXV HGXD Z FVZE

A:0.013	B:0.017	C:0.000	D:0.017
E:0.098	F:0.004	G:0.071	H:0.008
I:0.058	J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	R:0.017	S:0.035	T:0.080
$U: 0.000$	V:0.040	W:0.058	X:0.080
$Y: 0.022$	Z:0.093		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBEZXG EX EIZN Z PeTG EIZN ZN TG TVSZeGBe EITE ZN WTZNeS XG EeYeMZNZXG EIeZW NETGSTWSN ITMe KeeG YXDeWeS XMeW EIe LeTWN LXV HGXD EIeNe RVLN NZE ZG AWXGE XA EIeZW NeEN TGS EIe RTPPT WTLN eTE EIe DIZEe KYXXS BeYYN XA EIeZW KWTZGN XVE VI LXV HGXD Z FVZE

A:0.013	B:0.017	C:0.000	D:0.017
E:0.098	F:0.004	G:0.071	H:0.008
I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	T:0.080
U:0.000	$\mathrm{V}: 0.040$	W:0.058	X:0.080
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBEZXG EX EIZN Z PeTG EIZN ZN TG TVSZeGBe EITE ZN WTZNeS XG EeYeMZNZXG EIeZW NETGSTWSN ITMe KeeG YXDeWeS XMeW EIe LeTWN LXV HGXD EIeNe RVLN NZE ZG AWXGE XA EIeZW NeEN TGS EIe RTPPT WTLN eTE EIe DIZEe KYXXS BeYYN XA EIeZW KWTZGN XVE VI LXV HGXD Z FVZE

A:0.013	B:0.017	C:0.000	D:0.017
E:0.098	F:0.004	G:0.071	H:0.008
I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	R:0.017	S:0.035	T:0.080
$U: 0.000$	V:0.040	W:0.058	X:0.080
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBtZXG tX tIZN Z PeTG tIZN ZN TG TVSZeGBe tITt ZN WTZNeS XG teYeMZNZXG tIeZW NtTGSTWSN ITMe KeeG YXDeWeS XMeW tIe LeTWN LXV HGXD tIeNe RVLN NZt ZG AWXGt XA tIeZW NetN TGS tIe RTPPT WTLN eTt tIe DIZte KYXXS BeYYN XA tIeZW KWTZGN XVt VI LXV HGXD Z FVZt

$\mathrm{A}: 0.013$	$\mathrm{~B}: 0.017$	$\mathrm{C}: 0.000$	$\mathrm{D}: 0.017$
$\mathrm{t}-\mathrm{E}: 0.098$	$\mathrm{~F}: 0.004$	$\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~N}: 0.075$	$\mathrm{O}: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{~T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{~W}: 0.058$	$\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBtZXG tX tIZN Z PeTG tIZN ZN TG TVSZeGBe tITt ZN WTZNeS XG teYeMZNZXG tIeZW NtTGSTWSN ITMe KeeG YXDeWeS XMeW tIe LeTWN LXV HGXD tIeNe RVLN NZt ZG AWXGt XA tIeZW NetN TGS tIe RTPPT WTLN eTt tIe DIZte KYXXS BeYYN XA tIeZW KWTZGN XVt VI LXV HGXD Z FVZt

$\mathrm{A}: 0.013$	$\mathrm{~B}: 0.017$	$\mathrm{C}: 0.000$	$\mathrm{D}: 0.017$
$\mathrm{t}-\mathrm{E}: 0.098$	$\mathrm{~F}: 0.004$	$\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~N}: 0.075$	$\mathrm{O}: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{~T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{~W}: 0.058$	$\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBtZXG tX thZN Z PeTG thZN ZN TG TVSZeGBe thTt ZN WTZNeS XG teYeMZNZXG theZW NtTGSTWSN hTMe KeeG YXDeWeS XMeW the LeTWN LXV HGXD theNe RVLN NZt ZG AWXGt XA theZW NetN TGS the RTPPT WTLN eTt the DhZte KYXXS BeYYN XA theZW KWTZGN XVt Vh LXV HGXD Z FVZt

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	$\mathrm{F}: 0.004$	$\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{~T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{~W}: 0.058$	$\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

LXV TWe RXZGR KL TVSZeGBe WeTBtZXG tX thZN Z PeTG thZN ZN TG TVSZeGBe thTt ZN WTZNeS XG teYeMZNZXG theZW NtTGSTWSN hTMe KeeG YXDeWeS XMeW the LeTWN LXV HGXD theNe RVLN NZt ZG AWXGt XA theZW NetN TGS the RTPPT WTLN eTt the DhZte KYXXS BeYYN XA theZW KWTZGN XVt Vh LXV HGXD Z FVZt

A: 0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	T:0.080
U:0.000	$\mathrm{V}: 0.040$	W:0.058	X:0.080
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LXV aWe RXZGR KL aVSZeGBe WeaBtZXG tX thZN Z PeaG thZN ZN aG aVSZeGBe that ZN WaZNeS XG teYeMZNZXG theZW NtaGSaWSN haMe KeeG YXDeWeS XMeW the LeaWN LXV HGXD theNe RVLN NZt ZG AWXGt XA theZW NetN aGS the RaPPa WaLN eat the DhZte KYXXS BeYYN XA theZW KWaZGN XVt Vh LXV HGXD Z FVZt

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	$H: 0.008$
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	$\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
Q:0.000	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{~W}: 0.058$	$\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

LXV aWe RXZGR KL aVSZeGBe WeaBtZXG tX thZN Z PeaG thZN ZN aG aVSZeGBe that ZN WaZNeS XG teYeMZNZXG theZW NtaGSaWSN haMe KeeG YXDeWeS XMeW the LeaWN LXV HGXD theNe RVLN NZt ZG AWXGt XA theZW NetN aGS the RaPPa WaLN eat the DhZte KYXXS BeYYN XA theZW KWaZGN XVt Vh LXV HGXD Z FVZt

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	$\mathrm{N}: 0.075$	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	a-T:0.080
U:0.000	V:0.040	W:0.058	X:0.080
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV aWe RoZGR KL aVSZeGBe WeaBtZoG to thZN Z PeaG thZN ZN aG aVSZeGBe that ZN WaZNeS oG teYeMZNZoG theZW NtaGSaWSN haMe KeeG YoDeWeS oMeW the LeaWN LoV HGoD theNe RVLN NZt ZG AWoGt oA theZW NetN aGS the RaPPa WaLN eat the DhZte KYooS BeYYN oA theZW KWaZGN oVt Vh LoV HGoD Z FVZt

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	$\mathrm{H}: 0.008$
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	$\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
Q:0.000	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{~W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

LoV aWe RoZGR KL aVSZeGBe WeaBtZoG to thZN Z PeaG thZN ZN aG aVSZeGBe that ZN WaZNeS oG teYeMZNZoG theZW NtaGSaWSN haMe KeeG

YoDeWeS oMeW the LeaWN LoV HGoD theNe RVLN NZt ZG AWoGt oA theZW
NetN aGS the RaPPa WaLN eat the DhZte KYooS BeYYN oA theZW
KWaZGN oVt Vh LoV HGoD Z FVZt

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	$H: 0.008$
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	R:0.017	S:0.035	a-T:0.080
U:0.000	V:0.040	W:0.058	$o-X: 0.080$
Y:0.022	Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV aWe RoiGR KL aVSieGBe WeaBtiog to thiN i PeaG thiN iN aG aVSieGBe that iN WaiNeS oG teYeMiNioG theiW NtaGSaWSN haMe KeeG

YoDeWeS oMeW the LeaWN LoV HGoD theNe RVLN Nit iG AWoGt oA theiW
NetN aGS the RaPPa WaLN eat the Dhite KYooS BeYYN oA theiW
KWaiGN oVt Vh LoV HGoD i FVit

A: 0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	a-T:0.080
U:0.000	V:0.040	W:0.058	o-X:0.080
Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV aWe RoiGR KL aVSieGBe WeaBtiog to thiN i PeaG thiN iN aG aVSieGBe that iN WaiNeS oG teYeMiNioG theiW NtaGSaWSN haMe KeeG

YoDeWeS oMeW the LeaWN LoV HGoD theNe RVLN Nit iG AWoGt oA theiW
NetN aGS the RaPPa WaLN eat the Dhite KYooS BeYYN oA theiW
KWaiGN oVt Vh LoV HGoD i FVit

A: 0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	a-T:0.080
U:0.000	$\mathrm{V}: 0.040$	W:0.058	o-X:0.080
Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV are RoiGR KL aVSieGBe reaBtiog to thiN i PeaG thiN iN aG aVSieGBe that iN raiNeS oG teYeMiNioG their NtaGSarSN haMe KeeG YoDereS oMer the LearN LoV HGoD theNe RVLN Nit iG AroGt oA their NetN aGS the RaPPa raLN eat the Dhite KYooS BeYYN oA their KraiGN oVt Vh LoV HGoD i FVit

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	S:0.035	a-T:0.080
U:0.000	V:0.040	r-W:0.058	o-X:0.080
Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV are RoiGR KL aVSieGBe reaBtioG to thiN i PeaG thiN iN aG aVSieGBe that iN raiNeS oG teYeMiNioG their NtaGSarSN haMe KeeG YoDereS oMer the LearN LoV HGoD theNe RVLN Nit iG AroGt oA their NetN aGS the RaPPa raLN eat the Dhite KYooS BeYYN oA their KraiGN oVt Vh LoV HGoD i FVit

A:0.013	B:0.017	C:0.000	D:0.017
$t-E: 0.098$	$F: 0.004$	$G: 0.071$	$H: 0.008$
$h-I: 0.058$	e-J:0.129	$\mathrm{K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{~V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$i-Z: 0.093$		

Example of Frequency Analysis and Language Modelling

LoV are RoiGR KL aVSieGBe reaBtioG to this i PeaG this is aG aVSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the Lears LoV HGoD these RVLs sit iG AroGt oA their sets aGS the RaPPa raLs eat the Dhite KYooS BeYYs oA their KraiGs oVt Vh LoV HGoD i FVit

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	$H: 0.008$
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	S-N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	$R: 0.017$	$S: 0.035$	$a-T: 0.080$
$U: 0.000$	V:0.040	r-W:0.058	o-X:0.080
Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

LoV are RoiGR KL aVSieGBe reaBtioG to this i PeaG this is aG aVSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the Lears LoV HGoD these RVLs sit iG AroGt oA their sets aGS the RaPPa raLs eat the Dhite KYooS BeYYs oA their KraiGs oVt Vh LoV HGoD i FVit

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	L:0.031
M:0.013	S-N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	$R: 0.017$	$S: 0.035$	$a-T: 0.080$
$U: 0.000$	V:0.040	r-W:0.058	o-X:0.080
Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

Lou are RoiGR KL auSieGBe reaBtioG to this i PeaG this is aG auSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the Lears Lou HGoD these RuLs sit iG AroGt oA their sets aGS the RaPPa raLs eat the Dhite KYooS BeYYs oA their KraiGs out uh Lou HGoD i Fuit

A:0.013	B:0.017	C:0.000	D:0.017
$t-E: 0.098$	$F: 0.004$	$G: 0.071$	$H: 0.008$
$h-I: 0.058$	e-J:0.129	$\mathrm{K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

Lou are RoiGR KL auSieGBe reaBtioG to this i PeaG this is aG auSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the Lears Lou HGoD these RuLs sit iG AroGt oA their sets aGS the RaPPa raLs eat the Dhite KYooS BeYYs oA their KraiGs out uh Lou HGoD i Fuit

A:0.013	B:0.017	C:0.000	D:0.017
$t-E: 0.098$	$F: 0.004$	$G: 0.071$	$H: 0.008$
$h-I: 0.058$	e-J:0.129	$\mathrm{K}: 0.017$	$\mathrm{~L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

you are RoiGR Ky auSieGBe reaBtioG to this i PeaG this is aG auSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the years you HGoD these Ruys sit iG AroGt oA their sets aGS the RaPPa rays eat the Dhite KYooS BeYYs oA their KraiGs out uh you HGoD i Fuit

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	$F: 0.004$	$G: 0.071$	$H: 0.008$
$h-I: 0.058$	e-J:0.129	K:0.017	y-L:0.031
M:0.013	s-N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	$R: 0.017$	$S: 0.035$	$a-T: 0.080$
$U: 0.000$	$u-V: 0.040$	$r-W: 0.058$	$o-X: 0.080$
$Y: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoiGR Ky auSieGBe reaBtioG to this i PeaG this is aG auSieGBe that is raiseS oG teYeMisioG their staGSarSs haMe KeeG YoDereS oMer the years you HGoD these Ruys sit iG AroGt oA their sets aGS the RaPPa rays eat the Dhite KYooS BeYYs oA their KraiGs out uh you HGoD i Fuit

A:0.013	B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	G:0.071	$H: 0.008$
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
M:0.013	S-N:0.075	$0: 0.000$	$P: 0.013$
Q:0.000	$R: 0.017$	$S: 0.035$	$a-T: 0.080$
$U: 0.000$	$u-V: 0.040$	$r-W: 0.058$	$o-X: 0.080$
$Y: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky auSienBe reaBtion to this i Pean this is an auSienBe that is raiseS on teYeMision their stanSarSs haMe Keen YoDereS oMer the years you HnoD these Ruys sit in Aront oA their sets anS the RaPPa rays eat the Dhite KYooS BeYYs oA their Krains out uh you HnoD i Fuit

A:0.013	B:0.017	$C: 0.000$	D:0.017
$t-E: 0.098$	$F: 0.004$	$\mathrm{n}-\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky auSienBe reaBtion to this i Pean this is an auSienBe that is raiseS on teYeMision their stanSarSs haMe Keen YoDereS oMer the years you HnoD these Ruys sit in Aront oA their sets anS the RaPPa rays eat the Dhite KYooS BeYYs oA their Krains out uh you HnoD i Fuit

A:0.013	B:0.017	$C: 0.000$	D:0.017
$t-E: 0.098$	$F: 0.004$	$\mathrm{n}-\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky auSience reaction to this i Pean this is an auSience that is raiseS on teYeMision their stanSarSs haMe Keen YoDereS oMer the years you HnoD these Ruys sit in Aront oA their sets anS the RaPPa rays eat the Dhite KYooS ceYYs oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	$C: 0.000$	$D: 0.017$
$t-E: 0.098$	$F: 0.004$	$n-G: 0.071$	$H: 0.008$
$h-I: 0.058$	$e-J: 0.129$	$K: 0.017$	$y-L: 0.031$
$M: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
Q:0.000	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky auSience reaction to this i Pean this is an auSience that is raiseS on teYeMision their stanSarSs haMe Keen YoDereS oMer the years you HnoD these Ruys sit in Aront oA their sets anS the RaPPa rays eat the Dhite KYooS ceYYs oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	$C: 0.000$	D:0.017
$t-E: 0.098$	$F: 0.004$	n-G:0.071	$H: 0.008$
$h-I: 0.058$	e-J:0.129	$\mathrm{K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	$\mathrm{i}-\mathrm{Z}: 0.093$		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on teYeMision their standards haMe Keen YoDered oMer the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite KYood ceYYs oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	C:0.000	D:0.017
$t-E: 0.098$	$F: 0.004$	n-G:0.071	$H: 0.008$
$h-I: 0.058$	e-J:0.129	K:0.017	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~d}-\mathrm{S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$\mathrm{Y}: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on teYeMision their standards haMe Keen YoDered oMer the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite KYood ceYYs oA their Krains out uh you HnoD i Fuit

A: 0.013	c-B:0.017	$C: 0.000$	D: 0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	$\mathrm{y}-\mathrm{L}: 0.031$
M:0.013	s-N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	d-S:0.035	a-T:0.080
$\mathrm{U}: 0.000$	u-V:0.040	r-W:0.058	o-X:0.080
Y: 0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on teleMision their standards haMe Keen loDered oMer the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite Klood cells oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	$\mathrm{F}: 0.004$	$\mathrm{n}-\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~d}-\mathrm{S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$I-\mathrm{Y}: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on teleMision their standards haMe Keen loDered oMer the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite Klood cells oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	$\mathrm{F}: 0.004$	n-G:0.071	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~d}-\mathrm{S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$I-Y: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on television their standards have Keen loDered over the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite Klood cells oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	$\mathrm{F}: 0.004$	$\mathrm{n}-\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{~V}-\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~d}-\mathrm{S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$I-\mathrm{Y}: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

you are RoinR Ky audience reaction to this i Pean this is an audience that is raised on television their standards have Keen loDered over the years you HnoD these Ruys sit in Aront oA their sets and the RaPPa rays eat the Dhite Klood cells oA their Krains out uh you HnoD i Fuit

A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	$\mathrm{F}: 0.004$	$\mathrm{n}-\mathrm{G}: 0.071$	$\mathrm{H}: 0.008$
$\mathrm{~h}-\mathrm{I}: 0.058$	$\mathrm{e}-\mathrm{J}: 0.129$	$\mathrm{~K}: 0.017$	$\mathrm{y}-\mathrm{L}: 0.031$
$\mathrm{v}-\mathrm{M}: 0.013$	$\mathrm{~s}-\mathrm{N}: 0.075$	$0: 0.000$	$\mathrm{P}: 0.013$
$\mathrm{Q}: 0.000$	$\mathrm{R}: 0.017$	$\mathrm{~d}-\mathrm{S}: 0.035$	$\mathrm{a}-\mathrm{T}: 0.080$
$\mathrm{U}: 0.000$	$\mathrm{u}-\mathrm{V}: 0.040$	$\mathrm{r}-\mathrm{W}: 0.058$	$\mathrm{o}-\mathrm{X}: 0.080$
$I-\mathrm{Y}: 0.022$	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these Ruys sit in front of			
sets and	PPa rays ea	Dhite Klood cells of their	
Krains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	--X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these Ruys sit in front of			
sets and	PPa rays ea	Dhite Klood cells of their	
Krains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	P:0.013
Q:0.000	R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these guys sit in front of			
sets and the gaPPa rays eat th Krains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	--X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these guys sit in front of			
sets and the gaPPa rays eat th Krains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	--X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these guys sit in front of			
sets and the gamma rays eat th Krains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	--X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

```
you are going Ky audience reaction to this i mean this is an
audience that is raised on television their standards have Keen
loDered over the years you HnoD these guys sit in front of their
sets and the gamma rays eat the Dhite Klood cells of their
Krains out uh you HnoD i Fuit
\begin{tabular}{rrrr} 
f-A:0.013 & c-B:0.017 & C:0.000 & D:0.017 \\
t-E:0.098 & F:0.004 & n-G:0.071 & H:0.008 \\
h-I:0.058 & e-J:0.129 & K:0.017 & y-L:0.031 \\
v-M:0.013 & s-N:0.075 & \(0: 0.000\) & m-P:0.013 \\
Q:0.000 & g-R:0.017 & d-S:0.035 & a-T:0.080 \\
U:0.000 & u-V:0.040 & r-W:0.058 & o-X:0.080 \\
l-Y:0.022 & i-Z:0.093 & &
\end{tabular}
l-Y:0.022
```


Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these guys sit in front of			
sets and the gamma rays eat th brains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	$\mathrm{g}-\mathrm{R}: 0.017$	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
loDered over the years you HnoD these guys sit in front of			
sets and the gamma rays eat th brains out uh you HnoD i Fuit			
f-A:0.013	c-B:0.017	C:0.000	D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	$\mathrm{g}-\mathrm{R}: 0.017$	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
lowered over the years you Hnow these guys sit in front of			
sets and the gamma rays eat th brains out uh you Hnow i Fuit			
f-A:0.013	c-B:0.017	C:0.000	w-D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
lowered over the years you Hnow these guys sit in front of			
sets and the gamma rays eat th brains out uh you Hnow i Fuit			
f-A:0.013	c-B:0.017	C:0.000	w-D:0.017
t-E:0.098	F:0.004	n-G:0.071	H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
lowered over the years you know these guys sit in front of			
sets and the gamma rays eat th brains out uh you know i Fuit			
f-A:0.013	c-B:0.017	C:0.000	w-D:0.017
t-E:0.098	F:0.004	n-G:0.071	k-H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
lowered over the years you know these guys sit in front of			
sets and the gamma rays eat th brains out uh you know i Fuit			
f-A:0.013	c-B:0.017	C:0.000	w-D:0.017
t-E:0.098	F:0.004	n-G:0.071	k-H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Example of Frequency Analysis and Language Modelling

audience that is raised on television their standards have			
lowered over the years you know these guys sit in front of			
sets and the gamma rays eat th brains out uh you know i quit			
f-A:0.013	c-B:0.017	C:0.000	w-D:0.017
t-E:0.098	q-F:0.004	n-G:0.071	k-H:0.008
h-I:0.058	e-J:0.129	b-K:0.017	y-L:0.031
v-M:0.013	s-N:0.075	0:0.000	m-P:0.013
Q:0.000	g-R:0.017	d-S:0.035	a-T:0.080
U:0.000	u-V:0.040	r-W:0.058	o-X:0.080
1-Y:0.022	i-Z:0.093		

Polyalphabetic Ciphers

- Vigenère cipher: Use a keyword to interleave several Caesar shifts.

homerhomerhomerho
WELCOMETOILLINOIS
dsxgftsfszszurfpq

Polyalphabetic Ciphers

- Vigenère cipher: Use a keyword to interleave several Caesar shifts.

$$
\begin{aligned}
& \text { homerhomerhomerho } \\
& \text { WELCOMETOILLINOIS } \\
& \text { dsxgftsfszszurfpq }
\end{aligned}
$$

- KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

Polyalphabetic Ciphers

- Vigenère cipher: Use a keyword to interleave several Caesar shifts.

$$
\begin{aligned}
& \text { homerhomerhomerho } \\
& \text { WELCOMETOILLINOIS } \\
& \text { dsxgftsfszszurfpq }
\end{aligned}
$$

- KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB
- Look how the frequency distribution is flattened out:

A:0.0577	B:0.0222	$\mathrm{C}: 0.0088$	$\mathrm{D}: 0.0355$	$\mathrm{E}: 0.0888$
$\mathrm{~F}: 0.0622$	$\mathrm{G}: 0.0222$	$\mathrm{H}: 0.0222$	$\mathrm{I}: 0.0711$	$\mathrm{~J}: 0.0044$
$\mathrm{~K}: 0.0355$	$\mathrm{~L}: 0.0044$	$\mathrm{M}: 0.0711$	$\mathrm{~N}: 0.0266$	$\mathrm{O}: 0.0266$
$\mathrm{P}: 0.0577$	$\mathrm{Q}: 0.0622$	$\mathrm{R}: 0.0222$	$\mathrm{~S}: 0.0488$	$\mathrm{~T}: 0.0577$
$\mathrm{U}: 0.0577$	$\mathrm{~V}: 0.0266$	$\mathrm{~W}: 0.0488$	$\mathrm{X}: 0.0088$	$\mathrm{Y}: 0.0088$
$\mathrm{Z}: 0.0400$				

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

- Common letter blocks spaced apart by a multiple of the keyword will encrypt identically.

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAET<----- 21 ----->TTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

- Common letter blocks spaced apart by a multiple of the keyword will encrypt identically.
- Key length divides GCD of identical spacings.

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLT<---- 15 ---->TTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

- Common letter blocks spaced apart by a multiple of the keyword will encrypt identically.
- Key length divides GCD of identical spacings.

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

- Common letter blocks spaced apart by a multiple of the keyword will encrypt identically.
- Key length divides GCD of identical spacings. Here $\operatorname{gcd}(15,21)=3$.

Vigenère Cipher (Cont.)

- The Vigenère cipher remained unbroken for about three hundred years. Babbage discovered the following weakness:

KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA CTGPYACKZWWUYUUB

- Common letter blocks spaced apart by a multiple of the keyword will encrypt identically.
- Key length divides GCD of identical spacings. Here $\operatorname{gcd}(15,21)=3$.
- Once key length is discovered, perform multiple frequency counts.

A: 0.1200	A:0.1333	A:0.0811
B: 0.0000	B:0.1067	B:0.0270
C:0.0000	C:0.0400	C:0.0000
D: 0.0400	D:0.0000	D:0.0541
E:0.0400	E:0.0133	E:0.0946
F:0.0133	F:0.0000	F:0.0000
G:0.0267	$\mathrm{G}: 0.0133$	$\mathrm{G}: 0.0135$
H:0.0133	H:0.0000	H:0.0405
I:0.0000	I:0.0533	I:0.1081
J:0.0000	J:0.0133	J:0.0000
K:0.0533	K:0.0133	K:0.0135
L:0.0000	L:0.0267	L:0.0270
M:0.1067	M:0.1867	M:0.0135
N:0.0133	N:0.0267	$\mathrm{N}: 0.0541$
0:0.0400	0:0.0267	0:0.0405
P:0.0267	P:0.0267	P:0.0000
Q:0.1067	Q:0.0533	Q:0.0000
R:0.0133	R:0.0000	R:0.0541
S:0.0133	S:0.0133	S:0.0541
T:0.1067	T:0.0000	T:0.1757
U:0.1200	U:0.0133	U:0.0541
V:0.0000	V:0.0667	V:0.0270
W:0.0000	W:0.0800	W:0.0405
X:0.0400	X:0.0000	X:0.0000
Y:0.0133	Y:0.0133	Y:0.0270
Z:0.0933	Z:0.0800	Z:0.0000

```
O-A:0.1200
p-B:0.0000
q-C:0.0000
r-D:0.0400
s-E:0.0400
t-F:0.0133
u-G:0.0267
v-H:0.0133
w-I:0.0000
x-J:0.0000
y-K:0.0533
z-L:0.0000
a-M:0.1067
b-N:0.0133
c-0:0.0400
d-P:0.0267
e-Q:0.1067
f-R:0.0133
g-S:0.0133
h-T:0.1067
i-U:0.1200
j-V:0.0000
k-W:0.0000
I-X:0.0400
m-Y:0.0133
n-Z:0.0933
```

A:0.1333
A: 0.0811
B:0.1067
B:0.0270

A:0.1333	A: 0.0811
B:0.1067	B: 0.0270
C:0.0400	C:0.0000
D:0.0000	D:0.0541
E:0.0133	E:0.0946
F:0.0000	F:0.0000
G:0.0133	$\mathrm{G}: 0.0135$
H:0.0000	H:0.0405
I:0.0533	I:0.1081
J:0.0133	J:0.0000
K:0.0133	K:0.0135
L:0.0267	L:0.0270
M:0.1867	M:0.0135
N:0.0267	N:0.0541
0:0.0267	0:0.0405
P:0.0267	P:0.0000
Q:0.0533	Q:0.0000
R:0.0000	R:0.0541
S:0.0133	S:0.0541
T:0.0000	T:0.1757
U:0.0133	U:0.0541
V:0.0667	V:0.0270
W:0.0800	W:0.0405
X:0.0000	X:0.0000
Y:0.0133	Y:0.0270
Z:0.0800	Z:0.0000

s-A:0.1333
A: 0.0811
t-B:0.1067
B:0.0270
u-C:0.0400
C:0.0000
v-D:0.0000
w-E:0.0133
x-F:0.0000
y-G:0.0133
z-H:0.0000
a-I:0.0533
b-J:0.0133
c-K:0.0133
d-L:0.0267
e-M:0.1867
f-N: 0.0267
g-0:0.0267
h-P:0.0267
i-Q:0.0533
j-R:0.0000
k-S:0.0133
1-T:0.0000
m-U:0.0133
n-V:0.0667
o-W:0.0800
p-X:0.0000
q-Y:0.0133
r-Z:0.0800

$$
\begin{aligned}
& \mathrm{o}-\mathrm{A}: 0.1200 \\
& \mathrm{p}-\mathrm{B}: 0.0000 \\
& \mathrm{q}-\mathrm{C}: 0.0000 \\
& \mathrm{r}-\mathrm{D}: 0.0400 \\
& \mathrm{~s}-\mathrm{E}: 0.0400 \\
& \mathrm{t}-\mathrm{F}: 0.0133 \\
& \mathrm{u}-\mathrm{G}: 0.0267 \\
& \mathrm{v}-\mathrm{H}: 0.0133 \\
& \mathrm{w}-\mathrm{I}: 0.0000 \\
& \mathrm{x}-\mathrm{J}: 0.0000 \\
& \mathrm{y}-\mathrm{K}: 0.0533 \\
& \mathrm{z}-\mathrm{L}: 0.0000 \\
& \mathrm{a}-\mathrm{M}: 0.1067 \\
& \mathrm{~b}-\mathrm{N}: 0.0133 \\
& \mathrm{c}-\mathrm{O}: 0.0400 \\
& \mathrm{~d}-\mathrm{P}: 0.0267 \\
& \mathrm{e}-\mathrm{Q}: 0.1067 \\
& \mathrm{f}-\mathrm{R}: 0.0133 \\
& \mathrm{~g}-\mathrm{S}: 0.0133 \\
& \mathrm{~h}-\mathrm{T}: 0.1067 \\
& \mathrm{i}-\mathrm{U}: 0.1200 \\
& \mathrm{j}-\mathrm{V}: 0.0000 \\
& \mathrm{k}-\mathrm{W}: 0.0000 \\
& \mathrm{l}-\mathrm{X}: 0.0400 \\
& \mathrm{~m}-\mathrm{Y}: 0.0133 \\
& \mathrm{n}-\mathrm{Z}: 0.0933
\end{aligned}
$$

s-A:0.1333	a-A:0.0811
t-B:0.1067	b-B:0.0270
u-C:0.0400	c-C:0.0000
v-D:0.0000	d-D:0.0541
w-E:0.0133	e-E:0.0946
x-F:0.0000	f-F:0.0000
y-G:0.0133	g-G:0.0135
z-H:0.0000	h-H:0.0405
a-I:0.0533	i-I:0.1081
$\mathrm{b}-\mathrm{J}: 0.0133$	j-J:0.0000
c-K:0.0133	k-K:0.0135
d-L:0.0267	1-L:0.0270
e-M:0.1867	m-M:0.0135
f-N:0.0267	$\mathrm{n}-\mathrm{N}: 0.0541$
g-0:0.0267	-00:0.0405
h-P:0.0267	p-P:0.0000
i-Q:0.0533	q-Q:0.0000
j-R:0.0000	r-R:0.0541
k-S:0.0133	s-S:0.0541
1-T:0.0000	t-T:0.1757
m-U:0.0133	u-U:0.0541
n-V:0.0667	v-V:0.0270
o-W:0.0800	w-W:0.0405
p-X:0.0000	$\mathrm{x}-\mathrm{X}: 0.0000$
q-Y:0.0133	y-Y:0.0270
r-Z:0.0800	z-Z:0.0000

a-A:0.0811
b-B:0.0270
c-C:0.0000
d-D:0.0541
e-E:0.0946
f-F:0.0000
g-G:0.0135
h-H:0.0405
i-I:0.1081
j-J:0.0000
k-K:0.0135
1-L:0.0270
m-M:0.0135
n-N:0.0541
-0-0:0.0405
p-P:0.0000
q-Q:0.0000
r-R:0.0541
s-S:0.0541
t-T:0.1757
u-U:0.0541
v-V:0.0270
w-W:0.0405
$\mathrm{x}-\mathrm{X}: 0.0000$
$\mathrm{y}-\mathrm{Y}: 0.0270$
$z-Z: 0.0000$

Vigenère Cipher (Cont.)

- Keyword = MIA
youaregoingbyaudiencereactiontothisimeanthisisanaudi KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU
encethatisraisedontelevisiontheirstandardshavebeenlo MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW
weredovertheyearsyouknowtheseguyssitinfrontoftheirse WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE
tsandthegammarayseatthewhitebloodcellsofthierbrainso FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA
utuhyouknowiquit CTGPYACKZWWUYUUB

Vigenère Cipher (Cont.)

- Keyword $=$ MIA

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
u & e & i & b & u & e & e & a & i & t & h & \text { i } & \text { a } & \text { h } & \text { i } & \text { n } & d \\
U & \text { E } & \text { I } & B & U & E & E & A & I & T & H & I & A & H & I & N & D
\end{array} \\
& \begin{array}{ccccccccccccccccc}
\mathrm{n} & \mathrm{t} & \mathrm{t} & \mathrm{r} & \mathrm{~S} & \mathrm{o} & \mathrm{e} & \mathrm{v} & \mathrm{i} & \mathrm{t} & \mathrm{i} & \mathrm{t} & \mathrm{~d} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{n} \\
\mathrm{~N} & \mathrm{~T} & \mathrm{~T} & \mathrm{R} & \mathrm{~S} & \mathrm{O} & \mathrm{E} & \mathrm{~V} & \mathrm{I} & \mathrm{~T} & \mathrm{I} & \mathrm{~T} & \mathrm{D} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} & \mathrm{~N}
\end{array} \\
& \begin{array}{cccccccccccccccccc}
\mathrm{W} & \mathrm{e} & \mathrm{v} & \mathrm{t} & \mathrm{y} & \mathrm{r} & \mathrm{o} & \mathrm{n} & \mathrm{t} & \mathrm{~S} & \mathrm{u} & \mathrm{~S} & \mathrm{i} & \mathrm{r} & \mathrm{t} & \mathrm{t} & \mathrm{i} & \mathrm{e} \\
\mathrm{~W} & \mathrm{E} & \mathrm{~V} & \mathrm{~T} & \mathrm{Y} & \mathrm{R} & \mathrm{O} & \mathrm{~N} & \mathrm{~T} & \mathrm{~S} & \mathrm{U} & \mathrm{~S} & \mathrm{I} & \mathrm{R} & \mathrm{~T} & \mathrm{~T} & \mathrm{I} & \mathrm{E}
\end{array} \\
& \begin{array}{lllllllllllllllll}
\mathrm{a} & \mathrm{t} & \mathrm{~g} & \mathrm{~m} & \mathrm{a} & \mathrm{e} & \mathrm{t} & \mathrm{~W} & \mathrm{t} & \mathrm{l} & \mathrm{~d} & \mathrm{l} & \mathrm{o} & \mathrm{~h} & \mathrm{r} & \mathrm{a} & \mathrm{~s} \\
\mathrm{~A} & \mathrm{~T} & \mathrm{G} & \mathrm{M} & \mathrm{~A} & \mathrm{E} & \mathrm{~T} & \mathrm{~W} & \mathrm{~T} & \mathrm{~L} & \mathrm{D} & \mathrm{~L} & \mathrm{O} & \mathrm{H} & \mathrm{R} & \mathrm{~A} & \mathrm{~S}
\end{array} \\
& \begin{array}{lllll}
\mathrm{t} & \mathrm{y} & \mathrm{k} & \mathrm{w} & \mathrm{u}
\end{array} \\
& \text { T } \quad \text { Y } \quad \mathrm{K} \quad \mathrm{~W} \quad \mathrm{U}
\end{aligned}
$$

Vigenère Cipher (Cont.)

- Keyword = MIA
youaregoingbyaudiencereactiontothisimeanthisisanaudi KWUMZESWIZOBKIUPQEZKEDMAOBIAVTABHUAIYMAZBHUAIEINMCDU
encethatisraisedontelevisiontheirstandardshavebeenlo MNOMTTITUARMQSQLOZBEXMVUAIAVTTMIDATMVDMZDEPAHMBQMNXW
weredovertheyearsyouknowtheseguyssitinfrontoftheirse WQZEPWVQZTTMYQIREGOGSNAETTMSQOUKASUBIZNRAVTANTTMIDAE
tsandthegammarayseatthewhitebloodcellsofthierbrainso FAAZLTTMGMUMMZAKAEMBTTMWTQTQJLAWDOMLXAORBHQQRNZAUVSA
utuhyouknowiquit CTGPYACKZWWUYUUB

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?
ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:
message: IDECRYPTEDIT

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:
message: IDECRYPTEDIT keyword: XIJLWAMBOCEK

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:
message: IDECRYPTEDIT keyword: XIJLWAMBOCEK cipher : FLNNNYBUSFMD

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:
message: IDECRYPTEDIT keyword: XIJLWAMBOCEK
cipher : FLNNNYBUSFMD
guessed keyword: REAZPKHRKCZK

Perfecting the Vigenère Cipher

- What if the keyword in a Vigenère cipher is chosen to be long enough that it never cycles?

ONE-TIME PADS

Vigenère ciphers whose keyword is as long as the message itself.

- Are unbreakable because any message of the same length is a possible decryption. For example:
message: IDECRYPTEDIT keyword: XIJLWAMBOCEK
cipher : FLNNNYBUSFMD
guessed keyword: REAZPKHRKCZK
incorrect decrypt: OHNOYOUDIDNT

One-time Pads (Cont.)

- One-time pads provide perfect secrecy, but present a large key distribution problem.

One-time Pads (Cont.)

- One-time pads provide perfect secrecy, but present a large key distribution problem.
- One-time pads can only be used once.

XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT

QHNNFIJNWSSOTGUJRNOXFMHRESMHVP

OERZTOHXANSASLKWELZBAOJVUSOUOV

One-time Pads (Cont.)

- One-time pads provide perfect secrecy, but present a large key distribution problem.
- One-time pads can only be used once.

XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT

QHNNFIJNWSSOTGUJRNOXFMHRESMHVP

OERZTOHXANSASLKWELZBAOJVUSOUOV

- This is vulnerable to cribbing.

One-time Pads (Cont.)

Guess the location of "the".

XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT

QHNNFIJNWSSOTGUJRNOXFMHRESMHVP

OERZTOHXANSASLKWELZBAOJVUSOUOV

One-time Pads (Cont.)

Guess the location of "the".

XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT

```
crib--> the
        QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
key --> xaj
```

OERZTOHXANSASLKWELZBAOJVUSOUOV

One-time Pads (Cont.)

Find corresponding decrypts. Guess again. att
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT xaj

```
crib--> the
        QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
key --> xaj
    rei
    OERZTOHXANSASLKWELZBAOJVUSOUOV
    xaj
```


One-time Pads (Cont.)

Find corresponding decrypts.
crib--> attack
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
key --> xajtqr
the
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xaj
rei
OERZTOHXANSASLKWELZBAOJVUSOUOV
xaj

One-time Pads (Cont.)

A wrong assumption.
attack
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajtqr
theupr
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xajtqr
reigdx
OERZTOHXANSASLKWELZBAOJVUSOUOV
xajtqr

One-time Pads (Cont.)

Back up.
att
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xaj
the
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xaj
rei
OERZTOHXANSASLKWELZBAOJVUSOUOV
xaj

One-time Pads (Cont.)

```
Crib again. Looks good!
    crib--> atthe
    XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
    key --> xajmo
    thebr
    QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
    xajmo
    reinf
    OERZTOHXANSASLKWELZBAOJVUSOUOV
    xajmo
```


One-time Pads (Cont.)

Crib again.

atthebrea
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvw
thebritsa
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xajmoaqvw
crib--> reinforce
OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvw

One-time Pads (Cont.)

... which leads to ...
crib--> atthebreak
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwb
thebritsar QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwb
reinforcem OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvwb

One-time Pads (Cont.)

... which leads to ...
atthebreakofda
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonzt
thebritsarebun
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xajmoaqvwbonzt
crib--> reinforcements
OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvwbonzt

One-time Pads (Cont.)

... which leads to ... ??? Back up and try again.
crib--> atthebreakofday
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonzti
thebritsarebunm
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xajmoaqvwbonzti
reinforcementsc OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvwbonzti

One-time Pads (Cont.)

Much better! Keep going ...
crib--> atthebreakofdawn
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonztkf
thebritsarebunke
QHNNFIJNWSSOTGUJRNOXFMHRESMHVP
xajmoaqvwbonztkf
reinforcementsar
OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvwbonztkf

One-time Pads (Cont.)

Keep going ...

atthebreakofdawnsei
XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonztkfajl
crib--> thebritsarebunkered QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwbonztkfajl
reinforcementsareco
OERZTOHXANSASLKWELZBAOJVUSOUOV
xajmoaqvwbonztkfajl

One-time Pads (Cont.)

Almost there ...
crib--> atthebreakofdawnseize XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT xajmoaqvwbonztkfajlps
thebritsarebunkeredin QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwbonztkfajlps
reinforcementsarecomi OERZTOHXANSASLKWELZBAOJVUSOUOV xajmoaqvwbonztkfajlps

One-time Pads (Cont.)

Almost there ...
atthebreakofdawnseizeth XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonztkfajlpsbd
thebritsarebunkeredinle QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwbonztkfajlpsbd
crib--> reinforcementsarecoming OERZTOHXANSASLKWELZBAOJVUSOUOV xajmoaqvwbonztkfajlpsbd

One-time Pads (Cont.)

Almost there ...
crib--> atthebreakofdawnseizethe XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonztkfajlpsbdu
thebritsarebunkeredinlex QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwbonztkfajlpsbdu
reinforcementsarecomingb OERZTOHXANSASLKWELZBAOJVUSOUOV xajmoaqvwbonztkfajlpsbdu

One-time Pads (Cont.)

... got it!
atthebreakofdawnseizetheharbor XTCTSBHZWLCSCTGSSNTOWUKYDFXPVT
xajmoaqvwbonztkfajlpsbduwfgohc
crib--> thebritsarebunkeredinlexington QHNNFIJNWSSOTGUJRNOXFMHRESMHVP xajmoaqvwbonztkfajlpsbduwfgohc
reinforcementsarecomingbynight OERZTOHXANSASLKWELZBAOJVUSOUOV xajmoaqvwbonztkfajlpsbduwfgohc

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.

Enigma Schematic

Enigma Schematic

- Rotors start in any one of 26 positions.

Enigma Schematic

- Rotors start in any one of 26 positions.
- Rotors start in any one of $3!=6$ orders.

Enigma Schematic

- Rotors start in any one of 26 positions.
- Reflector is fixed.
- Rotors start in any one of $3!=6$ orders.

Enigma Schematic

- A encrypts to Z.

Enigma Schematic

- A encrypts to Z.
- Rotor 1 moves after each letter is encrypted.

Enigma Schematic

- A encrypts to Z.
- After 25 encryptions ...
- Rotor 1 moves after each letter is encrypted.

Enigma Schematic

- Rotor 2 moves when Rotor 1 returns to starting position.

Enigma Schematic

- Keysize is $26^{3} \times 6=105,456$.

Enigma Schematic

- Keysize is $26^{3} \times 6=105,456$.
- Doesn't repeat until $26^{3}=17,576$ letters.

Enigma Schematic

- Plugboard: 6 pairs of letter swaps.

Enigma Schematic

- A encrypts to M .
- Plugboard: 6 pairs of letter swaps.

Enigma Schematic

- A encrypts to M.
- Keysize is $26^{3} \times 6 \times(100,391,791,500) \approx 10^{16}$.
- Plugboard: 6 pairs of letter swaps.

Enigma Schematic

- A encrypts to M .
- Keysize is $26^{3} \times 6 \times(100,391,791,500) \approx 10^{16}$.
- Plugboard: 6 pairs of letter swaps.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.
- Built commercial and military versions with different internal wirings.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.
- Built commercial and military versions with different internal wirings.
- Due to post-war depression, widespread public use did not come to pass. Military sees no need for added expense.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.
- Built commercial and military versions with different internal wirings.
- Due to post-war depression, widespread public use did not come to pass. Military sees no need for added expense.
- 1923: Britain publishes official history of WWI, boasting of great cryptographic triumphs.

Background of Enigma

- After the French cracked the ADFGVX cipher in WWI, Arthur Scherbius set out to create an improved cipher machine.
- He generalized and automated a Vigenère cipher by having a changeable substitution cipher.
- Built commercial and military versions with different internal wirings.
- Due to post-war depression, widespread public use did not come to pass. Military sees no need for added expense.
- 1923: Britain publishes official history of WWI, boasting of great cryptographic triumphs.
- 1925: German military begins use of Enigma. Decade of unparalleled security begins...

The Enigma Protocol

- Daily Codebook contains Day key, consisting of:

1. Rotor Order: 2-1-3
2. Plugboard Swaps: A/V, B/R, S/U, N/W, D/P, C/Q.
3. Rotor Settings: X-V-F

The Enigma Protocol

- Daily Codebook contains Day key, consisting of:

1. Rotor Order: 2-1-3
2. Plugboard Swaps: A/V, B/R, S/U, N/W, D/P, C/Q.
3. Rotor Settings: X-V-F

- A Message key is used per message to avoid depths during encryption:

$\underbrace{\text { ANFANF }} \underbrace{\text { THISISTHEMESSAGE }}$
 Use 1,2,3 Use 1,2, and A-N-F

Espionage

- Hans-Thilo Schmidt

Espionage

- Hans-Thilo Schmidt
- French-Polish reciprocity

Espionage

- Hans-Thilo Schmidt
- French-Polish reciprocity
- Poles acquire military wirings

Espionage

- Hans-Thilo Schmidt
- French-Polish reciprocity
- Poles acquire military wirings

Marian Rejewski

Cracking the Enigma

BOLJRVSQIGPQTMNWJRAKOBYTKMTTG BBRQUPWLHSOLNFEQTHJOVXSWPAEWM CWPBHKGABJOPHAXOYJIKXEGSBLZWB QCOUMYYQGRKTNPSORSTOYHYASQGNV IHFGFOTMINEDDXOYMKGGTXUQMJPKZ CYDLCZZWGQAWZNHSKJSWPXNCQJZDP VLROVJGLSDCPRLWHQTSSCHALESKFN XIRZGYWUDJODMSPPSZBJEZJAEQAJG PAGYOSILDHELQXKINYNYET

Cracking the Enigma

- The first six letters of every message on a given day are in depth!

Cracking the Enigma

- The first six letters of every message on a given day are in depth!
- In the same day, we have several other messages. Here are the first six characters of each of them:

BOLJRV	WKOTFI	JOSURM	EFKBOT	RBEDAP
TBHCAX	HWKSBT	YQDZNS	EBXBAB	KZXAQB
DABNUW	QFMQOF	WEOTSI	UWGMBN	WRBTJW
WLDTVS	ZYDKMS	FAREUC	XXHXKX	DGDNXS
NNSHDM	QKXQFB	CCZFLH	VCHVLX	ADPRWQ
XQUXNA	JHJUGY	TULCYV	PFYWOL	NQVHNG
YKIZFK	GGDGXS	BSXJEB	TITCTZ	SZALQR
KKDAFS	SSVLEG	IICITU	LPSYZM	OGKOXT
LXRYKC	MOXPRB	SLNLVE	KTFAID	XVAXHR
HFJSOY	JJQUCJ	DMWNPO	REJDSY	XUZXYH

Cracking the Enigma

Permutation	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
Plaintext	a	b	c	a	b	c
Ciphertext	B	0	L	J	R	V

Cracking the Enigma

Permutation	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
Plaintext	a	b	c	a	b	c
Ciphertext	B	D	L	J	R	V

- Call the first permutation defined by this Enigma setting, P_{1}, the second P_{2}, and so forth, then we can determine that:

1. $P_{1}: \mathrm{a} \Longleftrightarrow \mathrm{B}$
2. $P_{2}: \mathrm{b} \Longleftrightarrow 0$
3. $P_{3}: c \Longleftrightarrow \mathrm{~L}$
4. $P_{4}: a \Longleftrightarrow \mathrm{~J}$
5. $P_{5}: \mathrm{b} \Longleftrightarrow \mathrm{R}$
6. $P_{6}: c \Longleftrightarrow V$

Cracking the Enigma

Permutation	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
Plaintext	a	b	c	a	b	c
Ciphertext	B	0	L	J	R	V

- Call the first permutation defined by this Enigma setting, P_{1}, the second P_{2}, and so forth, then we can determine that:

1. $P_{1}: \mathrm{a} \Longleftrightarrow \mathrm{B}$
2. $P_{2}: \mathrm{b} \Longleftrightarrow 0$
3. $P_{3}: c \Longleftrightarrow \mathrm{~L}$
4. $P_{4}: a \Longleftrightarrow \mathrm{~J}$
5. $P_{5}: \mathrm{b} \Longleftrightarrow \mathrm{R}$
6. $P_{6}: c \Longleftrightarrow V$

- We don't know what a is, but we do know that P_{1} links a to B, and P_{4} links a to J. This leads to the Rejewski's breakthrough observation:

Cracking the Enigma

- The intercept BOLJRV tells us that

1. $P_{4} \circ P_{1}(\mathrm{~B})=\mathrm{J}$,
2. $P_{5} \circ P_{2}(\mathrm{O})=\mathrm{R}$,
3. $P_{6} \circ P_{3}(\mathrm{~L})=\mathrm{V}$.

Cracking the Enigma

- The intercept BOLJRV tells us that

1. $P_{4} \circ P_{1}(\mathrm{~B})=\mathrm{J}$,
2. $P_{5} \circ P_{2}(\mathrm{O})=\mathrm{R}$,
3. $P_{6} \circ P_{3}(\mathrm{~L})=\mathrm{V}$.

- The next intercept, WKOTFI, tells us that

1. $P_{4} \circ P_{1}(\mathrm{~W})=\mathrm{T}$,
2. $P_{5} \circ P_{2}(\mathrm{~K})=\mathrm{F}$,
3. $P_{6} \circ P_{3}(0)=I$.

Cracking the Enigma

- The intercept BOLJRV tells us that

1. $P_{4} \circ P_{1}(\mathrm{~B})=\mathrm{J}$,
2. $P_{5} \circ P_{2}(\mathrm{O})=\mathrm{R}$,
3. $P_{6} \circ P_{3}(\mathrm{~L})=\mathrm{V}$.

- The next intercept, WKOTFI, tells us that

1. $P_{4} \circ P_{1}(\mathrm{~W})=\mathrm{T}$,
2. $P_{5} \circ P_{2}(\mathrm{~K})=\mathrm{F}$,
3. $P_{6} \circ P_{3}(0)=I$.

- We can use the entire set of intercepts to construct the following table of relationships:

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	J	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV

WKOTFI
JOSURM
EFKBOT
RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation. A-->R

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.
A-->R-->D

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation. A-->R-->D-->N

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation. A-->R-->D-->N-->H

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	S	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation. A-->R-->D-->N-->H-->S

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation. A-->R-->D-->N-->H-->S-->L

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.
A-->R-->D-->N-->H-->S-->L-->Y

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.
A-->R-->D-->N-->H-->S-->L-->Y-->Z

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	K	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.
A-->R-->D-->N-->H-->S-->L-->Y-->Z-->K

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.
A-->R-->D-->N-->H-->S-->L-->Y-->Z-->K-->A

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.

$$
\begin{aligned}
& \text { A-->R-->D }-->N-->H-->S-->L-->Y-->Z-->K-->A \\
& B-->J-->U-->M-->P-->W-->T-->C-->F-->E-->B
\end{aligned}
$$

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.

$$
\begin{aligned}
& \mathrm{A}-->\mathrm{R}-->\mathrm{D}-->\mathrm{N}-->\mathrm{H}-->\mathrm{S}-->\mathrm{L}-->\mathrm{Y}-->\mathrm{Z}-->\mathrm{K}-->\mathrm{A} \\
& \mathrm{~B}-->\mathrm{J}-->\mathrm{U}-->\mathrm{M}-->\mathrm{P}-->\mathrm{W}-->\mathrm{T}-->\mathrm{C}-->\mathrm{F}-->\mathrm{E}-->\mathrm{B} \\
& \mathrm{G}-->\mathrm{G} \quad \mathrm{I}-->\mathrm{I} \quad \mathrm{O}-->0 \quad \mathrm{Q}-->\mathrm{Q} \quad \mathrm{~V}-->\mathrm{V} \quad \mathrm{X}-->\mathrm{X}
\end{aligned}
$$

Cracking the Enigma

The permutation $P_{4} \circ P_{1}$

$P_{4} \circ P_{1}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{J}	\mathbf{F}	\mathbf{N}	\mathbf{B}	\mathbf{E}	\mathbf{G}	\mathbf{S}	\mathbf{I}
$P_{4} \circ P_{1}$	J	K	L	M	N	O	P	Q	R
	\mathbf{U}	\mathbf{A}	\mathbf{Y}	\mathbf{P}	\mathbf{H}	\mathbf{O}	\mathbf{W}	\mathbf{Q}	\mathbf{D}
$P_{4} \circ P_{1}$	S	T	U	V	W	X	Y	Z	
	\mathbf{L}	\mathbf{C}	\mathbf{M}	\mathbf{V}	\mathbf{T}	\mathbf{X}	\mathbf{Z}	\mathbf{K}	

- BOLJRV WKOTFI JOSURM EFKBOT RBEDAP
- Rejewski observed cycles within this permutation.

$$
\begin{aligned}
& \text { A-->R-->D-->N }-->H-->S-->L-->Y-->Z-->K-->A \\
& B-->J-->U-->M-->P-->W-->T-->C-->F-->E-->B \\
& G-->G \quad I-->I \quad 0-->O \quad \text { Q-->Q } \quad \text { V-->V } \quad \text { X-->X }
\end{aligned}
$$

- We say $P_{4} \circ P_{1}$ has cycle structure 10-10-1-1-1-1-1-1.

Cracking the Enigma

The permutation $P_{5} \circ P_{2}$

$P_{5} \circ P_{2}$	A	B	C	D	E	F	G	H	I
	\mathbf{U}	\mathbf{A}	\mathbf{L}	\mathbf{W}	\mathbf{S}	\mathbf{O}	\mathbf{X}	\mathbf{G}	\mathbf{T}
$P_{5} \circ P_{2}$	J	K	L	M	N	O	P	\mathbf{Q}	R
	\mathbf{C}	\mathbf{F}	\mathbf{V}	\mathbf{P}	\mathbf{D}	\mathbf{R}	\mathbf{Z}	\mathbf{N}	\mathbf{J}
$P_{5} \circ P_{2}$	S	T	U	V	W	X	Y	Z	
	\mathbf{E}	\mathbf{I}	\mathbf{Y}	\mathbf{H}	\mathbf{B}	\mathbf{K}	\mathbf{M}	\mathbf{Q}	

Cracking the Enigma

The permutation $P_{5} \circ P_{2}$

$P_{5} \circ P_{2}$	A	B	C	D	E	F	G	H	I
	\mathbf{U}	\mathbf{A}	\mathbf{L}	\mathbf{W}	\mathbf{S}	\mathbf{O}	\mathbf{X}	\mathbf{G}	\mathbf{T}
$P_{5} \circ P_{2}$	J	K	L	M	N	O	P	\mathbf{Q}	R
	\mathbf{C}	\mathbf{F}	\mathbf{V}	\mathbf{P}	\mathbf{D}	\mathbf{R}	\mathbf{Z}	\mathbf{N}	\mathbf{J}
$P_{5} \circ P_{2}$	S	T	U	V	W	X	Y	Z	
	\mathbf{E}	\mathbf{I}	\mathbf{Y}	\mathbf{H}	\mathbf{B}	\mathbf{K}	\mathbf{M}	\mathbf{Q}	

- $P_{5} \circ P_{2}$ has cycles:

$$
\begin{aligned}
& \text { A-->U-->Y-->M-->P-->Z-->Q-->N-->D-->W-->B-->A } \\
& \text { C-->L-->V-->H-->G-->X }-->K-->F-->O-->R-->J-->C \\
& E-->S-->E \\
& I-->T-->I
\end{aligned}
$$

Cracking the Enigma

The permutation $P_{5} \circ P_{2}$

$P_{5} \circ P_{2}$	A	B	C	D	E	F	G	H	\mathbf{I}
	\mathbf{U}	\mathbf{A}	\mathbf{L}	\mathbf{W}	\mathbf{S}	\mathbf{O}	\mathbf{X}	\mathbf{G}	\mathbf{T}
$P_{5} \circ P_{2}$	J	K	\mathbf{L}	M	N	O	P	\mathbf{Q}	R
	\mathbf{C}	\mathbf{F}	\mathbf{V}	\mathbf{P}	\mathbf{D}	\mathbf{R}	\mathbf{Z}	\mathbf{N}	\mathbf{J}
$P_{5} \circ P_{2}$	S	T	U	V	W	X	Y	Z	
	\mathbf{E}	\mathbf{I}	\mathbf{Y}	\mathbf{H}	\mathbf{B}	\mathbf{K}	\mathbf{M}	\mathbf{Q}	

- $P_{5} \circ P_{2}$ has cycles:

$$
\begin{aligned}
& \text { A-->U-->Y-->M-->P-->Z-->Q-->N-->D-->W-->B-->A } \\
& \text { C-->L-->V-->H-->G-->X }-->K-->F-->D-->R-->J-->C \\
& E-->S-->E \\
& \mathrm{I}->T-->I
\end{aligned}
$$

- $P_{5} \circ P_{2}$ has cycle structure 11-11-2-2.

Cracking the Enigma

The permutation $P_{6} \circ P_{3}$

$P_{6} \circ P_{3}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{W}	\mathbf{U}	\mathbf{S}	\mathbf{P}	\mathbf{D}	\mathbf{N}	\mathbf{X}	\mathbf{K}
$P_{6} \circ P_{3}$	J	K	L	M	N	O	P	\mathbf{Q}	R
	\mathbf{Y}	\mathbf{T}	\mathbf{V}	\mathbf{F}	\mathbf{E}	\mathbf{I}	\mathbf{Q}	\mathbf{J}	\mathbf{C}
$P_{6} \circ P_{3}$	S	T	U	V	W	X	Y	Z	
	\mathbf{M}	\mathbf{Z}	\mathbf{A}	\mathbf{G}	\mathbf{O}	\mathbf{B}	\mathbf{L}	\mathbf{H}	

Cracking the Enigma

The permutation $P_{6} \circ P_{3}$

$P_{6} \circ P_{3}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{W}	\mathbf{U}	\mathbf{S}	\mathbf{P}	\mathbf{D}	\mathbf{N}	\mathbf{X}	\mathbf{K}
$P_{6} \circ P_{3}$	J	K	\mathbf{L}	M	N	O	P	Q	R
	\mathbf{Y}	\mathbf{T}	\mathbf{V}	\mathbf{F}	\mathbf{E}	\mathbf{I}	\mathbf{Q}	\mathbf{J}	\mathbf{C}
$P_{6} \circ P_{3}$	S	T	U	V	W	X	Y	Z	
	\mathbf{M}	\mathbf{Z}	\mathbf{A}	\mathbf{G}	\mathbf{O}	\mathbf{B}	\mathbf{L}	\mathbf{H}	

- $P_{6} \circ P_{3}$ has cycles:

$$
\begin{aligned}
& \mathrm{B}-->\mathrm{W}-->\mathrm{O}-->\mathrm{I}-->\mathrm{K}-->\mathrm{T}-->\mathrm{Z}-->\mathrm{H}-->\mathrm{X}-->\mathrm{B} \\
& \mathrm{E}-->\mathrm{P}-->\mathrm{Q}-->\mathrm{J}-->\mathrm{Y}-->\mathrm{L}-->\mathrm{V}-->\mathrm{G}-->\mathrm{N}-->\mathrm{E} \\
& \mathrm{~A}-->\mathrm{R}-->\mathrm{C}-->\mathrm{U}-->\mathrm{A} \\
& \mathrm{D}->\mathrm{S}-->\mathrm{M}-->\mathrm{F}-->\mathrm{D}
\end{aligned}
$$

Cracking the Enigma

The permutation $P_{6} \circ P_{3}$

$P_{6} \circ P_{3}$	A	B	C	D	E	F	G	H	I
	\mathbf{R}	\mathbf{W}	\mathbf{U}	\mathbf{S}	\mathbf{P}	\mathbf{D}	\mathbf{N}	\mathbf{X}	\mathbf{K}
$P_{6} \circ P_{3}$	J	K	L	M	N	O	P	Q	R
	\mathbf{Y}	\mathbf{T}	\mathbf{V}	\mathbf{F}	\mathbf{E}	\mathbf{I}	\mathbf{Q}	\mathbf{J}	\mathbf{C}
$P_{6} \circ P_{3}$	S	T	U	V	W	X	Y	Z	
	\mathbf{M}	\mathbf{Z}	\mathbf{A}	\mathbf{G}	\mathbf{O}	\mathbf{B}	\mathbf{L}	\mathbf{H}	

- $P_{6} \circ P_{3}$ has cycles:

$$
\begin{aligned}
& \mathrm{B}-->\mathrm{W}-->\mathrm{O}-->\mathrm{I}-->\mathrm{K}-->\mathrm{T}-->\mathrm{Z}-->\mathrm{H}-->\mathrm{X}-->\mathrm{B} \\
& \mathrm{E}-->\mathrm{P}-->\mathrm{Q}-->\mathrm{J}-->\mathrm{Y}-->\mathrm{L}-->\mathrm{V}-->\mathrm{G}-->\mathrm{N}-->\mathrm{E} \\
& \mathrm{~A}-->\mathrm{R}-->\mathrm{C}-->\mathrm{U}-->\mathrm{A} \\
& \mathrm{D}->\mathrm{S}-->\mathrm{M}-->\mathrm{F}-->\mathrm{D}
\end{aligned}
$$

- $P_{6} \circ P_{3}$ has cycle structure 9-9-4-4.

Cracking the Enigma

- Rejewski recorded that this particular setting of Enigma (rotor orders, settings and plugboards) had the mathematical signature
(10-10-1-1-1-1-1-1, 11-11-2-2, 9-9-4-4).

Cracking the Enigma

- Rejewski recorded that this particular setting of Enigma (rotor orders, settings and plugboards) had the mathematical signature

$$
(10-10-1-1-1-1-1-1,11-11-2-2,9-9-4-4)
$$

- This triple of cycle lengths is a fingerprint of the underlying Enigma setting, but which of the billions and billions of settings could it be?

Cracking the Enigma

- Rejewski recorded that this particular setting of Enigma (rotor orders, settings and plugboards) had the mathematical signature

$$
(10-10-1-1-1-1-1-1,11-11-2-2,9-9-4-4)
$$

- This triple of cycle lengths is a fingerprint of the underlying Enigma setting, but which of the billions and billions of settings could it be?
- Recall: $P_{1}=P \circ \rho_{1} \circ P$, where ρ_{1} is the permutation defined by the initial rotor order and settings and P is the plugboard setting.

Cracking the Enigma
 ROTOR 2
 ROTOR 3
 ROTOR 1

PLUGBOARD

REFLECTOR

A	
B	\square
C	\square
D	\square
E	\square
G	\square
H	\square
I	\square
J	\square
K	\square
L	\square
M	\square
N	\square
O	\square
P	\square
Q	\square
R	\square
S	\square
T	\square
U	\square
V	\square
W	\square
X	\square
Y	\square
Z	\square

Cracking the Enigma
 ROTOR 2
 ROTOR 3

PLUGBOARD

- First go through plugboard P.

Cracking the Enigma
 ROTOR 1
 ROTOR 2
 ROTOR 3

PLUGBOARD
REFLECTOR

 (1)

- First go through plugboard P.
- Then pass though the rotor permutation ρ_{1}.

Cracking the Enigma
 ROTOR 2
 ROTOR 3

PLUGBOARD

REFLECTOR

- First go through plugboard P.
- Then pass though the rotor permutation ρ_{1}.
- Pass again through $P=P^{-1}$.

Cracking the Enigma

- Rejewski recorded that this particular setting of Enigma (rotor orders, settings and plugboards) had the mathematical signature

$$
(10-10-1-1-1-1-1-1,11-11-2-2,9-9-4-4)
$$

- This triple of cycle lengths is a fingerprint of the underlying Enigma setting, but which of the billions and billions of settings could it be?
- Recall: $P_{1}=P \circ \rho_{1} \circ P$, where ρ_{1} is the permutation defined by the initial rotor order and settings and P is the plugboard setting.

Cracking the Enigma

- Rejewski recorded that this particular setting of Enigma (rotor orders, settings and plugboards) had the mathematical signature

$$
(10-10-1-1-1-1-1-1,11-11-2-2,9-9-4-4)
$$

- This triple of cycle lengths is a fingerprint of the underlying Enigma setting, but which of the billions and billions of settings could it be?
- Recall: $P_{1}=P \circ \rho_{1} \circ P$, where ρ_{1} is the permutation defined by the initial rotor order and settings and P is the plugboard setting.
- Likewise, $P_{4}=P \circ \rho_{4} \circ P$.

Cracking the Enigma

Key Observation

$$
\begin{aligned}
P_{4} \circ P_{1} & =\left(P \circ \rho_{4} \circ P\right) \circ\left(P \circ \rho_{1} \circ P\right) \\
& =P \circ \rho_{4} \circ(P \circ P) \circ \rho_{1} \circ P \\
& =P \circ \rho_{4} \circ \rho_{1} \circ P \\
& =P \circ\left(\rho_{4} \circ \rho_{1}\right) \circ P .
\end{aligned}
$$

Cracking the Enigma

Key Observation

$$
\begin{aligned}
P_{4} \circ P_{1} & =\left(P \circ \rho_{4} \circ P\right) \circ\left(P \circ \rho_{1} \circ P\right) \\
& =P \circ \rho_{4} \circ(P \circ P) \circ \rho_{1} \circ P \\
& =P \circ \rho_{4} \circ \rho_{1} \circ P \\
& =P \circ\left(\rho_{4} \circ \rho_{1}\right) \circ P .
\end{aligned}
$$

- $P_{4} \circ P_{1}$ is the result of conjugating $\rho_{4} \circ \rho_{1}$ by the plugboard P.

Cracking the Enigma

Key Observation

$$
\begin{aligned}
P_{4} \circ P_{1} & =\left(P \circ \rho_{4} \circ P\right) \circ\left(P \circ \rho_{1} \circ P\right) \\
& =P \circ \rho_{4} \circ(P \circ P) \circ \rho_{1} \circ P \\
& =P \circ \rho_{4} \circ \rho_{1} \circ P \\
& =P \circ\left(\rho_{4} \circ \rho_{1}\right) \circ P .
\end{aligned}
$$

- $P_{4} \circ P_{1}$ is the result of conjugating $\rho_{4} \circ \rho_{1}$ by the plugboard P.
- The cycle structure of $P_{4} \circ P_{1}$ is identical to that of $\rho_{4} \circ \rho_{1}$.

Cracking the Enigma

Key Observation

$$
\begin{aligned}
P_{4} \circ P_{1} & =\left(P \circ \rho_{4} \circ P\right) \circ\left(P \circ \rho_{1} \circ P\right) \\
& =P \circ \rho_{4} \circ(P \circ P) \circ \rho_{1} \circ P \\
& =P \circ \rho_{4} \circ \rho_{1} \circ P \\
& =P \circ\left(\rho_{4} \circ \rho_{1}\right) \circ P .
\end{aligned}
$$

- $P_{4} \circ P_{1}$ is the result of conjugating $\rho_{4} \circ \rho_{1}$ by the plugboard P.
- The cycle structure of $P_{4} \circ P_{1}$ is identical to that of $\rho_{4} \circ \rho_{1}$.
- But $\rho_{4} \circ \rho_{1}$ involves only the rotors and reflector!

Cracking the Enigma

Key Observation

$$
\begin{aligned}
P_{4} \circ P_{1} & =\left(P \circ \rho_{4} \circ P\right) \circ\left(P \circ \rho_{1} \circ P\right) \\
& =P \circ \rho_{4} \circ(P \circ P) \circ \rho_{1} \circ P \\
& =P \circ \rho_{4} \circ \rho_{1} \circ P \\
& =P \circ\left(\rho_{4} \circ \rho_{1}\right) \circ P .
\end{aligned}
$$

- $P_{4} \circ P_{1}$ is the result of conjugating $\rho_{4} \circ \rho_{1}$ by the plugboard P.
- The cycle structure of $P_{4} \circ P_{1}$ is identical to that of $\rho_{4} \circ \rho_{1}$.
- But $\rho_{4} \circ \rho_{1}$ involves only the rotors and reflector!
- The cycle structure of $P_{4} \circ P_{1}$ is independent of the plugboard!

Cracking the Enigma

- Recall there are only $6 \times 26^{3}=105,456$ settings determined by the rotor orders and starting positions.

Cracking the Enigma

- Recall there are only $6 \times 26^{3}=105,456$ settings determined by the rotor orders and starting positions.
- Rejewski and his colleagues spent an entire year cataloguing the signature for each of the 105,456 starting positions.

Cracking the Enigma

- Recall there are only $6 \times 26^{3}=105,456$ settings determined by the rotor orders and starting positions.
- Rejewski and his colleagues spent an entire year cataloguing the signature for each of the 105,456 starting positions.
- The beginning of this catalogue might have looked like this:

Cracking the Enigma

```
Rotor order: 1 2 3: Setting: AAA
13-13- 12-12-1-1- 12-12-1-1-
Rotor order: 1 2 3: Setting: BAA
12-12-1-1- 12-12-1-1- 11-11-2-2-
Rotor order: 1 2 3: Setting: CAA
12-12-1-1- 11-11-2-2- 12-12-1-1-
Rotor order: 1 2 3: Setting: DAA
11-11-2-2- 12-12-1-1- 13-13-
Rotor order: 1 2 3: Setting: EAA
12-12-1-1- 13-13- 13-13-
Rotor order: 1 2 3: Setting: FAA
13-13- 13-13- 4-4-3-3-3-3-2-2-1-1-
Rotor order: 1 2 3: Setting: GAA
13-13- 4-4-3-3-3-3-2-2-1-1- 6-6-5-5-2-2-
Rotor order: 1 2 3: Setting: HAA
4-4-3-3-3-3-2-2-1-1- 6-6-5-5-2-2- 13-13-
```


The Final Assault

- Find (10-10-1-1-1-1-1-1, 11-11-2-2, 9-9-4-4) in the library.

The Final Assault

- Find (10-10-1-1-1-1-1-1, 11-11-2-2, 9-9-4-4) in the library.
- We find the following entry:

Rotor order: 23 1: Setting: ZQP.

The Final Assault

- Find (10-10-1-1-1-1-1-1, 11-11-2-2, 9-9-4-4) in the library.
- We find the following entry:

Rotor order: 23 1: Setting: ZQP.

- With model Enigmas, completely construct the first six permutations, $\rho_{1}, \cdots, \rho_{6}$, defined by these settings, with no plugboard.

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	O	N	I	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	I	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
0	X	B	V	X	Z	P
P	Q	M	W	Q	G	0
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	1	Z	E	S
V	D	A	0	D	Q	D
W	H	C	P	Y	J	N
X	0	Y	F	0	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	0	I

The Final Assault

Rotor order: 23 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	O	N	I	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
l	F	J	U	B	R	Z
J	Z	I	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	1	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	1	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	1	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	O	N	I	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	I	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	1	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	1	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	0	N	1	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	I	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 23 1 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- It is elementary to produce this table.
- Set rotors in specified position. Hit A six times to produce first row. Get two entries for each encryption!

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(Q)(Q)(V)(X)$

The Final Assault

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
A	M	V	Q	G	L	J
B	C	O	N	I	C	F
C	B	W	M	J	B	E
D	V	F	H	V	S	V
E	N	Z	Z	L	U	C
F	I	D	X	N	T	B
G	Y	L	L	A	P	X
H	W	Q	D	T	N	K
I	F	J	U	B	R	Z
J	Z	I	T	C	W	A
K	U	U	Y	M	Y	H
L	R	G	G	E	A	Q
M	A	P	C	K	X	R

Rotor order: 231 Setting: Z Q P						
Perm.	ρ_{1}	ρ_{2}	ρ_{3}	ρ_{4}	ρ_{5}	ρ_{6}
N	E	R	B	F	H	W
O	X	B	V	X	Z	P
P	Q	M	W	Q	G	O
Q	P	H	A	P	V	L
R	L	N	S	S	I	M
S	T	T	R	R	D	U
T	S	S	J	H	F	Y
U	K	K	I	Z	E	S
V	D	A	O	D	Q	D
W	H	C	P	Y	J	N
X	O	Y	F	O	M	G
Y	G	X	K	W	K	T
Z	J	E	E	U	O	I

- For instance $\rho_{1}(M)=A$ and $\rho_{4}(A)=G$, so $\rho_{4} \circ \rho_{1}(M)=G$.

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=($ MGWTREFBJU) (AKZCINLSHY) (P) (D) (O) (Q) (V) (X)
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH $)(A Q N I W B Z U Y M G)(F S)(D T)$

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=$ (MGWTREFBJU) (AKZCINLSHY) (P) (D) (O) (Q) (V) (X)
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH) (AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(D)(Q)(V)(X)$
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH) (AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

- These cycles are intimately related to those for $P_{4} \circ P_{1}, P_{5} \circ P_{2}$, and $P_{6} \circ P_{3}$.

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(D)(Q)(V)(X)$
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH) (AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

- These cycles are intimately related to those for $P_{4} \circ P_{1}, P_{5} \circ P_{2}$, and $P_{6} \circ P_{3}$.
FACT: If $\rho_{4} \circ \rho_{1}: \alpha \mapsto \beta$, then $P_{4} \circ P_{1}: P(\alpha) \mapsto P(\beta)$.

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(D)(Q)(V)(X)$
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH $)($ AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

- These cycles are intimately related to those for $P_{4} \circ P_{1}, P_{5} \circ P_{2}$, and $P_{6} \circ P_{3}$.

FACT: If $\rho_{4} \circ \rho_{1}: \alpha \mapsto \beta$, then $P_{4} \circ P_{1}: P(\alpha) \mapsto P(\beta)$.
Proof:

$$
P_{4} \circ P_{1}\left((P(\alpha))=P \circ \rho_{4} \circ \rho_{1} \circ P((P(\alpha))\right.
$$

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(D)(Q)(V)(X)$
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH $)($ AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

- These cycles are intimately related to those for $P_{4} \circ P_{1}, P_{5} \circ P_{2}$, and $P_{6} \circ P_{3}$.

FACT: If $\rho_{4} \circ \rho_{1}: \alpha \mapsto \beta$, then $P_{4} \circ P_{1}: P(\alpha) \mapsto P(\beta)$.
Proof:

$$
\begin{aligned}
P_{4} \circ P_{1}((P(\alpha)) & =P \circ \rho_{4} \circ \rho_{1} \circ P((P(\alpha)) \\
& =P \circ \rho_{4} \circ \rho_{1}(\alpha)
\end{aligned}
$$

Recovering the Plugboard

- From this table, construct the cycles for the three permutations $\rho_{4} \circ \rho_{1}, \rho_{5} \circ \rho_{2}$, and $\rho_{6} \circ \rho_{3}$:

1. $\rho_{4} \circ \rho_{1}=(M G W T R E F B J U)(A K Z C I N L S H Y)(P)(D)(D)(Q)(V)(X)$
2. $\rho_{5} \circ \rho_{2}=($ VLPXKEOCJRH $)($ AQNIWBZUYMG) (FS) (DT)
3. $\rho_{6} \circ \rho_{3}=(\mathrm{QJYHVPNFG})($ ALXBWODKT) (ZCRU) (ISME)

- These cycles are intimately related to those for $P_{4} \circ P_{1}, P_{5} \circ P_{2}$, and $P_{6} \circ P_{3}$.
FACT: If $\rho_{4} \circ \rho_{1}: \alpha \mapsto \beta$, then $P_{4} \circ P_{1}: P(\alpha) \mapsto P(\beta)$.
Proof:

$$
\begin{aligned}
P_{4} \circ P_{1}((P(\alpha)) & =P \circ \rho_{4} \circ \rho_{1} \circ P((P(\alpha)) \\
& =P \circ \rho_{4} \circ \rho_{1}(\alpha) \\
& =P(\beta) .
\end{aligned}
$$

Recovering the Plugboard

Corollary
If $\rho_{4} \circ \rho_{1}$ has a cycle $\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)$, then $P_{4} \circ P_{1}$ has a cycle $\left(P\left(\alpha_{1}\right) P\left(\alpha_{2}\right) \ldots P\left(\alpha_{n}\right)\right)$.

Recovering the Plugboard

Corollary
If $\rho_{4} \circ \rho_{1}$ has a cycle $\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)$, then $P_{4} \circ P_{1}$ has a cycle $\left(P\left(\alpha_{1}\right) P\left(\alpha_{2}\right) \ldots P\left(\alpha_{n}\right)\right)$.

- This establishes the fact that $\rho_{4} \circ \rho_{1}$ and $P_{4} \circ P_{1}$ have identical cycle structures.

Recovering the Plugboard

1. $\rho_{4} \circ \rho_{1}=$
(MGWTREFBJU) (AKZCINLSHY) (P) (D) (O) (Q) (V) (X)

Recovering the Plugboard

1. $\rho_{4} \circ \rho_{1}=$
(MGWTREFBJU) (AKZCINLSHY) (P) (D) (0) (Q) (V) (X)
2. $P_{4} \circ P_{1}=$
(ARDNHSLYZK) (BJUPWTCFE) (I) (Q) (Q) (V) (X) (G)

Recovering the Plugboard

1. $\rho_{4} \circ \rho_{1}=$
(MGWTREFBJU) (AKZCINLSHY) (P) (D) (0) (Q) (V) (X)
2. $P_{4} \circ P_{1}=$
(ARDNHSLYZK) (BJUPWTCFE) (I) (Q) (Q) (V) (X) (G)

- Because the plugboard has 14 fixed points, we can look for common letter groups within cycles.

Recovering the Plugboard

1. $\rho_{4} \circ \rho_{1}=$
(MGWTREFBJU) (AKZCINLSHY) (P) (D) (0) (Q) (V) (X)
2. $P_{4} \circ P_{1}=$
(ARDNHSLYZK) (BJUPWTCFE) (I) (Q) (Q) (V) (X) (G)

- Because the plugboard has 14 fixed points, we can look for common letter groups within cycles.
- The adjacency of letters in corresponding cycles suggests the proper alignment.

Recovering the Plugboard

1. $\rho_{4} \circ \rho_{1}=$
(MGWTREFBJU) (AKZCINLSHY) (P) (D) (0) (Q) (V) (X)
2. $P_{4} \circ P_{1}=$
(ARDNHSLYZK) (BJUPWTCFE) (I) (O) (Q) (V) (X) (G)

- Because the plugboard has 14 fixed points, we can look for common letter groups within cycles.
- The adjacency of letters in corresponding cycles suggests the proper alignment.
- For instance, consider the letters BJU in $\rho_{4} \circ \rho_{1}$ and $P_{4} \circ P_{1}$.

Recovering the Plugboard

$$
\begin{aligned}
\rho_{4} \circ \rho_{1} & \rightarrow(\mathrm{BJUMGWTREF})(\mathrm{CINLSHYAKZ})(\mathrm{P})(\mathrm{D})(\mathrm{O})(\mathrm{Q})(\mathrm{V})(\mathrm{X}) \\
P_{4} \circ P_{1} & \rightarrow(\mathrm{BJUMPWTCFE})(\mathrm{RDNHSLYZKA})(\mathrm{G})(\mathrm{I})(\mathrm{O})(\mathrm{Q})(\mathrm{V})(\mathrm{X})
\end{aligned}
$$

Recovering the Plugboard

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \\
& \rho_{4} \circ \rho_{1} \rightarrow \text { (BJUMGWTREF)(CINLSHYAKZ) (P) (D) (O) (Q) (V) (X) } \\
& P_{4} \circ P_{1} \rightarrow(\mathrm{BJUMPWTCFE})(\text { RDNHSLYZKA) (G) (I) (O) (Q) (V) (X) } \\
& \uparrow \uparrow \uparrow
\end{aligned}
$$

- The leftmost 11-cycles immediately yield the swaps R/C, G/P, and E / F.

Recovering the Plugboard

$$
\begin{gathered}
\quad \downarrow \\
\rho_{4} \circ \rho_{1} \rightarrow \text { (BJUMGWTREF) (CINLSHYAKZ) (P) (D) (O) (Q) (V) (X) } \\
P_{4} \circ P_{1} \rightarrow(\mathrm{BJUMPWTCFE})(\text { RDNHSLYZKA) (G) (I) (O) (Q) (V) (X) } \\
\uparrow
\end{gathered}
$$

- The leftmost 11-cycles immediately yield the swaps R/C, G/P, and E / F.
- Align the next 11 -cycles of $\rho_{4} \circ \rho_{1}$ and $P_{4} \circ P_{1}$ using the fact that $P(\mathrm{C})=\mathrm{R}$.

Recovering the Plugboard

```
        \downarrow\downarrow \downarrow
\rho
P4}\circ\mp@subsup{P}{1}{}->(\textrm{BJUMPWTCFE)(RDNHSLYZKA)(G)(I)(0)(Q)(V)(X)
\uparrow \uparrow \uparrow
```

- The leftmost 11-cycles immediately yield the swaps R/C, G/P, and E / F.
- Align the next 11-cycles of $\rho_{4} \circ \rho_{1}$ and $P_{4} \circ P_{1}$ using the fact that $P(\mathrm{C})=\mathrm{R}$.
- This immediately yields I/D, L/H, and A/Z. This completes the full recovery of all six letter swaps.

Recovering the Plugboard

```
\rho
P4}\circ\mp@subsup{P}{1}{}->(\textrm{BJUMPWTCFE)(RDNHSLYZKA)(G)(I)(0)(Q)(V)(X)
```

- The leftmost 11-cycles immediately yield the swaps R/C, G/P, and E / F.
- Align the next 11 -cycles of $\rho_{4} \circ \rho_{1}$ and $P_{4} \circ P_{1}$ using the fact that $P(\mathrm{C})=\mathrm{R}$.
- This immediately yields I/D, L/H, and A/Z. This completes the full recovery of all six letter swaps.
- Having determined the rotor order: 2-3-1, the settings: Z-Q-P, and the plugboard swaps: G/P, I/D, A/Z, E/F, C/R, H/L, the message can be fully decrypted.

