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Midterm Review-Admin

1) Midterm is Monday Oct 28 2-3:15 in class
2) Can bring one sheet of notes.

Can use both sides
Can be typed
You can put whatever you want on it.
Can copy a classmates but thats a terrible idea.
Can cram the entire course onto it but thats a terrible idea.

3) No calculators allowed. Numbers will be small.
4) Coverage: Slides/HW. Do not ask is BLAH fair game. If you do
then BLAH becomes fair game.
5) Not on Exam: Clydes talk on Bridge.
6) We hope to grade it and post it Monday Night.
7) If can’t take the exam tell me ASAP.
8) Advice: Understand rather than memorize.



MIDTERM
REVIEW-CONTENT



Alice, Bob, and Eve

I Alice sends a message to Bob in code.

I Eve overhears it.

I We want Eve to not get any information.

There are many aspects to this:

I Information-Theoretic Security.

I Computational-Theoretic Security (Hardness Assumption)

I The NY,NY problem: Do not always code m the same way.

I The Tampering Problem.

I Private Key or Public key

I Kerckhoff’s principle: Eve knows cryptosystem.

I How much computing power does Eve have?



Cracking a Code

All of the following are bad

1. Eve knows what Alice send Bob

2. Eve knows Pr(m = x) > Pr(m = y).

3. Eve knows that whether or not m1 = m2.

4. Eve can tamper with it to send Alice INCORRECT but still
coherent message.

5. Eve can tamper with it to send Alice INCORRECT but
incoherent message. Alice doesn’t know if Bob messed up OR
if Eve tampered.
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The First Steps in Any Cipher

1. Get rid of spacing

2. Get rid of punctuation

3. Make everything capitol letters

4. Class convention: we use either

4.1 Σ = {A, . . . ,Z}, or
4.2 Σ = {0, . . . , n − 1} (n is often p a prime), or
4.3 Σ = {0, 1}.



Private Key Ciphers



Single Letter Sub Ciphers

1. Shift cipher: f (x) = x + s. s ∈ {0, . . . , 25}.
2. Affine cipher: f (x) = ax + b. a, b ∈ {0, . . . , 25}. a rel prime

26.

3. Keyword Shift: From keyword and shift create random-looking
perm of {a, . . . , z}.

4. Keyword Mixed: From keyword create random-looking perm
of {a, . . . , z}.

5. Gen Sub Cipher: Take random perm of {a, . . . , z}.



All Single Letter Sub Ciphers Crackable

Important: Algorithm Is-English.

1. Input(T ) a text

2. Find fT , the freq vector of T

3. Find x = fT · fE where fE is freq vector for English

4. If x ≥ 0.06 then output YES. If x ≤ 0.04 then output NO. If
0.04 < x < 0.06 then something is wrong.

1. Shift , Affine have small key space: can try all keys and see
when Is-English says YES.

2. For others use Freq analysis, e.g., e is most common letter.

3. If message is numbers (e.g., Credit Cards) or ASCII (e.g.,
Byte-Shift) there are still patterns so can use freq analysis.



Letter Frequencies



Randomized Shift

How to avoid the NY,NY problem:
Randomized shift: Key is a function f : S → S .

1. To send message (m1, . . . ,mL) (each mi is a character)

1.1 Pick random r1, . . . , rL ∈ S . For 1 ≤ i ≤ L compute si = f (ri ).
1.2 Send ((r1;m1 + s1), . . . , (rL;mL + sL))

2. To decode message ((r1; c1), . . . , (rL; cL))

2.1 For 1 ≤ i ≤ L si = f (ri ).
2.2 Find (c1 − s1, . . . , cL − sL)

Note: Can be cracked.



Example

The key is f (r) = 2r + 7. Alice wants to send
NY,NY which we interpret as nyny.
Need four shifts.

Pick random r = 4, so first shift is 2 ∗ 4 + 7 = 15
Pick random r = 10, so second shift is 2 ∗ 10 + 7 = 1
Pick random r = 1, so third shift is 2 ∗ 1 + 7 = 9
Pick random r = 17, so fourth shift is 2 ∗ 17 + 7 = 15

Send (4;C), (10,Z), (1,W), (17,N)

Eve will not be able to tell that is of the form XYXY.
Note: Used same technique to make RSA not have NY,NY
problem. Can be applied to most cryptosystems.



Cracking Randomized Shift

With a long text Rand Shift is crackable.
If N is long and Eve sees

(r1;σ1)(r2;σ2) · · · (rN ;σN)

Then many r will appear many times. Say r appears 10,000 times.
then Eve knows the shift of lots of letters.

1. From our study of Vig we know that every Lth letter has same
freq dist as English.

2. It turns out that if you take RANDOM letters, also get same
freq dist as English (Bday Paradox)

Hence can find f (r). If do this for many r , have f .



Integrity-Shift

Integrity-Shift: Key is a shift s and a function g : S → S . To make
sure message came from Alice.

1. To send message (m1, . . . ,mL) (each mi is a char) send

(m1 + s, g(m1)), . . . , (mL + s, g(mL)).

2. To decode message ((c1, d1), . . . , (cL, dL)) just

(c1 − s, . . . , cL − s).

3. To Authenticate Once Bob has m1, . . . ,mL he computes
g(m1), . . . , g(mL) and checks that, for all i , g(mi ) = di .

Note: Bob can make sure that the message he gets is the one Alice
sent. Can be applied to other ciphers as well.



The Vigenère cipher

Key: k = (k1, k2, . . . , kn).
Encrypt (all arithmetic is mod 26)

Enc(m1,m2, . . . ,mN) =

m1 + k1,m2 + k2, . . . ,mn + kn,

mn+1 + k1,mn+2 + k2, . . . ,mn+n + kn,

· · ·

Decrypt Decryption just reverse the process



Cracking Vig cipher

1. Find Keylength or set K of them. Either try length 1,2,3,. . .
or find repeated strings of letters so can guess.

2. Let K be the set of possible key lengths. For every L ∈ K :

2.1 Separate text T into L streams depending on position mod L
2.2 For each steam try every shift and use Is-English to determine

which shift is correct.
2.3 You now know all shifts for all positions. Decrypt!



Getting More Out of Your Phrase

If the key was Corn Flake key of length 9. Want More.
We form a key of length LCM(4, 5) = 20.

C O R N C O R N C O R N C O R N C O R N
F L A K E F L A K E F L A K E F L A K E

7 25 17 23 6 19 2 13 12 18 22 24 2 24 21 18 13 14 1 17

ADD it up to get new 20-long key.
Crackable? in 2019 YES, in 1776 Probably Not.



Vig Book Cipher

Use Book for key.

1. LONG key- great!

2. Should pick obscure book (see next slide).

3. Crackable NOW by looking at common pairs-of-letters since
both book and message are English.

4. Probably hard in 1776.



An Obscure Book You Can Use

World Scientific
World Scientific
www.worldscientific.com
11261 hc

ISBN 978-981-3279-72-8

Ever notice how civilians (that is non-math people) 
use math words badly? Ever notice how sometimes 
you know a math statement is false (or not known) 
since if it was true you would know it?

Each chapter of this book makes a point like those 
above and then illustrates the point by doing some 
real mathematics.

This book gives readers valuable information about 
how mathematics and theoretical computer 
science work, while teaching them some actual 
mathematics and computer science through 
examples and exercises. Much of the mathematics 
could be understood by a bright high school 
student. The points made can be understood by 
anyone with an interest in math, from the bright 
high school student to a Field’s medal winner.

William Gasarch • Clyde Kruskal

PO
IN

T
G

asarch
Kruskal

Problems with a Point

Problem
s w

ith a 

Problems 
with a 

P   INT



Shift, Affine, . . . Easy to Crack

1. Shift

2. Affine

3. Keyword Shift

4. Keyword Mixed

5. Gen Sub

6. Vig

7. all 1-letter substitutions.

Freq cracked them (for Vig Freq plus some other stuff).

Idea: Sub n letters at a time.

Need bijection of {0, . . . , 25}n to {0, . . . , 25}n that is easy to use.



The Matrix Cipher

Definition: Matrix Cipher. Pick n and M an n × n invertible
matrix.

1. Encrypt via ~x → M(~x).

2. Decrypt via ~y → M−1(~y)

We’ll take n = 30.

1. Easy for Alice and Bob.

2. Key M is small enough to be easy for Alice and Bob but too
large for Eve to use brute force.

3. Eve can crack using freqs of 30-long sets of letters? Hard?

4. Ciphertext only might be uncrackable.

5. Can crack from message-cipher pairs.
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The Matrix Cipher: Ciphertext Only

If n × n matrix then keyspace has roughly 26n
2
.

1. Trying every matrix takes 26n
2
.

2. If guess one row at a time then O(n26n).

3. Lesson: Eve may think of attacks you had not thought of.

4. Lesson: Attacks can be thwarted, once known, by increasing n



One-time pad

1. Let M = {0, 1}n

2. Gen: choose a uniform key k ∈ {0, 1}n

3. Enck(m) = k ⊕m

4. Deck(c) = k ⊕ c

5. Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕m)

= (k ⊕ k)⊕m

= m



PROS AND CONS Of One-time pad

1. If Key is N bits long can only send N bits.

2. ⊕ is FAST!

3. The one-time pad is uncrackable. YEAH!

4. Generating truly random bits is hard. BOO!

5. Psuedo-random can be insecure – I did example.



Public Key Ciphers
S.O.T.E



Public Key Cryptography

Alice and Bob never have to meet!



Number Theory Algorithms for Public Key

All arithmetic is mod p. The following can be done quickly.

1. Given (a, n, p) compute an (mod p). Repeated Squaring. (1)
≤ 2 lg n always, (2) ≤ lg n + O(1) if n close to 22

m
.

2. Given n, find a safe prime of length L and a generator g .

3. Given a, b rel prime find inverse of a mod b: Euclidean alg.

4. Given a1, . . . , am and b1, . . . , bm, bi ’s Justinian, find x ≡ ai
(mod bi ).

5. Given (a, p) find
√
a’s. We did p ≡ 3 (mod 4) case.

6. Given (a,N) and p, q such that N = pq, find
√
a’s.



Number Theory Assumptions

1. Discrete Log is hard.

2. Factoring is hard.

3. Given (a,N), find
√
a without being given factors of N is

hard. (This is equiv to factoring.)

Note: We usually don’t assume these but instead assume close
cousins.



The Diffie-Helman Key Exchange

Alice and Bob will share a secret s.

1. Alice finds a (p, g), p of length n, g gen for Zp. Arith mod p.

2. Alice sends (p, g) to Bob in the clear (Eve can see it).

3. Alice picks random a ∈ {1, . . . , p− 1}. Alice computes ga and
sends it to Bob in the clear (Eve can see it).

4. Bob picks random b ∈ {1, . . . , p − 1}. Bob computes gb and
sends it to Alice in the clear (Eve can see it).

5. Alice computes (gb)a = gab.

6. Bob computes (ga)b = gab.

7. gab is the shared secret.

Definition
Let f be f (p, g , ga, gb) = gab.

Hardness assumption: f is hard to compute.
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How Useful is Diffie-Helman

CAVEAT: DH is not a cipher.

PRO: Alice and Bob can use gab to transmit a key for a cipher.

Used? DH is at used in many real authentication schemes!



ElGamal uses DH to send Messages

1. Alice and Bob do Diffie Helman.

2. Alice and Bob share secret s = gab.

3. Alice and Bob compute (gab)−1 (mod p).

4. To send m, Alice sends c = mgab

5. To decrypt, Bob computes c(gab)−1 ≡ mgab(gab)−1 ≡ m

We omit discussion of Hardness assumption (HW)



Needed Math for RSA – The φ Function

Definition
φ(n) is the numb of nums in {1, . . . , n− 1} that are rel prime to n.

Note: If p is prime then φ(p) = p − 1.
Known: If n is any number then aφ(n) ≡ 1 (mod n).
Ramifications: For all m, am ≡ am (mod φ(n)) (mod n).
Known: If a, b are relatively prime then φ(ab) = φ(a)φ(b).
Known: Given R, easy to find e rel prime to R and d such that
ed ≡ 1 (mod R).
Believe: Let N = pq, R = (p − 1)(q − 1) and e rel prime to R.
If know N but Not R then hard to find d with ed ≡ 1 (mod R).



RSA

Let L be a security parameter

1. Alice picks two primes p, q of length L and computes N = pq.

2. Alice computes φ(N) = φ(pq) = (p − 1)(q − 1). Denote by R

3. Alice picks an e ∈ {R3 , . . . ,
2R
3 } that is relatively prime to R.

Alice finds d such that ed ≡ 1 (mod R).

4. Alice broadcasts (N, e). (Bob and Eve both see it.)

5. Bob: To send m ∈ {1, . . . ,N − 1}, send me (mod N).

6. If Alice gets me (mod N) she computes

(me)d ≡ med ≡ med (mod R) ≡ m1 (mod R) ≡ m



Hardness Assumption for RSA

Definition: Let f be f (N, e) = d , where N = pq, and

ed ≡ 1 (mod (p − 1)(q − 1))

Hardness assumption (HA): f is hard to compute.



Plain RSA Bytes!

The RSA given above is referred to as Plain RSA.
Insecure! m is always coded as me (mod N).

Make secure by padding: m ∈ {0, 1}L1 , r ∈ {0, 1}L2 .

To send m ∈ {0, 1}L1 , pick rand r ∈ {0, 1}L2 , send (rm)e .
(NOTE- rm means r CONCAT with m here and elsewhere.)
DEC: Alice finds rm and takes rightmost L1 bits.
Caveat: RSA still has issues when used in real world. They have
been fixed. Maybe.



Attacks on RSA

1. Pollard’s p − 1-method Factoring Algorithms. Response:
Make p − 1 and q − 1 both safe primes.

2. Other Factoring Algorithms. Response: Make p − 1 and q − 1
large.

3. Low-e attack: Response: High e and pad m so that
me > N1 · · ·NL.

4. GCD attack for when all Ni same. Response: Make all of the
Ni different.

5. Timing Attacks: Response: Pad the amount of time used.

Caveat: Theory says use different e’s. Practice says use
e = 216 + 1 for speed.



Math for Rabin Encryption – Procedures

How to find square roots mod p if p ≡ 3 (mod 4).
All arithmetic is mod p.

Input(c)

Compute c(p−1)/2. If it is NOT 1 then output There is no
square root!. If it is 1 then goto next step

Compute a = c(p+1)/4.

Output a and p − a. These are the two square roots.

Note: There is a similar algorithm for p ≡ 1 (mod 4) but it is
slightly more complicated.



Rabin’s Encryption Scheme

L is a security parameter

1. Alice gen p, q primes of length L. Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N).

3. Decode: Alice can find m such that m2 ≡ c (mod N).

OH!
There will be two or four of them! What to do? Use Blum
Variant to make unambiguous.

BIG PRO: Factoring Hard is hardness assumption.
CON: Alice has to figure out which of the sqrts is correct message
(Blum Variant). Cuts down the number of messages you can send.
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A Theorem from Number Theory

Definition: A Blum Int is product of two primes ≡ 3 (mod 4).
Example: 21 = 3× 7.

Notation: SQN is the set of squares mod N. (Often called QRN .)
Example: If N = 21 then SQN = {1, 4, 7, 9, 15, 16, 18}.

Theorem: Assume N is a Blum Integer. Let m ∈ SQN . Then of
the two or four sqrts of m, only one is itself in SQN .
Proof: Omitted.

We use Theorem to modify Rabin Encryption.



Rabin’s Encryption Scheme 2.0

Also called The Blum-Williams Variant of Rabin
L is a security parameter.

1. Alice gen p, q primes of length L such that p, q ≡ 3 (mod 4).
Let N = pq. Send N.

2. Encode: To send m, Bob sends c = m2 (mod N). Only send
m’s in SQN .

3. Decode: Alice can find 2 or 4 m such that m2 ≡ c (mod N).
Take the m ∈ SQN .

CON: Messages have to be in SQN .

History: Had timing been different Rabin Enc would be used.



Goldwasser-Micali Encryption

L is a security parameter. Will only send ONE bit. Bummer!

1. Alice gen p, q primes of length L, and z ∈ NSQN . Computes
N = pq. Send (N, z).

2. Encode: To send m ∈ {0, 1}, Bob picks random x ∈ ZN ,
sends c = zmx2 (mod N). Note that:

2.1 If m = 0 then zmx2 = x2 ∈ SQN .
2.2 If m = 1 then zmx2 = zx2 ∈ NSQN .

3. Decode: Alice determines if c ∈ SQ or not. If YES then
m = 0. If NO then m = 1.

BIG PRO: Hardness assumption natural: SQN hard.
BIG CON: Messages have to be 1-bit long.
TIME: For one bit you need 4 logN steps.



Blum-Goldwasser Enc. n Sec Param, L length of msg

1. Alice: p, q primes len n, p, q ≡ 3 (mod 4). N = pq. Send N.

2. Encode: Bob sends m ∈ {0, 1}M : picks random r ∈ ZN

x1 = r2 mod N b1 = LSB(x1).
x2 = x21 mod N b2 = LSB(x2).
...
xM+1 = x2M mod N bM+1 = LSB(xM+1).
Send c = ((m1 ⊕ b1, . . . ,mM ⊕ bM), xM+1).

3. Decode: Alice: From xM+1 Alice can compute xM , . . ., x1 by
sqrt (can do since Alice has p, q). Then can compute
b1, . . . , bM and hence m1, . . . ,mM .

BIG PRO: Hardness assumption is BBS psuedo-random.
TIME: For M bits need (M + 3) logN steps. Better than
Goldwasser-Micali.



LWE-KE

1. LWE-KE is a protocol for Key Exchange that does not rely on
Number Theory Hardness Assumption

2. There is also a LWE-RSA.

3. These might be useful if Factoring and Discrete Log can be
done by a quantum computer.

4. My presentation of it was not quite right.

5. The literature on these is not quite right either.



Good Luck on the Exam

Good Luck on the Exam!


