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Abstract
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Private-Key Ciphers

What do the following all have in common?

1. Shift Cipher

2. Affine Cipher

3. Vig Cipher

4. General Sub

5. General 2-char sub

6. Matrix Cipher

7. Playfair Cipher

8. Rail Cipher

9. One-time Pad

Alice and Bob need to meet! (Hence Private Key.)
Can Alice and Bob establish a key without meeting?
Yes! And that is the key to public-key cryptography.
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General Philosophy

A good crypto system is such that:

1. The computational task to encrypt and decrypt is easy.

2. The computational task to crack is hard.

Caveats:

1. Hard to achieve info-theoretic hardness (One-time pad).

2. Hard to achieve comp-hardness. Few problems provably hard.

3. Can use hardness assumptions (e.g. factoring is hard)



Difficulty of Problems Based on Length of Input
How hard is a problem based on the length of the input
Examples

1. SAT on a formula with n vars seems to require 2Ω(n) steps.

2. Polynomial vs Exp time is our notion of easy vs hard.

3. Factoring n can be done in O(
√
n) time: Discuss. Easy!

NO!!: n is of length lg n + O(1) (henceforth just lg n).√
n = 2(0.5) lg n. Exponential. Slightly better algs known.

Upshot: For numeric problems length is lg n. Encryption requires:

I Alice and Bob can Enc and Dec in time ≤ (log n)O(1).
I Eve needs time ≥ cO(log n) to crack.

What We Count: We will count arithmetic operations as taking 1
time step. This could be an issue with enormous numbers. Not our
problem.
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Notation

Let p be a prime.

1. Zp is the numbers {0, . . . , p − 1} with mod add and mult.

2. Z∗
p is the numbers {1, . . . , p − 1} with mod mult.



Exponentiation Mod p



Exponentiation mod p

Problem: Given a, n, p find an (mod p)
First Attempt

1. x0 = a0 = 1

2. For i = 1 to n, xi = axi−1.

3. Let x = xn (mod p).

4. Output x .

Is this a good idea?

I called it First Attempt, so no.
Discuss How many steps used compute an (mod p).
Answer: ∼ n.
But it’s worse than that. Why? x gets really large.
Can mod p every step so x not large. But still takes n steps.
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Exponentiation mod p
Example of a Good Algorithm
Want 364 (mod 101). All arithmetic is mod 101.
x0 = 3
x1 = x2

0 ≡ 9. This is 32.
x2 = x2

1 ≡ 92 ≡ 81. This is 34.
x3 = x2

2 ≡ 812 ≡ 97. This is 38.
x4 = x2

3 ≡ 972 ≡ 16. This is 316.
x5 = x2

4 ≡ 162 ≡ 54. This is 332.
x6 = x2

5 ≡ 542 ≡ 88. This is 364.
So in 6 steps we got the answer!

Discuss How many steps used compute an (mod p)?
Answer: ∼ lg n.
Discuss How we can generalize to when n is not a power of 2.
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A Review of Base 2

Say we want to do an (mod p).
Let’s look carefully at a in binary.
7 = (111)2 = 1× 22 + 1× 21 + 1× 20. Note 2 = blg 7c
8 = (1000) = 1× 23 + 0× 22 + 0× 21 + 0× 20. Note 3 = blg 8c
9 = (1001) = 1× 23 + 0× 22 + 0× 21 + 1× 20. Note 3 = blg 9c
Upshot: If write n as a sum of powers of 2 with 0,1 coefficients
then n is of the form:

n = nL2L + · · ·+ n121 + n020 =
L∑

i=0

ni2
i

Where L = blg(n)c and ni ∈ {0, 1}.
Note that L is one less than the number of bits needed for n.



Repeated Squaring Algorithm
All arithmetic is mod p.

1. Input (a, n, p)

2. Convert n to base 2: n =
∑L

i=0 ni2
i . (L is blg(n)c)

3. x0 = a

4. For i = 1 to L, xi = x2
i−1 (Note: xi = a2i .)

5. (Now have an020
, . . . , anL2L) Answer is an020 × · · · × anL2L

Number of operations:
Number of ×’s in step 4: ≤ blg(n)c ≤ lg(n)

Number of ×’s in step 5: ≤ L = blg(n)c ≤ lg(n)
Total number of ×’s: ≤ 2 lg(n).
More refined: lg(n) + number of 1’s in binary rep of n − 1
Example on next page
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Example of Exponentiation: 17265 (mod 101)

265 = 28 + 23 + 20

1720 ≡ 17 (0 steps)
1721 ≡ 172 ≡ 87 (1 step)
1722 ≡ 872 ≡ 95 (1 step)
1723 ≡ 952 ≡ 36 (1 step)
1724 ≡ 362 ≡ 84 (1 step)
1725 ≡ 842 ≡ 87 (1 step)
1726 ≡ 872 ≡ 95 (1 step)
1727 ≡ 952 ≡ 36 (1 step)
1728 ≡ 362 ≡ 84 (1 step)
This took 8 ∼ lg(265) multiplications so far.

The next step takes only two:

17265 ≡ 1728 × 1723 × 1720 ≡ 84× 36× 17 ≡ 100

Point: Step 2 took � lg(265) steps since base-2 rep had few 1’s.
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Finding Generators



Generators mod p

Let’s take powers of 3 mod 7. All arithmetic is mod 7.
31 ≡ 3
32 ≡ 3× 31 ≡ 9 ≡ 2
33 ≡ 3× 32 ≡ 3× 2 ≡ 6
34 ≡ 3× 33 ≡ 3× 6 ≡ 18 ≡ 4
35 ≡ 3× 34 ≡ 3× 4 ≡ 12 ≡ 5
36 ≡ 3× 35 ≡ 3× 5 ≡ 15 ≡ 1

{31, 32, 33, 34, 35, 36} = {1, 2, 3, 4, 5, 6} Not in order

3 is a generator for Z∗
7.

Definition: If p is a prime and {g1, . . . , gp−1} = {1, . . . , p − 1}
then g is a generator for Z∗

p.
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Discrete Log-Example

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Discuss the following with your neighbor:

1. Find x such that 3x ≡ 81.

x = 4 obv works.

2. Find x such that 3x ≡ 92. Try computing 31, 32, . . . , until you
get 92. Might take ∼ 100 steps. Shortcut?

3. Find x such that 3x ≡ 93. Try computing 31, 32, . . . , until you
get 93. Might take ∼ 100 steps. Shortcut?

The second and third problem look hard. Are they? VOTE: Both
hard, both easy, one of each, unknown to science.

3x ≡ 92 easy. 3x ≡ 93 Not known how hard.
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Discrete Log-Example: 3x ≡ 92 (mod 101)

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Find x such that 3x ≡ 92. Easy!

1. 92 ≡ 101− 9 ≡ (−1)(9) ≡ (−1)32.

2. 350 ≡ −1 (WHAT! Really?)

3. 92 ≡ 350 × 32 ≡ 352. So x = 52 works.

Generalize:

1. If g is a generator of Z∗
p then g (p−1)/2 ≡ p − 1 ≡ −1.

2. So finding x such that g x ≡ p − ga ≡ −ga is easy:

x =
p − 1

2
+ a : g

p−1
2

+a = g
p−1

2 ga ≡ −ga



Discrete Log-Example: 3x ≡ 93 (mod 101)

Fact: 3 is a generator mod 101. All arithmetic is mod 101.
Is there a trick for g x ≡ 93 (mod 101)? Not that I know of.

What is known about complexity of discrete log?
Given g , a, p find x such that g x ≡ a (mod p).

1. Naive algorithm is O(p) time.

2. Exists a O(
√
p) Time, O(

√
p) space alg. Space makes it not

useable.

3. Exists a O(
√
p) Time, (log p)O(1) space alg. Useable!

4. Not much progress on theory front since 1985.

5. DL is in QuantumP.



My Opinion on DL. Also applies to Factoring

1. Fact: DL in in QuantumP.

2. Opinion: Quantum computers that can do DL fast won’t
happen

in my lifetime. In your lifetime. Ever.

3. Fact: Classical algorithms that are better than naive, using
hard number theory, have been discovered and implemented.
Still exponential but low constants, possibly good in practice.
Some are amenable to parallelism.

4. Opinion: The biggest threat to crypto is from hard math
combined with special purpose parallel hardware.

5. Fact: If computers do DL much better (e.g., O(n1/10)) then
humans need to triple the length of their numbers. Still, Eve
has made Alice and Bob work harder.

6. Opinion: When people really really need to up their
parameters they don’t.They say

It won’t happen to me Until it does.
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Discrete Log-General

Definition Let p be a prime and g be a generator mod p.
The Discrete Log Problem is:
Given y ∈ {1, . . . , p}, find x such that g x ≡ y (mod p). We call
this DLp,g (y).

1. If g is small then DL(ga) or DL(p − ga) might be easy.
Example: DL1009,7(49) = 2 since 72 ≡ 49 (mod 1009).
Example: DL1009,7(1009− 49) = 506 since
750472 ≡ −72 ≡ 1009− 49 (mod 1009).

2. If g , a ∈ {p3 , . . . ,
2p
3 } then problem suspected hard.

3. Tradeoff: By restricting a we are cutting down search space
for Eve. Even so, in this case we need to since she REALLY
can recognize when DL is easy.



Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.



Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.



Consider What We Already Have Here

I Exponentiation is Easy.

I Discrete Log is thought to be Hard.

Can we come up with a crypto system where Alice and Bob do
Exponentiation to encrypt and decrypt, while Eve has to do
Discrete Log to crack it?

No. But we’ll come close.



Convention

For the rest of the slides on Diffie-Hellman Key Exchange there will
always be a prime p that we are considering.

ALL arithmetic done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.



Finding Gens: First Attempt

Given prime p, find a gen for Z∗
p

1. Input p

2. For g =
⌈p

3

⌉
to
⌊

2p
3

⌋
Compute g1, g2, . . . , gp−1 until either hit a repeat or fin-
ish. If repeats then g is NOT a generator, so goto the next
g . If finishes then output g and stop.

PRO: many g ’s are gen’s so O(1) iterations.

CON: Computing g1, . . . , gp−1 is O(p) operations.
Bad! Recall need poly on log p.
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Finding Gens: Second Attempt

Theorem: If g is not a generator then there exists x that
(1) x divides p − 1, (2) x 6= p − 1, and (3) g x ≡ 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let F be the set of its factors except p − 1.

3. For g =
⌈p

3

⌉
to
⌊

2p
3

⌋
Compute g x for all x ∈ F . If any = 1 then g not generator.
If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|F |(log p)) ops. |F | might be huge! So no
good. But wait for next slide. . ..
BIG CON: Factoring p − 1? Really? Darn!
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Finding Gens: Prep for Third Attempt

Example: p = 1009 which is prime. All math is mod 1009.

p − 1 = 1008 = 24 × 32 × 71 which has 5× 3× 2 = 30 factors

Don’t count 1008, so 29 factors. F is set of 29 factors.
Last Page Method: (∀x ∈ F ) compute g x . If any are 1 then g
NOT a gen. 29 x ’s to check! Can we shorten? Discuss.

Thought Experiment: Want to test if g is a generator. We find
g23×31

= 1 so g is not a generator. Note that g23×32×71
= 1.

Key: Assume g2a3b7c = 1 with (a ≤ 3) ∨ (b ≤ 1) ∨ (c ≤ 0).

I If a ≤ 3 then g233271
= 1.

I If b ≤ 1 then g243171
= 1.

I If c ≤ 0 then g243270
= 1.

So, need only test those THREE values of x .
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Finding Gens: Theorem needed for Third Attempt

Theorem
Let p − 1 = pa1

1 · · · pann Let g ∈ Z∗
p. Then g is not a gen IFF

I g (p
a1
1 ···pann )/p1 = 1 OR

I g (p
a1
1 ···pann )/p2 = 1 OR

I
...

I g (p
a1
1 ···pann )/pn = 1.

Definition
A number of the form (pa1

1 · · · pann )/pi is called a maximal factor of
p − 1. Maxfac for short.

How many maxfac’s are there as a function of p? Discuss.
The number of maxfacs is maximized when exp are all 1.
p − 1 = p1 · · · pn ≥ 2n, so lg(p − 1) ≥ n, so n ≤ lg(p − 1) ≤ lg(p).
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Finding Gens: Third Attempt

Theorem: If g is not a generator then there exists x that
(1) x is a maxfac of p − 1 and (2) g x = 1.

Given prime p, find a gen for Z∗
p

1. Input p

2. Factor p − 1. Let MF be the set of its maxfacs.

3. For g =
⌈p

3

⌉
to
⌊

2p
3

⌋
Compute g x for all x ∈ MF . If any = 1 then g not
generator. If none are 1 then output g and stop.

Is this a good algorithm?

PRO: As noted before, O(1) iterations.
PRO: Every iter – O(|MF |(log p)) ops. |MF | = O(log p). GREAT,
this improves over Attempt 2.
BIG CON: We still need to factor p − 1? Really? Darn!
Now what? See the next lecture for the exciting conclusion!
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