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From The Economist Sept 15, 2018, page 34

Article Title: Whack a Mole: The new president (of Colombia)
calls off talks with a lesser-known leftist insurgent group.

Context: In 2016 FARC, a left-wing insurgent group in Columbia,
signed a peace treaty that ended 50 years of conflict Yeah! The
former president of Columbia got the Nobel Peace Prize (the
leader of FARC did not — | do not know why). However a more
extreme insurgent group, ELN, is still active. Why did FARC
negotiate but ELN did not?:

Quote: ... And the ELN's strong encryption system has prevented
the army from extracting information from seized computers, as it
did with FARC.

Caveat: The article did not say what system they used. Oh Well
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The Academic Code

Academics often talk in code that sounds like normal speech, so
you might not realize it. They talk in public, so this could be
called public key cryptography.

When Academics Says: ... of great theoretical and practical
importance.
They Mean: interesting to me.

When Academics Says: It has long been known that. . ..
They Mean: | haven't bothered to look up the original reference.

When Academics Says: The proof is left to the reader.
They Mean: Someone smarter than me can surely prove this.
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The Academic Code, More Examples

When Academics Says: The agreement of my theory and the
empirical data is is Excellent.

They Mean: The agreement of my theory and the empirical data is
is Good.

When Academics Says: The agreement of my theory and the
empirical data is is Good.

They Mean: The agreement of my theory and the empirical data is
is Non-existant.

When Academics Says: It is generally believed that. . ..
They Mean: Me and my friends think.. ..
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Exponentiation Mod p Revisited

Recall If p prime, a # 0 (mod p), then a?~1 =1 (mod p).
How to compute 319 (mod 7) ?

Could do repeated squaring. Can we do better? Discuss. Yes
By Recall with p =7 and a = 3 we have

3=1 (mod7).
30k = (30 =1k =1.

SO

31000 = 36><166+4 = (36)166 % 34 = 34



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.
By Fermats Little Theorem 111% =1 (mod 107).
Divide 999,999,999 by 106:

999,999,999 = 106k + 27 (don't care what k is)



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.
By Fermats Little Theorem 111% =1 (mod 107).
Divide 999,999,999 by 106:

999,999,999 = 106k + 27 (don't care what k is)

11999,999,999 — 11106k><1127 — (11106)/( = 1/(1127 = 1127 (mOd 107)



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.
By Fermats Little Theorem 111% =1 (mod 107).
Divide 999,999,999 by 106:

999,999,999 = 106k + 27 (don't care what k is)

11999,999,999 — 11106k><1127 — (11106)/( = 1/(1127 = 1127 (mOd 107)

Lets rewrite that

11999,999,999 = 11999,999,999 (mod 106) (mod 107) = 1127 (mod 107)

Now do normal repeated squaring. 10 Xx's total.



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.
By Fermats Little Theorem 111% =1 (mod 107).
Divide 999,999,999 by 106:

999,999,999 = 106k + 27 (don't care what k is)

11999,999,999 — 11106k><1127 — (11106)/( = 1/(1127 = 1127 (mOd 107)

Lets rewrite that

11999,999,999 = 11999,999,999 (mod 106) (mod 107) = 1127 (mod 107)

Now do normal repeated squaring. 10 Xx's total.
Can we generalize?



Exponentiation Mod p Revisited: Another Example

11999,999,999 (mod 107)

Repeated squaring would take at least 1g(999,999,999) ~ 30 X's.
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Exponentiation with Really Big Exponents

Generalize p prime, a 0 (mod p), m € N.

We want to compute a".

We know that a?~1 =1 (mod p).

Divide m by p — 1:
m=k(p—1)+rwhere0<r<p—2andr=m (mod p—1).
Hence:

M = ak(p—1)+r = (ap—l)k x gl = 1kar = 5"

But recall that r = m (mod p — 1). So

M = gmmodp-1 (mod p)

This last equation is the important point
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Needed Mathematics- The ¢ Function

Next few slides are on the ¢ function.
YES, you have already seen it.

Who first said
Math is best learned twice. .. at least twice.
My CMSC 452 class thought either Gauss or Gasarch.

Answer: Said by Larry Denenberg, who was a grad student in CS
the same time Bill Gasarch was. Popularized by Bill Gasarch.
Probably not said by Gauss. Probably not true for Gauss.



Needed Mathematics- The ¢ Function

Recall If pis prime and 1 < a < p — 1 then a1 =1 (mod p).
Recall: For all m, a™ = a™ (m°d p=1) (mod p).
So arithmetic in the exponents is mod p — 1.

We need to generalize this to when the mod is not a prime.
Definition

¢(n) is the number of numbers in {1,...,n} that are relatively
prime to n.

Recall: If p is prime then ¢(p) = p — 1.
Recall: If a, b rel prime then ¢(ab) = ¢(a)p(b).



Theorem for Primes, Theorem for n

We restate and generalize.
Fermat's Little Theorem: If p is prime and a # 0 (mod p) then

m — _mmod p—1

am"=a (mod p).

Restate:
Fermat's Little Theorem: If p is prime and a is rel prime to p then

am=ammdPl (mod p).

Generalize:
Fermat-Euler Theorem: If n € N and a is rel prime to n then

am = ammd " (mod n).



Examples

14999999 (mod 393)

$(393) = ¢(3 x 131) = $(3) x $(131) = 2 x 130 = 260.

14999,999 — 14999,999 (mod 260) (mod 393) = 1439 (mod 393)

Now just do repeated squaring.
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Bait and Switch
| got you interested in the theorem
a™ = ammd (") (mod n)
by telling you that it can be used to do things like
17191,992,194.200.292777 (1110, 150),

with FAR less than 21g(191,992, 194,299, 292777) x's.
This is true! There will be some HW using it.

You are thinking: A&B will need to do a™ (mod n) for large m.

No. That is not what we will be doing, though | see why you would
think that. Or you see why | think you would think that. Or . ...
We will just use the theorem:

a™ = ammd () (mod n)



Easy and Hard

Known to be Easy, Do in Order

1.

Given L, generate two primes of length L: p, g.

2. Compute N =pgand R=(p—1)(g —1).
3.
4. If have p, q then Find d such that ed =1 (mod R). KEY:

Find e rel prime to R.

Easy since have p, g. Would be hard otherwise
Compute m® (mod N).

Thought to be Hard
Given N, e as above find d as above. Note that we are not given
p,qor R.



RSA

Let L be a security parameter



RSA

Let L be a security parameter

1. Alice picks two primes p, g of length L and computes N = pgq.



RSA

Let L be a security parameter
1. Alice picks two primes p, g of length L and computes N = pgq.
2. Alice computes ¢(N) = ¢(pq) = (p —1)(q — 1). Denote by R



RSA
Let L be a security parameter
1. Alice picks two primes p, g of length L and computes N = pgq.
2. Alice computes ¢(N) = ¢(pq) = (p —1)(q — 1). Denote by R
3. Alice picks an e € {&, ..., 2R} that is relatively prime to R.



RSA

Let L be a security parameter
. Alice picks two primes p, g of length L and computes N = pq.
2. Alice computes ¢(N) = ¢(pq) = (p —1)(q — 1). Denote by R
3. Alice picks an e € {&, ..., 2R} that is relatively prime to R.
4. Alice finds d such that ed =1 (mod R).

—



RSA

Let L be a security parameter

1.

AR

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)



RSA

Let L be a security parameter

1.

ok W

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).



RSA

Let L be a security parameter

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).

If Alice gets m® (mod N) she computes

No o b=

(me)d = med — medmodR = ml mod R _ m



RSA

Let L be a security parameter

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).

If Alice gets m® (mod N) she computes

No o b=

(me)d = med — medmodR = ml mod R _ m

Note: Works 1 < m < N — 1. m need not be rel prime to N.



RSA

Let L be a security parameter

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).

If Alice gets m® (mod N) she computes

No o b=

(me)d = med — medmodR = ml mod R _ m

Note: Works 1 < m < N — 1. m need not be rel prime to N.

PRO: Alice and Bob can execute the protocol easily.



RSA

Let L be a security parameter

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).

If Alice gets m® (mod N) she computes

No o b=

(me)d = med — medmodR = ml mod R _ m

Note: Works 1 < m < N — 1. m need not be rel prime to N.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!



RSA

Let L be a security parameter

Alice picks two primes p, g of length L and computes N = pq.
Alice computes ¢(N) = ¢(pg) = (p — 1)(g — 1). Denote by R
Alice picks an e € {&, ... 2R} that is relatively prime to R.
Alice finds d such that ed =1 (mod R).

Alice broadcasts (N, e). (Bob and Eve both see it.)

Bob: Tosend me {1,...,N — 1}, send m® (mod N).

If Alice gets m® (mod N) she computes

No o b=

(me)d = med — medmodR = ml mod R _ m

Note: Works 1 < m < N — 1. m need not be rel prime to N.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out m?
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Convention for RSA

Alice sends (N, e) to get the process started
Then Bob can send Alice messages.

We don’t have Alice sending Bob messages.



Do RSA in Class

Pick out two students to be Alice and Bob.

Use primes
p =31, Prime
q = 37, Prime

N = pg = 31 %37 = 1147.

R = ¢(N) = 3036 = 1080

e =77, e rel prime to R

d =533 (ed =1 (mod R))

CHECK: ed = 77 %533 = 41041 = 1 (mod 1080).

Bob: pick an me {1,...,N —1} ={1,...,1146}. Do not tell us
what it is.

Bob: compute ¢ = m® (mod 1147) and tell it to us.

Alice: compute c? (mod 1147), should get back m.
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1. Input (N, e) where N = pg and e is rel prime to
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If Eve can factor then she can crack RSA.

1. Input (N, e) where N = pg and e is rel prime to
R=(p—-1)(g—1). (p,q, R are NOT part of the input.)

2. Eve factors N to find p,q. Eve computes R = (p — 1)(q — 1).
3. Eve finds d such that ed =1 (mod R).

If Factoring Easy then RSA is crackable

What about converse?

If RSA is crackable then Factoring is Easy
VOTE: TRUE or FALSE or UNKNOWN TO SCIENCE

UNKNOWN TO SCIENCE.

Note: In ugrad math classes rare to have a statement that is
UNKNOWN TO SCIENCE. Discuss.



Hardness Assumption

Definition
Let f be the following function:
Input: N, e, m* (mod N) (know N = pg but don't know p, q).

Outputs: m.

Hardness assumption (HA): f is hard to compute.

One can show, assuming HA that RSA is hard to crack. But this
proof will depend on a model of security. See caveats about this on
similar DH slides (bribery, timing attacks, Maginot Line).
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What Could be True?

The following are all possible:

1) Factoring easy. RSA is crackable.
2) Factoring hard, HA false. RSA crackable, Factoring hard!!

3) Factoring hard, HA true, but RSA is crackable by other means.
Timing Attacks. Must rethink our model of security.

4) Factoring hard, HA true, and RSA remains uncracked for years.
Increases our confidence but . . ..

Item 4 is current state with some caveats: Do Alice and Bob use it

properly? Do they have large enough parameters? What is Eve's
computing power?
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Plain RSA Bytes!

The RSA given above is referred to as Plain RSA.
Insecure!

Scenario:
Eve sees Bob send Alice ¢; (message is my).
Later Eve sees Bob send Alice ¢, (message is m»).

What can Eve easily deduce?
Eve can know if ¢; = ¢ or not. So what?
Eve knows if m; = m» or not.

That alone makes it insecure.
Plain RSA is never used and should never be used!
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PKCS-1.5 RSA

How can we fix RSA to make it work? Discuss Need randomness.

We need to change how Bob sends a message;
BAD: Tosend me {1,...,N — 1}, send m® (mod N).

GOOD?: Tosend me {1,...,N — 1}, pick rand r, send (rm)©.
(NOTE- rm means r CONCAT with m here and elsewhere.)

DEC: Alice can find rm but doesn't know divider. How to fix?
Alice and Bob agree on dividers ahead of time. Agree on

L= {@J L =|lgN| — L.
To send m € {0, 1}2 pick random r € {0, 1}%1.
When Alice gets rm she will know that m is the last Ly bits.



Example

p = 31, Prime g = 37, Prime N = pg = 31 x 37 = 1147.
R = ¢(N) =30 % 36 = 1080
e =77 (e rel prime to R), d =533 (ed =1 (mod R))
Ly = {%J =3, Ly=|lgN| - L=7.
Bob wants to send 1100100 (note- Ly = 7 bits).

1. Bob generates L1 = 3 random bits. 100.

2. Bob sends 1001100100 which is 612 in base 10 by sending
61277 (mod 1147) which is 277.

3. Alice decodes by doing 277%3% (mod 1147) = 612

4. Alice puts 612 into binary to get 1001100100. She knows to
only read the last 7 bits 1100100.
Important: If later Bob wants to send 100 again he will choose a
DIFFERENT random 3 bits so Eve won't know he sent the same
message.
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Is PKCS-1.5 RSA Secure?

Is PKCS-1.5 RSA Secure? VOTE
» YES (under hardness assumptions and large n)
» NO (there is yet another weird security thing we overlooked)

NO (there is yet another weird security thing we overlooked)
Scenario: N and e are public. Bob sends (rm)¢ (mod N).
Eve cannot determine what m is.

What can Eve do that is still obnoxious?

Eve can compute 2¢(rm)¢ = (2(rm))¢ (mod N). So what?

Eve can later pretend she is Bob and send (2(rm))¢ (mod N).

Why bad? Discuss
(1) will confuse Alice (2) Sealed Bid Scenario.



Malleability

An encryption system is malleable if when Eve sees a message she
can figure out a way to send a similar one, where she knows the
similarity (she still does not know the message).

1.

The definition above is informal.

2. Can modify RSA so that it's probably not malleable.
3.
4. Name BLAH-1.5 is hint that it's not final version.

That way is called PKCS-2.0-RSA.



Final Points About RSA

AR A

PKCS-2.0-RSA is REALLY used!

There are many variants of RSA but all use the ideas above.
Factoring easy implies RSA crackable. TRUE.

RSA crackable implies Factoring easy: UNKNOWN.

RSA crackable implies Factoring easy: Often stated in
expositions of crypto. They are wrong!

Timing attacks on RSA bypass the math.



