Threshold Secret

 Sharing: Information-TheoreticMarch 10, 2020

Threshold Secret Sharing

Zelda has a secret $s \in\{0,1\}^{n}$.
Def: Let $1 \leq t \leq m$. (t, m)-secret sharing is a way for Zelda to give strings to A_{1}, \ldots, A_{m} such that:

1. If any t get together than they can learn s
2. If any $t-1$ get together they cannot learn s

What do we mean by Cannot learn the secret? We mean info-theory-security. Even if $t-1$ people have big fancy supercomputers they cannot learn s. We will later look at comp-security.

Applications

Rumor: Secret Sharing is used for the Russian Nuclear Codes. There are three people (one is Putin) and if two of them agree to launch, they can launch.

For people signing a contract long distance, secret sharing is used as a building block in the protocol.

(4, 4)-secret sharing

Zelda has a secret s. $A_{1}, A_{2}, A_{3}, A_{4}$ are people. We want:

1. If all four of $A_{1}, A_{2}, A_{3}, A_{4}$ get together, they can find s.
2. If any three of them get together, then learn NOTHING.

An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s.

An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!

An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING.

An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into $s=s_{1} s_{2} s_{3} s_{4}$ where

$$
\left|s_{1}\right|=\left|s_{2}\right|=\left|s_{3}\right|=\left|s_{4}\right|=\frac{n}{4}
$$

2. Zelda gives A_{i} the string s_{i}.

Does this work?

1. If $A_{1}, A_{2}, A_{3}, A_{4}$ get together they can find s. YES!!
2. If any three of them get together they learn NOTHING. NO.
2.1 A_{1} learns s_{1} which is $\frac{1}{4}$ of the secret!
$2.2 A_{1}, A_{2}$ learn $s_{1} s_{2}$ which is $\frac{1}{2}$ of the secret!
$2.3 A_{1}, A_{2}, A_{3}$ learn $s_{1} s_{2} s_{3}$ which is $\frac{3}{4}$ of the secret!

What do we mean by NOTHING?

If any three of them get together they learn NOTHING Informally:

1. Before Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$.
2. After Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$. (This is the same $B L A H_{i, j, k}$ as in the first point.
3. Giving out the shares tells $A_{1}, A_{2}, A_{3}, A_{4}$ NOTHING that they did not already know.
We assume A_{i}, A_{j}, A_{k} have unlimited computing power.

What do we mean by NOTHING?

If any three of them get together they learn NOTHING Informally:

1. Before Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$.
2. After Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$. (This is the same $B L A H_{i, j, k}$ as in the first point.
3. Giving out the shares tells $A_{1}, A_{2}, A_{3}, A_{4}$ NOTHING that they did not already know.
We assume A_{i}, A_{j}, A_{k} have unlimited computing power. they still learn NOTHING.

What do we mean by NOTHING?

If any three of them get together they learn NOTHING Informally:

1. Before Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$.
2. After Zelda gives out shares, if any three A_{i}, A_{j}, A_{k} get together, they know $B L A H_{i, j, k}$. (This is the same $B L A H_{i, j, k}$ as in the first point.
3. Giving out the shares tells $A_{1}, A_{2}, A_{3}, A_{4}$ NOTHING that they did not already know.
We assume A_{i}, A_{j}, A_{k} have unlimited computing power. they still learn NOTHING.

Information-Theoretic Security

Is (4, 4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE

Is (4, 4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

1. YES
2. NO
3. YES given some hardness assumption
4. UNKNOWN TO SCIENCE

YES

Random String Approach

Zelda gives out shares of the secret

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$
$A_{1}, A_{2}, A_{3} A_{4}$ Can Recover the Secret

$$
s_{1} \oplus s_{2} \oplus s_{3} \oplus s_{4}=r_{1} \oplus r_{2} \oplus r_{3} \oplus r_{1} \oplus r_{2} \oplus r_{3} \oplus s=s
$$

Random String Approach

Zelda gives out shares of the secret

1. Secret $s \in\{0,1\}^{n}$. Zelda gen random $r_{1}, r_{2}, r_{3} \in\{0,1\}^{n}$.
2. Zelda gives $A_{1} s_{1}=r_{1}$.

Zelda gives $A_{2} s_{2}=r_{2}$.
Zelda gives $A_{3} s_{3}=r_{3}$.
Zelda gives $A_{4} s_{4}=s \oplus r_{1} \oplus r_{2} \oplus r_{3}$
$A_{1}, A_{2}, A_{3} A_{4}$ Can Recover the Secret

$$
s_{1} \oplus s_{2} \oplus s_{3} \oplus s_{4}=r_{1} \oplus r_{2} \oplus r_{3} \oplus r_{1} \oplus r_{2} \oplus r_{3} \oplus s=s
$$

Easy to see that if a 3 get together they learn NOTHING

$(2,4)$-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.

(2, 4)-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{2}.

(2, 4)-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{2}.
Want A_{1}, A_{3} to determine s, but neither A_{1} nor A_{3} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{3}.

(2, 4)-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{2}.
Want A_{1}, A_{3} to determine s, but neither A_{1} nor A_{3} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{3}.
Do same for $\left(A_{1}, A_{4}\right),\left(A_{2}, A_{3}\right),\left(A_{3}, A_{4}\right)$.
Question Is there a problem with this?

$(2,4)$-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{2}.
Want A_{1}, A_{3} to determine s, but neither A_{1} nor A_{3} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{3}.
Do same for $\left(A_{1}, A_{4}\right),\left(A_{2}, A_{3}\right),\left(A_{3}, A_{4}\right)$.
Question Is there a problem with this? Answer Yes.
Zelda gives $A_{1} r$ (to use when talking to A_{2})
Zelda gives $A_{1} r$ (to use when talking to A_{3})
Same variable name r is fine if done carefully.
But Zelda needs to tell each A_{i} which string is used to talk to who.

$(2,4)$-Secret Sharing using Random Strings-Intuitive

The secret is $s \in\{0,1\}^{n}$.
Want A_{1}, A_{2} to determine s, but neither A_{1} nor A_{2} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{2}.
Want A_{1}, A_{3} to determine s, but neither A_{1} nor A_{3} alone can.
Idea I Zelda gen rand $r \in\{0,1\}^{n}$ and gives r to $A_{1}, r \oplus s$ to A_{3}.
Do same for $\left(A_{1}, A_{4}\right),\left(A_{2}, A_{3}\right),\left(A_{3}, A_{4}\right)$.
Question Is there a problem with this? Answer Yes.
Zelda gives $A_{1} r$ (to use when talking to A_{2})
Zelda gives $A_{1} r$ (to use when talking to A_{3})
Same variable name r is fine if done carefully.
But Zelda needs to tell each A_{i} which string is used to talk to who.
Zelda needs to give A_{1} strings of the form
$((1, j), r)$: This is a string to be used when A_{1} and A_{j} are talking.
Caveat Don't need to tell A_{1} who he is, but notation will generalize.

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

1. Zelda generates random $r \in\{0,1\}^{n}$.

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

1. Zelda generates random $r \in\{0,1\}^{n}$.
2. Zelda gives A_{i} the strings $((i, j), r)$.

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

1. Zelda generates random $r \in\{0,1\}^{n}$.
2. Zelda gives A_{i} the strings $((i, j), r)$.
3. Zelda gives A_{j} the strings $((i, j), r \oplus s)$.

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

1. Zelda generates random $r \in\{0,1\}^{n}$.
2. Zelda gives A_{i} the strings $((i, j), r)$.
3. Zelda gives A_{j} the strings $((i, j), r \oplus s)$.
A_{i}, A_{j} Can Recover the Secret
A_{i} takes $((i, j), r)$ and just uses the r.
A_{j} takes $((i, j), r \oplus s)$ and just uses the $r \oplus s$.
They both compute $r \oplus r \oplus s=s$.

(2, 4)-Secret Sharing using Random Strings-Formally

The secret is $s \in\{0,1\}^{n}$.
For each $1 \leq i<j \leq 4$

1. Zelda generates random $r \in\{0,1\}^{n}$.
2. Zelda gives A_{i} the strings $((i, j), r)$.
3. Zelda gives A_{j} the strings $((i, j), r \oplus s)$.
A_{i}, A_{j} Can Recover the Secret
A_{i} takes $((i, j), r)$ and just uses the r.
A_{j} takes $((i, j), r \oplus s)$ and just uses the $r \oplus s$.
They both compute $r \oplus r \oplus s=s$.
Easy to see that one person learns NOTHING

(m, m)-Random String Method

People: A_{1}, \ldots, A_{m}. Secret s.

(m, m)-Random String Method

People: A_{1}, \ldots, A_{m}. Secret s.

1. Zelda gen rand r_{1}, \ldots, r_{m-1}.

(m, m)-Random String Method

People: A_{1}, \ldots, A_{m}. Secret s.

1. Zelda gen rand r_{1}, \ldots, r_{m-1}.
2. A_{1} get r_{1}
A_{2} get r_{2}
\vdots
A_{m-1} gets r_{m-1}
A_{m} gets $s \oplus r_{1} \oplus \cdots \oplus r_{m-1}$

(m, m)-Random String Method

People: A_{1}, \ldots, A_{m}. Secret s.

1. Zelda gen rand r_{1}, \ldots, r_{m-1}.
2. A_{1} get r_{1}
A_{2} get r_{2}
\vdots
A_{m-1} gets r_{m-1}
A_{m} gets $s \oplus r_{1} \oplus \cdots \oplus r_{m-1}$
3. If they all get together they will XOR all their strings to get s

(m, m)-Random String Method

People: A_{1}, \ldots, A_{m}. Secret s.

1. Zelda gen rand r_{1}, \ldots, r_{m-1}.
2. A_{1} get r_{1}
A_{2} get r_{2}
\vdots
A_{m-1} gets r_{m-1}
A_{m} gets $s \oplus r_{1} \oplus \cdots \oplus r_{m-1}$
3. If they all get together they will XOR all their strings to get s

We use this as building block for gen case.

(t, m) Secret Sharing

People: $A_{1}, \ldots, A_{m} . S_{1}, \ldots, S_{\binom{m}{t}} \subseteq\left\{A_{1}, \ldots, A_{m}\right\}$ are t-subsets.

1. For every $1 \leq j \leq\binom{ m}{t}$ Zelda does (t, t) secret sharing with the elements of S_{j} but also prepends every string with j.
2. If the people in S_{j} get together they XOR together strings prepended with j (do not use the j).
3. No smaller subset can get the secret.

PRO: Can always do Threshold Secret Sharing.
CON: You are giving people A LOT of strings!

A_{i} Gets ??? Strings in $(5,10)$-Secret Sharing

If do $(5,10)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, 10\},|J|=5,1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, 10\},|J|=4$.
How many sets? Discuss

A_{i} Gets ??? Strings in $(5,10)$-Secret Sharing

If do $(5,10)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, 10\},|J|=5,1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, 10\},|J|=4$.
How many sets? Discuss

$$
\binom{9}{4}=126 \text { strings }
$$

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.
How many sets? Discuss

A_{i} Gets ??? Strings in $(m / 2, m)$-Secret Sharing

If do $(m / 2, m)$ secret sharing then how many strings does A_{1} get?
A_{1} gets a string for every $J \subseteq\{1, \ldots, m\},|J|=\frac{m}{2}, 1 \in J$.
Equivalent to:
A_{1} gets a string for every $J \subseteq\{2, \ldots, m\},|J|=\frac{m}{2}-1$.
How many sets? Discuss

$$
\binom{m-1}{\frac{m}{2}-1} \sim \frac{2^{m}}{\sqrt{m}} \text { strings }
$$

Thats A LOT of Strings!

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string I know what you are thinking:

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string I know what you are thinking:LOOOONG string.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string I know what you are thinking:LOOOONG string.No.

Reduce The Number of Strings for $(m / 2, m)$?

In our $(m / 2, m)$-scheme each A_{i} gets $\sim \frac{2^{m}}{\sqrt{m}}$ strings. VOTE

1. Requires roughly 2^{m} strings.
2. $O\left(\beta^{m}\right)$ strings for some $1<\beta<2$ but not poly.
3. $O\left(m^{a}\right)$ strings for some $a>1$ but not linear.
4. $O(m)$ strings but not m^{a} with $a<1$.
5. $O\left(m^{a}\right)$ strings for some $a<1$ but not logarithmic.
6. $O(\log m)$ strings but not constant.
7. $O(1)$ strings.

You can always do this with everyone getting 1 string I know what you are thinking:LOOOONG string.No.
You can always do this with everyone getting 1 string that is the same length as the secret

Secret Sharing With Polynomials

Definition $a \sim b$ means $\frac{b}{2} \leq a \leq 2 b$.
We do $(3,6)$-Secret Sharing.

1. Secret s. Zelda picks prime $p \sim 2^{|s|}$, Zelda works mod p.

View s as a number is in $\{0, \ldots, p-1\}$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in\{0, \ldots, p-1\}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all of length $|s|$ by padding with 0 's. Also give everyone p (does not count for length).

1. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.
2. Any 2 have 2 points from $f(x)$. From these two points what can they conclude?

Secret Sharing With Polynomials

Definition $a \sim b$ means $\frac{b}{2} \leq a \leq 2 b$.
We do $(3,6)$-Secret Sharing.

1. Secret s. Zelda picks prime $p \sim 2^{|s|}$, Zelda works mod p. View s as a number is in $\{0, \ldots, p-1\}$.
2. Zelda gen rand numbers $a_{2}, a_{1} \in\{0, \ldots, p-1\}$
3. Zelda forms polynomial $f(x)=a_{2} x^{2}+a_{1} x+s$.
4. Zelda gives $A_{1} f(1), A_{2} f(2), \ldots, A_{6} f(6)(\operatorname{all} \bmod p)$. These are all of length $|s|$ by padding with 0 's. Also give everyone p (does not count for length).
5. Any 3 have 3 points from $f(x)$ so can find $f(x)$, s.
6. Any 2 have 2 points from $f(x)$. From these two points what can they conclude? NOTHING! If they know $f(1)=3$ and $f(2)=7$ and f is degree 2 then the constant term can be anything in $\{0, \ldots, p\}$. So they know NOTHING about s.

What Counts

We are concerned about the size of the shares.

1. If Zelda broadcasts to everyone a string p, that is not counted towards someone share.
2. If Zelda gives A_{1} a string that nobody else gets then that is A_{1} 's share and that counts.
3. If Zelda gives A_{1} and A_{2} a string (and they both know its the same string) but nobody else, should that count as the length of the share?

What Counts

We are concerned about the size of the shares.

1. If Zelda broadcasts to everyone a string p, that is not counted towards someone share.
2. If Zelda gives A_{1} a string that nobody else gets then that is A_{1} 's share and that counts.
3. If Zelda gives A_{1} and A_{2} a string (and they both know its the same string) but nobody else, should that count as the length of the share? There is no scheme that works that way.

Example

$s=10100$. We'll use $p=23$.
(ADDED LATER- TAKING $P=23$ IS IS INCORRECT!! WILL REVIST THIS POINT IN THIRD SET OF SLIDES ON SEC SHARING.)

1. Zelda picks $a_{2}=8$ and $a_{1}=13$.
2. Zelda forms polynomial $f(x)=8 x^{2}+13 x+20$.
3. Zelda gives $A_{1} f(1)=18, A_{2} f(2)=9, A_{3} f(3)=16, A_{4}$ $f(4)=16, A_{5} f(5)=9, A_{6} f(6)=18$.
If A_{1}, A_{3}, A_{4} get together and want to find $f(x)$ hence s.
$f(x)=a_{2} x^{2}+a_{1} x+s$.
$f(1)=18: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$f(3)=16: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
$f(4)=16: a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 16(\bmod 23)$
3 linear equations in, 3 variable, over mod 23 can be solved.
Note: Only need constant term s but can get all coeffs.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=18: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$f(3)=16: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
Can they solve these to find s Discuss.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=18: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$f(3)=16: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=18: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$f(3)=16: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

What if Two Get Together?

What if A_{1} and A_{3} get together:
$f(1)=18: a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$f(3)=16: a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
Can they solve these to find s Discuss.
No. However, can they use these equations to eliminate some values of s ? Discuss.

No. ANY s is consistent. If you pick a value of s, you then have two equations in two variables that can be solved.

Important: Information-Theoretic Secure: if A_{1} and A_{3} meet they learn NOTHING. If they had big fancy supercomputers they would still learn NOTHING.

A Note About Linear Equations

The three equations below, over mod 23, can be solved: $a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 16(\bmod 23)$
Could we have solved this had we used mod 24 ? VOTE

1. YES
2. NO

A Note About Linear Equations

The three equations below, over mod 23, can be solved:
$a_{2} \times 1^{2}+a_{1} \times 1+s \equiv 18(\bmod 23)$
$a_{2} \times 3^{2}+a_{1} \times 3+s \equiv 16(\bmod 23)$
$a_{2} \times 4^{2}+a_{1} \times 4+s \equiv 16(\bmod 23)$
Could we have solved this had we used mod 24? VOTE

1. YES
2. NO

These equations, Don't know, but in general, NO Need a domain where every number has a mult inverse.
Over mod p, p primes, all numbers have mult inverses. Over mod 24, even numbers do not have mult inverse.

Subtle Point about Length p

You may have noticed the following oddness:

1. I said pick $p \sim 2^{|s|}$.
2. When $s=10100$ I picked $p=23$.

Subtle Point about Length p

You may have noticed the following oddness:

1. I said pick $p \sim 2^{|s|}$.
2. When $s=10100$ I picked $p=23$.

Let $s \in\{0,1\}^{n}$. So how to best pick prime p ?

Subtle Point about Length p

You may have noticed the following oddness:

1. I said pick $p \sim 2^{|s|}$.
2. When $s=10100$ I picked $p=23$.

Let $s \in\{0,1\}^{n}$. So how to best pick prime p ?

1. Need prime p such that the string s interpreted as a number in binary is in $\{0, \ldots, p-1\}$.
2. Want smallest such prime p.
3. p a prime $\geq 2^{|s|}$ always works.
4. Often can use a smaller prime.
5. $s=10100$. Need a prime such that $20 \in\{0, \ldots, p-1\}$. $p=23$ is smallest.
6. $s=11111$. Need a prime such that $31 \in\{0, \ldots, p-1\}$. $p=37$ is smallest.

Threshold Secret Sharing With Polynomials: Ref

Due to Adi Shamir How to Share a Secret
Communication of the ACM
Volume 22, Number 11
1979

Threshold Secret Sharing With Polynomials

Zelda wants to give strings to A_{1}, \ldots, A_{m} such that Any t of A_{1}, \ldots, A_{m} can find s. Any $t-1$ learn NOTHING.

1. Secret s. Zelda picks prime $p \sim 2^{|s|}$, Zelda works mod p.
2. Zelda gen rand $a_{t-1}, \ldots, a_{1} \in\{0, \ldots, p-1\}$
3. Zelda forms polynomial $f(x)=a_{t-1} x^{t-1}+\cdots+a_{1} x+s$.
4. For $1 \leq i \leq m$ Zelda gives $A_{i} f(i) \bmod p$.

We Used Polynomials. Could Use...

What did we use about degree $t-1$ polynomials?

1. t points determine the polynomial (we need constant term).
2. $t-1$ points give no information about constant term.

Could do geometry over \mathbb{Z}_{p}^{3}. A Plane in \mathbb{Z}_{p}^{3} is:

$$
\{(x, y, z): a x+b y+c z=d\}
$$

1. 3 points in \mathbb{Z}_{p}^{3} determine a plane.
2. 2 points in \mathbb{Z}_{p}^{3} give no information about d.

This approach is due to George Blakely, Safeguarding Cryptographic Keys, International Workshop on Managing Requirements, Vol 48, 1979.
We will not do secret sharing this way, though one could.

We Used Polynomials. Could Use...

We won't go into details but there are two ways to use the
Chinese Remainder Theorem to do Secret Sharing.
Due to:
C.A. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on Information Theory Vol 29, Number 2, 208-210, 1983.

And Independently
M. Mignotte How to share a secret, Cryptography:

Proceedings of the Workshop on Cryptography, Burg
Deursetein, Volume 149 of Lecture Notes in Computer Science, 1982.

Features and Caveats of Poly Method

Imagine that you've done (t, m) secret sharing with polynomial, $p(x)$. So for $1 \leq i \leq m, A_{i}$ has $f(i)$.

1. Feature: If more people come FINE- can extend to $(t, m+a)$ by giving $A_{m+1}, f(m+1), \ldots, A_{m+a}, f(m+a)$.
2. Caveat: If $m>p$ then you run out of points to give people. There are ways to deal with this, but we will not bother. We will always assume $m<p$.
