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Threshold Secret Sharing

Zelda has a secret s ∈ {0, 1}n.

Def: Let 1 ≤ t ≤ m. (t,m)-secret sharing is a way for Zelda to
give strings to A1, . . . ,Am such that:

1. If any t get together than they can learn s

2. If any t − 1 get together they cannot learn s

What do we mean by Cannot learn the secret? We mean
info-theory-security. Even if t − 1 people have big fancy
supercomputers they cannot learn s. We will later look at
comp-security.



Applications

Rumor: Secret Sharing is used for the Russian Nuclear Codes.
There are three people (one is Putin) and if two of them agree to
launch, they can launch.

For people signing a contract long distance, secret sharing is used
as a building block in the protocol.



(4, 4)-secret sharing

Zelda has a secret s. A1, A2, A3, A4 are people. We want:

1. If all four of A1,A2,A3,A4 get together, they can find s.

2. If any three of them get together, then learn NOTHING.



An Attempt at (4, 4)-Secret Sharing

1. Zelda breaks s up into s = s1s2s3s4 where

|s1| = |s2| = |s3| = |s4| =
n

4

2. Zelda gives Ai the string si .

Does this work?

1. If A1,A2,A3,A4 get together they can find s. YES!!

2. If any three of them get together they learn NOTHING. NO.

2.1 A1 learns s1 which is 1
4 of the secret!

2.2 A1, A2 learn s1s2 which is 1
2 of the secret!

2.3 A1, A2, A3 learn s1s2s3 which is 3
4 of the secret!
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What do we mean by NOTHING?

If any three of them get together they learn NOTHING
Informally:

1. Before Zelda gives out shares, if any three Ai ,Aj ,Ak get
together, they know BLAHi ,j ,k .

2. After Zelda gives out shares, if any three Ai ,Aj ,Ak get
together, they know BLAHi ,j ,k . (This is the same BLAHi ,j ,k

as in the first point.

3. Giving out the shares tells A1,A2,A3,A4 NOTHING that
they did not already know.

We assume Ai ,Aj ,Ak have unlimited computing power.

they still learn NOTHING.
Information-Theoretic Security
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Is (4, 4)-Secret Sharing Possible?

VOTE: Is (4, 4)-Secret sharing possible?

1. YES

2. NO

3. YES given some hardness assumption

4. UNKNOWN TO SCIENCE

YES
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Random String Approach

Zelda gives out shares of the secret

1. Secret s ∈ {0, 1}n. Zelda gen random r1, r2, r3 ∈ {0, 1}n.

2. Zelda gives A1 s1 = r1.
Zelda gives A2 s2 = r2.
Zelda gives A3 s3 = r3.
Zelda gives A4 s4 = s ⊕ r1 ⊕ r2 ⊕ r3

A1, A2, A3 A4 Can Recover the Secret

s1 ⊕ s2 ⊕ s3 ⊕ s4 = r1 ⊕ r2 ⊕ r3 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ s = s

Easy to see that if a 3 get together they learn NOTHING
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(2, 4)-Secret Sharing using Random Strings-Intuitive

The secret is s ∈ {0, 1}n.

Want A1,A2 to determine s, but neither A1 nor A2 alone can.
Idea I Zelda gen rand r ∈ {0, 1}n and gives r to A1, r ⊕ s to A2.
Want A1,A3 to determine s, but neither A1 nor A3 alone can.
Idea I Zelda gen rand r ∈ {0, 1}n and gives r to A1, r ⊕ s to A3.
Do same for (A1,A4), (A2,A3), (A3,A4).
Question Is there a problem with this? Answer Yes.
Zelda gives A1 r (to use when talking to A2)
Zelda gives A1 r (to use when talking to A3)
Same variable name r is fine if done carefully.
But Zelda needs to tell each Ai which string is used to talk to who.

Zelda needs to give A1 strings of the form
((1, j), r): This is a string to be used when A1 and Aj are talking.
Caveat Don’t need to tell A1 who he is, but notation will
generalize.
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(2, 4)-Secret Sharing using Random Strings-Formally

The secret is s ∈ {0, 1}n.
For each 1 ≤ i < j ≤ 4

1. Zelda generates random r ∈ {0, 1}n.

2. Zelda gives Ai the strings ((i , j), r).

3. Zelda gives Aj the strings ((i , j), r ⊕ s).

Ai , Aj Can Recover the Secret
Ai takes ((i , j), r) and just uses the r .
Aj takes ((i , j), r ⊕ s) and just uses the r ⊕ s.
They both compute r ⊕ r ⊕ s = s.
Easy to see that one person learns NOTHING
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(m,m)-Random String Method

People: A1, . . . ,Am. Secret s.

1. Zelda gen rand r1, . . . , rm−1.

2. A1 get r1
A2 get r2
...
Am−1 gets rm−1
Am gets s ⊕ r1 ⊕ · · · ⊕ rm−1

3. If they all get together they will XOR all their strings to get s

We use this as building block for gen case.
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(t,m) Secret Sharing

People: A1, . . . ,Am. S1, . . . ,S(mt )
⊆ {A1, . . . ,Am} are t-subsets.

1. For every 1 ≤ j ≤
(m
t

)
Zelda does (t, t) secret sharing with

the elements of Sj but also prepends every string with j .

2. If the people in Sj get together they XOR together strings
prepended with j (do not use the j).

3. No smaller subset can get the secret.

PRO: Can always do Threshold Secret Sharing.
CON: You are giving people A LOT of strings!



Ai Gets ??? Strings in (5, 10)-Secret Sharing

If do (5, 10) secret sharing then how many strings does A1 get?

A1 gets a string for every J ⊆ {1, . . . , 10}, |J| = 5, 1 ∈ J.

Equivalent to:

A1 gets a string for every J ⊆ {2, . . . , 10}, |J| = 4.

How many sets? Discuss

(
9

4

)
= 126 strings
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Ai Gets ??? Strings in (m/2,m)-Secret Sharing

If do (m/2,m) secret sharing then how many strings does A1 get?

A1 gets a string for every J ⊆ {1, . . . ,m}, |J| = m
2 , 1 ∈ J.

Equivalent to:

A1 gets a string for every J ⊆ {2, . . . ,m}, |J| = m
2 − 1.

How many sets? Discuss

(
m − 1
m
2 − 1

)
∼ 2m√

m
strings

Thats A LOT of Strings!
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Reduce The Number of Strings for (m/2,m)?

In our (m/2,m)-scheme each Ai gets ∼ 2m√
m

strings.

VOTE

1. Requires roughly 2m strings.

2. O(βm) strings for some 1 < β < 2 but not poly.

3. O(ma) strings for some a > 1 but not linear.

4. O(m) strings but not ma with a < 1.

5. O(ma) strings for some a < 1 but not logarithmic.

6. O(logm) strings but not constant.

7. O(1) strings.

You can always do this with everyone getting 1 string
I know what you are thinking:LOOOONG string.No.
You can always do this with everyone getting 1 string that is
the same length as the secret
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1. Requires roughly 2m strings.

2. O(βm) strings for some 1 < β < 2 but not poly.
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Secret Sharing With Polynomials

Definition a ∼ b means b
2 ≤ a ≤ 2b.

We do (3, 6)-Secret Sharing.

1. Secret s. Zelda picks prime p ∼ 2|s|, Zelda works mod p.
View s as a number is in {0, . . . , p − 1}.

2. Zelda gen rand numbers a2, a1 ∈ {0, . . . , p − 1}
3. Zelda forms polynomial f (x) = a2x

2 + a1x + s.

4. Zelda gives A1 f (1), A2 f (2), . . ., A6 f (6) (all mod p). These
are all of length |s| by padding with 0’s. Also give everyone p
(does not count for length).

1. Any 3 have 3 points from f (x) so can find f (x), s.

2. Any 2 have 2 points from f (x). From these two points what
can they conclude?

NOTHING! If they know f (1) = 3 and
f (2) = 7 and f is degree 2 then the constant term can be
anything in {0, . . . , p}. So they know NOTHING about s.
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What Counts

We are concerned about the size of the shares.

1. If Zelda broadcasts to everyone a string p, that is not
counted towards someone share.

2. If Zelda gives A1 a string that nobody else gets then that is
A1’s share and that counts.

3. If Zelda gives A1 and A2 a string (and they both know its the
same string) but nobody else, should that count as the length
of the share?

There is no scheme that works that way.
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Example

s = 10100. We’ll use p = 23.
(ADDED LATER- TAKING P = 23 IS IS INCORRECT!! WILL
REVIST THIS POINT IN THIRD SET OF SLIDES ON SEC
SHARING.)

1. Zelda picks a2 = 8 and a1 = 13.

2. Zelda forms polynomial f (x) = 8x2 + 13x + 20.

3. Zelda gives A1 f (1) = 18, A2 f (2) = 9, A3 f (3) = 16, A4

f (4) = 16, A5 f (5) = 9, A6 f (6) = 18.

If A1,A3,A4 get together and want to find f (x) hence s.
f (x) = a2x

2 + a1x + s.
f (1) = 18: a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
f (3) = 16: a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
f (4) = 16: a2 × 42 + a1 × 4 + s ≡ 16 (mod 23)
3 linear equations in, 3 variable, over mod 23 can be solved.
Note: Only need constant term s but can get all coeffs.



What if Two Get Together?

What if A1 and A3 get together:
f (1) = 18: a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
f (3) = 16: a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
Can they solve these to find s Discuss.

No. However, can they use these equations to eliminate some
values of s? Discuss.

No. ANY s is consistent. If you pick a value of s, you then have
two equations in two variables that can be solved.

Important: Information-Theoretic Secure: if A1 and A3 meet they
learn NOTHING. If they had big fancy supercomputers they would
still learn NOTHING.
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A Note About Linear Equations

The three equations below, over mod 23, can be solved:
a2 × 12 + a1 × 1 + s ≡ 18 (mod 23)
a2 × 32 + a1 × 3 + s ≡ 16 (mod 23)
a2 × 42 + a1 × 4 + s ≡ 16 (mod 23)

Could we have solved this had we used mod 24?
VOTE

1. YES

2. NO

These equations, Don’t know, but in general, NO
Need a domain where every number has a mult inverse.
Over mod p, p primes, all numbers have mult inverses.
Over mod 24, even numbers do not have mult inverse.
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Subtle Point about Length p

You may have noticed the following oddness:

1. I said pick p ∼ 2|s|.

2. When s = 10100 I picked p = 23.

Let s ∈ {0, 1}n. So how to best pick prime p?

1. Need prime p such that the string s interpreted as a
number in binary is in {0, . . . , p − 1}.

2. Want smallest such prime p.

3. p a prime ≥ 2|s| always works.

4. Often can use a smaller prime.

5. s = 10100. Need a prime such that 20 ∈ {0, . . . , p − 1}.
p = 23 is smallest.

6. s = 11111. Need a prime such that 31 ∈ {0, . . . , p − 1}.
p = 37 is smallest.
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Threshold Secret Sharing With Polynomials: Ref

Due to Adi Shamir
How to Share a Secret
Communication of the ACM
Volume 22, Number 11
1979



Threshold Secret Sharing With Polynomials

Zelda wants to give strings to A1, . . . ,Am such that

Any t of A1, . . . ,Am can find s. Any t − 1 learn NOTHING.

1. Secret s. Zelda picks prime p ∼ 2|s|, Zelda works mod p.

2. Zelda gen rand at−1, . . . , a1 ∈ {0, . . . , p − 1}
3. Zelda forms polynomial f (x) = at−1x

t−1 + · · ·+ a1x + s.

4. For 1 ≤ i ≤ m Zelda gives Ai f (i) mod p.



We Used Polynomials. Could Use. . .

What did we use about degree t − 1 polynomials?

1. t points determine the polynomial (we need constant term).

2. t − 1 points give no information about constant term.

Could do geometry over Z3
p. A Plane in Z3

p is:

{(x , y , z) : ax + by + cz = d}

1. 3 points in Z3
p determine a plane.

2. 2 points in Z3
p give no information about d .

This approach is due to George Blakely, Safeguarding
Cryptographic Keys, International Workshop on Managing
Requirements, Vol 48, 1979.
We will not do secret sharing this way, though one could.



We Used Polynomials. Could Use. . .

We won’t go into details but there are two ways to use the
Chinese Remainder Theorem to do Secret Sharing.

Due to:
C.A. Asmuth and J. Bloom. A modular approach to key
safeguarding. IEEE Transactions on Information Theory Vol
29, Number 2, 208-210, 1983.

And Independently

M. Mignotte How to share a secret, Cryptography:
Proceedings of the Workshop on Cryptography, Burg
Deursetein, Volume 149 of Lecture Notes in Computer
Science, 1982.



Features and Caveats of Poly Method

Imagine that you’ve done (t,m) secret sharing with polynomial,
p(x). So for 1 ≤ i ≤ m, Ai has f (i).

1. Feature: If more people come FINE- can extend to (t,m + a)
by giving Am+1, f (m + 1), . . ., Am+a, f (m + a).

2. Caveat: If m > p then you run out of points to give people.
There are ways to deal with this, but we will not bother. We
will always assume m < p.


