
Threshold Secret
Sharing: Length of

Shares



Length of Shares

s = 1111, length 4. This is 15 in base 10, so we go to smallest
prime > 15, namely 17.

We use p = 17. s = 1111, |s| = 4.

Elements of Z17 are represented by strings of length 5

1. Everyone gets at least one share.

2. All shares length 5, even though s is length 4.

Can we always get length n? Length n + 1?



Length of Shares

If |s| = n want prime p with 2n < p.
Known: For all n there exists prime p with 2n ≤ p ≤ 2n+1.

Upshot: The secret is length n, the shares are of length n + 1.

Good News: Every Ai gets ONE share.

Bad News: That share is of length n + 1, not n.

VOTE: Can Zelda do threshold secret sh. where every student
gets ONE share of length n?

1. YES

2. NO

3. YES given some hardness assumption

4. UNKNOWN TO SCIENCE

YES
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Why Did We Use Primes?

We used Zp since need every element to have a ∗-inverse.
Def: A Field is a set F together with operations +, ∗ such that

1. 0 is the +-identity: (∀x)[x + 0 = x ].

2. 1 is the ∗-identity: (∀x)[x ∗ 1 = x ].

3. +,∗ commutative: (∀x , y)[(x + y = y + x) ∧ (x ∗ y = y ∗ x)].

4. +,∗ associative:
(∀x , y , z)[(x+(y +z) = (x+y)+z)∧((x ∗y)∗z = x ∗(y ∗z))].

5. (∗,+) distributive: (∀x , y , z)[x ∗ (y + z) = x ∗ y + x ∗ z ].

6. Exists +-inverse: (∀x)(∃y)[x + y = 0].

7. Exists ∗-inverses: (∀x 6= 0)(∃y)[x ∗ y = 1]. IMPORTANT!

WE USED: p prime iff Zp a field.



Can We use a Different Field?

KEY: There is a field of size pn for all primes p and n ≥ 1.

WE USE: For all n, there is a field on 2n elements.
If secret is s of length n, use the field on 2n elements. All elements
of it are of length n.

Upshot: For threshold there is a secret sh. scheme where everyone
gets ONE share of size EXACTLY the size of the secret.
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Example: A Field of 32 elements

Z2[x ] is the set of polys over Z2. x5 + x2 + 1 is irreducible in Z2[x ]
(so it is not the product of two other elements of Z2[x ]).

Field on 25 elements:

1. The elements are polys in Z2[x ] of degree ≤ 4.

2. Addition and subtraction are as usual.

3. Mult is MOD x5 + x2 + 1. So Mult two polys together and
Replace x5 with −x2 − 1 = x2 + 1
Replace x6 with −x3 − x = x3 + x
Replace x7 with −x4 − x2 = x4 + x2

Replace x8 with −x5 − x3 = x5 + x3 ≡ x3 + x2 + 1

4. One can show that this is a Field—mult has inverses. For that
proof need that the poly x5 + x2 + 1 is irreducible.
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Field on pa Elements

Zp[x ] is the set of polynomials over Zp.
f (x) is irreducible in Zp[x ], and of degree a

Field on pa elements:

1. The elements are polys in Zp[x ] of degree ≤ a− 1.

2. Addition and subtraction are as usual.

3. Mult is MOD f (x). So Multiply two polys together and mod
down to degree ≤ a− 1 by assuming f (x) = 0.

4. One can show that this is a Field- mult has inverses. For that
proof need that the poly f (x) is irreducible.



Practical and Pedagogical Point

1. We could from now on, on HW and exams and slides and
notes, work over the field on 2n elements and have shares of
length exactly the size of the secret.

2. That would be madness! Madness I say!

3. For pedagogy we work over Zp for some well chosen p.

4. We will cheat and lie. We will say the shares are the same
length as the secret when may be off by 1 (YES, just by 1)
because we use primes instead of the field on 2n elements.)

5. In the real world they use primes. I think. I’ll ask Putin.
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Can Shares be SHORTER than Secret?

1. If we use Fields, we have size-of-shares EQUALS size-of-secret.

2. If we use Mod p with p prime, we have size-of-shares
EQUALS size-of-secret (+1).

Can Zelda Secret Share with shares SHORTER than the secret?

1. YES

2. NO

3. YES but needs a hardness assumption.

4. UNKNOWN TO SCIENCE

VOTE

NO
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Example of Why Can’t Have Short Shares

Assume there is a (4, 5) Secret Sharing Scheme where Zelda shares
a secret of length 7. (This proof will assume NOTHING about the
scheme.) The players are A1, . . . ,A5

Before the protocol begins there are 27 = 128 possibilities for the
secret.
Assume that A5 gets a share of length 6. We show that the
scheme is NOT info-theoretic secure.



Example of Why Can’t Have Short Shares, Cont

If A1,A2,A3,A5 got together they COULD learn the secret, since
its a (4, 5) scheme.
We show that A1,A2,A3 can learn SOMETHING about the secret.

CAND = ∅. CAND will be set of Candidates for s.

For x ∈ {0, 1}6 (go through ALL shares A5 could have)

A1,A2,A3 pretend A5 has x and deduce candidates secret s ′

CAND := CAND ∪ {s ′}
Secret is in CAND. |CAND| = 26 < 26. So A1,A2,A3 have
eliminated many strings from being the secret s That is
INFORMATION!!!!

On the HW you will do more examples and perhaps generalize to
show can NEVER have shorter shares.



Are Shorter Shares Ever Possible?

If we demand info-security then everyone gets a share ≥ n.
What if we only demand comp-security?
VOTE

1. Can get shares < βn with a hardness assumption.

2. Even with hardness assumption REQUIRES shares ≥ n.

Can get shares < βn with a hardness assumption.
Will do that later.
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Generalize The Problem

Our problem: Player A1, . . . ,Am, secret s.

1. If t of them get together they can find s.

2. If t − 1 of them get together they cannot find s.

That is not quite right. Why?

1. If ≥ t of them get together they can find s.

2. If ≤ t − 1 of them get together they cannot find s.

We want to generalize and look at other subsets.
Example

1. If an even number of players get together can find s.

2. If an odd number of players get together can’t find s.

Try to find a scheme for this secret sh. problem.
You’ve Been Punked!

A1,A2 CAN find s but A1,A2,A3 CANNOT. Thats Stupid!
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What is it about Threshold?

1. If ≥ t of them get together they can find out secret.

2. If ≤ t − 1 of them get together they cannot find out secret.

Lets rephrase that so we can generalize:

X is the set of all subsets of {A1, . . . ,Am} with ≥ t players.

1. If Y ∈ X then the players in Y can find s.

2. If Y /∈ X then the players in Y cannot find s.

This question makes sense. What is it about X that makes it make
sense?
X is closed under superset:
If Y ∈ X and Y ⊆ Z then Z ∈ X .
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Access Structures

Definition
An Access Structure is a subset of {A1, . . . ,Am} closed under
superset.

1. If X is an access structure then the following questions make
sense:

1.1 Is there a secret sh. scheme for X ?
1.2 Is there a secret sh. scheme for X where all shares are the

same size as the secret?

2. (t,m)-Threshold is an Access structure. The poly method
gives a Secret Sharing scheme where all the shares are the
same length as the secret.

Definition
A sec. sharing sch. is ideal if all shares same size as secret.



OR of AND: Ideal Sec Sharing Protocol

Want

1. At least 2 of A1,A2,A3, OR

2. At least 4 of B1,B2,B3,B4,B5,B6,B7.

How can Zelda do this?

1. Zelda does (2, 3) secret sh. with A1,A2,A3.

2. Zelda does (4, 7) secret sh. with B1, . . . ,B7.

To generalize this we need a better notation.
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Notation for Threshold

Let THA(t,m) be the Boolean Formula that represents at least t
out of m of the Ai ’s.

Example THA(2, 4) is
At least 2 of A1,A2,A3,A4.
Example THB(3, 6) is
At least 3 of B1, . . . ,B6.
Note THA(t,m) has ideal secret sh..
Notation THA(t1,m1) ∨ THB(t2,m2) means that:

1. ≥ t1 A1, . . . ,Am1 can learn the secret.

2. ≥ t2 B1, . . . ,Bm2 can learn the secret.

3. No other group can learn the secret (e.g., A1,A2,B1 cannot)
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OR of THA(t,m)’s: Ideal Sec Sharing Protocol

There is Ideal Secret Sharing for THA(t1,m1)∨ · · · ∨THZ (t26,m26)

1. Zelda and the A1, . . . ,Am1 do (t1,m1) secret sh..

2.
...

3. Zelda and the Z1, . . . ,Zm26 do (t26,m26) secret sh..

Note We now have a large set of non-threshold scenarios that
have ideal secret sh..



AND of THA(t,m)s: An Example

We want that if ≥ 2 of A1,A2,A3,A4 AND ≥ 4 of B1, . . . ,B7 get
together than they can learn the secret, but no other groups can.
Think about it.

1. Zelda has secret s, |s| = n.

2. Zelda generates random r ∈ {0, 1}n.

3. Zelda does (2, 4) secret sh. of r with A1,A2,A3,A4.

4. Zelda does (4, 7) secret sh. of r ⊕ s with B1, . . . ,B7.

5. If ≥ 2 of Ai ’s get together they can find r . If ≥ 4 of Bi ’s get
together they can find r ⊕ s. So if they call get together they
can find

r ⊕ (r ⊕ s) = s
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AND of THA(t,m)s: General

THA(t1,m1) ∧ · · · ∧ THZ (t26,m26) can do secret sh..

1. Zelda has secret s, |s| = n.

2. Zelda generates random r1, . . . , r25 ∈ {0, 1}n.

3. Zelda does (t1,m1) secret sh. of r1 with Ai ’s.

4.
...

5. Zelda does (t25,m25) secret sh. of r25 with Yi ’s.

6. Zelda does (t26,m26) secret sh. of r1 ⊕ · · · ⊕ r25 ⊕ s with Zi ’s.

7. If ≥ t1 of Ai ’s get together they can find r1. If ≥ t2 of Bi ’s
get together they can find r2. · · · If ≥ t25 of Yi ’s get together
they can find r25. If ≥ t26 of Zi ’s get together they can find
r1 ⊕ · · · ⊕ r25 ⊕ s. So if they call get together they can find

r1 ⊕ · · · ⊕ r25 ⊕ (r1 ⊕ · · · ⊕ r25 ⊕ s) = s



General Theorem

Definition A monotone formula is a Boolean formula with no
NOT signs.
If you put together what we did with TH and use induction you
can prove the following:
Theorem Let X1, . . . ,XN each be a threshold THA(t,m) but all
using DIFFERENT players.
Let F (X1, . . . ,XN) be a monotone Boolean formula where each Xi

appears only once. Then Zelda can do ideal secret sh. where only
sets that satisfy F (X1, . . . ,XN) can learn the secret.

Routine proof left to the reader. Might be on a HW or the Final.



Access Structures that admit Ideal Sec. Sharing

1. Threshold Secret sharing: if t or more get together. WE DID
THIS.

2. Monotone Boolean Formulas of Threshold where every set of
players appears only once. WE DID THIS.

3. Let G be a graph. Let s, t be nodes. People are edges. Any
connected path can get the secret. WE DIDN”T DO THIS
AND WON”T.

4. Monotone Span Programs (Omitted – its a Matrix Thing) WE
DIDN”T DO THIS AND WON”T.



Access Structures that do not admit Ideal Sec
Sharing

1. (A1 ∧ A2) ∨ (A2 ∧ A3) ∨ (A3 ∧ A4)

2. (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ A4) ∨ (A2 ∧ A4) ∨ (A3 ∨ A4) (Captain
and Crew) A1,A2,A3 is the crew, and A4 is the captain.
Entire crew, or captain and 1 crew, can get s.

3. (A1 ∧ A2 ∧ A3) ∨ (A1 ∧ A4) ∨ (A2 ∧ A4) (Captain and Rival)
A1,A2,A3 is the crew, A3 is a rival, A4 is the captain. Entire
crew, or captain and 1 crew who is NOT rival, can get s.

4. Any access structure that contains any of the above.

In all of the above, all get a share of size 1.5n and this is optimal.



Open Question

Determine for every access structure the functions f (n) and g(n)
such that

1. (∃) Scheme where everyone gets ≤ f (n) sized share.

2. (∀) Scheme someone gets ≥ g(n) sized share.

3. f (n) and g(n) are close together.


