An Earlier Mistake of Mine

RECALL that I did the following in the first Secret Sharing Slides: s = 10100. We'll use p = 23.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

RECALL that I did the following in the first Secret Sharing Slides: s = 10100. We'll use p = 23. This is wrong. Why?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

RECALL that I did the following in the first Secret Sharing Slides: s = 10100. We'll use p = 23. This is wrong. Why?

The secret is 5 bits long. We want the players, if not enough get together, to have **no clue** what the secret is.

RECALL that I did the following in the first Secret Sharing Slides: s = 10100. We'll use p = 23. This is wrong. Why?

The secret is 5 bits long. We want the players, if not enough get together, to have **no clue** what the secret is.

If I use p = 23 then the only 5-bits numbers (padding out) are 00000, 00001, ..., 10111

ション ふゆ アメリア メリア しょうくしゃ

RECALL that I did the following in the first Secret Sharing Slides: s = 10100. We'll use p = 23. This is wrong. Why?

The secret is 5 bits long. We want the players, if not enough get together, to have **no clue** what the secret is.

If I use p = 23 then the only 5-bits numbers (padding out) are 00000, 00001, ..., 10111

ション ふゆ アメリア メリア しょうくしゃ

Hence all of the players know the secret CANNOT be 11000, 11001, \cdots , 11111

For s = 10100 take p = 37. Note that $2^{|s|} < p$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For s = 10100 take p = 37. Note that $2^{|s|} < p$. All 5-bits sequences are in $\{0, \ldots, 36\}$. So are we good?

For s = 10100 take p = 37. Note that $2^{|s|} < p$. All 5-bits sequences are in $\{0, \ldots, 36\}$. So are we good? No.

```
For s = 10100 take p = 37. Note that 2^{|s|} < p.
All 5-bits sequences are in \{0, \ldots, 36\}. So are we good? No.
```

If we use p = 37 then a clever player will realize that the secret is NOT 00000, 00001, ..., 01111

since if it was we would use a smaller prime.


```
For s = 10100 take p = 37. Note that 2^{|s|} < p.
All 5-bits sequences are in \{0, \ldots, 36\}. So are we good? No.
```

If we use p = 37 then a clever player will realize that the secret is NOT 00000, 00001, \cdots , 01111 since if it was we would use a smaller prime.

How to get around this problem?

```
For s = 10100 take p = 37. Note that 2^{|s|} < p.
All 5-bits sequences are in \{0, \ldots, 36\}. So are we good? No.
```

```
If we use p = 37 then a clever player will realize that the secret is NOT 00000, 00001, \cdots, 01111 since if it was we would use a smaller prime.
```

How to get around this problem?

Three solutions:

- Use a prime p such that $2^{|x|} < p$ but it might be much bigger.
- Do that finite field stuff which is clean mathematically but terrible pedagogically.
- Use the least prime p such that 2^{|x|} about this at all since we are busy people.

```
For s = 10100 take p = 37. Note that 2^{|s|} < p.
All 5-bits sequences are in \{0, \ldots, 36\}. So are we good? No.
```

If we use p = 37 then a clever player will realize that the secret is NOT 00000, 00001, \cdots , 01111 since if it was we would use a smaller prime.

How to get around this problem?

Three solutions:

- Use a prime p such that $2^{|x|} < p$ but it might be much bigger.
- Do that finite field stuff which is clean mathematically but terrible pedagogically.
- Use the least prime p such that 2^{|x|} about this at all since we are busy people.

We choose option 3. We are cheating but since we could use finite field stuff, not going to worry about it.

Computational Threshold Secret Sharing

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Threshold Secret Sharing

Zelda has a secret $s \in \{0, 1\}^n$.

Def: Let $1 \le t \le m$. (t, m)-secret sharing is a way for Zelda to give strings to A_1, \ldots, A_m such that:

- 1. If any t get together than they can learn the secret.
- 2. If any t 1 get together they cannot learn the secret.

Cannot learn the secret Last lecture this was Info-Theoretic. This lecture we consider comp-theoretic.

Computational Threshold Secret Sharing: Shorter Shares

ション ふゆ アメリア メリア しょうくしゃ

Info-Theoretic: Shares are $\geq n$

Info-theoretic (t, m)-Secret Sharing.

If A_t has a share of length n-1 then A_1, \ldots, A_{t-1} CAN learn something (so NOT info-theoretic security).

 A_1, \ldots, A_{t-1} do the following:

 $CAND = \emptyset$. CAND will be set of Candidates for *s*.

For $x \in \{0,1\}^{n-1}$ (go through ALL shares A_t could have)

 A_1, \ldots, A_{t-1} pretend A_t has x and deduce candidates secret s' $CAND := CAND \cup \{s'\}$

Secret is in *CAND*. $|CAND| = 2^{n-1} < 2^n$. So we have eliminated many strings from being the *s*

If we **demand** info-security then **everyone** gets a share $\ge n$. What if we only **demand** comp-security? **VOTE**

- 1. Can get shares $< \beta n$ with a hardness assumption.
- 2. Even with hardness assumption REQUIRES shares $\geq n$.

If we **demand** info-security then **everyone** gets a share $\ge n$. What if we only **demand** comp-security? **VOTE**

1. Can get shares $< \beta n$ with a hardness assumption.

2. Even with hardness assumption REQUIRES shares $\geq n$. Can get shares $< \beta n$ with a hardness assumption. Will do that later.

Recall

Threshold Secret Sharing: Information-Theoretic

- 1. Secret is $s \in \{0, 1\}^n$.
- 2. (t, m): t people can find s, but t 1 cannot.
- 3. There is a (t, m)-scheme where all gets a share of size n.

4. There is no scheme where someone gets a share of size < n.That is for Information-Theoretic Security.What if we settle for Computational Security?

ション ふゆ アメリア メリア しょうくしゃ

Recall

Threshold Secret Sharing: Information-Theoretic

- 1. Secret is $s \in \{0, 1\}^n$.
- 2. (t, m): t people can find s, but t 1 cannot.
- 3. There is a (t, m)-scheme where all gets a share of size n.

4. There is no scheme where someone gets a share of size < n. That is for **Information-Theoretic Security**.

What if we settle for **Computational Security**? **Promise to you:** No more **Punking**

Review of an Aspect of Private Key Crypto

For ciphertext only:

- 1. Shift is crackable if text is long
- 2. Affine is crackable if text is long
- 3. Vig is crackable if text is long compared to the key
- 4. Matrix is crackable **if text is long compared to the key** (actually I do not know if this is true)

Is there an encryption system where the key is shorter than the text and the system is computationally secure? Need to define terms first.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Compare Key to Message

Def: Let $0 < \alpha \le 1$. An α -Symm Enc. System (α -SES) is a three tuple of functions (*GEN*, *ENC*, *DEC*) where

- 1. GEN takes n and GENerates $k \in \{0, 1\}^{\alpha n}$.
- 2. ENC takes $k \in \{0,1\}^{\alpha n}$ and $m \in \{0,1\}^n$, outputs $c \in \{0,1\}^n$. (ENC ENCrypts m with key k. We denote $ENC_k(m)$.)
- 3. DEC takes $k \in \{0,1\}^{\alpha n}$ and $c \in \{0,1\}^n$ and outputs $m \in \{0,1\}^n$ such that $DEC_k(ENC_k(m)) = m$. So DEC DECrypts.

Def: We will not define security formally here; however, intuitively Eve cannot learn *m* from *c*. We are concerned with ciphertext only. **Note:** α -SES encrypts a length *n* message by a length *n* ciphertext.

Def: (Informal) A a pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea: Do the one-time-pad but with a psuedorandom sequence. **Discuss**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PROS and **CONS**

Def: (Informal) A a pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea: Do the one-time-pad but with a psuedorandom sequence. **Discuss**

PROS and CONS CON: All Powerful Eve can crack it!

Def: (Informal) A a pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea: Do the one-time-pad but with a psuedorandom sequence. **Discuss**

PROS and CONS CON: All Powerful Eve can crack it! PRO: Limited Eve cannot crack it!

Def: (Informal) A a pseudorandom gen maps a short seed to a long sequence that a limited Eve cannot distinguish from random.

Idea: Do the one-time-pad but with a psuedorandom sequence. **Discuss**

PROS and CONS CON: All Powerful Eve can crack it! PRO: Limited Eve cannot crack it! PRO: Can Actually use!

BBS Generator

Blum-Blum-Shub psuedo-random Generator. Recall that LSB means *Least Significant Bit*.

1. Seed: p, q primes, $x_0 \in \mathbb{Z}_{N=pq}$. $p, q \equiv 3 \pmod{4}$.

2. Sequence:

$$\begin{array}{rcl} x_1 = x_0^2 & \mod N & & b_1 = LSB(x_1) \\ x_2 = x_1^2 & \mod N & & b_2 = LSB(x_2) \\ \vdots & \vdots & & \vdots & \vdots \\ x_L = x_{L-1}^2 & \mod N & & b_L = LSB(x_L) \end{array}$$

 $r = b_1 \cdots b_L$ is pseudo-random.

Known: Assuming Factoring is hard, this is $\frac{1}{2}$ -SES. If *L* is twice the length of seed, and seed long enough, then secure.

Example of $\frac{1}{2}$ -SES

Name of this System BBS-Psuedo 1-time Pad, or BBS-POTP.

- 1. **GEN:** $k = (p, q, x_0)$. $|k| = \frac{n}{2}$. p, q prime $p \equiv q \equiv 3 \pmod{4}$.
- 2. **ENC:** Use k to BBS-gen $b_1, ..., b_n$. $m \in \{0, 1\}^n$.

$$ENC_k(m_1,\ldots,m_n)=(m_1\oplus b_1,\ldots,m_n\oplus b_n).$$

3. **DEC:** Bob can use $k = (p, q, x_0)$ to find b_0, \ldots, b_n , and decode.

Known: Assume determining if a number is in SQ_N is hard. For large enough *n* this is secure.

Note: Message is twice as long as key, so this is $\frac{1}{2}$ -SES. **Note:** Will not be using this particular *SES* but have it here as a concrete example.

Blum-Goldwasser (BG) vs BBS-POPT

- 1. BG is a Public Key Cryptosystem. Bob sends Alice stuff from which she can reconstruct the psuedo-one-time-pad and then use it.
- BBS-POPT is a Private Key Cryptosystem. Alice and Bob both have a way to generate a long string from a short one. They meet and determine a short string, and both use it to generate a long one. They use the long string for the pad. Easier than real 1-time pad, though not as secure.

Short Shares

Thm: Assume there exists an α -SES. Assume that for message of length *n*, it is secure. Then, for all $1 \le t \le m$ there is a (t, m)-scheme for |s| = n where each share is of size $\frac{n}{t} + \alpha n$.

- 1. Zelda does $k \leftarrow GEN(n)$. Note $|k| = \alpha n$.
- 2. $u = ENC_k(s)$. Let $u = u_0 \cdots u_{t-1}$, $|u_i| \sim \frac{n}{t}$.

3. Let $p > 2^{n/t}$. Zelda forms poly over \mathbb{Z}_p :

$$f(x) = u_{t-1}x^{t-1} + \cdots + u_1x + u_0$$

4. Let $q > 2^{\alpha n}$. Zelda forms poly over \mathbb{Z}_q by choosing $r_{t-1}, \ldots, r_1 \in \{0, \ldots, q-1\}$ at random and then:

$$g(x) = r_{t-1}x^{t-1} + \cdots + r_1x + k$$

5. Zelda gives A_i , (f(i), g(i)). Length: $\sim \frac{n}{t} + \alpha n$.

Length and Recovery

Length:

- 1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.
- 2. $g(i) \in \mathbb{Z}_q$ where $q > 2^{\alpha n}$, so $|g(i)| \sim \alpha n$.

Recovery: If *t* get together:

1. Have t points of f, can get u_{t-1}, \ldots, u_0 , hence u.

- 2. $u = ENC_k(s)$. So need k.
- 3. Have t points of g, can get k.
- 4. With k and u can get $s = DEC_k(u)$.

Length and Recovery

Length:

- 1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.
- 2. $g(i) \in \mathbb{Z}_q$ where $q > 2^{\alpha n}$, so $|g(i)| \sim \alpha n$.

Recovery: If *t* get together:

1. Have t points of f, can get u_{t-1}, \ldots, u_0 , hence u.

2. $u = ENC_k(s)$. So need k.

- 3. Have t points of g, can get k.
- 4. With k and u can get $s = DEC_k(u)$.

If t - 1 get together then, assuming the proper hardness assumptions, they cannot learn anything. What those assumptions are is complicated.

Length and Recovery

Length:

- 1. $f(i) \in \mathbb{Z}_p$ where $p > 2^{n/t}$, so $|f(i)| \sim \frac{n}{t}$.
- 2. $g(i) \in \mathbb{Z}_q$ where $q > 2^{\alpha n}$, so $|g(i)| \sim \alpha n$.

Recovery: If *t* get together:

- 1. Have t points of f, can get u_{t-1}, \ldots, u_0 , hence u.
- 2. $u = ENC_k(s)$. So need k.
- 3. Have t points of g, can get k.
- 4. With k and u can get $s = DEC_k(u)$.

If t - 1 get together then, assuming the proper hardness assumptions, they cannot learn anything. What those assumptions are is complicated.

See next Slide for information about them.

Not a Punking but a Caveat and a Ref

The scheme I showed you is due to Hugo Krawczyk, Secret Sharing Made Short, Advances in Crypto – CRYPTO 1993 Lecture notes in computer science 773, 1993 However, the proof of security was not quite right.

Mihir Bellar and Phillip Rogaway wrote a paper that proved Krawczyk's protocol secure by adding a condition to the α -SES. We omit since its complicated.

Robust Computational Secret Sharing and a Unified Account of Classical Secret Sharing Goals, Cryptology eprint 2006-449, 2006

Can we do better than $\frac{n}{t} + \alpha n$?

III Formed Question: Can we do better than $\frac{n}{t} + \alpha n$? The question is not quite right – if we have a smaller α can do better.

Better Question: Assume there is an α -SES. Is the following true: For all $0 < \beta < 1$ there exists an (t, m) secret sharing scheme where everyone gets $\frac{n}{t} + \beta n$. **Discuss**

ション ふゆ アメリア メリア しょうくしゃ
Can we do better than $\frac{n}{t} + \alpha n$?

III Formed Question: Can we do better than $\frac{n}{t} + \alpha n$? The question is not quite right – if we have a smaller α can do better.

Better Question: Assume there is an α -SES. Is the following true: For all $0 < \beta < 1$ there exists an (t, m) secret sharing scheme where everyone gets $\frac{n}{t} + \beta n$.

Discuss

Can be done by iterating the above construction. Might be $\ensuremath{\mathsf{HW}}$ or $\ensuremath{\mathsf{Exam}}.$

Breaking the $\frac{n}{t}$ Barrier!

(2,2): A, B share the secret s, |s| = n. Computational Secret Sharing, so can make a hardness assumption.

Question: Is there a (2,2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$? **Discuss.** Vote!

- 1. YES! There is such a Scheme.
- 2. NO! We can prove there is NO such scheme.
- 3. PUNKED! Bill will shows us a scheme that looks like it works but he'll be PUNKING US!

ション ふゆ アメリア メリア しょうくしゃ

4. Unknown to science!

Breaking the $\frac{n}{t}$ Barrier!

(2,2): A, B share the secret s, |s| = n. Computational Secret Sharing, so can make a hardness assumption.

Question: Is there a (2,2) secret sharing scheme where A and B both get a share $\leq \frac{n}{3}$? **Discuss.** Vote!

- 1. YES! There is such a Scheme.
- 2. NO! We can prove there is NO such scheme.
- 3. PUNKED! Bill will shows us a scheme that looks like it works but he'll be PUNKING US!

ション ふゆ アメリア メリア しょうくしゃ

4. Unknown to science!

NO! We can prove there is NO such scheme.

Can't Break the $\frac{n}{t}$ Barrier!

Theorem: There is no (2, 2)-scheme with shares $\frac{n}{3}$. **Proof:** Assume there is.

Map $s \in \{0,1\}^n$ to the ordered pair (A's share, B's share) 2^n elements in the domain. $2^{n/3} \times 2^{n/3} = 2^{2n/3}$ elements in the co-domain.

Hence exists $s, s' \in \{0, 1\}^n$ that map to same (a, b). If A gets a, and B gets b, will not decode uniquely into one secret.

Contradiction!

This Generalizes. Might be on HW or Exam

Computational Threshold Secret Sharing: Verifiable S.S.

ション ふゆ アメリア メリア しょうくしゃ

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $s > 2^p$. Zelda picks random r_4, r_3, r_2, r_1 and forms the polynomial $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3. For $1 \le i \le 9$ Zelda gives A_i the element f(i).

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $s > 2^p$. Zelda picks random r_4, r_3, r_2, r_1 and forms the polynomial $f(x) = r_4x^4 + r_3x^3 + r_2x^2 + r_1x + s$.
- 3. For $1 \le i \le 9$ Zelda gives A_i the element f(i).

 A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

- 1. A_2 thinks that A_7 is a traitor!
- 2. A_7 thinks A_4 will confuse them just for the fun of it.
- 3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.

4. The list goes on

A Scenario

- 1. (5,9) Secret Sharing.
- 2. The secret is s. $s > 2^p$. Zelda picks random r_4, r_3, r_2, r_1 and forms the polynomial $f(x) = r_4 x^4 + r_3 x^3 + r_2 x^2 + r_1 x + s$.
- 3. For $1 \le i \le 9$ Zelda gives A_i the element f(i).

 A_2, A_4, A_7, A_8, A_9 get together. BUT they do not trust each other!

- 1. A_2 thinks that A_7 is a traitor!
- 2. A_7 thinks A_4 will confuse them just for the fun of it.
- 3. A_8 and A_9 got into a knife fight over who proved that the muffin problem always has a rational solution. They use the knifes that were used to cut muffins.
- 4. The list goes on

Hence we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing, or VSS.

First Attempt at (t, m) VSS

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i).
- 5. Zelda broadcasts g, g^s (this does not reveal s).

Recover: Any group of *t* can determine *f* and hence *s*.

Verify: Once a group has *s* they compute g^s and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**

First Attempt at (t, m) VSS

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i).
- 5. Zelda broadcasts g, g^s (this does not reveal s).

Recover: Any group of *t* can determine *f* and hence *s*.

Verify: Once a group has *s* they compute g^s and see if it matches. If so then they **know** they have the correct secret. If no then they **know** someone is a **stinking rotten liar**

- 1. If verify *s* there may still be two liars who cancel out.
- 2. If do not agree they do not know who the liar was.
- 3. Does not serve as a deterrent.

Second Attempt at (t, m) VSS

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i).
- 5. Zelda broadcasts $g, g^{f(1)}, \ldots, g^{f(m)}$. (No f(i) not revealed.) **Recover:** The usual – any group of t can blah blah.

Verify: If A_i says f(i) = 17, they can all then check if g^{17} is what Zelda said $g^{f(i)}$ is, so can determine if A_i is truthful.

Second Attempt at (t, m) VSS

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i).
- 5. Zelda broadcasts $g, g^{f(1)}, \ldots, g^{f(m)}$. (No f(i) not revealed.) **Recover:** The usual – any group of t can blah blah.

Verify: If A_i says f(i) = 17, they can all then check if g^{17} is what Zelda said $g^{f(i)}$ is, so can determine if A_i is truthful.

- 1. PRO: If someone lies they know right away.
- 2. CON: Leaks! Since $g^{f(i)}$'s are all broadcast, if f(i) = f(j) then everyone will know that.
- 3. CON: *m* strings is a lot.
- 4. CON: If more come then need to update public info.

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i)$.
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives A_i f(i).
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: 1) g^{17} . 2) $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0} = g^{f(i)}$ If this is g^{17} then A_i is truthful. If not then A_i is dirty stinking liar. 1. **PRO:** If someone lies they know right away.

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i)$.
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

Recover: The usual – any group of t can blah blah. **Verify:** A_i reveals f(i) = 17. Group computes: 1) g^{17} . 2) $(g^{r_{t-1}})^{i^{t-1}} \times (g^{r_{t-2}})^{i^{t-2}} \times \cdots \times (g^{r_1})^{i^1} \times (g^s)^{i^0} = g^{f(i)}$ If this is g^{17} then A_i is truthful. If not then A_i is dirty stinking liar.

- 1. PRO: If someone lies they know right away.
- 2. PRO: Serves as a deterrent.

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i)$.
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

- 1. **PRO:** If someone lies they know right away.
- 2. PRO: Serves as a deterrent.
- 3. **PRO:** Zelda is communicating **only** *t* strings.

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i)$.
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

- 1. PRO: If someone lies they know right away.
- 2. PRO: Serves as a deterrent.
- 3. **PRO:** Zelda is communicating **only** *t* strings.
- 4. PRO: If more people come do not need to update public info.

- 1. Secret is s. Zelda uses $p > 2^{|s|}$.
- 2. Zelda finds a generator g for \mathbb{Z}_p .
- 3. Zelda picks rand $r_{t-1}, \ldots, r_1, f(x) = r_{t-1}x^{t-1} + \cdots + r_1x + s$.
- 4. For $1 \le i \le m$ Zelda gives $A_i f(i)$.
- 5. Zelda broadcasts $g, g^{r_1}, \ldots, g^{r_{t-1}}, g^s, g$ (r_i not revealed).

- 1. PRO: If someone lies they know right away.
- 2. PRO: Serves as a deterrent.
- 3. **PRO:** Zelda is communicating **only** *t* strings.
- 4. PRO: If more people come do not need to update public info.
- 5. PRO: Security see next slide.

The scheme above for VSS is by Paul Feldman.

A Practical Scheme for non-interactive Verifiable Secret Sharing

28th Conference on Foundations of Computer Science (FOCS)

1987

They give proof of security based on zero-knowledge protocols which are themselves based on blah blah.

More Can Be Said About Secret Sharing

arXiv is a website where Academics in Math, Comp Sci, and Physics post papers. How many of those papers are on Secret Sharing?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Vote

- 1. Between 0 and 100
- 2. Between 100 and 1000
- 3. Between 1000 and 10,000
- 4. Over 10,000

More Can Be Said About Secret Sharing

arXiv is a website where Academics in Math, Comp Sci, and Physics post papers. How many of those papers are on Secret Sharing?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Vote

- 1. Between 0 and 100
- 2. Between 100 and 1000
- 3. Between 1000 and 10,000
- 4. Over 10,000

Answer About 14,500 so over 10,000.