Some Solutions to HW01 Problems

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

・ロト・日本・ヨト・ヨト・ヨー つへぐ

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over \mathbb{R} or \mathbb{C} would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over $\mathbb R$ or $\mathbb C$ would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over $\mathbb R$ or $\mathbb C$ would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

That does not apply in mod 100. Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over $\mathbb R$ or $\mathbb C$ would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

That does not apply in mod 100. Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.

Two ways to solve.

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over ${\mathbb R}$ or ${\mathbb C}$ would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

That does not apply in mod 100. Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.

Two ways to solve. 1) Write a program that goes through all $x \in \{0, ..., 99\}$.

How many $x \in \{0, \ldots, 99\}$ satisfy the equation

 $x^2 + 17x + 16 \equiv 0 \pmod{100}$

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over ${\mathbb R}$ or ${\mathbb C}$ would do

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

That does not apply in mod 100. Note $25 \times 4 \equiv 0$, but $25 \neq 0$ and $4 \neq 0$.

Two ways to solve. 1) Write a program that goes through all $x \in \{0, ..., 99\}$. 2) By hand and cleverness on next slide.

$$x^2 + 17x + 16 = (x + 16)(x + 1)$$

Lemma $(x + 1)(x + 16) \equiv 0 \pmod{100} \implies x + 1 \equiv 0 \pmod{5}.$

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

Lemma $(x+1)(x+16) \equiv 0 \pmod{100} \implies x+1 \equiv 0 \pmod{5}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Proof
$$x + 1 \not\equiv 0 \pmod{5} \implies x + 16 \not\equiv 0 \pmod{5} \implies$$

 $(x + 1)(x + 16) \not\equiv 0 \pmod{5} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

$$x^{2} + 17x + 16 = (x + 16)(x + 1)$$

Lemma $(x+1)(x+16) \equiv 0 \pmod{100} \implies x+1 \equiv 0 \pmod{5}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Proof
$$x + 1 \not\equiv 0 \pmod{5} \implies x + 16 \not\equiv 0 \pmod{5} \implies$$

 $(x + 1)(x + 16) \not\equiv 0 \pmod{5} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Upshot Only need to look x such that $x + 1 \equiv 0 \pmod{5}$. **Upshot** Only need to look at $x \equiv 0 \pmod{5}$.

Lemma $(x+1)(x+16) \equiv 0 \implies x+1 \not\equiv 2 \pmod{4}$.

Lemma
$$(x+1)(x+16) \equiv 0 \implies x+1 \not\equiv 2 \pmod{4}$$
.

Proof
$$x + 1 \equiv 2 \pmod{4} \implies x + 16 \equiv 1 \pmod{4} \implies$$

 $(x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Lemma
$$(x+1)(x+16) \equiv 0 \implies x+1 \not\equiv 2 \pmod{4}$$
.

Proof
$$x + 1 \equiv 2 \pmod{4} \implies x + 16 \equiv 1 \pmod{4} \implies$$

 $(x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Lemma $(x+1)(x+16) \equiv 0 \pmod{100} \implies x+1 \not\equiv 3 \pmod{4}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Lemma
$$(x+1)(x+16) \equiv 0 \implies x+1 \not\equiv 2 \pmod{4}$$
.

Proof
$$x + 1 \equiv 2 \pmod{4} \implies x + 16 \equiv 1 \pmod{4} \implies$$

 $(x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Lemma $(x+1)(x+16) \equiv 0 \pmod{100} \implies x+1 \not\equiv 3 \pmod{4}$.

Proof $x + 1 \equiv 3 \pmod{4} \implies x + 16 \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0 \pmod{100}.$

Lemma
$$(x+1)(x+16) \equiv 0 \implies x+1 \not\equiv 2 \pmod{4}$$
.

Proof
$$x + 1 \equiv 2 \pmod{4} \implies x + 16 \equiv 1 \pmod{4} \implies$$

 $(x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Lemma $(x+1)(x+16) \equiv 0 \pmod{100} \implies x+1 \not\equiv 3 \pmod{4}$.

Proof
$$x + 1 \equiv 3 \pmod{4} \implies x + 16 \equiv 2 \pmod{4} \implies$$

 $(x + 1)(x + 16) \equiv 2 \pmod{4} \implies (x + 1)(x + 16) \not\equiv 0$
(mod 100).

Upshot Only need to look at x such that $x + 1 \equiv 0, 1 \pmod{4}$. **Upshot** Only need to look at $x \equiv 0, 3 \pmod{4}$.

Problem 2. Clever Sol Cont.

1) $x \equiv 4 \pmod{5}$ and $x \equiv 0 \pmod{4}$ implies $x \equiv 4 \pmod{20}$.

x	(x+1)(x+16)	$\equiv 0 \pmod{100}?$
4	100	Y
24	1000	Y
44	2700	Y
64	5200	Y
84	8400	Y

2) $x \equiv 4 \pmod{5}$ and $x \equiv 3 \pmod{4}$ implies $x \equiv 19 \pmod{20}$.

x	(x+1)(x+16)	$\equiv 0$	(mod 100)?
19	700		Y
39	2200		Y
59	4500		Y
79	7600		Y
99	8400		Y

SO there are 10 solutions.

Problem 2: The Point

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have *d*th degree poly with MORE THAN *d* roots.

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have *d*th degree poly with MORE THAN *d* roots.

Theorem If the domain is \mathbb{Z} or \mathbb{R} or \mathbb{C} (the complex numbers) then every poly of degree d has $\leq d$ roots.

Point of the Problem Mod 100 is very different than \mathbb{N} or \mathbb{Z} or even Mod 7 since you can have *d*th degree poly with MORE THAN *d* roots.

Theorem If the domain is \mathbb{Z} or \mathbb{R} or \mathbb{C} (the complex numbers) then every poly of degree d has $\leq d$ roots.

The proof of this theorem used that in these domains

$$ab = 0 \implies (a = 0) \lor (b = 0)$$

How many $a, b \in \{0, \dots, 29\}$ are cool relative to 30.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

How many $a, b \in \{0, \ldots, 29\}$ are cool relative to 30.

The numbers rel prime to 30 are $\{1, 7, 11, 13, 17, 19, 23, 29\}$. Hence there are 8 of these.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

How many $a, b \in \{0, \ldots, 29\}$ are cool relative to 30.

The numbers rel prime to 30 are $\{1, 7, 11, 13, 17, 19, 23, 29\}$. Hence there are 8 of these.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The number of b's is ALL of them: 30.

How many $a, b \in \{0, \ldots, 29\}$ are cool relative to 30.

The numbers rel prime to 30 are $\{1, 7, 11, 13, 17, 19, 23, 29\}$. Hence there are 8 of these.

The number of b's is ALL of them: 30.

Hence there are $8 \times 30 = 240$ cool pairs.

Problem 4b

A student picks an $a, b \in \{0..., 29\}$ at random. What is the probability that (a, b) is cool relative to 30?

(ロト (個) (E) (E) (E) (E) のへの

Problem 4b

A student picks an $a, b \in \{0..., 29\}$ at random. What is the probability that (a, b) is cool relative to 30?

$$\frac{240}{30 \times 30} = \frac{8 \times 30}{30 \times 30} = \frac{8}{30} = \frac{4}{15} \sim 0.2667$$

(ロト (個) (E) (E) (E) (E) のへの

How many (a, b) are cool relative to 31?

How many (a, b) are cool relative to 31?

The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

(ロト (個) (E) (E) (E) (E) のへの

How many (a, b) are cool relative to 31?

The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The number of *b*'s is ALL of them: 31.

How many (a, b) are cool relative to 31?

The numbers rel prime to 31 are $\{1, \ldots, 30\}$. Hence there are 30 of these.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The number of *b*'s is ALL of them: 31.

Hence there are $30 \times 31 = 930$ cool pairs.

Problem 4d

A student picks an $a, b \in \{0..., 30\}$ at random. What is the probability that (a, b) is cool rel to 31? Give the answer to four decimal places.

$$\frac{930}{31\times31} = \frac{30\times31}{31\times31} = \frac{30}{31} = \sim 0.9677$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Problem 4e

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is close to 1? Give an example of a number between 1000 and 1200 where the prob is close to 1. What is the prob? Give it to 4 places.

Problem 4e

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is close to 1? Give an example of a number between 1000 and 1200 where the prob is close to 1. What is the prob? Give it to 4 places.

We want *n* to be PRIME. WE take n = 1001 which is prime. The prob of picking a cool pair is

 $\frac{1000 \times 1001}{10001 \times 1001} = \frac{1000}{1001} = 0.999.$

ション ふゆ アメリア メリア しょうくしゃ

Problem 4f

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is far from 1? Give an example of a number between 1000 and 1200 where the prob is far from 1.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Problem 4f

What types of numbers n are such that the prob of picking an (a, b) that is cool rel to n is far from 1? Give an example of a number between 1000 and 1200 where the prob is far from 1.

A number with LOTS of prime factors. We give two examples but leave it to you to work out the answer $n = 1024 = 2^{10}$. $n = 4 \times 3 \times 5 \times 17$

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

 $a^2 \equiv 1$ and $ab + b \equiv 0$

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

$$a^2\equiv 1$$
 and $ab+b\equiv 0$

ション ふゆ アメリア メリア しょうくしゃ

The first equation yields $a \equiv 1$ or $a \equiv 25$.

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

$$a^2\equiv 1$$
 and $ab+b\equiv 0$

The first equation yields $a \equiv 1$ or $a \equiv 25$. **Case 1** $a \equiv 1$, so the $ab + b \equiv 0$ is now $b + b \equiv 0$, $b \equiv 0$ or $b \equiv 13$. Pairs: (1,0), (1,13).

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

 $a^2 \equiv 1$ and $ab + b \equiv 0$

The first equation yields $a \equiv 1$ or $a \equiv 25$. **Case 1** $a \equiv 1$, so the $ab + b \equiv 0$ is now $b + b \equiv 0$, $b \equiv 0$ or $b \equiv 13$. Pairs: (1,0), (1,13). **Case 2** $a \equiv 25$, so the $ab + b \equiv 0$ is now $25b + b \equiv 0$, so $26b \equiv 0$ OH, thats ALWAYS TRUE! So ANY *b* works. Pairs: (25, *b*) for ANY $0 \leq b \leq 25$.

List all *a*, *b* so that the encode-key and the decode-key for affine are the same. All math is mod 26. Need $(\forall x)[a(ax + b) + b \equiv x]$, so $(\forall x)[a^2x + (ab + b) \equiv 1x + 0]$. We match coefficients

 $a^2 \equiv 1$ and $ab + b \equiv 0$

The first equation yields $a \equiv 1$ or $a \equiv 25$. **Case 1** $a \equiv 1$, so the $ab + b \equiv 0$ is now $b + b \equiv 0$, $b \equiv 0$ or $b \equiv 13$. Pairs: (1,0), (1,13). **Case 2** $a \equiv 25$, so the $ab + b \equiv 0$ is now $25b + b \equiv 0$, so $26b \equiv 0$ OH, thats ALWAYS TRUE! So ANY *b* works. Pairs: (25, *b*) for ANY $0 \leq b \leq 25$.

Pairs: (1,0) (1,13), (25,0), (25,1), ..., (25,25). Note that there are 28 such pairs.

1) Give a reason why having the encode and decode be the same key is a good idea.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1) Give a reason why having the encode and decode be the same key is a good idea.

When Alice gives Bob the key, Bob does not have to figure out the inverse.

This is not a big deal here, but could be for more complicated ciphers.

1) Give a reason why having the encode and decode be the same key is a good idea.

When Alice gives Bob the key, Bob does not have to figure out the inverse.

This is not a big deal here, but could be for more complicated ciphers.

2) Give a reason why having the encode and decode be the same key is a bad idea.

1) Give a reason why having the encode and decode be the same key is a good idea.

When Alice gives Bob the key, Bob does not have to figure out the inverse.

This is not a big deal here, but could be for more complicated ciphers.

2) Give a reason why having the encode and decode be the same key is a bad idea.

If Eve knows Alice and Bob are doing this, the key space goes from 312 to 28. So much easier for Eve to crack the code.