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Problem 2

How many x ∈ {0, . . . , 99} satisfy the equation

x2 + 17x + 16 ≡ 0 (mod 100)

Wrong Answer Its an equation of degree 2, so 2 solutions.

Key If solving over R or C would do

x2 + 17x + 16 = (x + 16)(x + 1)

If (x + 16)(x + 1) = 0 then EITHER x + 16 = 0 or x + 1 = 0.

That does not apply in mod 100.
Note 25× 4 ≡ 0, but 25 6= 0 and 4 6= 0.

Two ways to solve.
1) Write a program that goes through all x ∈ {0, . . . , 99}.
2) By hand and cleverness on next slide.
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Problem 2: The Clever Solutions, Mod 5

x2 + 17x + 16 = (x + 16)(x + 1)

Lemma (x + 1)(x + 16) ≡ 0 (mod 100) =⇒ x + 1 ≡ 0 (mod 5).

Proof x + 1 6≡ 0 (mod 5) =⇒ x + 16 6≡ 0 (mod 5) =⇒
(x + 1)(x + 16) 6≡ 0 (mod 5) =⇒ (x + 1)(x + 16) 6≡ 0
(mod 100).

Upshot Only need to look x such that x + 1 ≡ 0 (mod 5).
Upshot Only need to look at x ≡ 0 (mod 5).
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Problem 2: The Clever Solutions, Mod 4

Lemma (x + 1)(x + 16) ≡ 0 =⇒ x + 1 6≡ 2 (mod 4).

Proof x + 1 ≡ 2 (mod 4) =⇒ x + 16 ≡ 1 (mod 4) =⇒
(x + 1)(x + 16) ≡ 2 (mod 4) =⇒ (x + 1)(x + 16) 6≡ 0
(mod 100).

Lemma (x + 1)(x + 16) ≡ 0 (mod 100) =⇒ x + 1 6≡ 3 (mod 4).

Proof x + 1 ≡ 3 (mod 4) =⇒ x + 16 ≡ 2 (mod 4) =⇒
(x + 1)(x + 16) ≡ 2 (mod 4) =⇒ (x + 1)(x + 16) 6≡ 0
(mod 100).

Upshot Only need to look at x such that x + 1 ≡ 0, 1 (mod 4).
Upshot Only need to look at x ≡ 0, 3 (mod 4).
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Problem 2. Clever Sol Cont.
1) x ≡ 4 (mod 5) and x ≡ 0 (mod 4) implies x ≡ 4 (mod 20).

x (x + 1)(x + 16) ≡ 0 (mod 100)?

4 100 Y
24 1000 Y
44 2700 Y
64 5200 Y
84 8400 Y

2) x ≡ 4 (mod 5) and x ≡ 3 (mod 4) implies x ≡ 19 (mod 20).

x (x + 1)(x + 16) ≡ 0 (mod 100)?

19 700 Y
39 2200 Y
59 4500 Y
79 7600 Y
99 8400 Y

SO there are 10 solutions.



Problem 2: The Point

Point of the Problem Mod 100 is very different than N or Z or
even Mod 7 since you can have dth degree poly with MORE
THAN d roots.

Theorem If the domain is Z or R or C (the complex numbers)
then every poly of degree d has ≤ d roots.

The proof of this theorem used that in these domains

ab = 0 =⇒ (a = 0) ∨ (b = 0)
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Problem 4a

How many a, b ∈ {0, . . . , 29} are cool relative to 30.

The numbers rel prime to 30 are {1, 7, 11, 13, 17, 19, 23, 29}.
Hence there are 8 of these.

The number of b’s is ALL of them: 30.

Hence there are 8× 30 = 240 cool pairs.
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Problem 4b

A student picks an a, b ∈ {0 . . . , 29} at random. What is the
probability that (a, b) is cool relative to 30?

240

30× 30
=

8× 30

30× 30
=

8

30
=

4

15
∼ 0.2667
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Problem 4c

How many (a, b) are cool relative to 31?

The numbers rel prime to 31 are {1, . . . , 30}. Hence there are 30
of these.

The number of b’s is ALL of them: 31.

Hence there are 30× 31 = 930 cool pairs.
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Problem 4c

How many (a, b) are cool relative to 31?

The numbers rel prime to 31 are {1, . . . , 30}. Hence there are 30
of these.

The number of b’s is ALL of them: 31.

Hence there are 30× 31 = 930 cool pairs.



Problem 4d

A student picks an a, b ∈ {0 . . . , 30} at random. What is the
probability that (a, b) is cool rel to 31?
Give the answer to four decimal places.

930

31× 31
=

30× 31

31× 31
=

30

31
=∼ 0.9677



Problem 4e

What types of numbers n are such that the prob of picking an
(a, b) that is cool rel to n is close to 1? Give an example of a
number between 1000 and 1200 where the prob is close to 1.
What is the prob? Give it to 4 places.

We want n to be PRIME. WE take n = 1001 which is prime.
The prob of picking a cool pair is

1000× 1001

10001× 1001
=

1000

1001
= 0.999.
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Problem 4f

What types of numbers n are such that the prob of picking an
(a, b) that is cool rel to n is far from 1? Give an example of a
number between 1000 and 1200 where the prob is far from 1.

A number with LOTS of prime factors. We give two examples but
leave it to you to work out the answer
n = 1024 = 210.
n = 4× 3× 5× 17
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Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.
Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).
Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.
Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).
Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.

Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).
Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.
Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).

Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.
Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).
Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5a

List all a, b so that the encode-key and the decode-key for affine
are the same. All math is mod 26.
Need (∀x)[a(ax + b) + b ≡ x ], so
(∀x)[a2x + (ab + b) ≡ 1x + 0]. We match coefficients

a2 ≡ 1 and ab + b ≡ 0

The first equation yields a ≡ 1 or a ≡ 25.
Case 1 a ≡ 1, so the ab + b ≡ 0 is now b + b ≡ 0, b ≡ 0 or
b ≡ 13. Pairs: (1, 0), (1, 13).
Case 2 a ≡ 25, so the ab + b ≡ 0 is now 25b + b ≡ 0, so 26b ≡ 0
OH, thats ALWAYS TRUE! So ANY b works. Pairs: (25, b) for
ANY 0 ≤ b ≤ 25.

Pairs: (1, 0) (1, 13), (25, 0), (25, 1), . . ., (25, 25). Note that there
are 28 such pairs.



Problem 5b,5c

1) Give a reason why having the encode and decode be the same
key is a good idea.

When Alice gives Bob the key, Bob does not have to figure out the
inverse.
This is not a big deal here, but could be for more complicated
ciphers.

2) Give a reason why having the encode and decode be the same
key is a bad idea.

If Eve knows Alice and Bob are doing this, the key space goes from
312 to 28. So much easier for Eve to crack the code.
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