Solutions to HW08 Problems

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

HW08, Problem 2a, 2b

Zelda is going to do RSA with both Alice and Bob. a) To set up RSA, Zelda sends Alice $(55,33)$. Find d.

HW08, Problem 2a, 2b

Zelda is going to do RSA with both Alice and Bob.
a) To set up RSA, Zelda sends Alice $(55,33)$. Find d. SOLUTION
$N=5 \times 11$, so $R=4 \times 10=40$. Need $33^{-1}(\bmod 40)$.
Wolfram alpha tells me $33^{-1}(\bmod 40)=17$.

HW08, Problem 2a, 2b

Zelda is going to do RSA with both Alice and Bob.
a) To set up RSA, Zelda sends Alice $(55,33)$. Find d. SOLUTION
$N=5 \times 11$, so $R=4 \times 10=40$. Need $33^{-1}(\bmod 40)$.
Wolfram alpha tells me $33^{-1}(\bmod 40)=17$.
b) To set up RSA, Zelda sends Bob $(55,23)$. Find d.

HW08, Problem 2a, 2b

Zelda is going to do RSA with both Alice and Bob.
a) To set up RSA, Zelda sends Alice $(55,33)$. Find d. SOLUTION
$N=5 \times 11$, so $R=4 \times 10=40$. Need $33^{-1}(\bmod 40)$.
Wolfram alpha tells me $33^{-1}(\bmod 40)=17$.
b) To set up RSA, Zelda sends Bob $(55,23)$. Find d. SOLUTION
$N=5 \times 11$, so $R=4 \times 10=40$. Need $23^{-1}(\bmod 40)$.
Wolfram alpha tells me $23^{-1}(\bmod 40)=7$.

HW08, Problem 2c, 2d

c) Alice sends Zelda 13. Whats the message? Show Work.

HW08, Problem 2c, 2d

c) Alice sends Zelda 13. Whats the message? Show Work. SOLUTION Alice sends 13. Note that $13^{2} \equiv 169 \equiv 169-165 \equiv 4(\bmod 55)$. Zelda does

$$
13^{d} \equiv 13^{17} \equiv 13 \times\left((13)^{2}\right)^{8} \equiv 13 \times 4^{8} \equiv 18 \quad(\bmod 55)
$$

HW08, Problem 2c, 2d

c) Alice sends Zelda 13. Whats the message? Show Work. SOLUTION Alice sends 13. Note that $13^{2} \equiv 169 \equiv 169-165 \equiv 4(\bmod 55)$. Zelda does

$$
13^{d} \equiv 13^{17} \equiv 13 \times\left((13)^{2}\right)^{8} \equiv 13 \times 4^{8} \equiv 18 \quad(\bmod 55)
$$

d) Bob sends Zelda 2. Whats the message? Show Work.

HW08, Problem 2c, 2d

c) Alice sends Zelda 13. Whats the message? Show Work.

SOLUTION Alice sends 13. Note that
$13^{2} \equiv 169 \equiv 169-165 \equiv 4(\bmod 55)$. Zelda does

$$
13^{d} \equiv 13^{17} \equiv 13 \times\left((13)^{2}\right)^{8} \equiv 13 \times 4^{8} \equiv 18 \quad(\bmod 55)
$$

d) Bob sends Zelda 2. Whats the message? Show Work. SOLUTION Bob sends 2. Zelda does

$$
2^{d} \equiv 2^{7} \equiv 128 \equiv 128-110 \equiv 18 \quad(\bmod 55)
$$

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work.

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

$$
1=7 \times 33-10 \times 23
$$

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33 :

$$
1=7 \times 33-10 \times 23
$$

Eve knows $13 \equiv m^{33}$ and $2 \equiv m^{23}$.

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

$$
1=7 \times 33-10 \times 23
$$

Eve knows $13 \equiv m^{33}$ and $2 \equiv m^{23}$.
Eve wants $\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv m^{33 \times 7-10 \times 23} \equiv m^{1}$.

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

$$
1=7 \times 33-10 \times 23
$$

Eve knows $13 \equiv m^{33}$ and $2 \equiv m^{23}$.
Eve wants $\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv m^{33 \times 7-10 \times 23} \equiv m^{1}$.

$$
\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv 13^{7} \times 2^{-10}=13^{7} \times\left(2^{-1}\right)^{10}
$$

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

$$
1=7 \times 33-10 \times 23
$$

Eve knows $13 \equiv m^{33}$ and $2 \equiv m^{23}$.
Eve wants $\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv m^{33 \times 7-10 \times 23} \equiv m^{1}$.

$$
\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv 13^{7} \times 2^{-10}=13^{7} \times\left(2^{-1}\right)^{10}
$$

Need $2^{-1}(\bmod 55)$, which is 28 . SO we have

HW08, Problem 2e

e) Use the Same- N attack to recover the msg. Show work. SOLUTION All \equiv are $\bmod 55$.
33,23 rel prime. 1 as a linear comb of 23 and 33:

$$
1=7 \times 33-10 \times 23
$$

Eve knows $13 \equiv m^{33}$ and $2 \equiv m^{23}$.
Eve wants $\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv m^{33 \times 7-10 \times 23} \equiv m^{1}$.

$$
\left(m^{33}\right)^{7} \times\left(m^{23}\right)^{-10} \equiv 13^{7} \times 2^{-10}=13^{7} \times\left(2^{-1}\right)^{10}
$$

Need $2^{-1}(\bmod 55)$, which is 28 . SO we have

$$
13^{7} \times 28^{10} \equiv 7 \times 34 \equiv 18
$$

HW08, Problem 3

A triple N_{1}, N_{2}, N_{3} is pairwise rel prime if N_{1}, N_{2} are rel prime AND N_{1}, N_{3} are rel prime AND N_{2}, N_{3} are rel prime. Note N_{1} is rel prime to $N_{2} N_{3}$. Prove the following (its the CRT for $L=3$).

HW08, Problem 3

A triple N_{1}, N_{2}, N_{3} is pairwise rel prime if N_{1}, N_{2} are rel prime AND N_{1}, N_{3} are rel prime AND N_{2}, N_{3} are rel prime. Note N_{1} is rel prime to $N_{2} N_{3}$. Prove the following (its the CRT for $L=3$). $a, b, c, N_{1}, N_{2}, N_{3} \in \mathbb{N}$ such that N_{1}, N_{2}, N_{3} are pairwise relprime. Then $\exists 0 \leq x \leq N_{1} N_{2} N_{3}$ such that:
$x \equiv a\left(\bmod N_{1}\right) \quad x \equiv b\left(\bmod N_{2}\right) \quad x \equiv c\left(\bmod N_{3}\right)$. (You may use that if d, e are rel prime then $d^{-1}(\bmod e)$ exists.)

HW08, Problem 3

A triple N_{1}, N_{2}, N_{3} is pairwise rel prime if N_{1}, N_{2} are rel prime AND N_{1}, N_{3} are rel prime AND N_{2}, N_{3} are rel prime. Note N_{1} is rel prime to $N_{2} N_{3}$. Prove the following (its the CRT for $L=3$). $a, b, c, N_{1}, N_{2}, N_{3} \in \mathbb{N}$ such that N_{1}, N_{2}, N_{3} are pairwise relprime. Then $\exists 0 \leq x \leq N_{1} N_{2} N_{3}$ such that:
$x \equiv a\left(\bmod N_{1}\right) \quad x \equiv b\left(\bmod N_{2}\right) \quad x \equiv c\left(\bmod N_{3}\right)$.
(You may use that if d, e are rel prime then $d^{-1}(\bmod e)$ exists.) SOLUTION
$N_{12}^{-1}=\left(N_{1} N_{2}\right)^{-1}\left(\bmod N_{3}\right) \quad N_{13}^{-1}=\left(N_{1} N_{3}\right)^{-1}\left(\bmod N_{2}\right)$
$N_{23}^{-1}=\left(N_{2} N_{3}\right)^{-1}\left(\bmod N_{1}\right)$,

$$
y=a N_{2} N_{3} N_{23}^{-1}+b N_{1} N_{3} N_{13}^{-1}+c N_{1} N_{2} N_{12}^{-1}
$$

Note that
$y\left(\bmod N_{1}\right)=a$
$y\left(\bmod N_{2}\right)=b$
$y\left(\bmod N_{3}\right)=c$
But $N_{1} N_{2} N_{3}<y$ which is bad. We take $x \equiv y\left(\bmod N_{1} N_{2} N_{3}\right)$.

