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Diffie-Helman Key
Exchange



Summary of Where We Are

1. Finding primes p such that p − 1 = 2q, q a prime, EASY

2. Given such a p, finding generator g , EASY.

3. Given such a p, finding generator g ∈ {p3 , . . . ,
2p
3 } EASY.

4. Given p, g , a finding ga (mod p) EASY.

5. The following problem thought to be hard:
Input: prime p, generator g ∈ {p3 , . . . ,

2p
3 }, and a.

Output: The x such that g x ≡ a (mod p)

The problem thought to be hard is essentially the discrete
log problem, though we have safeguarded against easy
instances. We hope.
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Convention (Possibly Repeated)

For the rest of the slides on Diffie-Hellman Key Exchange there
will always be a prime p that we are considering and a generator
g ∈ {p3 ,

2p
3 }. We omit the bounds on g .

ALL arithmetic done from that point on is mod p.

ALL numbers are in {1, . . . , p − 1}.



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.

Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.

Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!

Question: Can Eve find out s?



The Diffie-Hellman Key Exchange

Alice & Bob want to establish a secret s w/o meeting.
Security parameter L.

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga (mod p) and sends it
to Bob (Eve can see it).

4. Bob picks rand b. Bob computes gb (mod p) and sends it to
Alice (Eve can see it).

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

PRO: Alice and Bob can execute the protocol easily.
Biggest PRO: Alice and Bob never had to meet!
Question: Can Eve find out s?



Have Students DO The DH Key Exchange

Pick out two students who I will call Alice and Bob.

1. ALICE: Pick safe prime 256 ≤ p ≤ 511 (so length 9).

2. ALICE: Find a generator g for Z∗p.

3. ALICE: Yell out (p, g).

4. ALICE: Pick a rand a ∈ Z∗p.

5. ALICE: Compute ga (mod p). YELL IT OUT.

6. BOB: Pick a rand b ∈ Z∗p.

7. BOB: Compute gb (mod p). YELL IT OUT.

8. ALICE: Compute (gb)a (mod p).

9. BOB: Compute (ga)b (mod p).

10. At the count of 3 both yell out your number at the same time.
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What Do We Really Know about Diffie-Hellman?

If Eve can compute Discrete Log quickly then she can crack DH:

1. Eve sees ga, gb.

2. Eve computes Discrete Log to find a, b.

3. Eve computes gab (mod p).

Question: If Eve can crack DH then Eve can compute Discrete
Log. VOTE: Y, N, UNKNOWN TO SCIENCE.

Unknown to Science
Question: If Eve can crack DH then Eve can compute ???.
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Hardness Assumption

Definition Let DHF be the following function:
Inputs: p, g , ga, gb (note that a, b are not the input)

Outputs: gab.

Obvious Theorem: If Alice can crack Diffie-Hellman quickly then
Alice can compute DHF quickly.

Hardness assumption: DHF is hard to compute.
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2. Discrete Log is believed to be hard.

3. Still, would be nice to have a key exchange based on DL.
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How Can Alice and Bob Use DH Key Exchange?

Alice and Bob want to set up a crypto system and NEVER MEET.
Can DH help them?

Example Alice wants to tell Bob to use Book Cipher with
Bounded Queries in Recursion theory by Gasarch and Martin
https://www.amazon.com/

Bounded-Queries-Recursion-Progress-Computer/dp/

1461268486

a book that sold 2 copies last year AND Amazon has the author’s
name as William Levine (I do not now why).

How can Alice tell Bob this without meeting, possibly using DH?
Discuss.
Next Slide continues this discussion.
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With DH Alice and Bob do not the Message

Recall:

1. Alice finds a (p, g), p of length L, g gen for Z∗p.

2. Alice sends (p, g) to Bob (Eve can see it).

3. Alice picks rand a. Alice computes ga and broadcasts it.

4. Bob picks rand b. Bob computes gb and broadcasts it.

5. Alice computes (gb)a = gab (mod p).

6. Bob computes (ga)b = gab (mod p).

7. s = gab is the shared secret.

At the end Alice and Bob have s but s has no meaning!.
s is not going to be Bounded Queries in Recursion Theory.
s is going to be some random number in {1, . . . , p − 1}.
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How can Alice and Bob Use s?

s is random.

No meaning. Darn.

When life gives you a lemon, make lemonade.

When life gives you a random string, use a one-time pad.

1. Alice and Bob do DH and have shared string s.

2. Alice uses s as the key for a 1-time pad to tell Bob the name
of the Book for Book Cipher.

This is not quite what people do but its the idea. Next slide is El
Gamal Public Key Crypto Systems which is what people do.
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Note really 1-Time Pad

Usual 1-Time Pad messages are bit strings. Use ⊕.

In Next Protocol messages are elements of Z∗p. Use Mult Mod p.
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ElGamal is DH Made Into an Enc System

1. Alice and Bob do Diffie Hellman.

2. Alice and Bob share secret s = gab (mod p).

3. Alice and Bob compute s−1 (mod p).

4. To send m, Alice sends c = ms (mod p).

5. To decrypt, Bob computes cs−1 ≡ mss−1 ≡ m (mod p).

We omit discussion of Hardness assumption (HW)



Misc Points about DH
Key Exchange?



Possible Futures

1. DL found to be easy, so DH is cracked.

2. DHF found to be easy, so DH is cracked.

3. Slightly better but still exp algorithms for DHF are found so
Alice and Bob need to up their game, but DH still secure.
(IMHO this is the most likely.)

4. DHF proven to be hard. (IMHO not gonna happen.)
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Eve Could Think Outside The Box

Recall
Thm If Eve can crack DH quickly then Eve can compute DHF
quickly.

So it seems as though we have a clean math problem that Eve has
to solve to crack DH.

1. Maginot Line is a good metaphor.

2. Eve could crack DH by putting on a Geek-Squad outfit and
walking in to offer help.

3. Eve could crack DH by bribing someone for a, b.

4. Eve could measure how much time it takes for Bob to know
the string and use that to narrow down the space of strings.
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Eve in the Middle Attack

(Called Man in the Middle Attack in the literature.)
What if Eve could intercept both messages and replace them.

1. Alice sends ga.

2. Eve intercepts the message, picks a random a′, and instead
sends on to Bob ga′ .

3. Eve lets Bob send gb without interference.

4. Alice thinks the shared secret string is gab.
Bob thinks the shared secret string is ga′b.
So Alice and Bob will not be able to communicate, which is a
win for Eve.
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Other Domains

Can do Diffie-Hellman with other structures that have these
properties, that is, any Cyclic Group.

In some cases this may be an advantage in that Eve’s task is
harder and Alice and Bob’s task is not much harder.

Example: Elliptic Curve Diffie-Hellman (actually used).
Example: Braid Diffie-Hellman (not actually used).
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A Serious Attack on Diffie-Helman! Or is it?

The paper Imperfect Forward Secrecy: How Diffie-Helman
Fails in Practice

https://weakdh.org/imperfect-forward-secrecy.pdf

Claims the following:

1. 82% of all vulnerable servers use the same 512 sized group.

2. After a week of preprocessing that group, they can crack DH
on that group using an advanced DL algorithm.

3. Their method can be adopted to larger groups.

4. For a 1024-sized group, they could not crack, but a nation
with enough computing power could.

5. The NSA may be using this approach.

Sounds like DH is vulnerable! I posted about this on my blog and
got responses (next slide).

https://weakdh.org/imperfect-forward-secrecy.pdf
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A Serious Attack on Diffie-Helman! Or is it? (cont)

1. 82% of all vulnerable servers use the same 512 sized
group. What about non-vulnerable servers? Not that many
used this group when the paper came out.

2. The paper Critical Review of Imperfect Forward Secrecy
rebutted the attack.
https://www.cs.umd.edu/users/gasarch/COURSES/456/

F20/lecpkprot/RSdh.pdf

3. Most systems no longer use the groups talked about in the
paper.

4. NSA seems to be using a different attack.

5. Jon Katz asked them for their code. They declined.

https://www.cs.umd.edu/users/gasarch/COURSES/456/F20/lecpkprot/RSdh.pdf
https://www.cs.umd.edu/users/gasarch/COURSES/456/F20/lecpkprot/RSdh.pdf
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In My Humble Opinion

1. DH is safe from the attacks proposed in the paper.

2. The paper still has an important message:

2.1 DO NOT use the same group (or the same p, g) all the time
since some pre-computation may make it vulnerable.

2.2 UP your game! If L is so large that you think p of length L is
safe. USE 10L.

2.3 If you publish an academic paper about cracking DL, you
should have the code and make it available. See next point.

2.4 If you actually worry about DH being cracked then tell the
crypto companies or the government first. (See the fiction
book Factorman. I reviewed it:
https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/

factorman.pdf

)

https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/factorman.pdf
https://www.cs.umd.edu/users/gasarch/BLOGPAPERS/factorman.pdf
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BILL, STOP RECORDING LECTURE!!!!
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