Homework 2

Morally Due Tue Feb 8 at 3:30PM. Dead Cat Feb 10 at 3:30

1. (0 points) What is your name? Write it clearly. When is the take-home midterm due?
2. (35 points) Look at the slides on the Can Ramsey Theorem. Look at the proof that uses 4-ary Ramsey.

RECAP OF THAT PROOF FOR OUR PURPOSES: Given a coloring COL: $\binom{N}{2} \rightarrow[\omega]$ we created COL $:\binom{N}{4} \rightarrow[16]$. We then applied 4 -ary Ramsey Theory to get a homog set H (relative to COL'). We show that whatever color the homog set was we found an infinite subset of H that was with respect to COL either (a) homog, (b) max-homog, (c) min-homog, or (d) rainbow.
OKAY, now for our problem.
Look at the case where there is an infinite homog (using coloring COL') H such that

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right]
$$

Show that H (or perhaps some infinite subset of it) is homog with respect to COL.
(I am asking you to do one of the cases I skipped.)

GO TO NEXT PAGE

3. (35 points) Before the proof of Can Ramsey that used 3-ary Ramsey we proved the following:
Assume X is infinite and COL : $\binom{X}{2} \rightarrow[\omega]$. Assume that, for all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. Let M be a MAXIMAL rainbow set. Then M is infinite.
In this problem you will come up with and prove a FINITE version of this theorem.

Fill in the function $f(n)$ and prove the following:
Assume $|X|=n$ and COL : $\binom{X}{2} \rightarrow[\omega]$. Assume that, for all $x \in X$ and colors $c, \operatorname{deg}_{c}(x) \leq 1$. Let M be a MAXIMAL rainbow set. Then $|M| \geq \Omega(f(n))$.
4. (30 points) In this problem we have a part of a proof, but want a theorem. Fill in the BLANK and the BLAH BLAH to get a theorem OF INTEREST.
Theorem Let X be a countably infinite set of points in the plane. Then there exists $Y \subseteq X,|Y|=\infty$, such that BLANK.

Proof Order the points in X arbitrarily, so

$$
X=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}
$$

Define a coloring COL: $\binom{N}{2} \rightarrow \mathrm{R}$ via $\operatorname{COL}(i, j)=\left|p_{i}-p_{j}\right|$.
The number of reals used is countable so we can apply Can Ramsey.
Hence there exists $H \subseteq \mathrm{~N},|H|=\infty, H$ is either homog, min-homog, max-homog, or rainbow. Look at the set of points

$$
Y=\left\{p_{i}: i \in H\right\}
$$

Then BLAH BLAH so Y is BLANK.
End of Proof of Theorem
5. (Extra Credit) Give a well written clean proof of 3-ary Can Ramsey. There are three ways to do this. The more ways you do, the more extra credit you get!
(a) Use some a-ary Ramsey Theorem and lots of cases (with good notation you can consolidate them), and all cases easy.
(b) Use some a-ary Ramsey Theorem with fewer cases than the proof suggested in Part 1 (with good notation you can consolidate them), and the rainbow case will need a version of maximal sets.
(c) Use a Mileti-style proof. Note that 2-ary Mileti used 1-ary Can Ramsey. Similarly, 3-ary Mileti will use 2-ary Can Ramsey. It will be similar to the proof of 3-ary Ramsey from 2-ary Ramsey.

