Homework 07

Morally Due Tue March 29 at 3:30PM. Dead Cat March 31 at 3:30 IN THIS HW WHENEVER I SAY "A SET OF POINTS IN THE PLANE" I MEAN THAT THEY HAVE NO THREE COLINEAR.

- 1. (0 points) What is your name? Write it clearly. When is the take-home final due?
- 2. (35 points) Let N(k) be the least n such that for all sets of n points there is a subset of k of them that form a convex k-gon.

We begin a proof that N(k) exists and you need to finish it.

We show that $n = R_3(k)$ suffice. Let X be a set of $n = R_3(k)$ points in the plane. Let the points be p_1, p_2, \ldots, p_n .

Color (p_i, p_j, p_j) (with i < j < k) RED if p_i, p_j, p_k is clockwise.

 $Color(p_i, p_j, p_j)$ (with i < j < k) $BLUE if <math>p_i, p_j, p_k$ is counter clockwise.

The Homogenous set of size k form a convex k-gon because FILL THIS IN.

GO TO NEXT PAGE

3. (35 points)

Def JULY(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a set H such that

- $|H| \ge 3$,
- |H| > MIN(H),
- \bullet COL restricted to $\binom{H}{2}$ is constant.

Find a number A such that you can prove $JULY(1) \leq A$.

(I have a proof with A=8 but given that the original version of this problem was incorrect, I am phrasing it this way so it can't go wrong.)

4. (30 points) Recall:

If $n \equiv 1 \pmod{2}$ then for any COL: $\binom{[n]}{2} \rightarrow [2]$ there exists at least

$$\frac{n^3}{24} - \frac{n^2}{4} + \frac{5n}{24}$$

monochromatic K_3 's.

We will vary this in two ways.

- (a) (15 points) Find a function f such that the followings is true: If $n \equiv 0 \pmod{2}$ then for any COL: $\binom{[n]}{2} \rightarrow [2]$ there exists at least f(n) monochromatic K_3 's.

 Prove your result.
- (b) (15 points) We are interested in what happens if you have THREE colors. Do some empirical studies to try to find a function f such that the following holds:

If COL: $\binom{[n]}{2} \rightarrow [3]$ then there exists at least f(n) monochromatic K_3 's. (f(n) an be approximate. For example, if the problem was for 2-coloring then f(n) could be $\frac{n^3}{24}$.)

(HINT: Use the code you wrote for the midterm; however, only use the case of $p_1 = p_2 = p_3 = \frac{1}{3}$.)

(c) (Extra Credit, 0 points) PROVE a result along the lines of: If n satisfies condition YOU FILL IN and COL: $\binom{[n]}{2} \rightarrow [3]$ then there exists at least f(n) monochromatic K_3 's.)

(HINT: Use the code you wrote for the midterm; however, only use the case of $p_1 = p_2 = p_3 = \frac{1}{3}$.)

5. (Extra Credit, but THINK ABOUT IT. WARNING- I have not done this problem)

Let X be an infinite set of points p_1, p_2, p_3, \ldots Let $COL\binom{N}{3} \rightarrow \omega$ be defined as follows:

COL(i, j, k) = the number of points inside the (i, j, k) triangle.

Apply the 3-ary Can Ramsey Theorem to this Coloring. NOW WHAT?

6. (Extra Credit, but THINK ABOUT IT–WARNING: the way I know how to do this is based on material you have not seen) We want to write a sentence ϕ in the language of graphs such that

 $G \models \phi$ IFF G has an even number of vertices.

Is this possible?