Homework 07

Morally Due Tue March 29 at 3:30PM. Dead Cat March 31 at 3:30
IN THIS HW WHENEVER I SAY "A SET OF POINTS IN THE PLANE" I MEAN THAT THEY HAVE NO THREE COLINEAR.

1. (0 points) What is your name? Write it clearly. When is the take-home final due?
2. (35 points) Let $N(k)$ be the least n such that for all sets of n points there is a subset of k of them that form a convex k-gon.
We begin a proof that $N(k)$ exists and you need to finish it.
We show that $n=R_{3}(k)$ suffice. Let X be a set of $n=R_{3}(k)$ points in the plane. Let the points be $p_{1}, p_{2}, \ldots, p_{n}$.
Color $\left(p_{i}, p_{j}, p_{j}\right)(w i t h ~ i<j<k)$ RED if p_{i}, p_{j}, p_{k} is clockwise.
$\operatorname{Color}\left(p_{i}, p_{j}, p_{j}\right)($ with $i<j<k)$ BLUE if p_{i}, p_{j}, p_{k} is counter clockwise.
The Homogenous set of size k form a convex k-gon because FILL THIS $I N$.
3. (35 points)
$\operatorname{Def} \operatorname{JULY}(k)$ is the least $n \geq$ such that for all 2-colorings of $\binom{\{k, \ldots, n\}}{2}$ there exists a set H such that

- $|H| \geq 3$,
- $|H|>M I N(H)$,
- COL restricted to $\binom{H}{2}$ is constant.

Find a number A such that you can prove $\operatorname{JULY}(1) \leq A$.
(I have a proof with $A=8$ but given that the original version of this problem was incorrect, I am phrasing it this way so it can't go wrong.)
4. (30 points) Recall:

If $n \equiv 1(\bmod 2)$ then for any COL: $\binom{[n]}{2} \rightarrow[2]$ there exists at least

$$
\frac{n^{3}}{24}-\frac{n^{2}}{4}+\frac{5 n}{24}
$$

monochromatic K_{3} 's.
We will vary this in two ways.
(a) (15 points) Find a function f such that the followings is true:

If $n \equiv 0(\bmod 2)$ then for any COL: $\binom{[n]}{2} \rightarrow[2]$ there exists at least $f(n)$ monochromatic K_{3} 's.
Prove your result.
(b) (15 points) We are interested in what happens if you have THREE colors. Do some empirical studies to try to find a function f such that the following holds:
If COL: $\binom{[n]}{2} \rightarrow[3]$ then there exists at least $f(n)$ monochromatic K_{3} 's. ($f(n)$ an be approximate. For example, if the problem was for 2-coloring then $f(n)$ could be $\frac{n^{3}}{24}$.)
(HINT: Use the code you wrote for the midterm; however, only use the case of $p_{1}=p_{2}=p_{3}=\frac{1}{3}$.)
(c) (Extra Credit, 0 points) PROVE a result along the lines of:

If n satisfies condition YOU FILL IN and COL: $\binom{[n]}{2} \rightarrow[3]$ then there exists at least $f(n)$ monochromatic K_{3} 's.)
(HINT: Use the code you wrote for the midterm; however, only use the case of $p_{1}=p_{2}=p_{3}=\frac{1}{3}$.)

GO TO NEXT PAGE

5. (Extra Credit, but THINK ABOUT IT. WARNING- I have not done this problem)
Let X be an infinite set of points $p_{1}, p_{2}, p_{3}, \ldots$ Let $\operatorname{COL}\binom{\mathrm{N}}{3} \rightarrow \omega$ be defined as follows:

$$
\operatorname{COL}(i, j, k)=\text { the number of points inside the }(i, j, k) \text { triangle. }
$$

Apply the 3-ary Can Ramsey Theorem to this Coloring. NOW WHAT?
6. (Extra Credit, but THINK ABOUT IT-WARNING: the way I know how to do this is based on material you have not seen) We want to write a sentence ϕ in the language of graphs such that
$G \models \phi$ IFF G has an even number of vertices.
Is this possible?

