Homework 11

Morally Due Tue April 26 at 3:30PM. Dead Cat April 28 at 3:30 WARNING: THE HW IS TWO PAGES LONG

1. (0 points) What is your name? Write it clearly. When is the take-home final due?
2. (50 points) Find a value of $m<50$ such that the following holds, and prove it. Prove it from first principles - that is, your proof should not refer to the slides or any other source.

For all 3-colorings of the $4 \times m$ grid, there exists a mono rectangle.
3. (50 points) For this problem we can assume the following is known:

For all $c \geq 1$ there exists $L=L(c)$ such that
for all c-colorings of the $L(c) \times L(c)$ grid there exists a monochromatic isocles L.
Let a big-base- L be the same shape as the following four points:
$(0,0),(d, 0),(2 d, 0)$, and $(0, d)$.
And NOW for our problem:
Show that there exists $L L$ such that,
for all 2-colorings of the $L L \times L L$ grid
there exists a monochromatic big-base-L.
Feel free to use PICTURES in your proof.

