Take Home Midterm

Morally Due Tue March 15 at 3:30PM. Dead Cat March 17 at 3:30

- 1. (0 points) What is your name? Write it clearly.
- 2. (25 points) Prove the following and fill in the f(k).

Theorem For all k there exists n = f(k) such that the following holds.

For all pairs of colorings:

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$

 $\operatorname{COL}_2: \binom{[n]}{2} \to [2]$

there exists $H \subseteq [n]$ and colors $c_1, c_2 \in \{1, 2\}$ (it's okay if $c_1 = c_2$) such that

- H is of size k,
- every element of H is colored c_1 , and
- every element of $\binom{H}{2}$ is colored c_2 .

GO TO NEXT PAGE

3. (25 points) Let T be the set of trees and \preceq be the minor ordering. Show that (T, \preceq) is a wqo.

You may use any theorem that was PROVEN in class or on the HW. (Note that we DID NOT prove the Graph Minor Theorem, so you can't use that.)

GO TO NEXT PAGE

4. (25 points) Let **Q** be the rationals. PROVE or DISPROVE:

For every COL: $\mathbb{Q} \rightarrow [100]$ there exists an $H \subseteq \mathbb{Q}$ and a color c such that

- *H* has the same order type as the rationals (so *H* is a countable set without endpoints where between any two elements is an element), and
- every number in H is the same color.

GO TO NEXT PAGE

5. (25 points)

ONE (0 points but you need to do this for later parts) Write a program such that:

- Input is $n \in \mathbb{N}$ and $0 \le p_1, p_2, p_3 \le 1$ with $p_1 + p_2 + p_3 = 1$ and $p_1 \le p_2 \le p_3$.
- Output is a COL: $\binom{[n]}{2} \rightarrow [3]$ that is generated randomly with each edge being colored 1 with prob p_1 , 2 with prob p_2 , and 3 with prob p_3 .

TWO (0 points but you need to do it for later parts) Write a program that will, given COL: $\binom{[n]}{2} \rightarrow [3]$, counts how many monochromatic triangles it has.

THREE (0 points but you need this for later parts) Write a program that does the following (I use psuedocode.)

(a) Input *n*. (*n* will be ≥ 6 .)

For $p_1, p_2, p_3 \in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8\}$ such that

 $p_1 + p_2 + p_3 = 1$ and $p_1 \le p_2 \le p_2$.

 $L = \binom{n}{3}$ (the number of triangles in K_n).

 $n_0 = 0, n_1 = 0, \ldots, n_L = 0.$

 $(n_i \text{ will be the number of colorings that have } i \text{ mono triangles.}$ Initially this is 0.)

i. For i = 1 to 1000

Randomly color the edges of K_n by coloring 1 with prob p_1 , 2 with prob p_2 , 3 with prob p_3 .

- A. Find j, the number of mono triangles.
- B. $n_j = n_j + 1$.
- ii. $n_{\max} = \max\{n_0, \dots, n_L\}.$
- iii. j_{max} is the j such that $n_j = n_{\text{max}}$. (If there is more than one j, which is unlikely, take the least one.)

FOUR (25 points) Use your program to produce tables of data. Our interest is in which n_j 's are always 0 and which n_j occurs the most often. The tables should look like what is below except that I made up the answers.

$$n = 5$$

p_1	p_2	p_3	$\{j \colon n_j = 0\}$	$j_{\rm max}$	$n_{\rm max}$
0.1	0.1	0.8	$\{3, 8\}$	3	109
0.1	0.2	0.7	$\{1, 9\}$	7	108
0.1	0.3	0.6	$\{2, 4, 8\}$	1	200
0.1	0.4	0.5	$\{2\}$	1	10
0.2	0.2	0.6	$\{1, 2, 4\}$	3	300
0.2	0.3	0.5	$\{3, 4, 5, 7\}$	2	401
0.2	0.4	0.4	$\{1, 2, 9\}$	10	512
0.3	0.3	0.4	$\{2, 3, 8\}$	7	70

n = 6 SIMILAR TO ABOVE

÷

n = 10 SIMILAR TO ABOVE

FIVE (0 points) Looking at the data formulate a conjecture about colorings of K_n .

Extra Credit Prove your conjecture.