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This coloring book is for my late father Yuri Soifer,
a great painter, who introduced colors into my life.



To Paint a Bird

First paint a cage

With wide open door,

Then paint something

Beautiful and simple,

Something very pleasant

And much needed

For the bird;

Then lean the canvas on a tree

In a garden or an orchard or a forest —
And hide behind the tree,

Do not talk

Do not move. . .

Sometimes the bird comes quickly
But sometimes she needs years to decide
Do not give up,

Wait,

Wait, if need be, for years,

The length of waiting —

Be it short or long —

Does not carry any significance

For the success of your painting
When the bird comes —

If only she ever comes —

Keep deep silence,

Wait,

So that the bird flies in the cage,

And when she is in the cage,

Quietly lock the door with the brush,
And without touching a single feather
Carefully wipe out the cage.

Then paint a tree,

And choose the best branch for the bird
Paint green leaves



Freshness of the wind and dust of the sun,
Paint the noise of animals in the grass
In the heat of summer

And wait for the bird to sing

If the bird does not sing —

This is a bad omen

It means that your picture is of no use,
But if she sings —

This is a good sign,

A symbol that you can be

Proud of and sign,

So you very gently

Pull out one of the feathers of the bird
And you write your name

In a corner of the picture.

1 [Pre]. Translation by Alexander Soifer and Maurice Stark.

by Jacques Prévert!



Foreword

This is a unique type of book; at least, I have never encountered a book of this kind.
The best description of it I can give is that it is a mystery novel, developing on
three levels, and imbued with both educational and philosophical/moral issues. If
this summary description does not help understanding the particular character and
allure of the book, possibly a more detailed explanation will be found useful.

One of the primary goals of the author is to interest readers—in particular, young
mathematicians or possibly pre-mathematicians—in the fascinating world of elegant
and easily understandable problems, for which no particular mathematical knowl-
edge is necessary, but which are very far from being easily solved. In fact, the
prototype of such problems is the following: If each point of the plane is to be
given a color, how many colors do we need if every two points at unit distance
are to receive distinct colors? More than half a century ago it was established that
the least number of colors needed for such a coloring is either 4, or 5, or 6 or 7.
Well, which is it? Despite efforts by a legion of very bright people—many of whom
developed whole branches of mathematics and solved problems that seemed much
harder—not a single advance towards the answer has been made. This mystery, and
scores of other similarly simple questions, form one level of mysteries explored. In
doing this, the author presents a whole lot of attractive results in an engaging way,
and with increasing level of depth.

The quest for precision in the statement of the problems and the results and their
proofs leads the author to challenge much of the prevailing historical “knowledge.”
Going to the original publications, and drawing in many cases on witnesses and
on archival and otherwise unpublished sources, Soifer uncovers many mysteries. In
most cases, dogged perseverance enables him to discover the truth. All this is pre-
sented as following in a natural development from the mathematics to the history of
the problem or result, and from there to the interest in the people who produced the
mathematics. For many of the persons involved this results in information not avail-
able from any other source; in lots of the cases, the available publications present an
inaccurate (or at least incomplete) data. The author is very careful in documenting
his claims by specific references, by citing correspondence between the principals
involved, and by accounts by witnesses.

One of these developments leads Soifer to examine in great detail the life and
actions of one of the great mathematicians of the twentieth century, Bartel Leendert
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X Foreword

van der Waerden. Although Dutch, van der Waerden spent the years from 1931 to
1945 in the Nazi Germany. This, and some of van der Waerden’s activities during
that time, became very controversial after Word War II, and led Soifer to exam-
ine the moral and ethical questions relevant to the life of a scientist in a criminal
dictatorship.

The diligence with which Soifer pursues his quests for information is way beyond
exemplary. He reports exchanges with I am sure hundreds of people, via mail,
phone, email, visits — all dated and documented. The educational aspects that begin
with matters any middle-school student can understand, develop gradually into areas
of most recent research, involving not only combinatorics but also algebra, topology,
questions of foundations of mathematics, and more.

I found it hard to stop reading before I finished (in two days) the whole text.
Soifer engages the reader’s attention not only mathematically, but emotionally and
esthetically. May you enjoy the book as much as I did!

University of Washington Branko Griinbaum



Foreword

Alexander Soifer’s latest book is a fully fledged adult specimen of a new species,
a work of literature in which fascinating elementary problems and developments
concerning colorings in arithmetic or geometric settings are fluently presented and
interwoven with a detailed and scholarly history of these problems and develop-
ments.

This history, mostly from the twentieth century, is part memoir, for Professor
Soifer was personally acquainted with some of the principals of the story (the great
Paul Erdds, for instance), became acquainted with others over the 18 year inter-
val during which the book was written (Dima Raiskii, for instance, whose story is
particularly poignant), and created himself some of the mathematics of which he
writes.

Anecdotes, personal communications, and biography make for a good read, and
the readability in “Mathematical Coloring Book™ is not confined to the accounts
of events that transpired during the author’s lifetime. The most important and fas-
cinating parts of the book, in my humble opinion, are Parts IV, VI, and VII, in
which is illuminated the progress along the intellectual strand that originated with
the Four-Color Conjecture and runs through Ramsey’s Theorem via Schur, Baudet,
and Van der Waerden right to the present day, via Erdés and numbers of others,
including Soifer. Not only is this account fascinating, it is indispensable: it can be
found nowhere else.

The reportage is skillful and the scholarship is impressive — this is what Seymour
Hersh might have written, had he been a very good mathematician curious to the
point of obsession with the history of these coloring problems.

The unusual combination of abilities and interests of the author make the species
of which this book is the sole member automatically endangered. But in the worlds
of literature, mathematics and literature about mathematics, unicorns can have off-
spring, even if the offspring are not exactly unicorns. I think of earlier books of
the same family as “Mathematical Coloring Book” — G. H. Hardy’s “A Mathemati-
cian’s Apology”, James R. Newman’s “The World of Mathematics”, Courant and
Robbins’ “What Is Mathematics?”’, Paul Halmos’ “I Want to Be a Mathematician:
an Automathography”, or the books on Erdds that appeared soon after his death — all
of them related at least distantly to “Mathematical Coloring Book” by virtue of the
attempt to blend (whether successfully or not is open to debate) mathematics with
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xii Foreword

history or personal memoir, and it seems to me that, whatever the merits of those
works, they have all affected how mathematics is viewed and written about. And this
will be a large part of the legacy of “Mathematical Coloring Book™ — besides pro-
viding inspiration and plenty of mathematics to work on to young mathematicians,
a priceless source to historians, and entertainment to those who are curious about
the activities of mathematicians, “Mathematical Coloring Book™ will (we can hope)
have a great and salutary influence on all writing on mathematics in the future.

Auburn University Peter D. Johnson



Foreword

What is the minimum number of colors required to color the points of the Euclidean
plane in such a way that no two points that are one unit apart receive the same color?
Mathematical Coloring Book describes the odyssey of Alexander Soifer and fellow
mathematicians as they have attempted to answer this question and others involving
the idea of partitioning (coloring) sets.

Among other things, the book provides an up-to-date summary of our knowledge
of the most significant of these problems. But it does much more than that. It gives
a compelling and often highly personal account of discoveries that have shaped that
knowledge.

Soifer’s writing brings the mathematical players into full view, and he paints their
lives and achievements vividly and in detail, often against the backdrop of world
events at the time. His treatment of the intellectual history of coloring problems is
captivating.

Memphis State University Cecil Rousseau
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Greetings to the Reader

I bring here all: what have I lived thru,
And that what keeps my soul alive,
My rectitude and aspirations,
And what have seen my own eyes.
— Boris Pasternak, The Waves, 19312

When the form is realized, it is here to live its own

life.

— Pablo Picasso

Pasternak’s epigraph describes precisely my work on this book—I gave it all of
myself, without reservation. August Renoir believed that just as many people read
one book all their lives (the Bible, the Koran, etc.), so can he paint all his life one
painting. Likewise I could write one book all my life—in fact, I almost have, for I
have been working on this book for 18 years.

It is unfair, however, to keep the book all to myself—many colleagues have been
waiting for the birth of this book. In fact, it has been cited and even reviewed many
years ago. The first mention of it appears already in 1991 on page 336 of the book
by Victor Klee and Stan Wagon [KW], where the authors recommend the book for
“survey of later developments of the chromatic number of the plane problem.” On
page 150 of their 1995 book [JT], Tommy R. Jensen and Bjarne Toft announced that
“a comprehensive survey [of the chromatic number of the plane problem]. . .will be
given by Soifer [to appear].” Once in the 1990s my son Mark told me that he saw
my Mathematical Coloring Book available for $30 for special order at the Borders
bookstore. I offered to buy a copy!

I started writing this book when copies of my How Does One Cut a Triangle?
[Soil] arrived from the printer, in early 1990. I told my father Yuri Soifer then

2 [Pas], Translated for this book by Ilya Hoffman. The original Russian text is:
3nech OyzeT Bce: MepeKuToe,

U 10, uem 1 eme xKuBy,

Mou cTpemIIeHbs B yCTOH,

W BuneHHOE HasBY
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that this book would be dedicated to him, and so it is. This coloring book is for
my late father, a great painter and man. Yuri lived with his sketchpad and drawing
utensils in his pocket, constantly and intensely looking at people and making sharp
momentary sketches. He was a great artist and my lifelong example of searching for
and discovering life around him, and creating art that challenged “real” life herself.
Yuri never taught me his trade, but during our numerous joint tours of art in muse-
ums and exhibitions, he pointed out beauties that only true artists could notice: a
dream of harvest in Van Gogh’s “Sower,” Rodin’s distortions in a search of greater
expressiveness. These timeless lessons allowed me to become a student of beauty,
and discover subtleties in paintings, sculptures, and movies throughout my life.

This book includes not just mathematics, but also the process of investigation,
trains of mathematical thought, and where possible, psychology of mathematical
invention. The book does not just include history and prehistory of Ramsey The-
ory and related fields, but also conveys the process of historical investigation—the
kitchen of historical research if you will. It has captivated me, and made me feel
like a Sherlock Holmes—I hope my reader will enjoy this sense of suspense and
discovery as much as I have.

The epigraph for my book is an English translation of Jacques Prévert’s genius
and concise portrayal of creative process—I know of no better. I translated it with
the help of my friend Maurice Starck from Nouvelle Caledonie, the island in the
Pacific Ocean to which no planes fly from America, but to paraphrase Rudyard
Kipling, 1'd like to roll to Nouvelle Caledonie some day before I'm old!

This book is dedicated to problems involving colored objects, and results about
the existence of certain exciting and unexpected properties that occur regardless
of how these objects (points in the plane, space, integers, real numbers, subsets,
etc.) are colored. In mathematics, these results comprise Ramsey Theory, a flour-
ishing area of mathematics, with a motto that can be formulated as follows: any
coloring of a large enough system contains a monochromatic subsystem of given in
advance structure, or simply put, absolute chaos is absolutely impossible. Ramsey
Theory thus touches on many fields of mathematics, such as combinatorics, geom-
etry, number theory, and addresses new problems, often on the frontier of two or
more traditional mathematical fields. The book will also include some problems that
can be solved by inventing coloring, and results that prove the existence of certain
colorings, most famous of the latter being, of course, The Four-Color Theorem.

Most books in the field present mathematics as a flower, dried out between pages
of an old dusty volume, so dry that the colors are faded and only theorem—proof
narrative survives. Along with my previous books, Mathematical Coloring Book
will strive to become an account of a live mathematics. I hope the book will present
mathematics as a human endeavor: the reader should expect to find in it not only
results, but also portraits of their creators; not only mathematical facts, but also
open problems; not only new mathematical research, but also new historical inves-
tigations; not only mathematical aspirations, but also moral dilemmas of the times
between and during the two horrific World Wars of the twentieth century. In my
view, mathematics is done by human beings, and knowing their lives and cultures
enriches our understanding of mathematics as a product of human activity, rather
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than an abstraction which exists separately from us and comes to us exclusively as a
catalog of theorems and formulas. Indeed, new facts and artifacts will be presented
that are related to the history of the Chromatic Number of the Plane problem,
the early history of Ramsey Theory, the lives of Issai Schur, Pierre Joseph Henry
Baudet, and Bartel Leendert van der Waerden.

I hope you will join me on a journey you will never forget, a journey full of
passion, where mathematics and history are researched in the process of solving
mysteries more exciting than fiction, precisely because those are mysteries of real
affairs of human history. Can mathematics be received by all senses, like a vibrant
flower, indeed, like life itself? One way to find out is to experience this book.

While much of the book is dedicated to results of Ramsey Theory, I did not wish
to call my book “Introduction to Ramsey Theory,” for such a title would immediately
lose young talented readers’ interest. Somehow, the playfulness of Mathematical
Coloring Book appealed to me from the start, even though I was asked on occasion
whether 5-year olds would be able to color in my book between its lines. To be a
bit more serious, and on advice of Vickie Kern of the Princeton University Press,
I created a subtitle Mathematics of Coloring and the Colorful Life of Its Creators.
This book is not a “dullster” of traditional theorem—proof—theorem—proof kind. It
explores the birth of ideas and searches for its creators. I discovered very quickly
that in conveying “colorful lives of creators,” I could not always rely on encyclo-
pedias and biographical articles, but had to conduct historical investigations on my
own. It was a hard work to research some of the lives, especially that of B. L. van
der Waerden, which alone took 12 years of archival research and thinking over the
assembled evidence. Fortunately this produced a satisfying result: we have in this
book some definitive biographies, of Bartel L. van der Waerden, Pierre Joseph Henry
Baudet, Issai Schur, autobiography of Hillel Furstenberg, and others.

I always attempt to understand who made a discovery and how it was made.
Accordingly, this book tries to explore biographies of the discoverers and the psy-
chology of their creative processes. Every stone has been turned: my information
comes from numerous archives in Germany, the Netherlands, Switzerland, Ireland,
England, South Africa, the United States; invaluable and irreplaceable now inter-
views conducted with eyewitnesses; discussions held with creators. Cited bibliog-
raphy alone includes over 800 items—I have read thousands of publications in the
process of writing this book. I was inspired by people I have known personally, such
as Paul Erd6s, James W. Fernandez, Harold W. Kuhn, and many others, as well as
people I have not personally met, such as Boris Pasternak, Pablo Picasso, Herbert
Read—to name a few of the many influences—or D. A. Smith, who in the discussion
after Alfred Brauer’s talk [Bra2, p. 36], wrote:

Mathematical history is a sadly neglected subject. Most of this history belongs to the
twentieth century, and a good deal of it in the memories of mathematicians still living.
The younger generation of mathematicians has been trained to consider the product,
mathematics, as the most important thing, and to think of the people who produced
it only as names attached to theorems. This frequently makes for a rather dry subject
matter.
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Milan Kundera, in his The Curtain: An Essay in Seven Parts [Kun], said about a
novel what is true about mathematics as well:

A novelist talking about the art of the novel is not a professor giving a discourse from
his podium. Imagine him rather as a painter welcoming you into his studio, where you
are surrounded by his canvases staring at you from where they lean against the walls.
He will talk about himself, but even more about other people, about novels of theirs
that he loves and that have a secret presence in his own work. According to his criteria
of values, he will again trace out for you the whole past of the novel’s history, and in
so doing will give you some sense of his own poetics of the novel.

I was also inspired by the early readers of the book, and their feedback. Stanistaw
P. Radziszowski, after reviewing Chapter 27, e-mailed me on May 2, 2007:

I am very anxious to read the whole book! You are doing great service to the commu-
nity by taking care of the past, so the things are better understood in the future.

In his unpublished letter, Ernest Hemingway in a sense defended my writing of
this book for a very long time:3

When I make country, or a city, or a river in a novel it is slow work because you have
to always make it, then it is alive. But nobody makes anything quickly nor easily if it
is any good.

Branko Griinbaum, upon reading the entire manuscript, wrote in the February 28,
2008 e-mail:

Somehow it seems that 18 years would be too short a time to dig up all this information!

This book will not strike the reader by completeness or most general results.
Instead, it would give young active high school and college mathematicians an
accessible introduction to the beautiful ideas of mathematics of coloring. Mathe-
matics professionals, who may believe they know everything, would be pleasantly
surprised by the unpublished or unnoticed mathematical gems. I hope young and not
so young mathematicians alike will welcome an opportunity to try their hand—or
mind—on numerous open problems, all easily understood and not at all easy to
solve.

If the interest of my colleagues and friends at Princeton-Math is any indica-
tion, every intelligent reader would welcome an engagement in solving histori-
cal mysteries, especially those from the times of the Third Reich, World War II,
and de-Nazification of Europe. Historians of mathematics would find a lot of new
information and old errors corrected for the first time. And everyone will experience
seeing, for the first time, faces they have not seen before in print: rare photographs
of the creators of mathematics presented herein, from Francis Guthrie to Issai Schur
as a young man, from young Edward Nelson to Paul O’Donnell, from Pierre Joseph
Henry Baudet to Bartel L. van der Waerden and his family, and documents, such as

3 From the unpublished 1937 letter. Quoted from New York Times, February 10, 2008, p. AR 8.
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the one where Adolph Hitler commits a “micromanagement” of firing the Jew, Issai
Schur, from his job of professor at the University of Berlin.

This is a freely flowing book, free from a straight jacket of a typical textbook, yet
useable as a text for a host of various courses, two of which I have given to college
seniors and graduate students at the University of Colorado: What is Mathematics?,
and Mathematical Coloring Course, both presenting a “laboratory of a mathemati-
cian,” a place where students learn mathematics and its history by researching them,
and in the process realizing what mathematics is and what mathematicians do.

In writing this book, I tried to live up to the high standard, set by one of my
heroes, the great Danish film director Carl Theodore Dreyer [Dre]:

There is a certain resemblance between a work of art and a person. Just as one can talk
about a person’s soul, one can also talk about the work or art’s soul, its personality.
The soul is shown through the style, which is the artist’s way of giving expression of
his perception of the material. The style is important in attaching inspiration to artistic
form. Through the style, the artist molds the many details that make it whole. Through
style, he gets others to see the material through his eyes. . . Through the style he infuses
the work with a soul — and that is what makes it art.

Mathematics is an art. It is a poor man’s art: Nothing is needed to conceive it,
and only paper and pencil to convey.

This long work has given me so very much, in Aleksandr Pushkin’s words, “the
heavenly, and inspiration, and life, and tears, and love.”* T have been raising this
book for 18 years, and over the past couple of years, I felt as if the book herself was
dictating her composition and content to me, while I merely served as an obedient
scribe. At 18, my book is now an adult, and deserves to separate from me to live
her own life. As Picasso put it, “When the form is realized, it is here to live its own
life.” Farewell, my child, let the world love you as I have and always will!

4 1In the original Russian it sounds much better:
“H 60KeCTBO, ¥ BIIOXHOBEHBE,

W xu3Hb, U ciae3sl, 1 11000Bb.”
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1
A Story of Colored Polygons and Arithmetic
Progressions

‘Have you guessed the riddle yet?’ the Hatter said,
turning to Alice again.
‘No, I give it up,” Alice replied. ‘What’s the answer?’
‘I haven’t the slightest idea,’ said the Hatter.
‘Nor I, said the March Hare.
— Lewis Carroll, A Mad Tea-Party
Alice’s Adventures in Wonderland

1.1 The Story of Creation

I recall April of 1970. The thirty judges of the Fourth Soviet Union National Math-
ematical Olympiad, of whom I was one, stayed at a fabulous white castle, half way
between the cities of Simferopol and Alushta, nestled in the sunny hills of Crimea,
surrounded by the Black Sea. This castle should be familiar to movie buffs: in 1934
the Russian classic film Vesyolye Rebyata (Jolly Fellows) was photographed here by
Sergei Eisenstein’s long-term assistant, director Grigori Aleksandrov. The problems
had been selected and sent to printers. The Olympiad was to take place a day later,
when something shocking occurred.

A mistake was found in the only solution the judges had of the problem created
by Nikolai (Kolya) B. Vasiliev, the Vice-Chair of this Olympiad and a fine problem
creator, head of the problems section of the journal Kvant from its inception in 1970
to the day of his untimely passing. What should we do? This question virtually
monopolized our lives.

We could just cross this problem out on each of the six hundred printed problem
sheets. In addition, we could select a replacement problem, but we would have to
write it in chalk by hand in every examination room, since there would be no time to
print it. Both options were rather embarrassing, desperate resolutions of the incident
for the Jury of the National Olympiad, chaired by the great mathematician Andrej
N. Kolmogorov, who was to arrive the following day. The best resolution, surely,
would have been to solve the problem, especially because its statement was quite
beautiful, and we had no counter example to it either.

A. Soifer, The Mathematical Coloring Book, 3
DOI 10.1007/978-0-387-74642-5_1, © Alexander Soifer 2009
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Even today, 38 years later, I can close my eyes and see how each of us, thirty
judges, all fine problem solvers, worked on the problem. A few sat at the table
as if posing for Rodin’s Thinker. Some walked around as if measuring the room’s
dimensions. Andrei Suslin, who would later prove the famous Serre’s conjecture,
went out for a hike. Someone was lying on a sofa with his eyes closed. Silence was
so absolute that you could hear a fly. The intense thinking seemed to stop the time
inside of the room. However, we were unable, on to stop the time outside. Night fell,
and with it our hopes for solving the problem in time.

Suddenly, the silence was interrupted by a victorious outcry: “I got it!” echoed
through the halls and the watch tower of the castle. It came from Alexander Livshits,
an undergraduate student at Leningrad (St. Petersburg) University, and former win-
ner of the Soviet and the International Mathematical Olympiads (a perfect 42 score
at the 1967 IMO in Yugoslavia).? His number-theoretic solution used the method of
trigonometric sums. However, this, was the least of our troubles: we immediately
translated the solution into the language of colored polygons.

Now we had options. A decision was reached to leave the problem in because the
problem and its solution were too beautiful to be thrown away. We knew, though,
that the chances of receiving a single solution from six hundred bright Olympians
were very slim. Indeed nobody solved it.

1.2 The Problem of Colored Polygons

Here is the problem.

Problem 1.1 (N. B. Vasiliev; IV Soviet Union National Olympiad, 1970). Vertices
of a regular n-gon are colored in finitely many colors (each vertex in one color)
in such a way that for each color all vertices of that color form themselves a reg-
ular polygon, which we will call a monochromatic polygon. Prove that among the
monochromatic polygons there are two polygons that are congruent. Moreover, the
two congruent monochromatic polygons can always be found among the monochro-
matic polygons with the least number of vertices.

I first told the above story and the problem in my 1994 Olympiad book [Soi9].
It appeared in the section Further Explorations, and as such I left the pleasure of
discovering the proof to the readers. It is time for me to share the solution.

Solution of Problem 1.1 by Alexander Livshits (in “polygonal translation”): Let me
divide the problem into three parts: Preliminaries, Tool, and Proof.

Preliminaries: Given a system S of vectors vy, va,..., U, in the plane with a
Cartesian coordinate system, all emanating from the origin O. We would call the

! Daniel Quillen proved it independently, and got Field’s Medal primarily for that.

2 Andrei Suslin informs me that as of 1991 Alexander worked as a computer programmer in Leningrad;
I was unable to determine his later whereabouts.
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system S symmetric if there is an integer k, 1 < k < n, such that rotation of every
vector of S about O through the angle 2nik transforms S into itself.

Of course, the sum ) v; of all vectors of a symmetric system is 6 because Y V;
does not change under rotation through the angle 0 < znlk < 2.

Place a regular n-gon P, in the plane so that its center coincides with the origin

O. Then the n vectors drawn from O to all the vertices of P, form a symmetric

system (Fig. 1.1).
N
@/
Let v be a vector emanating from the origin O and making the angle o with the

ray OX (Fig. 1.1). Symbol 7™ will denote a transformation that maps ¥ into the
vector T of the same length as ¥, but making the angle ma with OX (Fig. 1.2).

Fig. 1.1

2\

Fig. 1.2

To check your understanding of these concepts, please prove the following tool
on your own.

Tool 1.2 Let vy, s, ..., U, be a symmetric system S of vectors that transforms

into itself under the rotation through the angle 0 < 2’;—" <2m, 1 <k < n,(youcan
think of % as the angle between two neighboring vectors of S). A transformation
T™ applied to S produces a system TS of vectors T"vy, T™"0,, ..., T™V, that
is symmetric if n does not divide km. If n divides km, then T"v; = T"vy = ... =

T"v,.

Solution of Problem 1.1: We will argue by contradiction. Assume that the vertices of
aregular n-gon P, are colored in r colors and we got subsequently » monochromatic
polygons: ny-gon P,,, ny-gon P,,, ..., n,-gon P, , such that no pair of congruent
monochromatic polygons is created, i.e.,

ny<ny<...<n,.
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We create a symmetric system S of n vectors going from the origin to all ver-
tices of the given n-gon P,. In view of Tool 1.2, a transformation 7' applied to
S produces a symmetric system 7™ S. The sum of vectors in a symmetric system
T™ S is zero, of course.

On the other hand, we can first partition S in accordance with its coloring into

r symmetric subsystems S;, S»,..., S,, then obtain 7™ S by applying the trans-
formation 7™ to each system S; separately, and combining all 7"'S;. By Tool 1.2,
T™S; is a symmetric system for i = 2,..., r, but 7™ S consists of n; identical

non-zero vectors. Therefore, the sum of all vectors of 77! § is not zero. This contra-
diction proves that the monochromatic polygons cannot be all non-congruent. =

Prove the last sentence of Problem 1.1 on your own:

Problem 1.3 Prove that in the setting of Problem 1.1, the two congruent monochro-
matic polynomials must exist among the monochromatic polynomials with the least
number of vertices.

Readers familiar with complex numbers may have noticed that in the proof of
Problem 1.1 we can choose the given n-gon P, to be inscribed in a unit circle, and
position P, with respect to the axes so that the symmetric system S of vectors could be
represented by complex numbers, which are precisely all n-th degree roots of 1. Then
the transformation 7" would simply constitute raising these roots into the m-th power.

1.3 Translation into the Tongue of APs

You might be wondering what this striking problem of colored polygons has in
common with arithmetic progressions (AP), which are part of the chapter’s title.
Actually, everything! Problem 1.1 can be nicely translated into the language of infi-
nite arithmetic progressions, or APs for short.?

Problem 1.4 In any coloring (partition) of the set of integers into finitely many infi-
nite monochromatic APs, there are two APs with the same difference. Moreover,
the largest difference necessarily repeats.

Equivalently:

Problem 1.5 Any partition of the set of integers into finitely many APs can be
obtained only in the following way: N is partitioned into k APs, each of the same
difference k (where k is a positive integer greater than 1); then one of these APs is
partitioned into finitely many APs of the same difference, then one of these APs (at
this stage we have APs of two different differences) is partitioned into finitely many
APs of the same difference, etc.

3 An infinite sequence aj, da, ..., dy,...1is called an arithmetic progression or AP, if there for any
integer m > 1, we have the equality a,, = a,,—1 + k for a fixed k, where k is a real number called the
difference of the arithmetic progression.
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It was as delightful that our striking problem allowed two beautiful distinct for-
mulations, as it was valuable: only because of that I was able to discover the prehis-
tory of our problem.

1.4 Prehistory

Indeed, a year after I first published the story of this problem, in 1994 [Soi9],
I discovered that this exquisite bagatelle of a problem actually had a prehistory! I
became aware of it while watching a video recording of Ronald L. Graham’s most
elegant lecture Arithmetic Progressions: From Hilbert to Shelah. To my surprise,
Ron mentioned our bagatelle in the language of integer partitions. Let me present
the prehistory through the original e-mails, so that you would discover the story the
same way as I have.

April 5, 1995; Soifer to Graham:

In the beginning of your video “Arithmetic Progressions,” you present a problem of
partitioning integers into APs. You refer to Mirsky—Newman. Can you give me a more
specific reference to their paper? You also mention that their paper may not contain the
result, but that it is credited to them. How come? When did they allegedly prove it?

April 5, 1995; Graham to Soifer:

Regarding the Mirsky—Newman theorem, you should probably check with Erdds. I
don’t know that there ever was a paper by them on this result. Paul is in Israel at Tel
Aviv University.

April 6, 1995; Soifer to Erdés:

In the beginning of his video “Arithmetic Progressions,” Ron Graham presents a prob-
lem of partitioning integers into arithmetic progressions (with the conclusion that two
progressions have the same difference). Ron refers to Mirsky—Newman. He gives no
specific reference to their paper. He also mentions that their paper may not contain the
result, but that it is credited to them. .. Ron suggested that I ask you, which is what I
am doing.

I have good reasons to find this out, as in my previous book and in the one I writing
now, I credit Vasiliev (from Russia) with creating this problem before early 1970. He
certainly did, which surely does not exclude others from discovering it independently,
before or after Vasiliev.

April 8, 1995; Erdés to Soifer:

In 1950 I conjectured that there is no exact covering system in which all differences are
distinct, and this was proved by Donald J. Newman and [Leon] Mirsky a few months
later. They never published anything, but this is mentioned in some papers of mine in
the 1950s (maybe in the Summa Brasil. Math. 11(1950), 113-123 [E50.07], but I am
not sure).
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April 8, 1995; Erdés to Soifer:

Regarding that Newman’s proof, look at P. Erd8s, on a problem concerning covering
systems, Mat. Lapok 3(1952), 122-128 [E52.03].

P

I am looking at these early Erdds’s articles. In the 1950 paper he introduces cov-
ering systems of (linear) congruences. Since each linear congruence x = a (mod n)
defines an AP, we can talk about covering system of APs and define it as a set
of finitely many infinite APs, all with distinct differences, such that every integer
belongs to at least one of the APs of the system. In the 1952 paper [E52.03] Paul
introduces the problem for the first time in print (in Hungarian!):*

I conjectured that if system [of k APs with differences n; respectively] is covering then

N
Z— > 1, (L.1)
o

that is, the system does not uniquely cover every integer. However, I could not prove
this. For (1.1) Mirsky and Newmann [Newman] gave the following witty proof (the
same proof was found later by Davenport and Rado as well).

Wow: Leon Mirsky, Donald Newman, Harold Davenport, and Richard Rado —
quite a company of distinguished mathematicians worked on this bagatelle! Erdds
then proceeds [E52.03] with presenting this company’s proof of his conjecture,
which uses infinite series and limits.

In viewing old video recordings of Paul Erd6s’s lectures at the University of
Colorado at Colorado Springs, I found a curious historical detail Paul mentioned in
his March 16, 1989 lecture: he created this conjecture in 1950 while traveling by car
from Los Angeles to New York!

1.5 Completing the Go-Round

In 1959, Paul Erdés and Janos Suranyi published a book on the Theory of Numbers.
In 2003 English translation [ESu2] of its 1996 2nd Hungarian edition, Erd6s and
Suranyi present the result from the Erd8s’s 1952 paper:

In a covering system of congruences [APs], the sum of the reciprocals of the moduli is
larger than 1.

Erdds and Surdnyi then repeat Mirsky—Newman—Davenport—-Rado proof from
ErdSs’s 1952 paper [E52.03]. Then there comes a surprise:

A. Lifsic [sic] gave an elementary solution to a contest problem that turned out to be
equivalent to Theorem 3.

4In English this result was briefly mentioned, without proof, much later, in 1973 [E73.21] and 1980
[EG].



1 A Story of Colored Polygons and Arithmetic Progressions 9

Based again on exercises 9 and 10, it is sufficient to prove that it is not possible to
cover the integers by finitely many arithmetic progressions having distinct differences
in such a way that no two of them share a common element.

Erd6s and Surdnyi then repeat the trick that was first discovered by us, the judges
of the Soviet National Mathematical Olympiad in May 1970, the trick of converting
the calculus solution into the Olympiad’s original problem about colored polygons!
Here is how it goes:

Wind the number line around a circle of circumference d. On this circle, the integers
represent the vertices of a regular d-sided polygon. . . The arithmetic progressions form
the vertices of disjoint regular polygons that together cover all vertices of the d-sided

polygon.

Erd6s and Surdnyi continue by repeating, with credit, Sasha Livshits’s solution
of Kolya Vasiliev’s Problem of Colored Polygons that we have seen at the start of
this chapter.> We have thus come to a full circle, a Merry-Go-Round from the Soviet
Union Mathematical Olympiad to Erd8s and back to the same Olympiad. I hope you
have enjoyed the ride!

5 Erdés and Surdnyi obtained the translation of the problem into the language of polygons and the polyg-
onal proof from the 1988 Russian book [VE] by Vasiliev and Andrei Egorov, which they credit for it. In
this book, Vasiliev gives credit for the solution to Sasha Livshits—and in a sign of extreme modesty does
not credit himself with creating this remarkable colored polygon problem independently from Erd6s and
in a different form.

In looking now at the original 1996 Hungarian 2nd edition [ESul] of Erd6s—Suranyi book, I realize
with sadness that Paul ErdSs did not see the beauties of Sasha Livshits’s proof—it did not appear in
the Hungarian edition of 1996, the year when Paul passed away. Clearly, Surdnyi alone added Livshits’s
proof to the 2003 English translation [ESu2] of the book.
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Chromatic Number of the Plane: The Problem

A great advantage of geometry lies in the fact that
in it the senses can come to the aid of thought,
and help find the path to follow.
— Henry Poincaré [Poi]

[1] can’t offer money for nice problems of other
people because then I will really go broke. . .
It is a very nice problem. If it were mine,
I would offer $250 for it.
— Paul Erd6s Boca Raton, February, 1992

If Problem 8 [chromatic number of the plane] takes
that long to settle, we should know the answer by the
year 2084.

— Victor Klee & Stan Wagon [KW]

Our good ole Euclidean plane, don’t we know all about it? What else can there be
after Pythagoras and Steiner, Euclid and Hilbert? In this chapter we will look at an
open problem that exemplifies what is best in mathematics: anyone can understand
this problem; yet no one has been able to conquer it for over 58 years.

In August 1987, I attended an inspiring talk by Paul Halmos at Chapman Col-
lege in Orange, California, entitled “Some problems you can solve, and some you
cannot.” This problem was an example of a problem “you cannot solve.”

“A fascinating problem ... that combines ideas from set theory, combinatorics,
measure theory, and distance geometry,” write Hallard T. Croft, Kenneth J. Falconer,
and Richard K. Guy in their book “Unsolved Problems in Geometry” [CFG].

“If Problem 8 takes that long to settle [as the celebrated Four-Color Conjecture],
we should know the answer by the year 2084, write Victor Klee and Stan Wagon
in their book “New and Old Unsolved Problems in Plane Geometry” [KW].

Are you ready? Here it is:

What is the smallest number of colors sufficient for coloring the plane in such
a way that no two points of the same color are unit distance apart?

A. Soifer, The Mathematical Coloring Book, 13
DOI 10.1007/978-0-387-74642-5_2, © Alexander Soifer 2009
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This number is called the chromatic number of the plane and is denoted by x. To
color the plane means to assign one color to every point of the plane. Please note
that here we color without any restrictions, and are not limited to “nice,” tiling-like
or map-like coloring. Given a positive integer n, we say that the plane is n-colored,
if every point of the plane is assigned one of the given n colors.

A segment here will stand for just a 2-point set. Similarly, a polygon will stand
for a finite set of point. Monochromatic set is a set whose all elements are assigned
the same color. In this terminology, we can formulate the Chromatic Number of the
Plane Problem (CNP) as follows: What is the smallest number of colors sufficient
for coloring the plane in a way that forbids monochromatic segments of length 1?

I do not know who first noticed the following result. Perhaps, Adam? Or Eve?
To be a bit more serious, I do not think that ancient Greek geometers, for example,
knew this nice fact, for they simply did not ask this kind of questions!

Problem 2.1 (Adam & Eve?) No matter how the plane is 2-colored, it contains a
monochromatic unit distance segment, i.e.,

X = 3.

Solution: Toss on the given 2-colored plane an equilateral triangle 7 of side 1
(Fig. 2.1). We have only 2 colors while 7" has 3 vertices (I trust you have not forgot-
ten the Pigeonhole Principle). Two of the vertices must lie on the same color. They
are distance 1 apart. =

Fig. 2.1

‘We can do better than Adam:

Problem 2.2 No matter how the plane is 3-colored, it contains a monochromatic
unit distance segment, i.e.,

X =4
Solution by the Canadian geometers, brothers Leo and William Moser, (1961,

[MM]) Toss on the given 3-colored plane what we now call The Mosers Spindle
(Fig. 2.2). Every edge in the spindle has the length 1.
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A

Fig. 2.2 The Mosers Spindle

Assume that the seven vertices of the spindle do not contain a monochromatic
unit distance segment. Call the colors used to color the plane red, white, and blue.
The solution now will faithfully follow the children’s song: “ABCD EF G...”.

Let the point A be red, then B and C must be one white and one blue, there-
fore D is red. Similarly £ and F must be one white and one blue, therefore G is
red. We found a monochromatic segment DG of length 1 in contradiction to our
assumption. =

Observe: The Mosers Spindle has worked for us in solving Problem 2.2 precisely
because any 3 points of the spindle contain two points distance 1 apart. This implies
that in a Mosers spindle that forbids monochromatic distance 1, at most 2 points
can be of the same color. Remember this observation, for we will need it later in
Chapters 4 and 40.

When I presented the Mosers’ solution to high school mathematicians, everyone
agreed that it was beautiful and simple. “But how do you come up with a thing like
the spindle?” I was asked. As a reply, I presented a less elegant but a more natu-
rally found solution. In fact, I would call it a second version of the same solution.
Here we touch on a curious aspect of mathematics. In mathematical texts we often
see “second solution,” “third solution,” but which two solutions ought to be called
distinct? We do not know: it is not defined, and thus is a judgment call. A distinct
solution for one person could be the same solution for another. It is interesting to
notice that both versions were published in the same year, of 1961, one in Canada
and the other in Switzerland.

Second Version of the Solution (Hugo Hadwiger, 1961, [Had4]). Assume that
a 3-colored red—white-blue plane does not contain a monochromatic unit distance
segment. Then an equilateral triangle ABC of side 1 will have one vertex of each
color (Fig. 2.3). Let A be red, then B and C must be one white and one blue. The
point A’ symmetric to A with respect to the side BC must be red as well. If we rotate
our thombus ABA’C through any angle about A, the vertex A’ will have to remain
red due to the same argument as above. Thus, we get a whole red circle of radius
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Fig. 2.3

AA’ (Fig. 2.3). Surely, it contains a cord d of length 1, both endpoints of which are
red, in contradiction to our assumption. m

Does an upper bound exist for x? It is not immediately obvious. Can you find
one? Think of tiling the plane with square tiles!

Problem 2.3 There is a 9-coloring of the plane that contains no monochromatic unit
distance segments, i.e.,

X=<9.

Proof We tile the plane with unit squares. Now we color one square in color 1, and
its eight neighbors in colors 2, 3, ..., 9 (Fig. 2.4). The union of these 9 squares is
a3 x 3 square S. Translates of S (i.e., images of S under translations) tile the plane
and determine how we color it in 9 colors.

You can easily verify (do) that no distance d in the range +/2 < d < 2 is realized
monochromatically in the plane. Thus by shrinking all linear sizes by the factor of,
say, 1.5, we get a coloring that contains no monochromatic unit distance segments.
(Observe: due to the above inequality, we have enough cushion, so that it does not
matter in which of the two adjacent colors we color the boundaries of squares). =

6(1]2[6]1]2

514[3[5]4]3
917(8[9]17]8]9
216(1[2]6]1]2
315[4(3]5]4]3

7189

Fig. 2.4

Now that a tiling has helped us to solve the above problem, it is natural to ask
whether another tiling can help us improve the upper bound. One can indeed!
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Problem 2.4 There is a 7-coloring of the plane that contains no monochromatic unit
distance segments, i.e.,

x<7.

Solution ([Had3]): We can tile the plane by regular hexagons of side 1. Now we
color one hexagon in color 1, and its six neighbors in colors 2, 3, ..., 7 (Fig. 2.5).
The union of these seven hexagons forms a “flower” P, a highly symmetric polygon
P of 18 sides. Translates of P tile the plane and determine how we color the plane in
7 colors. It is easy to compute (please do) that each color does not have monochro-
matic segments of any length d, where 2 < d < +/7. Thus, if we shrink all linear
sizes by a factor of, say, 2.1, we will get a 7-coloring of the plane that forbids
monochromatic unit distance segments. (Observe: due to the above inequality, we
have enough cushion so that it does not matter in which of the two adjacent colors
we color the boundaries of hexagons). =

Fig. 2.5 Hexagon based 7-coloring of the plane

This is the way the upper bound is proven in every book I know (e.g., [CFG]
and [KW]). Yet in 1982 the Hungarian mathematician Laszl6 A. Székely found a
clever way to prove the upper bound without using hexagonal tiling.

Problem 2.5 (L. A. Szekely, [Szel]). Prove the upper bound x < 7 by tiling the
plane with . .. squares again.

Proof This is Laszl6 Székely’s proof from [Szel]. His original picture needs a small
correction in its “Fig. 2.1”, and boundary coloring needs to be addressed, which I am
doing here. We start with a row of squares of diagonal 1, with cyclically alternating
colors of the squares 1, 2,..., 7 (Fig. 2.6). We then obtain consecutive rows of
colored squares by shifting the preceding row to the right through 2.5 square sides.

Upper and right boundaries are included in the color of each square, except for
the square’s upper left and lower right corners. =
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Fig. 2.6 Square based 7-coloring of the plane

In 1995, my former student and now well-known puzzlist Edward Pegg, Jr. sent to
me two distinct 7-colorings of the plane. In the one I am sharing with you (Fig. 2.7),
Ed uses 7-gons for 6 colors, and tiny squares for the 7th color. Interestingly, the 7th
color occupies only about one third of one percent of the plane.

In Fig. 2.7, all thick black bars have unit length. A unit of the tiling uses a hep-
tagon and half a square.

The area of each square is 0.0041222051899307168162. ..
The area of each heptagon is 0.62265127164647629646. . .
Area ratio thus is 302.0962048019455285300783627265828. . .

If one third of one percent of the plane is removed, the remainder can be 6-
colored with this tiling!
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Fig. 2.7 7-coloring of the plane with a minimal presence of the 7th color
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The lower bound for the chromatic number of the plane (Problem 2.2) also
has proofs fundamentally different from the Mosers Spindle. In the early 1990s, 1
received from my colleague and friend Klaus Fischer of George Mason University,
a finite configuration of the chromatic number 4, different from the Mosers spindle.
Klaus had no idea who created it, so I commenced tracing it back in history. Klaus
got this configuration from our common friend and colleague Heiko Harborth of
Braunschweig Technical University, Germany, who in turn referred me to his source,
Solomon W. Golomb of the University of Southern California, the famous inventor
of polyomino. He invented this graph as well, and described it in the September 10,
1991 letter to me [Goll]:

The example you sketched of a 4-chromatic unit distance graph with ten vertices is
original with me. I originally thought of it as a 3-dimensional structure (the regular
hexagon below, the equilateral triangle above it in a plane parallel to it), and all con-
nected by unit length toothpicks. The structure is then allowed to collapse down into
the plane, to form the final figure [Fig. 2.8]. I have shown it to a number of peo-
ple, including the late Leo Moser, Martin Gardner, and Paul Erdés, as well as Heiko
Harborth. It is possible that Martin Gardner may have used it in one of his columns,
but I don’t remember. Besides my example and Moser’s original example (which I'm
reasonably sure I have seen in Gardner’s column), I have not seen any other “funda-
mental” examples. I believe what I had suggested to Dr. Harborth in Calgary was the
possibility of finding a 5-chromatic unit distance graph, having a much larger number
of edges and vertices.

In the subsequent September 25, 1991 letter [Gol2] Golomb informed me that he

likely found this example, which I will naturally call the Golomb Graph, in the time
period 1960-1965.

Second Solution of Problem 2.2: Just toss the Golomb Graph on a 3-colored (red,
white and blue) plane (Fig. 2.8). Assume that in the graph there are no adjacent (i.e.,
connected by an edge) vertices of the same color. Let the center point be colored red,
then since it is connected by unit edges to all vertices of the regular hexagon H, H
must be colored white and blue in alternating fashion. All vertices of the equilateral
triangle 7' are connected by unit edges to the three vertices of H of the same color,

Fig. 2.8 The Golomb Graph
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say, white. Thus, white cannot be used in coloring 7', and thus T is colored red and
blue, which implies that two of the vertices of T are assigned the same color. This
contradiction proves that 3 colors are not enough to properly color the ten vertices
of the Golomb graph, let alone the whole plane. =

It is amazing that the relatively easy solutions of Problems 2.2 and 2.4 give us the
best known to today’s mathematics. Bounds for the chromatic number of the plane
X- They were published almost half a century ago (in fact, they are older than that:
see next chapter for an intriguing historical account). Still, all we know is that

x=4, or5, or6, or7.

A very broad spread! Which do you think is the exact value of x? The legendary
Paul Erdds thought that x > 5.

The American geometer Victor Klee of the University of Washington shared with
me in 1991 an amusing story. In 1980 he lectured in Ziirich, Switzerland, where the
77-year-old celebrated algebraist Bartel L. van der Waerden (whom we will meet
frequently later in this book— see Part VII) was in attendance. When Vic presented
the state of this problem, Van der Waerden became so interested that he stopped
listening to the lecture—he started working on the problem. He tried to prove that
x =7

For many years I believed that x = 7, or else 6 (you will find my thoughts on
the matter in Predicting the Future, Part X of this book). Paul Erdés used to say that
“God has a transfinite Book, which contains all theorems and their best proofs, and
if He is well intentioned towards those, He shows them the Book for a moment.” If
I ever deserved the honor and had a choice, I would have asked to peek at the page
with the chromatic number of the plane problem. Wouldn’t you?
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Chromatic Number of the Plane:
An Historical Essay

[This is] a long standing open problem of Erdds.
— Hallard T. Croft, 1967

[1] cannot trace the origin of this problem.
— Paul Erdés, 1961

It is often easier to be precise about Ancient
Egyptian history than about what happened among
our contemporaries.

— Nicolaas Govert de Bruijn, 1995'

It happened long ago and perhaps did not happen
at all.
— An Old Russian Joke

It is natural for one to inquire into the authorship of one’s favorite problem. As
aresult, in 1991 I turned to countless articles and books. Some of the information I
found appears here in Table 3.1 — take a look. Are you confused? I was too!

As you can see in the table, Douglas R. Woodall credits Martin Gardner, who in
turn refers to Leo Moser. Hallard T. Croft calls it “a long standing open problem of
Erd6s,” Gustavus J. Simmons credits “Erd6s, [Frank] Harary and [William Thomas]
Tutte,” while Paul Erdés himself “cannot trace the origin of this problem”! Later
Erd6s credits “Hadwiger and Nelson,” while Victor Klee and Stan Wagon state that
the problem was “posed in 1960-1961 by M. Gardner and Hadwiger.” Croft comes
again, this time with Kenneth J. Falconer and Richard K. Guy, to cautiously suggest
that the problem is “apparently due to E. Nelson” [CFG]. Yet, Richard Guy did not
know who “E. Nelson” was and why he and his coauthors “apparently” attributed
the problem to him (our conversation on the back seat of a car in Keszthely, Hungary,
when we both attended Paul Erdés’s 80th birthday conference in August of 1993).

Thus, at least seven mathematicians—a great group to be sure—were credited
with creating the problem: Paul Erd6s, Martin Gardner, Hugo Hadwiger, Frank

1 [Bru6].

A. Soifer, The Mathematical Coloring Book, 21
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Table 3.1 Who created the chromatic number of the plane problem?

Publication Year Author(s) Problem creator(s) or source named
[Gar2] 1960 Gardner “Leo Moser. . .writes. ..”
[Had4] 1961 Hadwiger (after Nelson
Klee)
[E61.21] 1961 Erdé&s “I cannot trace the origin of this problem”
[Cro] 1967 Croft “A long standing open problem of Erdés”
[Wool] 1973 Woodall Gardner
[Sim] 1976 Simmons Erdds, Harary and Tutte
[E80.38]
[E81.23] 1980-1981 Erdés Hadwiger and Nelson
[E81.26]
[CFG] 1991 Croft, Falconer, and  “Apparently due to E. Nelson”
Guy
[KW] 1991 Klee and Wagon “Posed in 1960-1961 by M. Gardner and
Hadwiger”

Harary, Leo Moser, Edward Nelson, and William T. Tutte. But it was hard for me to
believe that they all created the problem, be it independently or all seven together.

I felt an urge, akin that of a private investigator, a Sherlock Holmes, to untangle
the web of conflicting accounts. It took six months to solve this historical puzzle.
A good number of mathematicians, through conversations and e-mails, contributed
their insight: Branko Griinbaum, Peter D. Johnson, Tony Hilton, and Klaus Fischer
first come to mind. I am especially grateful to Paul Erdds, Victor Klee, Martin Gard-
ner, Edward Nelson, and John Isbell for contributing their parts of the puzzle. Only
their accounts, recollections, and congeniality made these findings possible.

I commenced my investigation on June 19, 1991 by mailing a letter to Paul Erdés,
informing Paul that “I am starting a new ‘Mathematical Coloring Book’, which will
address problems where coloring is a part of a problem and/or a part of solution (a
major part),”? and then posed the question:

There is a famous open problem of finding the chromatic number of the plane (minimal
number of colors that prevents distance one between points of the same color). Is this
your problem?

On August 10, 1991, Paul shared his appreciation of the problem, for which he
could not claim the authorship [E91/8/10ltr]:

The problem about the chromatic number of the plane is unfortunately not mine.

In a series of letters dated July 12, 1991; July 16, 1991; August 10, 1991; and
August 14, 1991, Paul also formulated for me a good number of problems related
to the chromatic number of the plane that he did create. We will look at Erd6s’s
problems in the following chapters.

Having established that the author was not Paul Erdds, I moved down the list

of “candidates,” and on August 8, 1991 and again on August 30, 1991, I wrote to

2 This seems to be my first mention of what has become an 18-year long project!
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Victor Klee, Edward Nelson, and John Isbell. I shared with them my Table 3.1 and
asked what they knew about the creation of the problem. I also interviewed Professor
Nelson over the phone on September 18, 1991.

Edward Nelson created what he named “a second 4-color problem” (first being
the famous Four-Color Problem of map coloring), which we will discuss in Part IV).
In his October 5, 1991, letter [Nel2], he conveyed the story of creation:

Dear Professor Soifer:

In the autumn of 1950, I was a student at the University of Chicago and among
other things was interested in the four-color problem, the problem of coloring graphs
topologically embedded in the plane. These graphs are visualizable as nodes connected
by wires. I asked myself whether a sufficiently rich class of such graphs might possibly
be subgraphs of one big graph whose coloring could be established once and for all,
for example, the graph of all points in the plane with the relation of being unit distance
apart (so that the wires become rigid, straight, of the same length, but may cross).
The idea did not hold up, but the other problem was interesting in its own right and I
mentioned it to several people.

Eddie Nelson, c. 1950. Courtesy of Edward Nelson
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One of the people Ed Nelson mentioned the problem to was John Isbell. Half
a century later, Isbell still remembered the story very vividly when on August 26,
1991 he shared it with me [Isb1]:

. Ed Nelson told me the problem and x > 4 in November 1950, unless it was
October — we met in October. I said what upper bound have you, he said none, and
I worked out 7. I was a senior at the time (B.S., 1951). I think Ed had just entered
U. Chicago as a nominal sophomore and taken placement exams which placed him
a bit ahead of me, say a beginning graduate student with a gap or two in his back-
ground. I certainly mentioned the problem to other people between 1950 and 1957,
Hugh Spencer Everett 111, the author of the many-worlds interpretation of quantum
mechanics, would certainly be one, and Elmer Julian Brody who did a doctorate under
Fox and has long been at the Chinese University of Hong Kong and is said to be into
classical Chinese literature would be another. I mentioned it to Vic Klee in 1958 +1 . ..

Victor Klee also remembered (our phone conversation, September, 1991) hearing
the problem from John Isbell in 1957-1958. In fact, it took place before September
1958, when Professor Klee left for Europe. There he passed the problem to Hugo
Hadwiger who was collecting problems for the book Open Problems in Intuitive
Geometry to be written jointly by Erdds, Fejes—Toth, Hadwiger, and Klee (this great
book-to-be has never materialized).

Gustavus J. Simmons [Sim], in giving credit to “Erd&s, Harary, and Tutte,” no
doubt had in mind their joint 1965 paper in which the three authors defined dimen-
sion of a graph (Chapter 13). The year of 1965 was too late for our problem’s
creation, and besides, the three authors have not made or claimed such a discovery.

What were the roles of Paul Erdés, Martin Gardner, and Leo Moser in the story
of creation? I am prepared to answer these questions, all except one: I am leaving
for others to research Leo Moser’s archive (maintained by his brother Willie Moser
at McGill University in Montreal) and find out how and when Leo Moser came by
the problem. What is important to me is that he did not create it independently from
Edward Nelson, as Paul Erd6s informed me in his July 16, 1991, letter [E91/7/161tr]:

I do not remember whether Moser in 1958 [possibly on June 16, 1958, the date from
which we are lucky to have a photo record] told me how he heard the problem on the
chromatic number of the plane, I only remember that it was not his problem.

Yet, Leo Moser made a valuable contribution to the survival of the problem: he
gave it to both Paul Erdés and Martin Gardner. Gardner, due to his fine taste, recog-
nized the value of this problem and included it in his October 1960 Mathematical
Games column in Scientific American ( [Gar2]), with the acknowledgement that he
received it from Leo Moser of the University of Alberta. Thus, the credit for the
first publication of the problem goes to Martin Gardner. It is beyond me why so
many authors of articles and books, as far back as 1973 ( [Wool], for example),
gave credit for the creation of the problem to Martin Gardner, something he himself
has never claimed. In our 1991 phone conversation Martin told me for a fact that
the problem was not his, and he promptly listed Leo Moser as his source, both in
print and in his archive.
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Paul Erd6s (left) and Leo Moser, June 16, 1958. Courtesy of Paul Erdés

Moreover, some authors ([KW], for example) who knew of Edward Nelson still
credited Martin Gardner and Hugo Hadwiger because it seems only written, prefer-
ably published word, was acceptable to them. Following this logic, the creation
of the celebrated Four-Color Map-Coloring Problem must be attributed to Augus-
tus De Morgan, who first wrote about it in his October 23, 1852 letter to William
Rowan Hamilton, or better yet to Arthur Cayley, whose 1878 abstract included the
first non-anonymous publication of the problem.? Yet we all seem to agree that the
20-year-old Francis Guthrie created this problem, even though he did not publish or
even write a word about it! (See Part IV for more on this.)

Of course, a lone self-serving statement would be too weak a foundation for a
historical claim. On the other hand, independent disinterested testimonies corrobo-
rating each other comprise as solid a foundation for the attribution of the credit as
any publication. And this is precisely what my inquiry has produced. Here is just
one example of Nelson and Isbell’s selflessness. Edward Nelson tells me on August
23, 1991 [Nell]:

I proved nothing at all about the problem . ..
John Isbell corrects Nelson in his September 3, 1991, letter [Isb2]:

Ed Nelson’s statement which you quote, “I proved nothing at all about the problem,”
can come only from a failure of memory. He proved to me that the number we are
talking about is > 4, by precisely the argument in Hadwiger 1961. Hadwiger’s attri-
bution (on Klee’s authority) of that inequality to me can only be Hadwiger’s or Klee’s
mistake.

This brings us to the issue of the authorship of the bounds for x

4<x<T.

3 First publication could be attributed to De Morgan, who mentioned the problem in his 1860 book
review in Athenaeum [DeM4], albeit anonymously — see more on this in Chapter 18.
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Once again, the entire literature is off the mark by giving credit for the first
proofs to Hadwiger and the Mosers. Yes, in 1961 the famous Swiss geometer Hugo
Hadwiger published ([Had4]) the chromatic number of the plane problem together
with proofs of both bounds. yet he wrote (and nobody read!):

We thank Mr. V. L. Klee (Seattle, USA) for the following information. The problem is
due to E. Nelson; the inequalities are due to J. Isbell.

Hadwiger did go on to say:

Some years ago the author [i.e., Hadwiger] discussed with P. Erd6s questions of
this kind.

Did Hadwiger imply that he created the problem independently from Nelson? We
will never know for sure, but I have my doubts about Hadwiger’s (co)authorship.
Hadwiger jointly with H. Debrunner published an excellent long problem paper in
1955 [HD1] that was extended to their wonderful, famous book in 1959 [HD2]; see
also the 1964 English translation [HDK] with Victor Klee, and the 1965 Russian
translation [HD3] edited by Isaak M. Yaglom. All of these books (and Hadwiger’s
other papers) included a number of “questions of this kind,” but did not once include
the chromatic number of the plane problem. Moreover, it seems to me that the prob-
lem in question is somewhat out of Hadwiger’s “character”: in all problems “of
this kind” he preferred to consider closed rather than arbitrary sets, in order to take
advantage of topological tools.

I shared with Paul Erdds these two-fold doubts about Hadwiger independently
creating the problem. It was especially important because Hadwiger in the quoted
above text mentioned Erdés as his witness of sorts. Paul replied in the July 16, 1991
letter [E91/7/16]tr] as follows:

I met Hadwiger only after 1950, thus I think Nelson has priority (Hadwiger died a few
years ago, thus I cannot ask him, but I think the evidence is convincing).

At 9:30-10:30 A.M. on March 10, 1994, during his talk at 25th South Eastern
International Conference on Combinatorics, Computing and Graph Theory in Boca
Raton, Florida, Paul Erd6s summarized the results of my historical research in the
characteristically Erd&sian style ([E94.60]):*

There is a mathematician called Nelson who in 1950 when he was an epsilon, that is
he was 18, discovered the following question. Suppose you join two points in the plane
whose distance is 1. It is an infinite graph. What is chromatic number of this graph?

Now, de Bruijn and I showed that if an infinite graph which is chromatic number £,
it always has a finite subgraph, which is chromatic number k. So this problem is really
[a] finite problem, not an infinite problem. And it was not difficult to prove that the
chromatic number of the plane is between 4 and 7. I would bet it is bigger than 4, but
I am not sure. And the problem is still open.

If it were my problem, I would certainly offer money for it. You know, I can’t offer
money for every nice problem because I would go broke immediately. I was asked once

4 Thanks to Prof. Fred Hoffman, the tireless organizer of this annual conference, I have a video tape of
this memorable Paul Erdés’s talk.
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what would happen if all your problems would be solved, could you pay? Perhaps not,
but it doesn’t matter. What would happen to the strongest bank if all the people who
have money there would ask for money back? Or what would happen to the strongest
country if they suddenly ask for money? Even Japan or Switzerland would go broke.
You see, Hungary would collapse instantly. Even the United States would go broke
immediately. . .

Actually it was often attributed to me, this problem. It is certain that I had nothing
to do with the problem. I first learned the problem, the chromatic number of the plane,
in 1958, in the winter, when I was visiting [Leo] Moser. He did not tell me from where
this nor the other problems came from. It was also attributed to Hadwiger, but Soifer’s
careful research showed that the problem is really due to Nelson.

The leading researcher of Ramsey Theory, Ronald L. Graham, has also endorsed
the results of this historical investigation in his important 2004 problem paper [Gra6]
in Geombinatorics:

It is certainly not necessary to point out to readers of this journal any facts concerning
the history and current status of this problem (which [is] due to Nelson in 1950) since
the Editor Alexander Soifer has written a scholarly treatment of this subject in this
journal [Soil8], [So0il9], [SS2].

Paul Erd6s’s and Ron Graham’s acceptance of my research on the history of
this problem has had a significant effect: most researchers and expositors now give
credit to Edward Nelson for the chromatic number of the plane problem. However,
there are, unfortunate exceptions. In 2002 L4szl6 Lovasz and K. Vesztergombi, for
example, stated [LV] that

in 1944 Hadwiger and Nelson raised the question of finding the chromatic number of
the plane.

Of course, the problem did not exist in 1944, in Hadwiger’s cited paper or any-
where else. Moreover, Eddie Nelson was just an 11-12-year-old boy at the time!
In the same 2002 book, dedicated to the memory of Paul Erdés, one of the leading
researchers of the problem and my friend Laszlé Székely (who already in 1992
attended my talk on the history of the problem at Boca Raton), goes even further
than Lovéasz and Vesztergombi [Sze3]:

E. Nelson and J. R. Isbell, and independently Erdés and H. Hadwiger, posed the fol-
lowing problem. . .

The fine Russian researcher of this problem A. M. Raigorodskii repeats from
Székely in his 2003 book [Raig6, p. 3], in spite of citing (thus presumably knowing)
my historical investigation in his survey [Raig3]:

There were several authors. First of all, already in the early 1940s the problem was

posed by the remarkable mathematicians Hugo Hadwiger and Paul Erd6s; secondly,

E. Nelson and J. P. Isbell worked on the problem independently from Erd6s and Had-
oo S

wiger.

5 My translation from the Russian.
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Raigorodskii then “discovers” previously non-existent connection between world
affairs and the popularity of the problem:®

In the 1940s there was W.W.II, and this circumstance is responsible for the fact that at
first chromatic numbers [sic] did not raise too thunderous an interest.

The two famous Canadian problem people, the brothers Leo and William Moser,
also published in 1961 [MM] the proof of the lower bound 4 < x while solving a
different problem. Although, in my opinion, their proof is not distinct from those by
Nelson and by Hadwiger, the Mosers’ emphasis on a finite set and their invention
of the seven-point configuration, now called The Mosers’ Spindle, proved to be very
productive (Chapter 2).

Now we can finally give due credit to Edward Nelson for being the first in 1950
to prove the lower bound 4 < x. Because of this bound, John Isbell recalls in his
letter [Isb1], Nelson “liked calling it a second 4CP!”

From the phone interviews with Edward Nelson on September 18 and 30, 1991,
I learned some information about the problem creator. Joseph Edward Nelson was
born on May 4, 1932 (an easy number to remember: 5/4/32), in Decatur, Georgia,
near Atlanta. The son of the Secretary of the Italian YMCA,” Ed Nelson had studied
at a liceo (Italian prep school) in Rome. In 1949 Eddie returned to the United States
and entered the University of Chicago. The visionary Chancellor of the Univer-
sity, Robert Hutchins,® allowed students to avoid “doing time” at the University by
passing lengthy placement exams instead. Ed Nelson had done so well on so many
exams that he was allowed to go straight to the graduate school without working for
his bachelor’s degree.

Time magazine reported young Nelson’s fine achievements in 14 exams on
December 26, 1949 [Time], next to the report on the completion of the last war-
crimes trials of the World War II (Field Marshal Fritz Erich von Manstein received
18 years in prison), assurances by General Dwight D. Eisenhower that he would
not be a candidate in the 1952 Presidential election (he certainly was—and won it),
and promise to announce Time’s “A Man of the Half-Century” in the next issue (the
Time’s choice was Winston Churchill).

Upon obtaining his doctorate from the University of Chicago in 1955, Edward
Nelson became National Science Foundation’s Postdoctoral Fellow at the Prince-
ton’s Institute for Advanced Study in 1956. Three years later he became—and still
is—a professor at Princeton University. His main areas of interest are analysis and
logic. In 1975 Edward Nelson was elected to the American Academy of Arts and
Sciences, and in 1997 to the National Academy of Sciences. During my 2002-2004
stay at Princeton, I had the pleasure to interact with Professor Nelson almost daily.

6 Ibid.
7 The Young Mens Christian Association (YMCA) is one of the oldest and largest not-for-profit commu-
nity service organizations in the world.

8 Robert Maynard Hutchins (1899-1977) was President (1929-1945) and Chancellor (1945-1951) of
the University of Chicago.
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My talk on the chromatic number of the plane problem at Princeton’s Discrete Math-
ematics Seminar was dedicated “To Edward Nelson, who created this celebrated
problem for us all.”

John Isbell was first in 1950 to prove the upper bound x < 7. He used the same
hexagonal 7-coloring of the plane that Hadwiger published in 1961 [Had4]. Please
note that Hadwiger first used this coloring of the plane in 1945 [Had3], but for a
different problem: his goal was to show that there are seven congruent closed sets
that cover the plane (he also proved there that no five congruent closed sets cover the
plane). Professor John Rolfe Isbell, Ph.D. Princeton University 1954 under Albert
Tucker, has been for decades on the faculty of mathematics at the State University
of New York at Buffalo, where he is now Professor Emeritus.

Paul Erd6s’s contribution to the history of this problem is two-fold. First of all,
like Augustus De Morgan did for the Four-Color Problem, Erdds kept the flaming
torch of the problem lit. He made the chromatic number of the plane problem
well-known by posing it in his countless problem talks and many publications, for
example, we see it in [E61.21], [E63.21], [E75.24], [E75.25], [E76.49], [E78.50],
[E79.04], [ESi], [E80.38], [E80.41], [E81.23], [E81.26], [E85.01], [E91.60],
[E92.19], [E92.60] and [E94.60].

Secondly, Paul Erd6s created a good number of fabulous related problems. We
will discuss one of them in the next chapter.

In February 1992 at the 23rd South Eastern International Conference on Combi-
natorics, Computing and Graph Theory in Boca Raton, during his traditional Thurs-
day morning talk, I asked Paul Erd6s how much he would offer for the first solution
of the chromatic number of the plane problem. Paul replied:

I can’t offer money for nice problems of other people because then I will really
go broke.

I then transformed my question into the realm of mathematics and asked Paul
“Assume this is your problem; how much would you then offer for its first solution?”
Paul answered:

It is a very nice problem. If it were mine, I would offer $250 for it.

A few years ago the price went up for the improvement of just the lower bound
part of the chromatic number of the plane problem. On Saturday, May 4, 2002,
which by the way was precisely Edward Nelson’s 70th birthday, Ronald L. Gra-
ham gave a talk on Ramsey Theory at the Massachusetts Institute of Technology
for about 200 participants of the USA Mathematical Olympiad. During the talk
he offered $1,000 for the first proof or disproof of what he called, after Nelson,
“Another 4-Color Conjecture.” The talk commenced at 10:30 AM (I attended the
talk and took notes).

Another 4-Color $1000 Problem 3.1 (Graham, May 4, 2002) Is it possible to
4-color the plane to forbid a monochromatic distance 1?

In August 2003, during his talk What is Ramsey Theory? at Berkeley [Gra4],
Graham asked for more work for $1000:
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$1000 Open Problem 3.2 (Graham, August, 2003). Determine the value of the
chromatic number x of the plane.

It seems that presently Ron Graham believes that the chromatic number of the
plane takes on an intermediate value, between its known boundaries, for in his two
latest surveys [Gra7], [Gra8], he offers the following open problems:

$100 Open Problem 3.3 (Graham [Gra7], [Gra8]) Show that x > 5.°
$250 Open Problem 3.4 (Graham [Gra7], [Gra8]) Show that x < 6.

P

This prompted me to look at all Erd6s’s published predictions on the chromatic
number of the plane. Let me summarize them here for you. First Erdds believes—
and communicates it in 1961 [E61.22] and 1975 [E75.24]—that the problem creator
Nelson conjectured the chromatic number to be 4; Paul enters no prediction of his
own. In 1976 [E76.49] Erdss asks:

Is this graph 4-chromatic?
In 1979 [E79.04] ErdGs becomes more assertive:

It seems likely that the chromatic number is greater than four. By a theorem of de
Bruijn and myself this would imply that there are n points x;, ..., X, in the plane
so that if we join any two of them whose distance is 1, then the resulting graph
G(Xy, ..., Xu) has chromatic number > 4. I believe such an n exists but its value
may be very large.!”

A certainty comes in 1980 [E80.38] and [E80.41]:
I am sure that [the chromatic number of the plane] a; > 4 but cannot prove it.
In 1981 [E81.23] and [E81.26] we read, respectively:

It has been conjectured [by E. Nelson] that o, = 4, but now it is generally believed
that o, > 4.

It seems likely that x (EZ) > 4.
In 1985 [E85.01] Paul Erdss writes:
I am almost sure that h(2) > 4.

Once—just once—Erdds expresses mid-value expectations, just as Ron Graham
has in his Conjectures 3.3 and 3.4. It happened on Thursday, March 10, 1994 at
the 25th South Eastern International Conference on Combinatorics, Computing and
Graph Theory in Boca Raton. Following Erd8s’s plenary talk (9:30-10:30 A.M.),
I was giving my talk at 10:50 A.M., when suddenly Paul Erdds said (and I jotted
it down):

9 Graham cites Paul O’Donnell’s Theorem 45.4 (see it later in this book) as “perhaps, the evidence that
X is atleast 5.”

10 1f the chromatic number of the plane is 7, then for G(x1, ..., Xp) = 7 such an n must be greater than
6197 [Pri].
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Excuse me for interrupting, I am almost sure that the chromatic number of the plane
is greater than 4. It is not a proof, but any measurable set without distance 1 in a very
large circle has measure less than /4. I also do not think that it is 7.

It is time for me to speak on the record and predict the chromatic number of
the plane. I am leaning toward predicting 7 or else 4—somewhat disjointly from
Graham and Erd6s’s apparent expectation. Limiting myself to just one value, I con-
jecture:

Chromatic Number of the Plane Conjecture 3.5 '!
x =7

If you, in fact, prove the chromatic number is 7 or 4, I do not think you would
lose Graham’s prizes. I am sure Ron will pay his prizes for disproofs as well as
for proofs. On January 26, 2007 in a personal e-mail, Graham clarified the terms of
awarding his prizes:

I always assume that we are working in ZFC (for the chromatic number of the plane!).
My monetary awards can vary depending on which audience I am talking to. I always
give the maximum of whatever I have announced (and not the sum!).

11 See more predictions in Chapter 47.



4
Polychromatic Number of the Plane and Results
Near the Lower Bound

When a great problem withstands all assaults, mathematicians create related prob-
lems. It gives them something to solve, plus sometimes there is an extra gain in this
process, when an insight into a related problem brings new ways to see and conquer
the original one. Numerous problems have been posed around the chromatic number
of the plane. I would like to share with you my favorite among them.

It is convenient to say that a monochromatic set S realizes distance d if S contains
a monochromatic segment of length d; otherwise we say that S forbids distance d.

Our knowledge about this problem starts with the celebrated 1959 book by Hugo
Hadwiger and Hans Debrunner ( [HD2], and subsequently its enhanced translations
into Russian by Isaak M. Yaglom [HD3] and into English by Victor Klee [HDK]).
Hadwiger reported in the book the contents of the September 9, 1958 letter he
received from the Hungarian mathematician A. Heppes:

Following an initiative by P. Erd6s he [i.e., Heppes] considers decompositions of the
space into disjoint sets rather than closed sets. For example, we can ask whether propo-
sition 59 remains true in the case where the plane is decomposed into three disjoint
subsets. As we know, this is still unresolved.

In other words, Paul Erd6s asked whether it was true that if the plane were parti-
tioned (colored) into three disjoint subsets, one of the subsets would have to realize
all distances. Soon the problem took on its current “appearance.” Here it is.

Erdés’s Open Problem 4.1 What is the smallest number of colors needed for col-
oring the plane in such a way that no color realizes all distances?'?

This number had to have a name, and so in 1992 [Soi5] I named it the polychro-
matic number of the plane and denoted it by x,. The name and the notation seemed
so natural that by now it has become standard, and has (without credit) appeared in
such encyclopedic books as [JT] and [GO].

Since I viewed this to be a very important open problem, I asked Paul Erdés to
verify his authorship, suggested in passing by Hadwiger. As always, Paul was very
modest in his July 16, 1991 letter to me [E91/7/161tr]:

12 The authors of the fine problem book [BMP] incorrectly credit Hadwiger as “first” to study this prob-
lem (p. 235). Hadwiger, quite typically for him, limited his study to closed sets.

32 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5_4, © Alexander Soifer 2009
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I am not even quite sure that I created the problem: Find the smallest number of col-
ors for the plane, so that no color realizes all distances, but if there is no evidence
contradicting it we can assume it for the moment.

My notes show that during his unusually long 2-week visit in December 1991—
January 1992 (we were working together on the book of Paul’s open problems, soon
to be completed and published by Springer under the title Problems of pgom Erdds),
Paul confirmed his authorship of this problem. In the chromatic number of the plane
problem, we were looking for colorings of the plane such that each color forbids
distance 1. In the polychromatic number problem, we are coloring the plane in such a
way thateach color i forbids adistance d; . For distinct colors i and j, the corresponding
forbidden distances d; and d; may (but do not have to) be distinct. Of course,

Xp = X-
Therefore,
Xp =1.

Nothing else had been discovered during the first 12 years of this problem’s life.
Then, in 1970, Dmitry E. Raiskii, a student of the Moscow High School for Working
Youth'® 105, published ( [Rai]) the lower and upper bounds for x,. We will look
here at the lower bound, leaving the upper bound to Chapter 6.

Raiskii’s Theorem 4.2 (D. E. Raiskii [Rai]) 4 < x,,.

Three years after Raiskii’s publication, in 1973 the British mathematician
Douglas R. Woodall from the University of Robin Hood (I mean Nottingham),
published a paper [Wool] on problems related to the chromatic number of the
plane. Among other things, he gave his own proof of the lower bound. As I showed
in [Soil7], Woodall’s proof stemmed from a triple application of two simple ideas
of Hugo Hadwiger ( [HDK], Problems 54 and 59).

In 2003, the Russian turned Israeli mathematician Alexei Kanel-Belov commu-
nicated to me an incredibly beautiful short proof of this lower bound by the new
generation of young Russian mathematicians, all his students. The proof was found
by Alexei Merkov, a 10th grader from the Moscow High School 91, and commu-
nicated by Alexei Roginsky and Daniil Dimenstein in 1997 at a Moscow Pioneer
Palace [Poisk]. The following is the author’s proof with my gentle modifications.

Proof of the Lower Bound (A. Merkov): Assume the plane is colored in three col-
ors, red, white and blue, but each color forbids a distance: r, w, and b respectively.
Equip the 3-colored plane with the Cartesian coordinates with the origin O, and
construct in the plane three seven-point sets S,, S, and S, each being the Mosers
Spindle (Fig. 2.2), such that all spindles share O as one of their seven vertices,

13 Students in such high schools hold regular jobs during the day, and attend classes at night.



34 II Colored Plane

and have edges all equal to », w, and b respectively. This construction defines 6
“red” vectors vy, ..., vg from the origin O to each remaining point of S,; 6 “white”
vectors vy, ..., vjp from O to the points of S,,; and 6 “blue” vectors vis, ..., v
from O to the points of S, — 18 vectors in all.

Introduce now the 18-dimensional Euclidean space E'® and a function M from
R'8 to the plane R? naturally defined as follows: (ay, . .., aig) — ajvi+...+a;gvs.
This function induces a 3-coloring of R'® by assigning a point of R'® the color of
the corresponding point of the plane. The first six axes of E'® we will call “red”, the
next six axes “white”, and the last six axes “blue.”

Define by W the subset in E'® of all points whose coordinates include at most
one coordinate equal to 1 for each of the three colors of the axes, and the rest (15
or more) coordinates 0. It is easy to verify (do) that W consists of 7° points. For
any fixed array of allowable in W coordinates on white and blue axes, we get the
7-element set A of points in W having these fixed coordinates on white and blue
axes. The image M (A) of the set A under the map M forms in the plane a translate of
the original seven-point set S,. If we fix another array of white and blue coordinates,
we get another 7-element set in E'®, whose image under M would form in the plane
another translate of S,. Thus, the set W gets partitioned into 7 subsets, each of
which maps into a translate of S,.

Now recall the observation we made after the first solution of Problem 2.2 in
Chapter 2. It implies here that any translate of the Mosers Spindle S, contains at
most 2 red points out of its seven points. Since the set W has been partitioned into
the translates of S,, at most 2/7 of the points of W are red. We can start all over again
in a similar way to show that at most 2/7 of the points of W are white, and similarly
to show that at most 2/7 of the points of W are blue. But 2/7 4+ 2/7 + 2/7 does
not add up to 1! This contradiction implies that at least one of the colors realizes all
distances, as required. =

At the International Congress on Mathematical Education in 1992 in Quebec
City, I spent much time with Nikolai N. (Kolya) Konstantinov, whose mathematical
circle at the Old Building of Moscow State University I attended as an 8th grader
on Saturday afternoons during the 1962—-1963 academic year. To my amazement,
I learned that the hero of this section Dmitrii Raiskii was Konstantinov’s student
as well, just 2 years my junior! It took me many years to get “the full story” out
of Kolya Konstantinov, but it was worth waiting for his February 23, 2007 e-mail,
which I am translating here from the Russian:

Dima Raiskii entered school Nr. 7 in 1965.!* He was a part of a very strong group of
students, from which several professional mathematicians came out, including Lena
Nekhludova, who won gold medal of the International Mathematical Olympiad, Andre;j
Grjuntal, now chair of a department in the Institute of System Research, Vasilii Kozlov,
now professor in the department of statistics of the Mechanics-Mathematical Faculty of
the Moscow State University, and several well-known applied mathematicians.

14 This was one of the Soviet Union’s best high schools with the emphasis on mathematics, where courses
were offered by some of the great Moscow State University professors.
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Teachers of main mathematical courses were also very strong, including Joseph
Bernstein, Viktor Zhurkin, formerly a graduate of this school and now a well-known
biochemist, working in the USA.

The teaching method was based on students proving theorems of a course on their
own, and on solving a large number of meaningful problems, which required creative
abilities. . .

Dima performed well in mathematics, but was missing classes, and he had difficul-
ties in other disciplines, in which teachers did not want to pass him because of small
amount of earned credits. However, the main problem was at home. Dima’s father
thought his son was inept and insisted that Dima master a profession of a shoemaker,
so that he could somehow feed himself. When I got to know Dima’s family, I did not
see his father, probably because by then he had already left the family, but I did not
feel I had the right to ask about it.

Without any help, on his own Dima had read Hadwiger and Debrunner’s book on
combinatorial geometry.'> He told me that he solved a problem from that book and
wanted to show it to me. His presentation of the proof was in a “hall style” — very
careless and informal, and 1 did not understand it right away — I felt, nevertheless, that
the proof seemed plausible.

Dima then wrote down his solution. I made sure that everything was correct.
However, Dima did not have an experience of writing articles, and so I undertook
the “combing” of the text, and gave it the usual for publication look — I introduced
several notations and terms. My work was purely technical; the published text did
not contain my single idea. There was, however, an example, inserted by the Editor
of Mamemamuueckue 3amemyu [Mathematical Notes]'® Stechkin.'” Then a funny
episode happened. The inserted paragraph Stechkin ended with the phrase “the author
thanks Stechkin for this example.” Dima, however, thought that the word “author”
refers to Stechkin in this case, and could not understand how Stechkin could thank
himself.

Meanwhile clouds were thickening over Dima’s head. The school wanted to expel
him for absences, and he got into a children section of a psychiatric hospital. I visited
him there. I saw lads of a school age behaving themselves quite freely. The counselors
looked upon it nonchalantly — what can one ask of the sick ones? One boy, for example,
asked, what would happen if to throw Brezhnev'® into a toilet bowl and flush the toilet?
And other silliness of the same kind.

After the release from the hospital, Dima [was expelled from the mathematical
school Nr. 7 and] transferred to the school [Nr. 105] for working youth. There his
affairs got even worse. He was finishing his senior 11th year, and the teachers’ council
had to decide whether to graduate the student, who missed countless classes and had
almost no grades. At that time, the school received a letter from England. The thing
is, at the end of Dima’s published article there was the school’s number, where he
studied at the time of the article’s publication. The letter was written by the professor

15 [HD3].
16 The journal where this article appeared.

17 Sergei Borisovich Stechkin, a noted Russian mathematician — see his example and more about this
story in chapter 6.

18 Head of the Soviet Union at the time.



36 II Colored Plane

who worked on the same problem, but did not succeed. He informed Raiskii that he
was sending him all the materials because he would no longer work on this problem,
but hoped that Raiskii would be interested in acquainting himself with this unfinished
work. This was not just a letter, but a thick packet, and the letter opened with “Dear
Professor Raiskii.” The lady-principal looked very gloomily during the teachers’ coun-
cil meeting dedicated to the question of Raiskii’s graduation. She opened the meeting
by acquainting the teachers with the content of this letter. She then said, “Let us grad-
uate him.”

In conclusion, let me add that Raiskii’s family difficulties continued. Of course,
Dima’s psyche was not fully normal, but I think that his mother’s psyche played a
more negative role in his life than his own psyche. Here is one of her tricks. After
Dima was released from the hospital, she wrote a letter to the minister of educa-
tion complaining about me and P. S. Alexandrov.'”” The school [number 7] prin-
cipal Volkov showed me this letter (which the ministry forwarded to the school).
Dima’s mother claimed in this letter that Alexandrov and Konstantinov politically
corrupted the child, and inoculated the child with the anti-Soviet views. It went
on further to claim that Konstantinov established the power over all Moscow psy-
chiatrists and they all dance to his tune. The principal read this letter to me seri-
ously, without any smile, until the last phrase when he finally allowed himself to
laugh. I do not think it would be interesting to describe other tricks of Dima’s
mother.

While a high school student, Dima tried to solve mathematical problems many
times. In particular, while participating in the Moscow Mathematical Olympiad, he
worked not at all on the problems of the Olympiad, but on his own problems. He then
got involved in the Eastern games of the mind — but I am not an expert in them, and do
not remember their names. After that, I think, you know more about Dima than I do.

I wish you success [with the book]. Kolya.

On the Christmas day, December 25, 2003, the hero of this section, Dima Raiskii,
told me how he came across the polychromatic number of the plane problem:

I learned about our coloring problem while reading the book Combinatorial Geometry
of the Plane by Hadwiger and Debrunner [HD3]. This book was a part of the 3rd prize
that I received at the Moscow Mathematical Olympiad of the 8th graders.

In my phone conversation with Dima Raiskii, I expressed my regret that he left
mathematics after such a brilliant first paper. “Mathematicians appeared boring to
me,” Dima replied, and added: “They were constantly suffering from a feeling of
guilt toward each other, or tried to make others repent. I felt much more at ease
with Go players.” And so Dima worked as a programmer and spent his time playing
the ancient Chinese game Go. Then he gave up the city life, as he informed me on
February 6, 2003:

I now settled in a remote village, where there is neither post nor computer. However,
when I come to the city, I visit an internet-salon. What is new with your studies of
African cultures? Are there meditative practices in Africa?

19 pavel Sergeevich Alexandrov, one of Russia’s great mathematicians.
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In his e-mails sent on the go from internet cafés, Dima described his involvement
in Go, meditation, and writing books to aid others with meditation and spirituality.
On March 17, 2003 I read:

In the latter years I have played Go. This is the only game richer than chess; it is
popular in China, Japan, Korea, etc. One of my students later became the Russian
Champion for players up to the age of 10. According to the tradition, many Go players
do meditative exercises in the style of Zen because this game equally uses both sides
of the brain. In a close circle, I taught Zen meditation. In the East, however, many
Buddhist authorities use Christian texts for teaching meditation. I am now preparing a
small book of exercises for people raised in the Christian culture. . .

P.S.: Go (brought to Europe by Lasker) is a most interesting object for computer
modeling — in this regard, Go is richer than chess. One of my acquaintances is the
European Champion in Go programming. Are people at Princeton involved in it?

Dima asked me several times to publish his results as a joint work of his and
Nikolai Nikolaevich (Kolya) Konstantinov, his and my mathematics teacher, who—
for better or for worse—influenced my choice of mathematics as profession. Dima
insisted on sharing credit with Kolya, and Kolya categorically refused his share,
because in his opinion, all of the ideas belonged to Dima.

Dima does not communicate with many people. Even his greetings to his
Moscow teacher Konstantinov he sends via me in the USA. His e-mails to me
are always inquisitive and warm. In his November 23, 2006 e-mail he expresses an
appreciation of our correspondence:

News from you always improve my mood. Give my regards to Nikolai Nikolaevich
[Konstantinov].

In his last e-mail to date, on December 19, 2007, Dima wrote:

I was always interested in the Eastern culture and studies of the Eastern religions. In
the old times, however, I could not have publications [on these subjects], and instead
had a lot of troubles. It seems likely that something will be published in the nearest
time. This will start my public “biography.” Will you be interested in my article? . ..
Yours always, Dima.

Dear Dima Raiskii, through the years of our correspondence, we became not
only pen pals, but also friends. The societal pressure altered his life similarly to the
changes in the life of Grisha Perelman, who abandoned mathematics at the peak
of his creative powers, after conquering the celebrated Poincare and Geometriza-
tion conjectures. Their unprotected moral purity and extreme sensitivity made it
difficult for them to deal with the ills of the society in general and the mathemat-
ical community in particular. Our friendship has provided Dima with an outlet for
his thoughts and communication. I hope someone has offered the same to Grisha
Perelman.

P.S.: After this book went into production, I informed Dima that his theorem and
biography will appear in it, as will Van der Waerden’s theorem and biography. On
May 3, 2008 Dima replied:
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Sasha, thank you very much! My biography and biography of Van der Waerden - not a
bad combination. I will be telling my fellow villagers: “Once upon a time I am sitting
with Vanya,? this Vanya, you know, which is der Waerden, who...” Will definitely read
your book. Happy [W.W.II] Victory Day! =

Paul Erd6s proposed yet another related problem (e.g., see [E85.01]). For a given
finite set S of r positive numbers, a set of forbidden distances if you will, we define
the graph G s(E?), whose vertices are the points of the plane, and a pair of points is
adjacent if and only if the distance between them belongs to S. Denote

Xr = max x (Gs(E?)).

“It is easy to see that lim , / r = 00,” Erd8s writes, and poses a question:
r—00

Erdos’s Conjecture 4.3 Does x, grow polynomially?

It is natural to call the chromatic number g (Ez) of the graph Gg(E?) the
S-chromatic number of the plane. One can pose a more general and hard problem,
and in fact, it is an old problem of Paul Erdés (“I asked long ago,” Paul says in
[E94.60]):

Erdés’s Open Problem 4.4 Given S, find the S-chromatic number xs (E?) of
the plane.

The difficulty of this problem should be clear to you: for a 1-element set S this is
the chromatic number of the plane problem!

20 Vanya is a nickname for Ivan. Dima is playing with the likeness of Van [der Waerden] and Vanya.



5
De Bruijn-Erdos Reduction to Finite Sets
and Results Near the Lower Bound

We can expand the notion of the chromatic number to any subset S of the plane. The
chromatic number x(S) of § is the smallest number of colors sufficient for coloring
the points of S in such a way that forbids monochromatic unit segments.

In 1951 Nicolaas Govert de Bruijn and Paul ErdSs published a very powerful tool
([BE2]) that will help us with this and other problems. We will formulate and prove
it in Part V. In our setting here, it implies the following.

De Bruijn-Erdés Compactness Theorem 5.1>! The chromatic number of the
plane is equal to the maximum chromatic number of its finite subsets.

Thus, as Paul Erdés used to say, the problem of finding the chromatic number of
the plane is a problem about finite sets in the plane.??

There are other, easier questions about finite sets in the plane. Solve the following
two problems on your own.

Problem 5.2 Find the smallest number &; of points in a plane set whose chromatic
number is equal to 3.

Problem 5.3 (L. Moser and W. Moser, [MM]) Find the smallest number 84 of points
in a plane set whose chromatic number is 4. (Answer: 84 = 7).

Victor Klee and Stan Wagon posed the following open problem [KW]:

Open Problem 5.4 When « is 5, 6, or 7, what is the smallest number & of points in
a plane set whose chromatic number is equal to k?

Of course, Problem 5.4 makes sense only if x > 4. In the latter case this problem
suggests a way to attack the chromatic number of the plane problem by constructing
new “spindles.”

When you worked on Problems 5.2 and 5.3, you probably remembered our Prob-
lems 2.1 and 2.2. Indeed, those problems provided optimal configurations (Figs. 2.1
and 2.2) for Problems 5.2 and 5.3. Both optimal configurations were built of equi-
lateral triangles of side 1. Can we manage without them?

21 The axiom of choice is assumed in this result.

22 Or s0 we all thought until recently. Because of that, I chose to leave this chapter as it was written in
the early 1990s. BUT: see Part X of the book for latest developments.
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Problem 5.5 Find the smallest number o3 of points in a plane set without unit equi-
lateral triangles whose chromatic number is equal to 3.

Solution: o3 = 5. The regular pentagon of side 1 (Fig. 5.1) delivers a minimal
configuration of chromatic number 3.

It is easy to 2-color any four-point set A, B, C, D without equilateral triangles
of side 1. Just color A red. All points distance 1 from A color blue; these are the
second generation points. All uncolored points distance 1 from any point of the
second generation, we color red; these are the third generation points. All uncolored
points distance 1 from the points of the third generation, we color blue. If we did not
color all four points, we start this process all over again by coloring any uncolored
point red. If this algorithm were to define the color of any point not uniquely, we
would have an odd-sided n-gon with all sides 1, i.e., an equilateral triangle (since
n < 4), which cannot be present, and thus would provide the desired contradiction.

Fig. 5.1 Equilateral pentagon of side 1

For four colors this was for a while an open problem first posed by Paul Erdés in
July 1975, (and published in 1976), who, as was usual for him, offered to “buy” the
first solution—for $25.

Paul Erdés’s $25 Problem 5.6 [E76.49] Let S be a subset of the plane which con-
tains no equilateral triangles of size 1. Join two points of S if their distance is 1.
Does this graph have chromatic number 3?

If the answer is no, assume that the graph defined by S contains no C; [cycles of
length /] for 3 <[ <t and ask the same question.

It appears that Paul Erd8s was not sure of the outcome—which was rare for him.
Moreover, from the next publication of the problem in 1979 [E79.04], it is clear that
Paul expected that triangle-free unit distance graphs had chromatic number 3, or
else chromatic number 3 can be forced by prohibiting all small cycles up to Cy, for
a sufficiently large k:

Paul Erdés’s $25 Problem 5.7 [E79.04] “Let our n points [in the plane] are such
that they do not contain an equilateral triangle of side 1. Then their chromatic
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number is probably at most 3, but I do not see how to prove this. If the conjecture
would unexpectedly [sic] turn out to be false, the situation can perhaps be saved by
the following new conjecture:

There is a k so that if the girth of G(xy, ..., x,) is greater than k, then its
chromatic number is at most three—in fact, it will probably suffice to assume that
G(x1, ..., x,) has no odd circuit of length < k.3

Erdés’s first surprise arrived in 1979 from Australia: Nicholas Wormald, then
of the University of Newcastle, Australia, disproved the first, easier, triangle-free
conjecture 5.6. Erd6s paid $25 reward for the surprise, and promptly reported it in
his next 1978 talk (published 3 years later [E81.23]):

Wormald in a recent paper (which is not yet published) disproved my original con-
jecture — he found a [set] S for which [the unit distance graph] G(S) has girth 5 and
chromatic number 4. Wormald’s construction uses elaborate computations and is fairly
complicated.

In his paper [Wor], Wormald proved the existence of a set S of 6448 (!) points
without triangles and quadrilaterals with all sides 1, whose chromatic number was
4, while being aided by a computer. I would like to give you a taste of the initial
Wormald construction (or, more precisely, the Blanche Descartes construction that
Wormald was able to embed in the plane), but it is a better fit in Chapter 12.

The size of Wormald’s example, of course, did not appear to be anywhere near
optimal. Surely, it must have been possible to do the job with less than 6448 points!
In my March-1992 talk at the Conference on Combinatorics, Graph Theory and
Computing at Florida Atlantic University, I shared this Paul Erdés’s old question,
but I put it in a form of competition:

Open Problem 5.8 Find the smallest number o4 of points in a plane set without
unit equilateral triangles whose chromatic number is 4. Construct such a set S of o4
points.

The result exceeded my wildest dreams: a number of young mathematicians,
including graduate students, were inspired by this talk and entered the race I pro-
posed. Coincidentally, during that academic year, with the participation of the cel-
ebrated geometer Branko Griinbaum, and of Paul Erdds, whose problem papers set
the style, I started a new and unique journal Geombinatorics. This journal was dedi-
cated to problem-posing essays on discrete and combinatorial geometry and related
areas (it is still alive and well now, 17 years later). The aspirations of the journal
were clear from my 1991 editor’s page in issue 3 of volume I:

In a regular journal, papers appear 1 to 2 years after research is completed. By then
even the author may not be excited any more about his results. In Geombinatorics we
can exchange open problems, conjectures, aspirations, work-in-progress that is still
exciting to the author, and therefore exciting to the reader.

23 The symbol G(x1, ..., x,) denotes the graph on the listed inside parentheses n vertices, with two
vertices adjacent if and only if they are unit distance apart.



42 II Colored Plane

A true World Series played out on the pages of Geombinatorics around Prob-
lem 5.8. The graphs obtained by the record setters were as mathematically signif-
icant as they were beautiful. I have to show them to you—see them discussed in
detail in Chapters 14 and 15.

Many attempts to increase the lower bound of the chromatic number of the plane
were not successful. The Rutgers University’s Ph.D. student Rob Hochberg believed
(and still does) that the chromatic number of the plane was 4, while his roommate
and fellow Ph.D. student Paul O’Donnell was of the opposite opinion. They man-
aged to get alone in spite of this disagreement of the mathematical kind. On January
7, 1994, Rob sent me an e-mail to that effect:

Alex, hello. Rob Hochbeg here. (The one who’s gonna prove x (Rz) =4.).... It seems
that Paul O’Donnell is determined to do his Ph. D. thesis by constructing a 5-chromatic
unit distance graph in the plane. He’s got several interesting 4-chromatic graphs, and
great plans. We still get along.

Two months later, Paul O’Donnell’s abstract in the Abstracts book of the Interna-
tional Conference on Combinatorics, Graph Theory and Computing in Boca Raton,
Florida included the following words:

The chromatic number of the plane is between four and seven. A five-chromatic sub-
graph would raise the lower bound. If I discover such a subgraph, I will present it.

We all came to his talk of course (it was easy for me, as I spoke immediately
before Paul in the same room). However, at the start of his talk, Paul simply said
“not yet,” and went on to show his impressive 4-chromatic graph of girth 4. Five
years later, on May 25, 1999, Paul O’Donnell defended his doctorate at Rutgers
University. I served as the outside member of his Ph.D. defense committee. In fact,
it appears that my furniture had something to do with Paul O’Donnell’s remarkable
dissertation, for in the dissertation’s Acknowledgements he wrote:

Thanks to Alex. It all came to me as I drifted off to sleep on your couch.

The problem of finding a 5-chromatic unit distance graph—or proving that one
does not exist—still remains open. However, much was learned about 4-chromatic
unit distance graphs. The best of these results, in my opinion, was contained in this
doctoral dissertation of Paul O’Donnell. He completely solved Paul Erd6s’s prob-
lem 5.7, and delivered to Paul Erd8s an ultimate surprise by negatively answering
his general conjecture:

O’Donnell’s Theorem 5.9 ([Odo3, Odo4, 0do5]) There exist 4-chromatic unit dis-
tance graphs of arbitrary finite girth.

I chose to divide the proof of this result between Parts III and IX. See you there!



6
Polychromatic Number of the Plane and Results
Near the Upper Bound

6.1 Stechkin’s 6-Coloring

In Chapter 4 we discussed the polychromatic number x, of the plane, and looked at
the 1970 paper [Rai] by Dmitry E. Raiskii where he was first to prove that 4 is the
lower bound of x,. The paper also contained the upper bound:

Xp < 6.

The example proving this upper bound was found by S. B. Stechkin and pub-
lished with his permission by D. E. Raiskii in [Rai]. Stechkin has never gotten a
credit in the West for his example. Numerous articles and books credited Raiskii
(except for Raiskii himself!). How did it happen? As everyone else, I read the
English translation of Raiskii’s paper [Rai]. It said (italics are mine):

S. B. Stechkin noted that the plane can be decomposed into six sets such that all dis-
tances are not realized in any one of them. A corresponding example is presented here
with the author’s solution.

I wondered: the author of what?, The author of the paper (as everyone decided)?
But there is very little need for a “solution” once the example is found. I felt as if
once again [ was a Sherlock Holmes. I ordered a copy of the original Russian text,
and I read it in disbelief:

A corresponding example is presented here with the author’s permission.

Stechkin permitted Raiskii to publish Stechkin’s example! The translator mixed
up somewhat similarly looking Russian words and “innocently” created a myth
(Table 6.1).

Table 6.1 Translator’s Folly

Russian word ~ English translation

peurieHue solution
pa3penieHre  permission

Let us roll back to the mathematics of this example.

A. Soifer, The Mathematical Coloring Book, 43
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Problem 6.1 (S. B. Stechkin, [Rai]). x, < 6, i.e., there is a 6-coloring of the plane
such that no color realizes all distances.

Solution by S. B. Stechkin [Rai]: The “unit of the construction” is a parallelo-
gram that consists of four regular hexagons and eight equilateral triangles, all of
side lengths 1 (Fig. 6.1). We color the hexagons in colors 1, 2, 3, and 4. Triangles
of the tiling we partition into two types: we assign color 5 to the triangles with a
vertex below its horizontal base; and color 6 to the triangles with a vertex above
their horizontal base. While coloring, we consider every hexagon to include its
entire boundary except its one rightmost and two lowest vertices; and every triangle
does not include any of its boundary points. Now we can tile the entire plane with
translates of the “unit of the construction.” =

/ / /
S S S S

AR KR

6 6 6 6

3 3

A@A;Av;;
00008
Y. Y.VY.VY

/ / /
Fig. 6.1 S.B.Stechkin’s 6-coloring of the plane

An easy construction solved Problem 6.1—easy to understand after it was found.
The trick was to find it, and Sergej B. Stechkin found it first. Christopher Columbus
too “just ran into” America! I got hooked.

6.2 Best 6-Coloring of the Plane

I felt that if our ultimate goal was to find the chromatic number x of the plane or to
at least improve the known bounds (4 < x < 7), it may be worthwhile to somehow
measure how close a given coloring of the plane is to achieving this goal. In 1992, 1
introduced such a measurement, and named it coloring type.

Definition 6.2 (A. Soifer [Soi5], [Soi6]) Given an n-coloring of the plane such that
the color i does not realize the distance d; (1 < i < n). Then we would say that this
coloring is of type (dy, d», . .., d,).

This new notion of type was so natural and helpful that it received the ultimate
compliment of becoming a part of the mathematical folklore: it appeared every-
where without a credit to its inventor (look, for example, p. 14 of the fundamental
991-page long monograph [GO]).
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It would have been a great improvement in our search for the chromatic num-
ber of the plane if we were to find a 6-coloring of type (1,1,1,1,1,1), or to show
that one does not exist. With the appropriate choice of a unit, we can make the
1970 Stechkin coloring to have type (1, 1,1, 1, %, %). Three years later, in 1973
Douglas R. Woodall [Wool] found the second 6-coloring of the plane with all dis-
tances not realized in any color. Woodall’s coloring had a special property that the
author desired for his purposes: each of the six monochromatic sets was closed. His
example, however, had three “missing distances”: it had type (1, 1, 1, %, \/%, ﬁg)'
Apparently, Woodall unsuccessfully tried to reduce the number of distinct distances,
for he wrote “T have not managed to make two of the three ‘missing distances’ equal
in this way” ( [Wool], p. 193).

In 1991, in search for a “good” coloring I looked at a tiling with regular octagons
and squares that I saw in many Russian public toilettes (Fig. 6.2).

Fig. 6.2 “Russian toilette tiling”

But “The Russian toilette tiling” did not work! See it for yourself:

Problem 6.3 Prove that the set of all squares in the tiling of Fig. 6.2 (even without
their boundaries) realizes all distances.

I then decided to shrink the squares until their diagonal became equal to the
distance between two closest squares. Simultaneously (!) the diagonal of the now
non-regular octagon became equal to the distance between the two octagons marked
with 1 in Fig. 6.2. I was in business!

Problem 6.4 (A. Soifer [So0i6]) There is a 6-coloring of the plane of type
(LLLLL ).

Solution: We start with two squares, one of side 2 and the other of diagonal
1 (Fig. 6.3). We can use them to create the tiling of the plane with squares and
(non-regular) octagons (Fig. 6.5). Colors 1, ..., 5 will consist of octagons; we will
color all squares in color 6. With each octagon and each square we include half of
its boundary (bold lines in Fig. 6.4) without the endpoints of that half. It is easy to
verify (please do) that +/5 is not realized by any of the colors 1, ..., 5; and 1 is not
realized by the color 6. By shrinking all linear sizes by a factor of /5, we get the
6-coloring of type (1, 1,1, 1, 1, %).
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To simplify a verification, observe that the unit of my construction is bounded by
the bold line in Fig. 6.5; its translates tile the plane.

N

Fig. 6.3 Basis of the construction

Fig. 6.4 Coloring of the boundaries

Fig. 6.5 A. Soifer’s 6-coloring of the plane

I had mixed feelings when I obtained the result of problem 6.4 in early August
1991. On the one hand, I knew the result was “close but no cigar”: after all, a
6-coloring of type (1,1,1,1,1,1) has not been found. On the other hand, I thought
that the latter 6-coloring may not exist, and if so, my 6-coloring would be the best
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possible. There was another consideration as well. While in a Ph.D. program in
Moscow, I hoped to produce the longest paper that might still be accepted by a
major journal (I had one published in 1973 that in manuscript was 56 pages long :-).
This time I was concerned with a “dual record”: how short can a paper be and still
contain enough “beef” to be refereed in and published? The paper [Soi6] solving
problem 6.4 was 1.5 pages long, plus pictures. It was accepted within a day. It also
gave birth to a new definition and an open problem.

Definition 6.5 ( [HS1]) Almost chromatic number y, of the plane is the minimal
number of colors that are required for coloring the plane so that almost all (i.e., all
but one) colors forbid unit distance, and the remaining color forbids a distance.

We have the following inequalities for y,:
4<x.=<6.

The lower bound follows from Dmitry Raiskii’s [Rai]. I proved the upper bound
in problem 6.4 above [So0i6]. This naturally gave birth to a new problem, which is
still open:

Open Problem 6.6 ( [HS1]) Find x,.

6.3 The Age of Tiling

Hadwiger’s, Stechkin’s and my ornaments (Figs. 2.4, 6.1, and 6.5 respectively)
delivered new mathematical results. They were also aesthetically pleasing. Have

Fig. 6.6 Ancient Chinese Lattice
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(K K KKK )
K K K R KK
(K K KKK )
X K K R K K]
(K KK KK )
K K K R K K]
(K K KK K )
KK K K K K]
(K K KKK )
O @O @@

Fig. 6.7 Ancient Chinese Lattice

Fig. 6.8 Ancient Chinese Lattice

we contributed something, however little, to the arts? Not really. Nothing is new
in the world of art. We can find Henry Moore’s aesthetics in pre-Columbian art
and Picasso’s cubistic geometrization of form in the art of Sub-Saharan Africa. Our
ornaments too were known for over 1,000 years to artists of China, India, Persia,
Turkey, and Europe. Figures 6.6, 6.7, and 6.8 reproduced with the kind permission
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of the Harvard-Yenching Institute from the wonderful 1937 book A Grammar of
Chinese Lattice by Daniel Sheets Dye ( [Dye]), show how those ornaments were
implemented in old Chinese lattices.

If it is any consolation, I can point out that our Chinese ancestors did not invent
the beauty and strength of the honeycomb either: bees were here first!
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Continuum of 6-Colorings of the Plane

In 1993 another 6-coloring was found by Ilya Hoffman and I ( [HS1], [HS2]). Its
typewas (1,1, 1,1, 1, V22— 1). The story of this discovery is noteworthy. In the sum-
mer of 1993 I was visiting my Moscow cousin Leonid Hoffman, a well-known New
Vienna School composer. His 15-year-old son Ilya studied violin at the Gnesin’s
Music High School. Ilya set out to find out what I was doing in mathematics, and did
not accept any general answers. He wanted particulars. I showed him my 6-coloring
(Problem 6.4), and Ilya got busy. The very next day he showed me the Stechkin
coloring (Fig. 6.1) that he discovered on his own! “Great,” I replied, “but you are
23 years too late.” A few days later, he came up with a new idea of using a 2-square
tiling. Ilya had an intuition of a virtuoso fiddler and no mathematical culture—I
calculated the sizes the squares had to have for the 6-coloring to do the job we
needed, and the joint work of the unusual musician—-mathematician team was born.
Today at 30, Ilya has completed the graduate school of Moscow Conservatory in
the class of the celebrated violist and conductor Yuri Bashmet, and is now one of
Russia’s hottest violists and a winner of several international competitions.

Problem 7.1 (I. Hoffman and A. Soifer [HS1], [HS2]) There is a 6-coloring of the
plane of type (1, 1, 1, 1, 1, V2 — ).

Solution: We tile the plane with squares of diagonals 1 and /2 — 1 (Fig. 7.1).
We use colors 1, ..., 5 for larger squares, and color 6 for all smaller squares. With
each square we include half of its boundary, the left and lower sides, without the
endpoints of this half (bold lines in Fig. 7.2).

To easily verify that this coloring does the job, observe the unit of the construc-
tion that is bounded by the bold line in Fig. 7.1; its translates tile the plane. =

The two examples, found in solutions of Problems 6.4 and 7.1 prompted me in
1993 to introduce a new terminology for this problem, and to translate the results
and problems into this new language.

Open Problem 7.2 (A. Soifer [Soi7], [Soi8]) Find the 6-realizable set X¢ of
all positive numbers « such that there exists a 6-coloring of the plane of type
1, 1,1, 1,1, ).

50 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5_7, © Alexander Soifer 2009
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o L z

Fig. 7.1 Hoffman-Soifer’s 6-coloring of the plane

Fig. 7.2

In this new language, the results of Problems 6.4 and 7.1 can be written as
follows:

1
—,v2—-1¢€eXg.

NG

Now we have two examples of “working” 6-colorings. But what do they have
in common? It is not obvious, is it? After a while I realized that they were two
extreme examples of the general case, and in fact a much better result was possible,
describing a whole continuum of “working” 6-colorings!

Theorem 7.3 (A. Soifer [Soi7], [Soi8])

[ﬁ—l, }gx&
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Fig. 7.3

i.e., for every o € [\/5 -1, %] there is a 6-coloring of type (1,1, 1,1, 1, ar).?*
Proof Let a unit square be partly covered by a smaller square, which cuts off the unit
square vertical and horizontal segments of lengths x and y respectively, and forms
with it an angle w (Fig. 7.3). These squares induce the tiling of the plane that consists
of non-regular octagons congruent to each other and “small” squares (Fig. 7.4).

Now we are ready to color this tiling in 6 colors. Denote by F the unit of our
construction, bounded by a bold line (Fig. 7.4) and consisting of 5 octagons and
5 “small” squares. Use colors 1 through 5 for the octagons inside F' and color 6 for
all “small” squares. Include in the colors of octagons and “small” squares the parts
of their boundaries that are shown in bold in Fig. 7.5. Translates of F tile the plane
and thus determine the 6-coloring of the plane. We now wish to select parameters to
guarantee that each color forbids a distance.

Fig. 7.4

24 Symbol [a, b], a < b, as usual, stands for the line segment, including its endpoints a and b.
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o

Fig. 7.5

At first, the complexity of computations appeared unassailable to me. However, a
true Math Olympiad approach (i.e., good choices of variables, clever substitutions,
and nice optimal properties of the chosen tilings) allowed for successful sailing.

Let x < y (Fig. 7.3). It is easy to see (Figs. 7.6 and 7.7) that we can split each
“small” square into four congruent right triangles with legs x and y and a square of
side y — x.

The requirement for each color to forbid a distance produces the following sys-
tem of two inequalities (Fig. 7.6):

{dl >d a0

dy > dy

/
N/

—

7T

Fig. 7.6

N
=

Fig. 7.7
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Figures 7.6 and 7.7 allow for an easy representation of all d;, (i = 1,2,3,4) in
terms of x and y. As a result, we get the following system of inequalities:

\/(1+y—x)2+(2x)22\/1+(1—2x)2
1—x—y>,/2(x2+y?)

Solving for x each of the two inequalities (7.2) separately, we unexpectedly get
the following system:

(7.2)

20 -y»x+ (¥ +2y—1)>0
CA2(1—yx+ (P +2y—1)<0

Therefore, we get an equation (!) in x and y:
X +2(0-yx+ (¥ +2y—1)=0.

Treating this as the equation in x, we obtain a unique (!) solution for x as a
function of y that satisfies the system (7.2) of inequalities:

x=+2—4y+4+y—1, where 0 <y <0.5. (7.3)

Since 0 < x < y, we get even narrower bounds for y : 0.25 <y < V2 —1.
For any value of y within these bounds, x is uniquely determined by (7.3) and is
accompanied by the equalities (!) dy = d and d3 = d,.

Thus, we have showed that for every y € [0.25, V2 — 1] there is a 6-coloring of
type (1, 1, 1, 1, 1, ). But what values can « take on? Surely,

_d4

= E (7.4)

o

Let us introduce a new variable ¥ = /2 —4y, where ¥ € [2 — ﬁ, 1], i.e.,
4y = —Y? 4 2, and figure out x from (7.3) as a function of ¥:

_ _vy2
4y =—Y2+2 } 75

dx = —Y?+4Y -2

Now substituting from (7.1) and (7.2) the expressions for d4 and d; into (7.4) and
using (7.5) to get rid of x and y everywhere, we get a “nice” expression for a” as a
function of Y (do verify my algebraic manipulations on your own):

5 Y4 —4y3 +8Y? —8Y +4
o = .
Y4 —8Y3 +24Y2 — 32Y 4+ 20
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By substituting Z = Y — 2, where Z € [—ﬁ —l], we get a simpler function
o’ of Z:

4Z(Z2 +2Z +2)

2
=1
* * Z4+4

To observe the behavior of the function o2, we compute its derivative:

4
2y 6 5 4 2

Normally there is nothing promising about finding exact roots of an algebraic
polynomial of degree greater than 4. But we are positively lucky here, for this sixth
degree polynomial can be nicely decomposed into factors:

(@) = 2> =) [z + 1) +1].

“@rar

Hence, the derivative has only two zeros. In fact, in the segment of our interest
[—\/Z —l], the only extremum of a? occurs when Z = —+/2. Going back

from Z to Y to y, we see that on the segment y € [0.25, V2 - 1] the function

o = «(y) decreases from o = \/% ~ 0.44721360 (i.e., 6-coloring of problem

64)t0ox = V2 =1 ~ 0.41421356 (i.e., 6-coloring of Problem 7.1). Since the
function @ = «(y) is continuous and increasing on [0.25, V2 — 1], it takes on each

intermediate value from the segment [«/E -1, %ﬁ], and only once.
We have proved the required result, and much more:

For every angle w between the small and the large squares (Fig.7.3), there are—
and unique—sizes of the two squares (and unique squares intersection parameters x
and y), such that the constructed 6-coloring has type (1, 1, 1, 1, 1, ) for a uniquely
determined «o.

This is a remarkable fact: the “working” solutions barely exist—they comprise
something of a curve in a three-dimensional space of the angle w and two linear
variables x and y! We have thus found a continuum of permissible values for « and
a continuum of “working” 6-colorings of the plane. =

Remark: The problem of finding the 6-realizable set X has a close relationship
with the problem of finding the chromatic number y of the plane. Its solution would
shed light—if not solve—the chromatic number of the plane problem:
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if 1 ¢ Xg, then x =7,
if 1 € X, then x < 6.

I am sure you understand that problem 7.2, formulated in just two words, is
extremely difficult.

In 1999, the Russian authorities accused my coauthor and great young musician
Ilya Hoffman of computer hacking and imprisoned him before the trial as “dan-
ger to the society.” I flew to Moscow, met with the presiding judge, met with and
received support from members of the Russian Parliament “Duma,” human rights
leaders, Vice President of the Russian Academy of Sciences and the celebrated jurist
Vladimir Nikolaevich Kudriavtsev.”> When the trial came, Ilya was released home
from the courtroom. While in prison, he was not allowed to play viola, so Ilya wrote
music and mathematics. This page he sent to me from his cell (page 56):

= S - ot —_—

Pv‘"("{. /H(’.Ktﬁ(b\o{f e gO'r'!r('.i"

i
O

Ilya discovered a new 6-coloring of the plane. Four colors consist of regular
hexagons of diameter 1, and two colors occupy rhombuses. By carefully assigning
colors to the boundaries, we get the 6-coloring of type

NN
=)

11 17 17 19 ]
( 2

25 In 1951, Stalin’s Prosecutor General Vyshinskii announced a new legal doctrine: “one is guilty whom
the court finds guilty.” The presumption of innocence he called “bourgeois superstition.” The young senior
lieutenant rose to speak against the new Stalin’s doctrine. This amazing hero was V. N. Kudryavtsev.
It was unforgettable to meet this heroic man and get his full support.
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Chromatic Number of the Plane in Special
Circumstances

As you know from Chapters 4 and 6, in 1973, 3 years after Dmitry E. Raiskii,
Douglas R. Woodall published the paper [Wool] on problems related to the chro-
matic number of the plane. In the paper he gave his own proofs of Raiskii’s inequal-
ities of Problems 4.1 and 6.1. In the same paper, Woodall also formulated and
attempted to prove a lower bound for the chromatic number of the plane for the
special case of map-type coloring of the plane. This was the main result of [Wool].
However, in 1979 the mathematician from the University of Aberdeen Stephen
Phillip Townsend found an error in Woodall’s proof, and constructed a counterex-
ample demonstrating that one essential component of Woodall’s proof was false.
Townsend had also found a proof of this statement, which was much more elaborate
than Woodall’s unsuccessful attempt.

The intriguing history of this discovery and Townsend’s wonderful proof are a
better fit in Chapter 24, as a part of our discussion of map coloring—do not overlook
them! Here I will formulate an important corollary of Townsend’s proof.

Chromatic Number of Map-Colored Plane 8.1 The chromatic number of the
plane under map-type coloring is 6 or 7.

Woodall showed that this result implies one more meritorious statement:

Closed Chromatic Number of the Plane 8.2 ( [Wool]). The chromatic number of
the plane under coloring with closed monochromatic sets is 6 or 7.

I do not like to use the Greek word “lemma” since there is an appropriate English
word “tool” :-). And I would like to offer my readers the following tool from topol-
ogy to prove on their own. We will use this tool in the proof that follows.

Tool 8.3 If a bounded closed set S does not realize a distance d, then there is ¢ > 0
such that S does not realize any distance from the segment [d — ¢, d + ¢].

Proof of Result 8.2 [Wool |: Assume that the union of closed sets A;, Aj,..., A,
covers the plane and for each i the set A; does not realize a distance d;. Place onto
the plane a unit square lattice L, and choose an arbitrary closed unit square U of
L. Choose also i from the set {1, 2,..., n}. Denote by C(U); the closed set that
contains all points of the plane that are at most distance d; from a pointin U. The set
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A; N C (U); is closed and bounded, thus by Tool 8.3 there is ¢; (U) such that no two
points of A;, at least one of which lies in U, realize any distance from the segment

[di — & (U),d; + & (U)]. 8.1

Denote by ¢ (U) the minimum of ¢; (U) overalli =1, 2,..., n.
Now for the square U we choose a positive integer m (U) such that

1
m(U)

V2 < %s(U). (8.2)

On the unit square U we place a square lattice L’ of little closed squares u of
side ﬁ The inequality (8.2) guarantees that the diagonal of u is shorter than half
of our epsilon ¢ (U).

For each little square u contained in each unit square U of the entire plane, we
determine f (1) = min{i : u N A; # @}, and then foreachi = 1, 2,..., n define
the monochromatic color set of our new n-coloring of the plane as follows:

B=Ju (8.3)
S wy=i

As unions of closed squares u, each B; is closed, and all B; together cover the
plane. The interiors of these n sets B; are obviously disjoint. All there is left to prove
is that the set B; does not realize the distance d;. Indeed, assume that the points b,c
of B; are distance d; apart. The points b, c belong to little squares u,u, respectively,
each little square of side ﬁ Due to the definition (8.3) of B;, the squares u,u;
contain points a;,a, from A; respectively. With vertical bars denoting the distance
between two points, and by utilizing the inequality (8.2) we get:

1D, cl —eU) < lai, az| < |b,c|+&U),
ie.,
di—eW) < lay,az| < di +¢(U),

which contradicts (8.1).
Thus, the chromatic number under the conditions of result 8.2 is not smaller than
the chromatic number under the conditions of result 8.1. =

During 1993-1994 a group of three young undergraduate students Nathanial
Brown, Nathan Dunfield, and Greg Perry, in a series of three essays, (their first
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publications,) proved on the pages of Geombinatorics [BDP1], [BDP2], [BDP3]%¢
that a similar result is true for coloring with open monochromatic sets. Now the
youngsters are professors of mathematics, Nathan at the University of Illinois at
Urbana-Champaign, and Nathanial at Pennsylvania State University.

Open Chromatic Number of the Plane 8.4 (Brown-Dunfield—Perry). The chro-
matic number of the plane under coloring with open monochromatic sets is 6
or7.

26 The important problem book [BMP] mistakenly cites only one of these series of three papers. It also
incorrectly states that the authors proved only the lower bound 5, whereas they raised the lower bound to
6.



9
Measurable Chromatic Number of the Plane

9.1 Definitions

As you know, the length of a segment [a,b], a < b, on the line E! is defined as
b — a. Area A of a rectangle R = [ay, b1] X [aa, b2], a; < b; on the plane E?is
defined as A = (b; —a;)(b, — az). The French mathematician Henri Léon Lebesgue
(1875-1941) generalized the notion of area to a vast class of plane sets. In place of
area, he used the term measure. For a set S in the plane, we define its outer measure
w*(S) as follows:

W (S) = ian A(R)), 9.1)

with the infimum taken over all coverings of S by a countable sequence {R;} of
rectangles. When the infimum exists, S is said to be Lebesgue-measurable or — since
we consider here no other measures—imeasurable set—if for any set B in the plane,
w*(B) = pu* (BN S)+ u*(B\S). For a measurable set S, its measure is defined by
w(8) = u*(S).

Any rectangle is measurable, and its measure coincides with its area. It is shown
in every measure theory text that all closed sets and all open sets are measurable.
Giuseppe Vitali (1875—-1932) was first to show that in the standard system of axioms
ZFC for set theory (Zermelo—Fraenkel system plus the Axiom of Choice), there are
non-measurable subsets of the set R of real numbers.

We will use the same definition (9.1) for Lebesgue measure on the line E', when
the infimum is naturally taken over all covering sequences {R;} of segments. For
measure of S on the line we will use the symbol /(S). Generalization of the notion
of measure to n-dimensional Euclidean space E” is straight forward; here we will
use the symbol 1, (S). In particular, for n = 2, we will omit the subscript and simply
write (1(S).

9.2 Lower Bound for Measurable Chromatic Number
of the Plane

While a graduate student in Great Britain, Kenneth J. Falconer proved the following
important result [Fal]:

60 A. Soifer, The Mathematical Coloring Book,
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4
Falconer’s Theorem 9.1 Let R? = | J A, be a covering of the plane by four disjoint
i=1
measurable sets. Then one of the sets A; realizes distance 1.

In other words, the measurable chromatic number y,, of the plane is equal to 5,
6,0r7.

I found his 1981 publication [Fall] to be too concise and not self-contained for
the result that I viewed as very important. Accordingly, I asked Kenneth Falconer,
currently a professor and dean at the University of St. Andrews in Scotland, for a
more detailed and self-contained exposition. In February 2005, I received Kenneth’s
manuscript, hand-written especially for this book, which I am delighted to share
with you.

Before we prove his result, we need to get armed with some basic definitions and
tools of the measure theory.

A non-empty collection 3 of subsets of E? is called o-field, if 2 is closed under
taking complements and countable unions, i.e.,

*)yif A € 3, then E>\A € 3; and
o0
“Yif Ay, As, ..., Ans... €3 then | A; € 3.

i=1

Exercise 9.2 Show that any o-field 3 is closed under countable intersection and set
difference. Also, show that 2 contains the empty set ¢ and the whole space E>.

It is shown in all measure theory textbooks that the collection of all measurable
sets is a o' -field. The intersection of all o -fields containing the closed sets is a o -field
containing the closed sets, the minimal such o-field with respect to inclusion. Its
elements are called Borel sets. Since closed sets are measurable and the collection
of all measurable sets is a o -field, it follows that all Borel sets are measurable.

(Observe that in place of the plane E> we can consider the line E' or an
n-dimensional Euclidean space E", and define their Borel sets.)

The following notations will be helpful:

C(x, r)— Circle with center at x and radius r;
B(x, r)— Circular disk (or ball) with center at x and radius r.

For a measurable set S and a point x, we define the Lebesgue density, or simply
density, of S at x as follows:

D(S, x) = lim W
’ x—0 /,L(B(X, r))

where u (B(x, r)) is, of course, equal to wrl.

Lebesgue Density Theorem (LDT) 9.3 For a measurable set S C EZ, the density
D(S, x) exists and equals 1 if x € S and 0 if x € R?\S, except for a set of points x
of measure 0.
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For a measurable set A, denote
A={xeA:DA, x)=1}.

Then due to LDT, we get M(AAA) = 0, i.e., A is ‘almost the same’ as A.2
Observe also that 1 (S N B(x, r)) is a continuous function of x for r > 0; therefore,
A is a Borel set.

We will define the density boundary of a set A as follows:

dA ={x : D(A, x) # 0, 1 or does not exist}.
By LDT,
w(@A) = 0.

You can find on your own or read in [Cro] the proof of the following tool:

Tool 9.4 For a measurable set A C R?, such that both u(A) > 0 and u(R*\A) > 0,
we have 0A # (0.

4
Tool 9.5 If R? = | A, is a covering of the plane by four disjoint measurable sets,
i=1
4 4

then | J A; is a disjoint union with the complement 9t = | 9A;.

i=1 i=1
Proof follows from Tool 9.4 and the observation that if x € dA; then also x € dA;
forsome j #i. =

The next tool claims the existence of two concentric circles with the common
center in 901, which intersect 91 in length 0.

Tool 9.6 Let 91 be as in Tool 9.5; there exists x € 2 such that

I(C(x, )N M) =1 (C(x, V3N zm) —0.

Fig. 9.1

27 Here AAB stands for the symmetric difference of these two sets, i.e., AAB = (A\B) U (B\A).
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I will omit the proof, but include Falconer’s insight: “The point of this lemma is
that if we place the “double equilateral triangle” [Fig. 9.1] of side 1 in almost all
orientations with a vertex at x, the point x essentially has “2 colors” in any coloring
of the plane, and other points just one color. (Note [xw| = V3 D’

4

Tool 9.7 Let R> = [J A; be a covering of the plane by four disjoint measurable
i=1

sets, none of which realizes distance 1. Let x € 91 as in Tool 9.6, say without loss

of generality x € 9A; and x € dA,. Then [ (C(x, V3N\(A U Az) =0.

Proof Since x € dA| and x € dA;, there exists € > 0 such that

(D) e< W < 1 — ¢ for some arbitrarily small r, and

2) e< W < 1 — ¢ for some arbitrarily small r.

Consider the diamond (Fig. 9.1) consisting of two unit equilateral triangles xyz
and yzw, where x is the point fixed in the statement of this tool, and y, z, w ¢ 9
(this happens for almost all orientations of the diamond, by Tool 9.6). Thus suppose
y € A,(‘), z € A,( ) W E A,(w), where i(y), i(z), i(w) € {1, 2, 3, 4}. For
sufficiently small r, say r < ry, we get:

@) 1-% < M(A:mﬁB(y r))

r?

4) 1_% < “(AI()QB(Z ) <1

wr?

(5) 1— & < Mlhwnbwn) g

7'[]

We can now choose r < ry such that (1) holds (as well as (3), (4), (5)). Let v be
a vector going from the origin to a point in B (0, ) and consider translation of the
diamond x, y, z, w through v, i.e., to the diamond x + v, y +v, z+ v, w+ v. Now
(1), (3), (4), (5) imply that

1
ﬁ“ ({v €BO,r):x+veA,y+veAy,z+veEAy, w+tve Ai(w)})

Thus, we can choose v € B (0,r) suchthatx +v € Ay, y+v € Ajy), z+v €
Aiz, W+ v € Ajqy. Since by our assumption none of the sets A;,i = 1,2,3,4
realizes distance 1, we conclude (by looking at the translated diamond) that 1 #
(), 1#i(@),i(y)#i(2), i(z) #i(w),and i (w) #i(y).

The same argument, using (2), (3), (4), (5) produces 2 # i (y),2 # i (2),i (y) #
i(z), i(2) # i(w), and i (w) # i (y). Therefore, i(y), i(z) are 3 and 4 in some
order, and thus i(w) = 1 or 2,i.e., w € A; or w € A,.

By Tool 9.6, this holds for almost every orientation of the diamond. Since |xw| =
«/§, we conclude that for almost all w € C(x, ﬁ), we getw € Ajorw € A,. Thus,

l (C(x, «/§)\ (Al U Az)) = 0, as required. =
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Tool 9.8 Let C be a circle of radius r > % and let Ey, E, be disjoint measurable
subsets of C such that [ (C\(E U E;) = 0. Then if ¢ = 2sin™" (5;) is an irrational
multiple of , either E; or E, contains a pair of points distance 1 apart.

SN

\/

Fig. 9.2

Proof Assume that neither E; or E, contains a pair of points distance 1 apart.
Parameterize C (Fig. 9.2) by angle 6 (mod 27).
Let[(E}) > 0, then by LDT, there is 6 and ¢ > 0 such that

3
I(EyN(©O —¢&,0+¢)) > ZZE.

Let 0 be an angle. Since ¢ is an irrational multiple of 7, there is a positive integer
n such that

1
|6y — (2ne 4+ 09)| < 4_18 (mod 2 7).

Since neither E| or E, contain a pair of points distance 1 apart, we get (with
angles counted mod 27):

I(EiN@+kp—e,0+kp+e)=I(E NGO —¢,0+¢)) foreven k, and
L(EiNO+kp —e,0+kp+e)=2e—1(E;NO —¢,0+¢)) for odd k.

In particular, [ (E; N (6@ + 2np — ¢€,0 + 2np + ¢)) > %28, thus

3
l(Elﬂ(01_8,9+8))>128—£— —=¢.

3
4 4
Hence for all 0,

L(EyN(G —&,0+¢) - 1
2¢e -

k]

N |
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and by LDT [ (C\E|) = 0. This means that E; is almost all of C, and therefore
contains a pair of points until distance apart, a contradiction. =

Surprisingly, we need a tool from abstract algebra, or number theory.
2m
Tool 9.9 For any positive integer m, (1 —i4/1 1) # (—12)".

Proof 1t suffices to note that Q (\/ —11) is an Euclidean quadratic field, therefore,
its integer ring Z («/—11) (with units +1/ — 1) has unique factorization. (See
Chapters 7 and 8 in the standard abstract algebra textbook [DF] for a proof).

I believe that an alternative proof is possible: it should be not hard to show that
the left side cannot be an integer for any m. =

Now we are ready to prove Falconer’s Theorem 9.1.
4
Proof of Falconer’s Theorem 9.10 Let R> = [ J A; be a covering of the plane by

i=1
four disjoint measurable sets, none of which realizes distance 1. Due to Tool 9.6,

there is x € M such that [ (C(x, VINA; U Az) — 0. Taking E; = A1, E» = Ay
and r = /3, we get, the desired result by Tool 9.8—if only we can prove that

@ =sin"! (%) is an irrational multiple of 7. We have sinf = ﬁ?; cosf = 2—*{2

Assume m# is an integer multiple of 2 for some integral 2m. Then
2m
V11 L 1 1
[E— ] —— —
2V3 23

(1 - i«/ﬁ)zm = (—12)".

or

We are done, as the last equality contradicts Tool 9.9. «

9.3 Kenneth J. Falconer

I am always interested in learning about the life and personality of the author whose
result impressed me, aren’t you! Accordingly, I asked Kenneth to tell me about
himself and his life. The following account comes from his September 30, 2005,
e-mail to me.

I was born on 25th January 1952 at Hampton Court on the outskirts of London (at a
maternity hospital some 100 metres from the gates of the famous Palace). This was
two weeks before Queen Elizabeth II came to the throne and when food rationing
was still in place. My father had served in India for 6 years during the war while my
mother brought up my brother, 12 years my senior, during the London blitz. My parents
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were both school teachers, specializing in English, my brother studied history before
becoming a Church of England minister, and I was very much the ‘black sheep’ of the
family, having a passionate interest in mathematics and science from an early age. . .

I gained a scholarship to Corpus Christi College, Cambridge to read mathematics
and after doing well in the Mathematical Tripos I continued in Cambridge as a research
student, supervised by Hallard Croft. I worked mainly on problems in Euclidean geom-
etry, particularly on convexity and of tomography (the mathematics of the brain scan-
ner) and obtained my PhD in 1977.

I had the good fortune to obtain a Research Fellowship at Corpus Christi College,
where I continued to study geometrical problems, including the fascinating problem of
the chromatic number of the plane, showing in particular that the chromatic number of
a measurable colouring of the plane was at least 5. Also around this time I worked on
generalizations of the Kakeya problem (the construction of plane sets of zero area con-
taining a line segment in every direction). Thus I encountered Besicovitch’s beautiful
idea of thinking of such sets as duals of what are now termed ‘fractals’, with directional
and area properties corresponding to certain projections of the fractals. This led to my
‘digital sundial’ construction — a subset of R® with prescribed projections in (almost)
all directions. . .

In 1980 I moved to Bristol University as a Lecturer, where the presence of theoretical
physicist Michael Berry, and analyst John Marstrand were great stimulii. Here I started to
work on geometric measure theory, or fractal geometry, in particular looking at properties
of Hausdorff measures and dimensions, and projections and intersections of fractals. . .

It became clear to me that much of the classical work of Besicovitch and his
School on the geometry of sets and measures had been forgotten, and in 1985 I pub-
lished my first book ‘The Geometry of Fractal Sets’ to provide a more up to date and
accessible treatment. This was around the time that fractals were taking the world by
storm, following Mandelbrot’s conceptually foundational work publicised in his book
‘The Fractal Geometry of Nature’ which unified the mathematics and the scientific
applications of fractals. My book led to requests for another at a level more suited to
postgraduate and advanced undergraduate students and in 1990 I published ‘Fractal
geometry — Mathematical Foundations and Applications’ which has been widely used
in courses and by researchers, and has been referred to at conferences as ‘the book
from which we all learnt our fractal mathematics’. A sequel ‘Techniques in Fractal
Geometry’ followed in 1998. In collaboration with Hallard Croft and Richard Guy, I
also authored ‘Unsolved Problems in Geometry’, a collection of easy to state unsolved
geometrical problems. Happily (also sadly!) many of the problems in the book are no
longer unsolved!. ..

In 1993 I was appointed Professor at the University of St Andrews in Scotland, where
I have been ever since. Although St Andrews is a small town famous largely for its
golf, the University has a thriving mathematics department, in particular for analysis and
combinatorial algebra, to say nothing of its renowned History of Mathematics web site.
I became Head of the School of Mathematics and Statistics in 2001, with the inevitable
detrimental effect on research time. I was elected a Fellow of the Royal Society of Edin-
burgh in 1998, and to the Council of the London Mathematical Society in 2000. . .

My main leisure activity is long distance walking and hillwalking. I have climbed
all 543 mountains in Britain over 2500 feet high. I am a keen member of the Long Dis-
tance Walkers Association, having been Editor of their magazine ‘Strider’ from 1986—
91 and Chairman from 2000-03. I have completed the last 21 of the LDWA’s annual
hundred mile non-stop cross-country walks in times ranging from 26 to 32 hours.
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Coloring in Space

When in 1958 Paul Erd6s learned about the chromatic number of the plane problem,
he created a number of related problems, some of which we have discussed in the
preceding chapters. Paul also generalized the problem to n-dimensional Euclidean
space R". On October 2, 1991 I received a letter from him, which contained a his-
torical remark [E91/10/21tr]:?8

I certainly asked for the chromatic number of E™ long ago (30 years).

He was interested in both asymptotic behavior as n increased, and in the exact
values of the chromatic number for small #, first of all n = 3.

As we have already discussed in Chapter 4, in 1970 Dmitry E. Raiskii [Rai]
proved the lower bound for n-dimensional Euclidean spaces.

Raiskii’s Lower Bound 10.1 (Raiskii, 1970).
n+2<y (E") .

For n = 3 this, of course, gives 5 < x(E?). This lower bound for the three-
dimensional space had withstood 30 years, until in 2000 Oren Nechushtan of Tel
Aviv University improved it (and published 2 years later [Nec]):

Best Known Lower Bound for R® 10.2 (Nechushtan, 2000).
6 <y (E 3) .

The obvious upper bound of 27 for the chromatic number of 3-dimensional space
was reduced to 21 (it is proved in [Coul], where credit is given to this book; but of
course, I had nothing to do with it). Then the time had come for David Coulson of
Melbourne University, who reduced the upper bound to 18 [Coul]. Pay attention to
the dates, as it seems Coulson’s papers are slow to appear in print. The upper bound
of 18 was first submitted in 1993 to the Transaction of the American Mathematical
Society (on September 27, 1993 I received e-mail from Coulson to that effect). Then
(I assume due to lack of interest in the Transactions for this kind of mathematics)

28 Curiously, Paul wrote an improbable date on the letter: “1977 VII 25”.
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Coulson submitted it to Discrete Mathematics on April 24, 1995; he revised the
paper on August 30, 1996, and finally published it in 1997 [Coul], 4 years after the
initial submission.

Coulson then achieved a truly amazing improvement: he obtained the upper
bound of 15 by using face-centered cubic lattice (see Conway and Sloane [CS] for
more about 3-dimesional lattices). The upper bound of 15 also took 4 years to appear
in print. It was submitted to Discrete Mathematics on December 9, 1998. A month
later I received this manuscript to referee under number DM 9298. Amazingly, a
copy of my February 27, 1999 report survives. I suggested five stylistic improve-
ments, and wrote:

I found the main result to be of high importance to the field. Indeed, Coulson has
dramatically improved his own previous bound of 18 by proving that 15 is an upper
bound of the chromatic number of the 3-space. He conjectures that 15 is the best pos-
sible upper bound if one uses a lattice based coloring. His argument in favor of this
conjecture is good, and we would encourage the author to pursue the proof. ..

The author hints that his methods may produce similar results in other dimensions.
Again, the referee would encourage the pursuit of these results.

I am at a loss to explain why the revised manuscript was received by the editors
only about 2 years later, on December 11, 2000. While writing these lines, I am
looking at the uncorrected proofs that I received from the author—they are dated to
2001. The paper was published much later yet, in 2002 [Cou2].

In August 2002, David Coulson and I played a very unusual role at the Congress
of the World Federation of National Mathematics Competitions in Melbourne: we
were co-presenters of an 80-minute plenary talk, entitled 50 Years of Chromatic
Number of the Plane (we did not sing a duet but rather spoke one at a time). I spoke
about the problem, its history and results for the plane. In his part, David spoke
about his results on upper bounds of the chromatic number of the 3-space. After the
talk, I invited David to submit a version of his part of the talk to Geombinatorics,
where it appeared very quickly, in January issue of 2003 [Cou3].

Best Upper Bound for R* 10.3 (Coulson, 1998-2002).
x(E?) < 15.

Curiosity surrounding this result did not end with its publication. It was published
again in 2003 by another pair of authors, Rados Radoicic and Géza Téth [RT]. By the
time they received the proofs, the authors saw the Coulson’s publication. They added
it to the bibliography, and chose to publish their proof based on the same tiling of
3-space. In a copy of this paper downloaded from an author’s homepage I read:

Very recently, Coulson [Cou?2] also [sic] proved our [sic] Theorem, moreover, he found
essentially the same coloring.

The comment in the published journal version was fairer toward Coulson:

Added in proof. Very recently, Coulson [Cou2] has independently found a very similar
15-coloring of 3-space.
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I do not agree with the characterization “very recently,” for Coulson first sub-
mitted his paper quite a bit earlier, on December 9, 1998. Yet I have no doubts in
my mind that Radoicic-T6th found their proof independently and before reading
Coulson’s proof. I believe this is a borderline case as far as credit is concerned. I am
assigning credit to Coulson alone for the following reasons:

1. Radoicic and Té6th saw Coulson’s publication before they received their proofs;

2. Their proof is not essentially different from Coulson’s;

3. Coulson first submitted his paper many years prior, in 1998;

4. Coulson circulated his preprint fairly widely ever since 1998 (I was one of the
recipients).

As I mentioned in my referee report, Coulson informally conjectured that the
upper bound of 15 is best possible for lattice coloring. I dare to conjecture much
more: I think it is the exact value for 3-space every bit as likely as 7 is for the plane:

Chromatic Number of 3-Space Conjecture 10.4
x(E?) = 15.

Life in 4 and 5 dimensions was studied by Kent C antwell in his 1996 work
[Canl]. His lower bounds are still best known today.

Best Lower Bounds for E* and E® 10.5 (Cantwell, 1996).

v

x(E*)
x(E)

On March 31, 2008, a month after this book had been submitted to Springer, I
received an impressive submission to Geombinatorics from Josef Cibulka of Charles
University in Prague. His main result offered the new lower bound for the chromatic
number of E°:

7,
9.

v

Best Lower Bounds for E° 10.6 (Cibulka, 2008).

In reply to my inquiry, Josef answered on April 1, 2008:

I am first year graduate student; actually, most results of the submitted paper are from
my diploma thesis.

Do not miss Cibulka’s paper in Geombinatorics: it will appear in issue XVIII(2)
in October 2008. Other results of this paper are a better fit in the next chapter.

A long time ago Paul Erdds conjectured, and often mentioned in his problem
talks [E75.24], [E75.25], [E79.04], [E80.38], [E81.23], [E81.26] that the chromatic
number x (E") of the Euclidean n-space E" grows exponentially in n. In his words:
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Erdés’s Conjecture on Asymptotic Behavior of the Chromatic Number of E”
10.7 x (E™) tends to infinity exponentially.

This conjecture was settled in the positive by a set of two results, the 1972
exponential upper bound, found by D. G. Larman and C. A. Rogers, and the 1981
exponential lower bound established by P. Frankl and R. M. Wilson:

Frankl-Wilson’s Asymptotic Lower Bound 10.7 (Frankl and Wilson, 1981, [FW])
(I+o(1) 12" < x(E").
Larman—Rogers’ Asymptotic Upper Bound 10.8 (1972, [LR])
X(E") <GB +o)".

Asymptotically Larman—Rogers’ upper bound remains best possible still today.
Frankl-Wilson’s Asymptotic Lower Bound has recently been improved:

Raigorodskii’s Asymptotic Lower Bound 10.9 (2000, [Raig2])
(1.239...+o0())" < X(E”) .

Obviously, there is a gap between the lower and upper bounds, and it would be
very desirable to narrow it down.

In Chapter 4 you have met the polychromatic number x, of the plane and in
Chapters 4, 6 and 7 seen the results. This notion naturally generalizes to the poly-
chromatic number x, (E") of Euclidean n-dimensional space E". Dmitry E. Raiskii,
whom we met in Chapter 4, was first to publish a relevant result [Rai]:

Raiskii’s Lower Bound 10.10
n+2< XP(E”) .

Larman and Rogers [LR] proved the same asymptotic upper bound for the poly-
chromatic number, as they did for the chromatic number:

Larman—Rogers Upper Bound 10.11
xp(E") < B+o(1)".
They also conjectured that y, (E") grows exponentially in n. The positive proof

of the conjecture, started by Larman and Rogers, was completed by Frankl and
Wilson [FW]:

Frankl-Wilson Lower Bound 10.12

(I+o(1)1.2" < x,(E").
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Problem 4.4 can be considered in n-dimensional Euclidean space too. For a given
finite set S of » positive numbers, called a set of forbidden distances, we define the
graph Gg(R"), whose vertices are points of the Euclidean n-space E”, and a pair
of points is adjacent if and only if the distance between them belongs to S. We will
naturally call the chromatic number xg (E") of the graph Gs(R") the S-chromatic
number of n-space E". The following problem is as general as it is hard:

Erdés’s Open Problem 10.13 Given S, find the S-chromatic number xg (E") of the
space E".

By de Bruijn—Erdds compactness theorem that we met in chapter 5, the problem
of investigating S-chromatic number of E” is a finite.?’

29 pe Bruijn—Erd6s Theorem assumes the axiom of choice— see Chapters 4648 for more.
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I would like to mention here one more direction of assault on the chromatic number
of the plane. By placing Cartesian coordinates on the plane E2, we get an algebraic
representation of the plane as the set of all ordered pairs (x, y) with coordinates x
and y from the set R of real numbers, with the distance between two points defined
as usual:

E?>={(x,y):x,y € R}. (11.1)

Since by De Bruijn—Erd6s’s Theorem 5.1 it suffices to deal with finite subsets
of R?, we can surely restrict the coordinates in (11.1) to some subset of R. The
problem is, which subset should we choose?

A set A is called countable if there is a one-to-one correspondence between A
and the set of positive integers N.

For any set C, we define C? as the set of all ordered pairs (cy, ¢»), where ¢ and
c, are elements of C:

C*={(c1,¢2) i c1,c2 € C).

Open Problem 11.1 Find a countable subset C of the set of real numbers R such
that the chromatic number X(Cz) is equal to the chromatic number X(EZ) of
the plane.

The set Q of all rational numbers would not work, as Douglas R. Woodall showed
in 1973.

Chromatic Number of Q2 11.2 (D. R. Woodall, [Wool])
x(Q%) =2.
Proof by D. R. Woodall ([Wool]): We need to color the points of the rational plane

Qz, i.e., the set of ordered pairs (ry, r;), where r; and r, are rational numbers. We
partition Q7 into disjoint classes as follows: we put two pairs (r{, r,), and (¢1, ¢2)

72 A. Soifer, The Mathematical Coloring Book,
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into the same class if and only if both r; — g and , — ¢, have odd denominators
when written in their lowest terms (an integer n is written in its lowest terms as T).

This partition of Q2 into subsets has an important property: if the distance
between two points of Q2 is 1, then both points belong to the same subset of the

partition! Indeed, let the distance between (r, r»), and (q;, ¢») be equal to 1. This
means precisely that

\/(’”1 —q) +(n—-q)’ =1,

ie.,

ri—q)+ @ —q) =1

a c
Letr; —q = 3 andr, —qp = 7 be these differences written in their lowest

() + () =

terms. We have

ie.,
a*d® + b*c* = b*d*.

Therefore, b and d must be both odd (can you see why?), i.e., by our definition
above, (r1, r2), and (g1, g») must belong to the same subset.

Since any class of our partition can be obtained from any other class of the par-
tition by a translation (can you prove this?), it suffices for us to color just one class,
and extend the coloring to the whole Q2 by translations. Let us color the class that
contains the point (0,0). This class consists of the points (r;, r;), where in their

lowest terms the denominators of both r, r, are odd (can you see why?). We color
red the points of the form (g, Q) and (E, E), and color blue the points of the form
o o o o

o e e o
(—, —) and (—, —), where o stands for an odd number and e for an even number.
0.0 0 o0

In this coloring, two points of the same color may not be distance 1 apart (prove this

on your own). =

Then there came a “legendary unpublished manuscript,” as Peter D. Johnson, Jr.
referred [Joh8] to the paper by Miro Benda, then with the University of Washington,
and Micha Perles, then with the Hebrew University, Jerusalem. The widely circu-
lated and admired manuscript was called Colorings of Metric Spaces. Peter Johnson
tells its story on the pages of Geombinatorics [JohS]:

The original manuscript of “Colorings. ..,” from which some copies were made and
circulated (and then copies were made of the copies, etc.), was typed in Brazil in 1976.
I might have gotten my first or second generation copy in 1977.... The paper was a
veritable treasure trove of ideas, approaches, and results, marvelously informative and
inspiring.
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During the early and mid 1980s “Colorings. . .” was mentioned at a steady rhythm,
in my experience, at conferences and during visits. I don’t remember who said what
about it, or when (except for a clear memory of Joseph Zaks mentioning it, at the
University of Waterloo, probably in 1987), but it must surely win the all-time prize for
name recognition in the “unpublished manuscript” category.

Johnson’s story served as an introduction and homage to the conversion of the
unpublished manuscript into the Benda—Perles publication [BP] in Geombinatorics’
January 2000 issue.

This paper, dreamed up in the fall of 1975 over a series of lunches the two authors
shared in Seattle, created a new, algebraic approach to the chromatic number of the
plane problem. Moreover, it formulated a number of open problems, not directly
connected to the chromatic number of the plane, problems that gave algebraic chro-
matic investigations their own identity. Let us take a look at a few of their results
and problems. First of all, Benda and Perles prove (independently; apparently they
did not know about the Woodall’s paper) Woodall’s result 11.2 about the chromatic
number of the rational plane. They are a few years too late to coauthor the result,
but their analysis allows an insight into the algebraic structure that we do not find in
Woodall’s paper. They then use this insight to establish more sophisticated results
and the structure of the rational spaces they study.

Chromatic Number of Q° 11.3 (Benda & Perles [BP])

x(Q%) =2.
Chromatic Number of Q4 11.4 (Benda & Perles [BP])
x(0") = 4.

Benda and Perles then pose important problems.
Open Problem 11.5 (Benda & Perles [BP]) Find X(QS) and, in general, x(Q").

Open Problem 11.6 (Benda & Perles [BP]) Find the chromatic number of Qz(ﬁ)
and, in general, of any algebraic extension of Q2.

This direction was developed by Peter D. Johnson, Jr. from Auburn University
[Joh1], [Joh2], [Joh3], [Joh4], [Joh5] and [Joh6]; Joseph Zaks from the University
of Haifa, Israel [Zak1], [Zak2], [Zak4], [Zak6], [Zak7]; Klaus Fischer from George
Mason University [Fis1], [Fis2]; Kiran B. Chilakamarri [Chil], [Chi2], [Chi4]; Dou-
glas Jungreis, Michael Reid, and David Witte ([JRW]); and Timothy Chow ([Cho]).
In fact, Peter Johnson has published in 2006 in Geombinatorics “A Tentative History
and Compendium” of this direction of research inquiry [Joh9]. I refer the reader to
this survey and works cited there for many exciting results of this algebraic direction.

In the recent years Matthias Mann from Germany entered the scene and
discovered partial solutions of Problem 11.5, which he published in Geombina-
torics [Manl].

Lower Bound for Q% 11.7 (Mann [Manl1])

X(Q°) >17.
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This jump from x(Q*) = 4 explains the difficulty in finding x(Q?), exact
value of which remains open. Matthias then found a few more important lower
bounds [Man2].

Lower Bounds for Q°, Q7 and Q® 11.8 (Mann [Man2])

x(Q% > 10;
x(Q") > 13;
x(0%) > 16.

In reply to my request, Matthias Mann wrote about himself on January 4, 2007:

As I have not spent much time on Unit Distance-Graphs since the last article in Geom-
binatorics 2003, I do not have any news concerning this topic. To summarize, I found
the following chromatic numbers:

Q>=7
Q®>=10
Q' >=13
Q>=16

The result for Q% improved the upper bounds for the dimensions 9-13.

For the Q7 I think that I found a graph with chromatic number 14, but up to now I
cannot prove this result because I do not trust the results of the computer in this case.

Now something about me: I was born on May 12th 1972 and studied mathematics at
the University of Bielefeld, Germany from 1995-2000. I wrote my Diploma-thesis (the
“Dipl.-Math.” is the old German equivalent to the Master) in 2000. It was supervised by
Eckhard Steffen, who has worked on edge-colorings. I had the opportunity to choose
the topic of my thesis freely, so I red the book “Graph Coloring Problems” by Tommy
Jensen and Bjarne Toft (Wiley Interscience 1995) and was very interested in the article
about the Hadwiger-Nelson-Problem, and found the restriction to rational spaces even
more interesting. After reading articles of Zaks and Chilakamarri (a lot of them in
Geombinatorics), 1 started to work on the problem with algorithms.

Unfortunately, I had no opportunity to write a Ph.D.-thesis about unit distance-
graphs, so I started work as an information technology consultant in 2000.

In the previous chapter, you have already met Josef Cibulka, a first year graduate
student at Charles University in Prague. His essay submitted to Geombinatorics
on March 31, 2008, a month after this book was sent off to Springer, contained
new lower bounds for the chromatic numbers of rational spaces, improving Mann’s
results:

Newest Lower Bounds for Q° and Q7 11.9 (Cibulka, [Cib])

X(Q°) > 8;
x(Q") > 15.

Cibulka’s paper will be published in the October 2008 issue XVIII(2) of Geom-
binatorics.
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We started this chapter with Woodall’s 2-coloring of the rational plane
(result 11.2). T would like to finish with it, as a musical composition requires.
This Woodall’s coloring has been used in July 2007 by the Australian undergrad-
uate student Michael Payne to construct a wonderful example of a unit distance
graph—do not miss it in Chapter 46!
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12
Chromatic Number of a Graph

12.1 The Basics

The notion of a graph is so basic, and so unrestrictive, that graphs appear in all fields
of mathematics, and indeed in all fields of scientific inquiry.

A graph G is just a non-empty set V(G) of vertices and a set E(G) of unordered
pairs {vy, vy} of vertices called edges. If e = {v, vy} is an edge, we say that e and v,
are incident, as are e and v,; we also say that v; and v, are adjacent or are neighbors.

Simple, don’t you think?

By all standards of book writing, I am now supposed to give you an example of
a graph. Why don’t you create your own example instead! As the set V of vertices
take the set of all cities you have ever visited. Call two cities a and b from V adjacent
if you have ever traveled from one of them to the other. Let us denote Your Travel
graph by T'(Y).

We can certainly represent 7'(Y) in the plane. Just take a map of the world, plot
the dot for each city you’ve been in, and draw the lines (edges) of all of your travels
(the shape of edges does not matter, but do not connect two adjacent vertices a and
b of T(Y) by more than one edge even if you have traveled various routes between
a and b).

We often represent graphs in the plane as we have just done for 7 (Y'), where the
only things that matter are the set of vertices (but not their positions), and which
vertices are adjacent (but not the shape of edges, which we presume have no points
in common, except vertices of the graph incident with them).

In fact, you can think of a graph as a set of pins some of which are connected
by rubber bands. So we consider the graph unchanged if we reposition the pins and
stretch the rubber bands. Thus, we call two graphs isomorphic if “pins” of one of
them can be repositioned and its “rubber bands” can be stretched so that this graph
becomes graphically identical to the other graph.

More formally, two graphs G and G are called isomorphic if there is a one-to-
one correspondence f: V. — V| of their vertex sets that preserves adjacency, i.e.,
vertices v; and v, of G are adjacent if and only if the vertices f(v;) and f(v;) of
G are adjacent.

A. Soifer, The Mathematical Coloring Book, 79
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For example, the two graphs in Fig. 12.1 are isomorphic while the two graphs
in Fig. 12.2 are not (prove both facts on your own, or see the proof, for example,

in [BS] pp. 102-105).

Fig. 12.1 Isomorphic

|
S

Fig. 12.2 Non-isomorphic
graphs

I would like to get to our main interest, coloring, as soon as possible. Thus, I will
stop my introduction to graphs here and refer you to [BS] for a little more about
graphs; you will find much more in books dedicated exclusively to graphs, such
as [BLW], [Har(O], [BCL] and a great number of other books. In fact, graph theory
is lucky: it has inspired more enjoyable books than most other relatively new fields.

The notion of the chromatic number of the plane (Chapter 2) was clearly moti-
vated by a much older notion of the chromatic number of a graph. As Paul Erdds
put it in his 1991 letter to me [E91/10/2ltr]:

Chromatic number of a graph is ancient.

The chromatic number x(G) of a graph G is the minimum number n of colors
with which we can color the vertices of G in such a way that no edge of G is
monochromatic (i.e., no edge ab has both vertices a and b identically colored). In
this case we can also say that G is an n-chromatic graph.

A graph G is called n-colorable if it can be colored in n colors without monochro-
matic edges. In this case, of course, x(G) < n.

Let us determine chromatic numbers of some popular (and important) graphs.

A n-path P, from x to y is a graph consisting of n distinct vertices vy, vz, ..., Uy
and edges vjvy, Vo3, ..., Uy_1VUy, Where x = vy, y = v,. If n > 3 and we add
the edge v, v;, we obtain an n-cycle C,.

Problem 12.1 Prove that

2, if n is even
x(C) = {3, if n is odd

Problem 12.2 For a graph G, x(G) < 2 if and only if G contains no n-cycles for
any odd n.

Such a graph has a special name: bipartite graph.
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In particular, the complete bipartite graph K,, ,, has m vertices of one color and n
vertices of the other, and two vertices are adjacent if and only if they have different
colors. In Fig. 12.3 you can find examples of complete bipartite graphs.

Fig. 12.3 Examples of
complete bipartite graphs
KZ.Z K4.2 K3.3

A complete graph K, consists of n vertices every two of which are adjacent. In
Fig. 12.4 you will find complete graphs K,, for small values of n.

Fig. 12.4 Examples of
complete graphs

K, K, K
N
7 ~
W
N
K, K K

Problem 12.3 Is there an upper limit to chromatic numbers of graphs?

Solution: Since every two vertices of K, are adjacent, they all must be assigned
distinct colors. Thus x(K,) = n, and there is no upper limit to chromatic numbers
of graphs.

The number of edges incident to a vertex v of the graph G is called the degree
of v, and is denoted by degsv. The maximal degree of a vertex in G is denoted by
A(G).

If v is a vertex of a graph G, then G — v denotes a new graph obtained from G
by deleting v and its incident edges.

Problem 12.4 For any graph G with finitely many vertices
x(G) = A(G) + 1.

Proof Let G be a graph of chromatic number x (G) = n. If there is a vertex v in G,
such that x(G — v) = n, we replace G by G — v. We can continue this process of
deleting one vertex at a time with its incident edges until we get a graph G, such
that x(G;) = n but x(G; —v) <n — 1 for any vertex v of G;.

Let v; be the vertex of maximum degree in G, then
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A(G) > A(G)) = deglel.

If we can prove that deg;;v; > n — 1, then coupled with the inequality above,
we would get A(G) > n — 1, which is exactly the desired inequality.

Assume the opposite, i.e., deg;,vi < n—2. Since x (G| —v;) < n— 1, we color
the graph G| — vy in n — 1 colors. In order to get a (n — 1)-coloring of G, we have
to just color the vertex v;. We can do it because deg;,vi < n —2,1i.e., vy is adjacent
to at most n — 2 other vertices of G (Fig. 12.5), thus at least one of the n — 1 colors
is unused around v;. We use it on v;. Thus, x(G{) < n — 1, in contradiction to
x(G1)=n. =

Fig. 12.5

R. Leonard Brooks of Trinity College, Cambridge, in his now classic theorem,
reduced the above upper bound by 1 (for most graphs), to the best possible general
bound. His result was communicated by William T. Tutte on November 15, 1940
and published the following year [Bro].

Brooks’ Theorem 12.5 ([Bro]) If A(G) = n > 2 and the graph G has no compo-
nent K, then

x(G) = A(G).

12.2 Chromatic Number and Girth

W. T. Tutte, R. L. Brooks and Company pulled off the Blanche Descartes stint not
unlike the better known Nicolas Bourbaki. Arthur M. Hobbs and James G. Oxley
convey the story of Blanche Descartes in the memorial article “William T. Tutte
1917-2002” [HO]:

Not long after he started his undergraduate studies at Cambridge, Tutte was introduced
by his chess-playing friend R. Leonard Brooks to two of Brooks’s fellow mathematics
students, Cedric A. B. Smith and Arthur Stone. The four became fast friends and Tutte
came to refer to the group as “the Gang of Four,” or “the Four”. The Four joined the
Trinity Mathematical Society and devoted many hours to studying unsolved mathe-
matics problems together.

They were most interested in the problem of squaring a rectangle or square that
is, of finding squares of integer side lengths that exactly cover, without overlaps, a
rectangle or square of integer side lengths. If the squares are all of different sizes, the
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squaring is called perfect. While still undergraduates at Cambridge, the Four found an
ingenious solution involving currents in the wires of an electrical network. . .

The Gang of Four were typical lively undergraduates. They decided to create a
very special mathematician, Blanche Descartes, a mathematical poetess. She published
at least three papers, a number of problems and solutions, and several poems. Each
member of the Four could add to Blanche’s works at any time, but it is believed that
Tutte was her most prolific contributor.

The Four carefully refused to admit Blanche was their creation. Visiting Tutte’s
office in 1968, Hobbs had the following conversation with him:

Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I could
buy your extra copy?”’

Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.”

However, I found at least one occasion when Tutte allowed to use his name in
place of Blanche Descartes. Paul Erd6s narrates [E87.12]:

Tutte sometimes published his results under the pseudonym Blanche Descartes, and in
one of my papers quoting this result I referred to Tutte. Smith wrote me a letter saying
that Blanche Descartes will be annoyed that I attributed her results to Tutte (he clearly
was joking since he knew that I know the facts), but Richard [Rado] was very precise
and when in our paper I wanted to refer to Tutte, Richard only agreed after I got a letter
from Smith stating that my interpretation was correct.

You may wonder, what paper by Blanche Descartes does Paul Erdds refer to? Our
story commences with the problem [Desl1] Blanche Descartes published in April
1947. To simplify the original language used by Descartes, let me introduce here a
notion of the girth of a graph G as the smallest number of edges in a cycle in G.

Descartes’ Problem 12.6 ( [Desl], 1947) Find a 4-chromatic graph of girth 6.

Descartes’ solution appeared in 1948 [Des2]. This was the start of an exciting
train of mathematical thought. In 1949 the first Russian graph theorist Alexander A.
Zykov produced the next result [Zyk1]. He limited the restriction to just triangles,
but asked in return for arbitrarily large chromatic number:

Zykov’s Result 12.7 ( [Zyk1], 1949) There exist a triangle-free graph of arbitrarily
large chromatic number.

Zykov’s 1949 comprehensive publication [Zykl] contained a construction
proving his result. The cold war and the consequent limited exchange of infor-
mation apparently made Zykov’s advance unknown in the West. In 1953, Peter
Ungar formulated the same problem in the American Mathematical Monthly [Ung],
which attracted much of attention and results. The Monthly chose not to publish
the proposer’s solution (which was supposedly similar to that of Zykov). Instead
in 1954 The Monthly published a solution by Blanche Descartes [Des3], which
both generalized Descartes’ own 1948 result and solved Zykov—Ungar’s problem:
Descartes constructed graphs of arbitrarily large chromatic number which contained
no cycles of less than six lines. This [Des3] was the Blanche Descartes’ paper
that Paul Erdés referred to in the quote above, and it was written by William T.
Tutte alone.
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John B. Kelly and Le Roy M. Kelly obtained a very similar construction in the
same year ( [KK]). Finally Jan Mycielski, originally from Poland and now Professor
Emeritus at the University of Colorado at Boulder, published his original construc-
tion [Myc] in 1955.

Let us look at mathematics of this explosion of constructions. We will start with
an exercise showing how to increase the chromatic number by attaching 3-cycles.

Problem 12.8 Let T be a 3-cycle with its vertices labeled 1, 2, and 3, and R a set
of 7 vertices labeled 1, 2, ..., 7 (Fig. 12.6). For each 3-element subset V of the
foundation set R we construct a copy Ty of T and attach it to R by joining vertex
1 of Ty with the lowest numbered vertex of V, vertex 2 of Ty with the middle
numbered vertex of V, and vertex 3 of Ty with the highest numbered vertex of V.
In Fig. 12.7, for example, this connection is drawn for V = {2, 3, 6}.

2

—_
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1 3
T

Fig. 12.7 A 3-cycle attached to the foundation set R

Since the number of 3-element subsets of the 7-element set R is equal to (;) =

% = 35, the resultant graph G has 7+3-35 = 112 vertices. Prove that x(G) = 4.

Proof Four colors suffice to color G, since each T, in G can be colored with the
first three colors and all the vertices of R with the fourth color. Thus x(G) < 4.

Assume now that the graph G is 3-colored. Then by the Pigeonhole Principle,
among the seven vertices of R there are three, say vertices 2, 3, and 6 that are
colored in the same color, say color A. Then (Fig. 12.7) the color A is not present in
the coloring of T{» 3 ¢}, thus T}, 3 ¢} is 2-colored. But this is a contradiction since by
Problem 12.1 a 3-cycle cannot be 2-colored. Hence, x(G) = 4. =

Problem 12.9 Use the construction of Problem 12.8 with the Mosers Spindle
(Fig. 2.2) in place of T and a 25-point foundation set R. What is the chromatic
number of the resulting graph G? How many vertices does G have?
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The answer should serve as a hint: a 5-chromatic graph on 25 + 7 <275> =
3, 364, 925 vertices. =

In his monograph [Har0O], Frank Harary discloses the secret authorship of one
result: “this so-called lady [Descartes] is actually a non-empty subset of {Brooks,
Smith, Stone, Tutte}; in this [Des3] case {Tutte}.” Let us take a look at Blanche
Descartes’ (Tutte’s) construction.

Blanche Descartes’s Construction 12.10 [Des3] For any integer n > 1 there
exists an n-chromatic graph G, of girth 6.

Proof For the case n = 2 we just pick a 6-cycle: G, = Ce. For n > 3 we define
a sequence of graphs G3, G4 ..., G,, ... by induction. Let G; be a 7-cycle:
G3 = (1.

Assume that the graph Gy is defined and has M}, vertices. We need to construct
G+1. The construction is the same as in problem 12.8. Let R be a set of k(M) —
1) + 1 vertices. For each M-element subset U of R we construct a copy G,EJ of Gy,
then pick a one-to-one correspondence fU between the vertices of U and GV (two
M;-element sets surely have one), and finally connect by edges the corresponding
vertices of U and G . The resulting graph is Gy 1.

Thus, we have constructed the graphs G3, Gy, ..., G,,....No graph G, has a
cycle of less than 6 edges (can you prove it?).

By induction we can prove that x(G,) > n for every n > 3. Indeed, G3 is
3-chromatic as an odd cycle.

Assume that x(Gy) > k for some k > 3. We need to prove that

x(Grr) > k+ 1.

If to the contrary x(Gy+1) < k, then by the Pigeonhole Principle, out of k(M —
1)+ 1 vertices of the set R, there will have to be an M -clement subset U of vertices
all colored in same color, say color A. But then color A is not present in the copy
G,l{] of Gy, i.e., the graph G can be (k — 1)-colored in contradiction to the inductive
assumption. The induction is complete.

Please note that we proved the inequality x(G,) > n. Since we want to have
the equality, we may have to delete (one at a time) some vertices of G, and their
incident edges until we end up with G/, such that x(G),) = n. =

Miycielski’s Construction 12.11 [Myc] For any integer n > 1 there exists a
triangle-free n-chromatic graph.

Proof You may ask why should we bother to prove the result that is weaker than
Descartes’ and Kelly & Kelly’s result 12.10? It is simply because this is a different
construction and it will work best for us in Section 15.1.

Start with a triangle-free (k — 1)-chromatic graph G. For each vertex v; of G add
a new vertex w; adjacent to all neighbors of v;. Next, add a new vertex z adjacent
to all new vertices w;. The chromatic number of this new graph is k, and it is still
triangle-free. =
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Fig. 12.8 The Mycielski—Grotzsch Graph

Observe that if we were to start with a 5-cycle, then the graph generated
by the Mycielski’s construction is the unique smallest triangle-free 4-chromatic
graph (Fig. 12.8). Three years later, in 1958, this graph was independently found
by Herbert Grotzsch [Gro], and thus it makes sense to call it the Mycielski—
Grotzsch Graph. We will discuss Grotzsch’s reasons for discovering this graph in
Section 19.3.

The next major advance in our train of thought took place in 1959, when Paul
Erdds, using probabilistic methods, dramatically strengthened the result 12.10.

Erdés’s Theorem 12.12 (P. ErdGs, [E59.06]). For every two integers m, n > 2,
there exists an n-chromatic graph of girth m.

An alternative, non-probabilistic proof of this result was obtained in 1968 by the
Hungarian mathematician Laszlé Lovasz [Lov1].

The greatest result was still to come 304 years after Lovasz. Paul O’Donnell
proved the existence of 4-chromatic unit distance graphs of arbitrary girth. We will
look at this remarkable piece of work later in the book, in Chapters 14 and 45.

Paul Erd6s posed numerous exciting open problems related to the chromatic
number of a graph. Let me share with you one such still open problem that I found
in Paul’s 1994 problem paper [E94.26].

Erdés’s Open Problem on 4-Chromatic Graphs 12.13 Let G be a 4-chromatic
graph with lengths of the cyclesm; < m, < ....Canmin (m;,; — m;) be arbitrarily
large? Can this happen if the girth of G is large?

12.3 Wormald’s Application

In Chapter 5, I described Paul Erdés’s problem conquered by Nicholas C. Wormald
[Wor]. Wormald’s first step was to construct what I will call the Wormald Graph;
he then embedded it in the plane. In the construction Wormald used the Descartes
construction of Problem 12.10. In Problem 12.8 I showed how one can use this
construction; analogously, Wormald uses a 5-cycle in place of T and a 13-point
foundation set R. For each 5-element subset V of R he constructs a copy Ty of T,
fixes a one-to-one correspondence of the vertices of V and 7y and attaches Ty to V
by connecting the corresponding vertices.
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He ends up with the graph G on 13 + 5 (153> = 6448 vertices. Wormald uses
5-cycles because his goal is to construct a 4-chromatic graph of girth 5. I leave the

pleasure of proving these facts to the reader:

Problem 12.14 (N. C. Wormald, [Wor]) Prove that the Wormald graph G is indeed
a 4-chromatic girth 5 graph.

So what is so special about Nicholas Wormald’s 1979 paper [Wor]? Even though
independently discovered (I think), didn’t he use the construction that was published
25 years earlier by Blanche Descartes [Des3]? The real Wormald’s trick was to
embed his huge 6448-vertex graph in the plane, i.e., draw his graph on the plane with
all adjacent vertices, and only them, distance 1 apart. In my talk at the conference
dedicated to Paul Erd6s’s 80th birthday in Keszthely, Hungary in July 1993, I pre-
sented Wormald’s graph as a picture frame without a picture inside it, to indicate that
Wormald proved the existence and did not actually draw his graph. Nick Wormald
accepted my challenge and on September 8§, 1993 mailed to me a drawing of the
actual plane embedding of his graph. I am happy to share his drawing with you
here. Ladies and Gentlemen, the Wormald Graph! (Fig. 12.9).

Fig. 12.9 The 6448-vertex
Wormald Graph embedded
in the plane

In his doctoral dissertation (May 25, 1999, Rutgers University) Paul O’Donnell
offered a much simpler embedding than the Wormald’s one—see it in Chapter 14,
where I present Paul’s machinery for embedding unit distance graphs in the plane.

However, the following problem, is open.

Open Problem 12.15 Find the smallest number A4 of vertices in a 4-chromatic unit
distance graph without 3- and 4-cycles.

We know, of course, ( [Wor]) that Ay < 6448. Chapters 14 and 15 will be dedi-
cated to major improvements in this direction.



13
Dimension of a Graph

13.1 Dimension of a Graph

In 1965, a distinguished group of mathematicians consisting of Paul Erdés,
Frank Harary, and William Thomas Tutte created a notion of the dimension of
a graph ([EHT)).

They defined the dimension of a graph G, denoted dimG, as the minimum number
n such that G can be embedded in the n-dimensional Euclidean space E" with
every edge of G being a segment of length 1. We will call such an embedding here
1-embedding.

Dimensions of some popular graphs can be easily found.

Problem 13.1 (EHT) Prove the following equalities for complete graphs:

dimKk; = 2,
dimK4 = 3,
dimK,, =n — 1.

The symbol K, — x denotes the graph obtained from the complete graph K, by
deleting one edge x; due to symmetry of all edges, this graph is well defined.

Problem 13.2 ([EHT]) Prove that

dim(K3 —x) =1,
dim(K4 — x) =2,

In general,
dim(K,, —x) =n — 2.
Now let us take a look at complete bipartite graphs.

88 A. Soifer, The Mathematical Coloring Book,
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Problem 13.3 ([EHT])! Prove that for m > 1
dimK,,; =2,

except for m = 1, 2 when dimK,, ; = 1.

Proof Let S be a circle of radius 1 with center in O. By connecting arbitrary m
points Ay, Az, ..., A, of S with O we get a desired embedding of K,, | in the
plane (Fig. 13.1).

The graphs K ; and K; | can obviously be 1-embedded in the line E I, thus dim
KZ,] =1.u

Fig. 13.1

Problem 13.4 ([EHT]) Prove that for m > 2
dimK,,» =3,
except for m = 2 when dimK, , = 2.

Proof Let ABC be an isosceles triangle with |[AB| = |BC| = 1. As we rotate ABC
about AC, the point B orbits a circle S (Fig. 13.2). By connecting arbitrary m points

A

AN,

V4

c
Fig. 13.2

! The article [EHT] contains a minor oversight: it says “Obviously, for every n > 1, dimK; , =2.”



90 IIT Coloring Graphs

A1, Ay, ..., A, of § with both A and C, we get a desired embedding of K,, » in
the 3-space E>.

Since m > 2, the graph K, » can be 1-embedded in the plane E 2 if and only if
m = 2. Prove the last statement on your own. =

Problem 13.5 ([EHT]) Prove that form > n > 3
dimK,, , = 4.

Proof In the solution of Problem 13.4 (Fig. 13.2) we had points of a one-
dimensional “circle” (i.e., the two points A and C) distance 1 from the points
of a circle S. Similarly in the Euclidean four-dimensional space E* we can find two
circles S; and S, such that any point of S; is distance 1 from any point of S,. We
pick the circle S; in the plane through the coordinate axes X and Y; the circle S,
in the plane through the coordinate axes Z and W. Both S| and S, have center at
the origin O = (0, 0, 0, 0) and radius %fz We then just pick m points on S} and n
points on 5.

This solution was obtained by Lenz in 1955 according to Paul Erdés. Formally
(i.e., algebraically) it goes as follows. Let {u;} be the m vertices of the first color
and let {v;} be the n vertices of the second color (remember, we are constructing
a complete bypartite graph). We pick coordinates in E* for u; = (x;, yi, 0, 0)
and for v; = (0, 0, z;, w;) in such a way that they lie on our circles S; and S,
respectively, i.e., x7 + y? = % and Z% + w? = % Then the distance between every
pair u;, v; will be equal to 1 (verify it using the definition of the distance in E*).

It is not difficult to show (do) that for m > n > 3 the graph K,, , cannot be
l-embedded in the 3-space E>. =

Problem 13.6 ([EHT]) Find the dimension of the Petersen graph shown in Fig. 13.3.

Solution: 1 enjoyed the style of the article [EHT]. I quote this solution in its entirety
in order to show you what I mean:
“It is easy to see (especially after seeing it) that the answer is 2; Fig. 13.4).”
Paul Erdés told me that Frank Harary wrote this solution for their joint article. =

Fig. 13.3 The Petersen Graph

By connecting all vertices of an n-gon (n > 3) with one other vertex, we get
the graph W, called the wheel with n spokes. Figure 13.5 shows some popular
wheels.
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Fig. 13.4 Embedding of the Petersen Graph in the plane

w, w, w,

Fig. 13.5 A few wheels

Problem 13.7 (EHT]) The edges and vertices of a cube form a graph Q3. Find its
dimension.
Solution: dimQ* = 2. Just think of Fig. 13.6 as drawn in the plane! =

Fig. 13.6 Embedding of the cube’s skeleton in the plane

The following two problems are for your own enjoyment.

Problem 13.8 ([EHT]) Prove that
dimW, = 3,

except for the “odd” number n = 6 when dimWy = 2.

Problem 13.9 ([EHT]) A cactus is a graph in which no edge is on more than one
cycle. Prove that for any cactus C

dimC < 2.

I hope you have enjoyed finding dimensions of graphs. There is no known sys-
tematic method for determining it, but it has its good side. As the authors of [EHT]
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put it, “the calculation of the dimension of a given graph is at present in the nature
of mathematical recreation.”

However, there is, one general inequality in [EHT] that connects the dimension
and the chromatic number of a graph.

Problem 13.10 ([EHT]) For any graph G,
dimG < 2x(G).

I totally agree with the authors of [EHT] that “the proof of this theorem is a
simple generalization of the argument” used in Problem 13.5. However, for the
benefit of young readers not too fluent with n-dimensional spaces, I am present-
ing here both a geometric ideology of the solution as well as a formal algebraic
proof.

Geometric Idea: Let x(G) = n. In the Euclidean 2n-dimensional space E™ we
can find n circles Sy, S,,..., S, such that the distance between any two points
from distinct circles is equal to 1. We pick the circle S; in the plane through the
coordinate axes X; and X»; the circle S, in the plane through the coordinate axes
X3 and X4;...; the circle S, in the plane through the coordinate aces X,,_; and
X»,. All n circles have center at the origin and radius Lz

Finally, when we color G in n colors, (it can be done since x (G) = n) we get, say,
k1 points of color 1, k; points of color 2, ..., k, points of color n. Accordingly, we
pick arbitrary k; points on S, k; points on Sy, ..., k, points on S, for the desired
1-embedding of G.

Algebraic Solution: Let {ull} be the k; vertices of color 1, {ulz} the k, points of
color 2, ..., {u!} the k, vertices of color n. We pick coordinates in E?" for these
vertices as follows:

= (! x2,0,0,...,0)

u;
u?:(0,0,x?,X?,O,...,O)

u' =(0,0,0,0,...,x271 x>

i (e} i

in such a way that they lie on our circles Sy, Ss, ..., S, respectively (see Geometric
Idea above), i.e.,

O + D =

@) + () =

1
(X?’171)2 + (xiZn)Z — 5
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Then the distance between every pair of points that belong to different circles
is equal to 1 (can you see why?). Thus, the distance between any two points of
different colors of the graph G in this embedding in E?" is equal to 1. (We do not
have to care at all about the distances between two points of G of the same color:
they are not adjacent in G.) We got a 1-embedding of G in the space E", therefore,

If it so happened that every vertex of a graph G is also a vertex of a graph G,
and every edge of G is also an edge of G, then the graph G is called a subgraph
of the graph G.

Prove on your own the following property of subgraphs.

Problem 13.11 For every subgraph G of a graph G,
dimG; < dimG.

During his December 1991-January 1992 two-week visit with me in Colorado
Springs, Paul Erd6s posed the following (quite solvable, I think) problem:

Erdés’s Open Problem 13.12 What is the smallest number of edges in a graph G,
such that dimG = 4?

13.2 Euclidean Dimension of a Graph

I enjoyed the Erd6s—Harary—Tutte paper [EHT] very much. However, there was, one
more thing I expected from the notions of 1-embedding and dimension but did not
get. I hoped they would unite the chromatic number of a plane set (Chapter 5) and
the chromatic number of a graph (Chapter 12). Here is what I meant. I wanted to
consider such embeddings of a graph G in the plane E? (and more generally in the
n-dimensional space E") that the chromatic number of a plane set V of the vertices
of the embedded graph G is equal to the chromatic number of G.

It was certainly not the case with 1-embeddings discussed above. The chromatic
number of the 1-embedded set V of vertices of a graph G may not be uniquely
defined. Take, for example, the cycle C4. We can 1-embed it in the plane so that
its vertex set V has the chromatic number 2 (just think of a square), but we can
also 1-embed Cy so that V has the chromatic number 3 (think of a rhombus with a
/3 angle).

The notions of the chromatic number of the plane and the chromatic number of
a plane set have been generalized by Paul Erdés to Euclidean n-spaces nearly half a
century ago:

Let S be a subset of the n-dimensional Euclidean space E” (S may coincide with
E™). The chromatic number x(S) of S is the smallest number of colors with which
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we can color the points of S in such a way that no color contains a monochromatic
segment of length 1.2

Thus, if we adjoin two points @, b of § with an edge if and only if the distance
lab] = 1, we will get the graph G, such that the chromatic number of the graph G
is equal to the chromatic number of its vertex set S:

X(G) = x(S). ()

Two new definitions, as well as most of the problems below, occurred to me on
September 9, 1991. I remember this day very well: my daughter Isabelle Soulay
Soifer was born on this day at 6 in the evening.

On September 12, 1991, I sent the news to Paul Erdds:

On the Jewish New Year, 9/9/1991 the baby girl Isabelle Soifer was born.

In my September 15, 1991 letter, I shared with Paul the mathematical find of
Isabelle’s birthday:

I enjoyed Erd6s-Harary-Tutte 1965 article where dimension of a graph was introduced.
(Apparently Harary and Tutte did not particularly like it: dimension of a graph did not
appear in their books on graph theory.)

In my book though I am going to introduce a more precise notion. An embedding of
a graph G into E" we call Euclidean if two vertices v, w of G are adjacent if and only if
in E" the segment vw has length 1. Euclidean dimension of a graph G is the minimum
n such that there is an Euclidean embedding of G in E" (notation £dimG). Of course,
dimG < EdimG. But a strict inequality is possible: let W be the wheel with 6 spokes,
and W' [a wheel] without 1 spoke [my drawing in the letter is the Fig. 13.7]. Then
dimWg' = 2 < 3 = EdimWj'. Also there is a graph G and its subgraph G; such that
EdimG; > EdimG. Just take W' C Ws.

Fig. 13.7

This Euclidean dimension (rather than dimension) of a graph connects precisely
chromatic numbers of a graph and [of] a plane set:

If a graph G is Euclideanly embedded in E", then x (G) = x (V), where x (G) is
the chromatic number of the graph, and x (V) is the chromatic number of the vertex
set V of G (i.e., subset of E").

2 Victor Klee was first to prove (unpublished) that x(E") is finite for any positive integer n.
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What do you think?

Paul Erd6s’s reply arrived on October 2, 1991. Following the family affairs, “I
am very sorry to hear about your father’s death [Yuri Soifer, June 20, 1907-June
17, 1991], but congratulations for the birth of Isabelle,” Paul expressed his approval
of the new notion of the Euclidean dimension of a graph and commenced posing
problems about it [E91/10/2ltr]:

“Can EdimG — dimG be arbitrarily large?”

Little did I know at the time that, in fact, Paul ErdGs himself with Miklds
Simonovits invented the Euclidean dimension before me—in 1980—they called
it faithful dimension [ESi], and Paul did not remember his own baby-definition
when he discussed it with me! Of course, the credit for the discovery goes to
Erd6s and Simonovits. However, in my opinion, the term Euclidean dimen-
sion more faithfully names the essence of the notion, and so I will keep this
term here.

Let us summarize the definitions and the early knowledge that we have.

A one-to-one mapping of the vertex set V of a graph G into an Euclidean space
E" we call Euclidean embedding of G in the E" if two vertices v, w of G are adjacent
if and only if the distance between f(v) and f(w) is equal to 1.

In other words, to obtain an Euclidean embedding of G in the E”, we need to
draw G in E" with every edge of G being a segment of length 1 and the distance
between two non-adjacent vertices being not equal to 1.

We define the Euclidean dimension of a graph G, denoted EdimG, as the mini-
mum number n such that G has an Euclidean embedding in the E”.

Now we do get the desired connection:

Problem 13.13 The chromatic number of a graph G is equal to the chromatic num-
ber of its vertex set V when G is “Euclideanly” embedded in E” for some n.

The two dimensions are connected by the following inequality:

Problem 13.14 Prove that for any graph G
dimG < EdimG.

For some popular graphs we have the equality:

Problem 13.15 For any complete graph K,
dimK, = EdimK,,

ie., EdimK, =n — 1.
Problem 13.16 For any complete bipartite graph K, ,

dimK,, , = EdimK,, .
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Problem 13.17 For any wheel W,
dimW, = EdimW,

i.e., EdimW, = 3 except for the “odd” number n = 6 when EdimW = 2.
Problem 13.18 For any graph G,

dimG < EdimG < 2x(G).

The new notion makes sense only if there is a graph G for which dimG #
EdimG. And it does:

Problem 13.19 Find a graph G such that
dimG < EdimG.

The inequality dimG; < dimG that is trivially true for any subgraph G, of a
graph G, may not be true at all for the Euclidean dimension:

Problem 13.20 Construct an example of a graph G and its subgraph G such that
EdimG, > EdimG.

Solutions to Problems 13.19 and 13.20 Take the wheel Wy with six spokes
(Fig. 13.7) and knock out one spoke (Fig. 13.8). Let us prove that the resulting
graph W' has the Euclidean dimension 3, even though EdimWy = 2.

Fig. 13.8

Indeed, when we draw the graph Ws' in the plane so that its every edge is a
segment of length 1, the rigid construction of Ws' leaves no options for the distance
OA. Tt is equal to 1 even though the spoke is missing! Thus, there is no Euclidean
embedding of W¢' in the plane. It is easy to Euclideanly embed W' in 3-space E°:
start with the plane Wy depicted in Fig. 13.8 and rotate BAC in the space about the
axis BC.

We proved that EdimWg > EdimWg. Thus, problem 13.20 is solved.
Problem 13.19 is solved at the same time because dimWy' = 2, and therefore,

EdimW{ > dimW;. =
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The question that Paul Erd6s posed to me, “Can EdimG — dimG be arbitrarily
large?”’— was answered positively by him and Simonovits 11 years earlier:

Problem 13.21 [ESi]. For any positive n, there is a graph G such that dimG < 4
whilen — 2 < EdimG <n — 1.

Hint: In Problem 13.5, we saw that for n > 3, dimK,, = 4. Let G be the
graph obtained from K, , by removing a 1-factor, i.e., G is a graph on 2n ver-
tices xi,...,x, and yi, ..., y, with edges x;y; for all i # j. Clearly, dimG <
dimK, , = 4. Show that G cannot be Euclideanly embedded in the space R"3, but
can be Euclideanly embedded in R"~!. «

Erdds and Simonovits also found an upper bound for the Euclidean dimension of
a graph. Their results showed that the Euclidean dimension of a graph G is related
to the maximal vertex degree A (G) and not to its chromatic number y (G):

Problem 13.22 [ES] For any graph G, EdimG < 2A(G) + 1.

Nine years later, this bound was slightly improved by Laszl6 Lovasz, Michael
Saks and A. Schrijver:

Problem 13.23 [LSS] For any graph G, EdimG < 2A (G).

Surprisingly, this bound still seems to be the best known.

We are now ready to continue our discussion of Nicholas Wormald’s paper [Wor],
started in Chapter 5 and continued in Chapter 12. The big deal was not to construct
his 4-chromatic graph G without 3- and 4-cycles. The real Wormald’s trick was to
Euclideanly embed his huge 6448-vertex graph G in the plane, which he accom-
plished with the use of his ingenuity and a computer. Read more about how he
has done it in his paper [Wor]. Here I would like to discuss one approach to the
chromatic number of the plane problem.

If you believe that the chromatic number x of the plane is at least 5, here is what
you can do to prove it. You can create a S-chromatic graph G, and then Euclideanly
embed G in the plane. “Easier said than done,” you say? Sure, but let us discuss it,
then who knows? You just might succeed!

The 3,364,925-vertex graph G that we constructed in Problem 12.9 is surely
5-chromatic. But we constructed it with the use of the Mosers spindle; thus, G has
a lot of triangles. It very well may be too rigid to have an Euclidean embedding in
the plane.

We can replace the Mosers spindle with, say, the Mycielski-Grotzsch Graph
(Fig. 12.8), and use the same construction as we did in Problems 12.8, 12.9,
and 12.10. We would get a S-chromatic graph G with 41 + 11 ﬁ ) =
34,754,081,689 vertices. This graph G has no triangles. But does it have an
Euclidean embedding in the plane? To begin with, I do not think (check it out)
the Grotzsch graph itself has an Euclidean embedding in the plane.

No, we need to start with a very “flexible” graph having an Euclidean embedding
in the plane. Let us start with the Wormald Graph G (Section 12.3) and the foun-
dation set R of 6447 x 4 + 1 = 25,789 points. For every 6448-element subset V
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of R we attach a copy Gy of G. We get a 5-chromatic graph G| without triangles,

. 25798
with 25, 789 + 6448 <6448
Computers are better today than in 1978 when Nicholas Wormald completed his
paper [Wor]. Are computers good enough for this task? Are we, mathematicians of

today, good enough to break through these computational walls?

vertices. Does G| have an Euclidean embedding?



14
Embedding 4-Chromatic Graphs in the Plane

14.1 A Brief Overture

In Chapters 1 and 2 we got acquainted with examples of 4-chomatic unit distance
graphs, the Mosers Spindle, and the Golomb Graph. In Chapters 5 and 12 we
met Paul Erd6s’s $25 Problem 5.6, and its partial solution by Nicholas Wormald,
who used Blanche Descartes’ construction of a 4-chromatic graph and his own
embedding of that graph in the plane. Wormald’s result was improved time and
time again on the pages of Geombinatorics by Paul O’Donnell, Rob Hochberg, and
Kiran Chilacamarri. Upon constructing a promising graph G, the authors of the new
4-chromatic unit distance examples used a 2-part approach to complete their task:

1. Graph-Theoretic Part. Show that the chromatic number of a graph G is 4 and
the graph has no short cycles.

2. Geometric Part. Embed G in the plane in such a way that every pair of adjacent
vertices is distance 1 apart and non-adjacent vertices are not 1 apart (like in the
previous chapter dealing with the Euclidean dimension).

In this chapter we will concentrate on the essentials of part 2—tools for embed-
ding in the plane, as developed and presented by Paul O’Donnell [Odo3], [Odo4],
[Odo5]. In the next chapter, we will look at the world records in the new sport of
embedding. Do use pen and pencil as you read this chapter.

We say that a k-vertex graph G with vertices V = {uy, uy, ..., uy} is attached
to a set of vertices V* = {u?, u3, ..., u}} if the vertices of G are connected via a
matching to V (i.e., via a one-to-one correspondence of V to V* and connection of
the corresponding vertices by new edges).

The shadow of G, denoted G*, is the set to which G is attached. We often choose
the graph G to be an odd cycle. The odd cycles are attached to subsets of a large
independent (i.e., no pair of vertices is adjacent) set of size n. The n independent
vertices are called foundation vertices.

If vertices of G are placed in points of the plane so that adjacent vertices are
exactly distance 1 apart, we say this is a unit distance embedding of G. Thus in

the plane, if the odd cycle {u, u,, ..., u} is attached to {u“f, uy, ..., uz}, then
the vertices uy, us, ..., ug, ui, us, ..., u; are fixed points in the plane such that for
A. Soifer, The Mathematical Coloring Book, 99
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some permutation o, u; is distance 1 from u:;(i) and from u; _; and u; (indices are
added modulo k) for 1 < i < k. Since the vertices can be relabeled, we assume that
u; is adjacent to u in the attachment. Usually we do not want distinct vertices to be
placed in the same point in the plane. If vertices of G are placed in distinct points
of the plane so that adjacent vertices are exactly distance 1 apart we say this is a
proper unit distance embedding of G. A graph with a proper unit distance embed-
ding is called a unit distance graph in the plane. In this section, higher dimensional
analogues are not considered, and so unit distance graph will mean unit distance
graph in the plane. In our geometric contexts the terms point and vertex will be used
interchangeably, while the term edge will mean a unit length edge. The following
continuity argument of the attachment procedure is important, and Paul O’Donnell
uses it in most of the results of this section:

Continuity Argument 14.1 Given fixed points in the plane:

ul =, y1),uy = (X2, ), ... Uy = (X, Vi)

and a point #; on the unit circle centered at u7. Let u; be a point distance 1 from both
u;—y and u} for2 < i < k. (In the following examples the distance between u;_; and
u7 is less than 2, so there are two points satisfying the distance restrictions; let u; be
the one closer to the corresponding point in the attachment.) For an appropriately

chosen arc along the unit circle centered at u}, u; is a continuous function of u;.

1 .
hort and ufmg such that the distance between uih"“

the corresponding u{M™ is less than 1, while the distance between u|"® and the

If there exist two points uj and

corresponding u}"® is greater than 1, then due to continuity there must be a point,

u™* such that the distance between u'™* and the corresponding u{™" is exactly 1.

In other words, the set of points {u}k uz, ..., uZ} has a k-cycle attached, namely,
{Mllmit, Mlzmit, e u}(mit}. -

The foundation points are distributed among four regions. They are placed in
d-balls centered at the following four points:

C;=(0,0

C, = (0,0.9)
C; = (0.9,0.9)
Cy = (0.9,0)

Since & is very close to zero, it is impossible to attach a cycle to k points if they
are all inside the same &-ball. The partitioning of the foundation points is designed
to prevent such an occurrence. Can a k-cycle be attached if the points are distributed
among at least two of the 8-balls? Yes, they can. First, k-cycles are attached to k
foundation points placed exactly at some or all of C;, C,, Cs, or C4. Next, the
points are moved slightly so the k-cycles are attached to k distinct points, each
placed in the appropriate 8-ball surrounding C;, C,, Cs, or C4. This prevents the
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foundation vertices from coinciding. Then some of the vertices are moved slightly
to eliminate all coincidences.

In Geombinatorics [Odo5] (but not in his dissertation [Odo3]), O’Donnell intro-
duces a useful notion of type:

a set of foundation vertices has type (ai, az, as, as); if it consists of a; vertices placed
in the 8-ball around C;, 1 <i < 4.

14.2 Attaching a 3-Cycle to Foundation Points in 3 Balls

Only 8-balls around points C;, C,, and C; are dealt with for the basic argument.
To distinguish between the preliminary and final situations, the foundation vertices
coincident with C;, C,, Cj; are denoted {v;‘, vy, .., v,’j}, paths or cycles attached
to them are denoted vy, v, ..., vg, while the foundation vertices inside the 8-balls
around C;, C,, C; are denoted {uT, uy, ..., uZ} and paths or cycles, attached to
them, are denoted uy, us, ..., ug.

O’Donnell starts by attaching a triangle.

Tool 14.2 A 3-cycle can be attached to the set of foundation points {C;, C,, Cs}.

Proof Using the points listed in the Appendix at the end of this chapter (rounded
to five decimal places), two 3-vertex unit distance paths are attached to C;, C, and
C;. In the first path, Tfh"“, T;h(’”, T;h"”, the distance from TlSh"rt to T;h"” is less
than 0.99. In the second path Tllong, T;O"g, T;O"g, the distance from Tllong to T3l°ng is
greater than 1.01 (Fig. 14.1).

C'."" C-t.-“‘.

C|."~‘ C‘,"-'.. . D—-'—_____‘_______t_\_‘i‘
—— et

1.0 0.98

o {2 \
e ¢ €1 c,
Fig. 14.1 A “too short” attachment and a “too long attachment” are shown together on the
left. The “just right” attachment is on the right. (All unlabeled edges have unit length.)

Since one path is obtained from the other by continuously sliding the starting ver-
tex, by the continuity argument there must be a path for which the distance between
the first and last vertices is exactly one. This is a required attached 3-cycle. =

Now we will relax the condition of Tool 14.2 and allow the 3 foundation vertices
to be anywhere inside §-balls, not just at their centers. Given § > 0, let uy, uj
and u} be foundation vertices placed anywhere inside §-balls, centered at C;, C,
and Cj respectively. If § is small enough, we will show that a cycle can be attached
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to the foundation set {u}, u3, u3} which is very close to the cycle attached to the
foundation set {C{, C,, C3} (which we have already accomplished in Tool 14.2).

Tool 14.3 There exists § > 0 such that a 3-cycle can be attached to any foundation
vertex set of type (1, 1, 1, 0);.

Proof Given ¢ > 0, choose § so that we can find “too short” and “tool long” paths
whose vertices are less than ¢ from the corresponding “too short” and “tool long”
paths attached to {C;, C,, Cs}. This is possible due to the continuity argument. As
in Tool 14.2, we get a “just right” path, which is the required cycle. =

14.3 Attaching a k-Cycle to a Foundation Set of Type
(aly a, as, 0)8

To generalize the above construction to k-cycles, where k > 3 is odd, other special
points are needed. The three triangle points, denoted Ty, T, and T3, are the points
of the 3-cycle attached to C; C,, and Cs. Three spoke points, S1, S», and S3, are
the points such that S; is unit distance from T; and C;, for 1 < i < 3. We define
“triangle” points Tl.Short and TI.long and “spoke points” Sl:"lorl and S}Dng analogously
for 1 < i < 3. At first, cycles or paths are attached which coincide with these
triangle and spoke points. The shadows of these cycles coincide with the center
points C;, C,, and C3. We then use the continuity argument to show the existence
of cycles very close to these.

Tool 14.4 Let k > 3 be an odd number. For all positive integers aj, az, as, such
that a; + a» + as = k, a k-cycle consisting only of edges from 7; to 7;,; (addition
modulo 3), and 7; to S;, for 1 <i < 3, can be attached to the union of a; points at
C, 1<i<3.

Proof The work involved in attaching 5-cycles contains all the details of the
general case. Suppose, for example, we want to attach a 5-cycle to the set
{uy, i, uly. u3, w3} (where the number in the subscript indicates the §-ball
containing the vertex).

By Tool 14.3, for § small enough, we can attach a 3-cycle u;, u,, us to the
foundation vertices {u}, u3, u}}. We just need to insert a “detour” into this cycle.
Instead of going from u; to u,, we go from u; to u, to uy,, which is arbitrarily close
to u;. We then continue to u; to u3 and finally back to u;. Of course, we cannot
actually construct the 5-cycle directly from the 3-cycle. Instead, we construct “too
short” and “too long” 5-paths with corresponding vertices within ¢ of the vertices
of the “too short” and “too long” 3-paths used to construct the 3-cycle (see Tools
14.2 and 14.3). Given ¢, we choose § such that this is possible. By the continuity
argument, we get a “just right” 5-path. This is an attached 5-cycle (Fig. 14.2).

Of course it did not matter that three foundation vertices were in the same §-ball.
Only two were necessary for the argument to work. The basic idea is to take a
3-cycle uy, up, uz and construct a 5-cycle uy, z, uj, up, us. It does not matter
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Fig. 14.2 A 5-cycle
attached to a set of type &
(,1,1,0

where the foundation vertex z is so long as it’s close enough to u; so that unit length
edges can be connected to z (i.e., z should be less than 2 units away from u).

For example, suppose we want to attach a 5-cycle to {u’]", ul,, uy, ui, uy, } We
find “too short” and “too long” 5-paths that are arbitrarily close to the corresponding
“too short” and “too long” 3-paths. By the continuity argument, we get a 5-cycle
(Fig. 14.3).

Similarly (using induction and considering two cases as discussed above),
k-cycles can be attached to k points by first looking at a (k — 2)-cycle attached to
k — 2 points, and then performing the insertion procedure described above. The
cycle will look like a triangle with a few spokes coming off some of the vertices. =

Fig. 14.3 A 5-cycle
attached to a set of type &
(2,1,2,0)

By symmetry, we can now attach k-cycles to sets of types (aj, az, 0, as)s,
(a1, 0, a3, aq)s, and (0, an, as, a4)s. What if we need to place the foundation vertices
in all 4 of the § -balls? In fact, for our purposes we need only the case when the
partitioning of the foundation vertices puts just one foundation vertex in the §-ball
around C*, so only this case needs to be considered. =
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14.4 Attaching a k-Cycle to a Foundation Set of Type
(a1, az, a3, 1);

Tool 14.5 Let k > 5 be an odd number. For all positive integers a;, a», as, a4 such
that a; + a» + as + a4 = k and a4 = 1; there exists 6 > 0 such that a k-cycle can be
attached to any foundation set of type (a, az, az, 1);.

Proof The argument of the previous section applies here as well. At least one of
ai, ay, az is greater than 1, say a;. We first find a (k — 2)-cycle attached to a set
of type (a; — 1, a», az, 0); and then replace the vertex u; in the cycle by a path
uy, ug, uy,. This produces an attached k-cycle. Like before, we really do all the
work on the “too short” and “too long” paths, and use the continuity argument to
prove the existence of the desired “just right” cycle (Fig. 14.4). =

Fig. 14.4 An 11-cycle attached to a set of type § (5, 1, 4, 1). The cycle and the attaching
edges are shown on the left. The cycle alone is shown on the right

14.5 Attaching a k-Cycle to Foundation Sets of Types
(a1, a2, 0, 0); and (a4, 0, as, 0);

We have shown that an odd cycle can be attached to k points placed inside §-balls
around any 3 or all 4 of C;. C,. C5. and C4. But what if the points are distributed
between § -balls around just two of the center points? The crucial step is still attach-
ing a triangle. Once it is shown that a triangle can be attached to the center points,
the previous arguments show that a k-cycle can be attached for any odd k£ > 3.
We simply think of one of the §-balls as two overlapping §-balls (so now we have
3 balls).
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Tool 14.6 Let k > 3 be an odd positive integer. For all positive integers a;, a, such
that a; + a, = k there exists § such that a k-cycle can be attached to any foundation
set of type (a;, az, 0, 0);.

Proof Without loss of generality, assume a; > 2. We attach a 3-cycle to two vertices
at C; and one vertex at C,, using the same notation as before for the triangle points,
only here triangle points with subscripts 1 or 2 correspond to C; while those with
subscript 3 correspond to C, (see the left drawing of Fig. 14.5).

Using the points listed in the appendix (rounded to five decimal places), two
3-vertex paths are attached to C;, C; and C,. In the first path, 75", 73hert, TSh"rt
the distance from 7" to 7M™ is less than 1. In the second path, Tlong Tlong Tlong

the distance from Tlong to T10ng is greater than 1. Since one path is obtained from the
other by contlnuously shdlng the starting vertex, by the continuity argument there
must be a path for which the distance between the first and the last vertices is exactly
1. This is the desired attached 3- cycle

Now we attach the k-cycle. Let a| and a{ be positive integers such that a} +a| =
a;. We treat C; as if it were two separate vertlces C and C{ and use the machinery
from the previous section to find § such that any aj points in the §-ball around
C}, af points in the §-ball around CY, and a, points in the §-ball around C,, can
have a k-cycle attached. In other words, any a; points in the §-ball around C; and a,
points in the §-ball around C, can have a k-cycle attached.

C,,--.
Vo Ceomn
<.’ 4 ]
Y .‘ .

C,,--

c,hd

Fig. 14.5 Attaching a 3-cycle to {C;, C;, C,} on the left. Attaching a 3-cycle to {C;, C;, C;}
on the right

This allows the attachment of k-cycles if the center points are distance 0.9 from
each other, like C; and C,. The configuration consisting of C; and Cs, can be han-
dled similarly. =

Tool 14.7 Let k > 3 be an odd positive integer. For all positive integers a;, a3 such
that a; + a3 = k there exists § such that a k-cycle can be attached to any foundation
set of type (ai, 0, az, 0);.

Proof We just need to show that we can attach a 3-cycle to 1 vertex at the center of
one §-ball and 2 vertices at the center of the other. As in the proof of the previous
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tool, we use the “too short,” “too long,” “‘just right” continuity argument. (see the
right drawing of Fig. 14.5). The Appendix at the end of this chapter contains the
coordinates of the special points (rounded to five decimal places).

ELINT3
]

14.6 Removing Coincidences

If two vertices from a graph are placed at the same points in the plane, small
cycles may inadvertently be created. We must ensure that no vertices coincide. For
6 small enough, the regions containing the foundation vertices are disjoint from
the regions containing cycle vertices. Furthermore, the foundation vertices can be
placed anywhere in the §-balls, so we choose distinct locations for all of them. It is
possible, however, for cycle vertices to coincide. In small graphs it can be verified
computationally that this doesn’t occur. For larger graphs Paul O’Donnell develops
procedures to remove these coincidences.

If vertices from two different attached cycles coincide, one foundation vertex is
moved slightly causing all vertices of the one attached cycle to move slightly while
no vertices of the other cycle move. “Slightly” means not enough to introduce any
new coincidences. If vertices from the same cycle coincide, a modification of this
method is used to remedy it.

Tool 14.8 If there is an embedding of a unit distance graph G with m > 1 pairs of
coincident vertices, then there is an embedding with fewer than m pairs of coincident
vertices.

Proof Given an embedding of G with coincident vertices u and w, we shift some
of the vertices of G, subject to several restrictions: no foundation vertex can move
outside its §-ball, and no new coincidences may be introduced. Let ¢; be the minimal
distance between any foundation point and the boundary of the containing it §-ball;
let &, be the minimal distance between any two non-coincident vertices; we define

. &2
&=min{&;, — 1.
2

Given ¢ > 0, we choose 8/, 0 < 8’ < ¢, such that if a foundation vertex is
moved a distance less than &', then no vertex moves a distance ¢ or greater. Since
the foundation vertices are not moved more than &, they remain inside their §-balls,
thus all k-cycles can still be attached. Since all non-coincident pairs of vertices are
at least &; apart, the movement by less than &, /2 does not create new coincidences.
Let us consider two cases.

Case 1 Assume u and w are on different cycles: u is on the cycle u = uj, uy, ...
while w is on the cycle w = wy, wa,....

Let u; be a vertex such that no w; is attached to the foundation vertex u’;. Moving
uj+1 along the unit circle centered at u, | causes each vertex in the cycle

Ujpl, Ujg, ooy U, Uy, oo UG
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to move to maintain unit distance from its foundation vertex and from the preceding
cycle vertex. We move u ;4 so that no vertex has moved more than ¢ and thus
there is a point unit distance from u;_; and u;;; and distance less than ¢’ from
u ;. This point is the new location of u ;. Now we move uj‘. that same distance so it
is unit distance from the new u ;. Of course, moving u’; may shift vertices of cycles
attached to it by distances less than ¢, but no new coincidences are introduced. Since
u moves and w; does not, at least one coincidence is removed.

Case 2 Assume u and w are on the same cycle; to reflect that we call them u;
and u;. We choose a cycle vertex u; different from the coincident vertices and apply
the procedure described in case 1. The only foundation vertex that moves is u;f. The
only point in the &-ball around the coincident vertices which is distance 1 from u7
and u? is the original location of those points (#; and u;). Since u; and u; moved
while 7 and u} did not, they no longer coincide. As before no new coincidences
are introduced. =

This has been a display of Paul O’Donnell’s embedding machinery and his pre-
sentation of it [Odo3], [Odo4], [Odo5]. Can we get an immediate reward from his
tool chest? As you know from Chapter 12, Wormald embedded his 6448-vertex
graph in the plane. He started with 13 foundation points forming the vertices of a

regular 13-gon, attached and embedded whopping (153> 5-cycles, and made sure

that no coincidences occurred.
O’Donnell was able to do it much easier—Iet us take a look.

14.7 O’Donnell’s Embeddings

Embedding the Wormald Graph: Place four foundation vertices in each of the
é-balls centered at C;, C,, and Cs, plus one foundation vertex in the §-ball cen-
tered at C4. The embedding tools above allow the attachment of all 5-cycles and
elimination of all coincidences that may occur. The unit distance embedding of the
Wormald graph is thus accomplished! =

Wormald hints that with a considerable effort he probably could embed a larger
Blanche Descartes graph, which is constructed by attaching all 7-cycles to the foun-
dation of 19 vertices. No wonder he does not actually deal with it: for one, this
is a 352,735-vertext graph, and thus calculations would have grown dramatically;
moreover, Wormald admits that he does not see his approach going any further than
a graph of girth 6.

The embedding of this 352,735-vertex graph too becomes trivial, compliments
of O’Donnell’s embedding tools.

Embedding the 352,735-vertex Graph: Indeed, just place six foundation ver-
tices in each of the §-balls centered at C;, C,, and Cs, plus one foundation vertex
in the §-ball centered at C4. The embedding tools above allow the attachment of all
7-cycles and elimination of all coincidences that may occur. =
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The next chapter is dedicated to the World Records of Embedding—join me for
the exciting World Series!

14.8 Appendix

Vertices used to show a cycle can be attached to vertices at the points C;, C,, and

Cs.
short
Tl

short
Tzh t

shor
T3

short
T4h t

shor
Sl

short
S2

Sshort
3
short

o
SO

o
short

534

Tlong
1
long

T
2

Tlong
3

long
T4

lon,
S, ¢

long
SZ

lon,
Sy
Slong

(0.99635, 0.08533)

(0.98269, 1.08524)

(1.84978, 0.58709)

(0.9980, 0.06319)

(0.57208, —0.82020)

(0.65177, 0.14158)

(1.64588, 1.56608)

(1.60981, —0.70439), distance 1 from C4 & Tfh"“
(1.77788, 0.47888), distance 1 from C4 & T;h"“
(1.81111, —0.41216), distance 1 from C4 & T;h"rt
(0.99541, 0.09567)

(0.98069, 1.09556)

(1.85956, 0.61850)

(0.99280, 0.11977)

(0.58056, —0.81422)

(0.65971, 0.14848)

(1.62357, 1.59025)

(1.65414, —0.65671), distance 1 from Cy & T,*"®
(1.77374, 0.48640), distance 1 from C4 & T2long
(1.82462, —0.38089), distance 1 from C4 & T;Ong
(0.99591, 0.09038)

(0.98173, 1.09028)

(1.85476, 0.60261)

(0.57623, —0.81729)

(0.65565, 0.14494)

(1.63492, 1.57815)

(1.63230, —0.68098), distance 1 from C4 & T}
(1.77587, 0.48255), distance 1 from C4 & T»
(1.81794, —0.39671), distance 1 from C4 & T3

Vertices used to show a cycle can be attached to vertices at the points C;, C,:

short
Tl

short
Tzh t

shor
T3

(—0.06194, 0.99808)
(0.83339, 0.55268)
(0.75995, 1.54998)
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short
T4h rt

SNO!
Sl

Sshort
2
Sshon
3
long
il
ong
T2

Tglong
Jlong

g
on,

S

long
.

ong
S 3

T
I}
T3
Si
$2
S$3

(0.83339, 0.55268)
(0.83339. 0.55268)
(—0.06194, 0.99808)
(0.94288, 0.56685)
(—0.08916, 0.99602)
(0.81800, 0.57522)
(0.74037, 1.57220)
(0.81800, 0.57522)
(0.81800, 0.57522)
(—0.08916, 0.99602)
(0.95233, 0.59493)
(—0.07551, 0.99715)
(0.82580, 0.56397)
(0.75029, 1.56111)
(0.82580, 0.56397)
(—0.07551, 0.99715)
(0.94768, 0.58079)
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Embedding World Records

Around the 1991-1992 New Year, Paul Erd6s and I had been writing the book
Problems of p.g.o.m. Erd6s in my home in Colorado Springs,> when Ron Graham
called, and invited me to come to the Florida Atlantic University in March 1992,
so that we can finally meet in person at the South-Eastern International Conference
on Combinatorics, Graph Theory and Computing. I had just started publishing the
problem-posing quarterly Geombinatorics, and at that conference I introduced it to
the colleagues for the first time while giving a talk on the chromatic number of the
plane problem. As a result, a group of young brilliant Ph. D. students, including
Paul O’Donnell and Rob Hochberg, got excited about the problem and the new
journal. Geombinatorics has become the main home for related problems and results
outshining, in regards to these problems, all top journals on combinatorial theory
and discrete geometry. One of the most exciting consequences was the competition
for the smallest unit distance triangle-free graph, which from now on I will call
Embedding World Series.

As you recall from Chapter 5, in 1975 Paul Erdés posed a problem to prove or
disprove the existence of 4-chromatic unit distance graphs of girth 4, 5, and higher.
Nicholas Wormald constructed a girth 5 graph on 6448 vertices (Chapter 12). In
my talk I asked for the smallest example, and the World Series began in the earnest
on the pages of Geombinatorics! New records were set by Paul O’Donnell, Rob
Hochberg, and Kiran Chilakamarri; some new record graphs earned names, such
as the Moth Graph, the Fish Graph, etc. and appeared on the covers of Geombi-
natorics. Let me, for the first time, present here this competition, current records
and record holders. You will also see that, once the mathematical constructions and
proofs were out of the way, the record holders went on to find “beautiful,” symmetric
embeddings of their graphs, the ones to which they—or else I—gave special names.

3 Since this Coloring Book is finally finished, I am getting back to finishing Problems of p.g.o.m. Erdds
book, so stay tuned.

110 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5_15, © Alexander Soifer 2009
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15.1 A 56-Vertex, Girth 4, 4-Chromatic Unit Distance
Graph [Odo1]

As we have touched on in Section 12.2, in 1955 Jan Mycielski [Myc] invented a
method of constructing triangle-free graphs of arbitrary chromatic number k: Start
with a triangle-free (k — 1)-chromatic graph G. For each vertex v; € V(G) add a
vertex w; adjacent to all vertices in the neighborhood of v;. Next, add a vertex z
adjacent to all of the new vertices. The chromatic number of this new graph is k,
and it is still triangle-free. Let us call this graph Mycielskian of G and denote M(G).
Unfortunately, the resultant graph does not often embed in the plane. Notice that if a
vertex of G has degree 3 or more, then the Mycielskian M (G) of G contains a K3 3.
The plane contains no unit distance K3 subgraph, so the starting graph G must
have maximum degree at most two for the Mycielskian to be a unit distance graph.
Thus, the only candidates for the unit distance version of the Mycielski construction
are unions of paths and cycles. However, the Mycielskian of an odd cycle does not
embed in the plane, so the Mycielski construction does not give a 4-chromatic unit
distance graph. The Mycielskian of at least one even cycle does embed.

The 5-cycle uy, u,, us, ug, us is said to be attached to the set of vertices
{vi, v2, v3, v4, vs}if v; is adjacent to u; for 1 < i < 5 (Fig. 15.1). Such an
attachment is a useful operation because it can increase the chromatic number of a
graph from 3 to 4 without introducing any 3-cycles.

The graph H in Fig. 15.2 is the Mycielskian of the 10-cycle C;o9. With basic
geometry and algebra H can be embedded in the plane, but, O’Donnell reports, Rob
Hochberg pointed out a nicer proof which shows why this is so. H is a subgraph
of the projection of the 5-cube along a diagonal onto the plane. The coordinates
of the vertices vy, v3, vs, V7, Vg are the fifth roots of unity, while the edges are
all unit length since they are translations of these unit vectors. This graph is only
3-chromatic, thus we will attach 5-cycles to make it 4-chromatic.

Fig. 15.1 The 5-cycle
uy, Uy, U3, Uyg, Us is
attached to

{vi, v2, v3, vy, vs}
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w,
6 un

ws Wy

Fig. 15.2 H is the Mycielskian of Cg

Construction 15.1 A 5-cyclecanbeattached tothesubgraph R ={v;, vs, vs, v7, v9}
of the graph H of Fig. 15.2.

Proof Center a regular pentagon of side length 1 at the origin and rotate it until the
distance from one of its vertices to v; is 1 (Fig. 15.3). Then the respective distances

Fig. 15.3 H with one 5-cycle attached
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from the other vertices of the pentagon to the other vertices of the graph R will
all be 1.

Does this attachment remind you the construction of the Golomb Graph
(Fig. 2.8)? It should, for the Golomb Graph was O’Donnell’s inspiration for this
nice construction. =

Construction 15.2 A 5-cycle can be attached to the subgraph T = {w;, ws, we,
wg, z} of the graph H of Fig. 15.2.

Proof The proof relies on the intermediate value theorem and the continuity argu-
ment introduced in the beginning of Chapter 14. Described a little less formally,
we try to attach a 5-cycle to the five vertices of T so that the cycle edges and the
connecting edges are all length one. In fact, we try it twice. The problem with the
attachments is that in the first, one of the edges in the cycle is too short, in the second,
it, is too long. Since one configuration is obtained from the next by a continuous
transformation, there exists an attachment where that same edge has length one.
Thus, T can have a 5-cycle attached (Fig. 15.4). =

w, we

wy

Fig. 15.4 The “Short” Attachment and The “Long” Attachment shown together on the left.
The “Just Right” Attachment is on the right. (All unlabeled edges are of unit length.)

The most efficient way to verify these attachments is by computer, although it
is necessary to make sure that the error made by approximating the numbers does
not affect any of the inequalities. The error in the numbers listed below is < 1073,
which does not affect the results.

Let C; be the unit circle around the ith vertex in H. Let u;, u, usz, ug, us
be a path with unit length edges and with u; on C;. This almost gives an attached
5-cycle. The attaching edges are all unit distance since each u; is on the unit cir-
cle around some vertex in H, and the four-path edges are unit distance. This path
can be slid back and forth in a continuous manner with each u; tracing out an
arc on C;. One such path is approximately (0.95, 0.74413), (—0.04916, 0.70312),
(—0.62463, —0.11470), (0.13436, —0.76580), (0.974661, —0.22369). The vertices
of this path form a “too short attachment” where all distances are one except from
us to u; where the distance is about 0.968.
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A second path which can be obtained from the first one by continuous sliding is
(1.1, 0.85536), (0.13069, 0.60954), (—0.61938, —0.05183), (0.10423, —0.74206),
(0.97027, —0.24204). The vertices of this path form a “too long attachment” where
the us to u; distance is 1.10. By continuity, there is a “just right attachment” where
the edge from us to u; is exactly one. The exact coordinates of this attachment are
unknown, but for claiming their existence, it suffices to show that a 5-cycle can be
attached to our set (Fig. 15.4). =

Construction 15.1 allows us to attach a 5-cycle to {v;, vs, vs, v7, vo}. Similarly,
we can attach another 5-cycle to {v,, v4, ve, vs, vio}. We get the new graph, call
it H'. In a proper 3-coloring of H' the vertices in {v;, vs, vs, v7, vy} cannot get
the same color since that leaves only 2 colors for the attached 5-cycle. The same
holds for {vy, v4, v, vg, Vio}. This is enough to rule out most of the 3-colorings
of H'. In fact, aside from the vertices of the attached 5-cycles, the coloring of H’ is
completely determined up to symmetries. This coloring is shown in Fig. 15.5 (the
attached 5-cycles are not shown in the figure). Note that there are numerous ways to
color the attached 5-cycles, but their attachment forces the rest of the graph to have
a unique coloring up to a permutation of the colors and rotation of the graph.

Fig. 15.5 The vertices of H
must have this coloring up
to symmetries when two
5-cycles are attached. (The
attached 5-cycles are not
shown.)

In particular, in every 3-coloring of H’, for some j, 1 < j < 5, the set
{wj, wjt2 wjys, wjty, z} (addition modulo 10) is monochromatic, where z and the
w; are as in Fig. 15.2. By attaching 5-cycles to all five of these sets, we exclude all
3-colorings. The result is a 4-chromatic graph. Moreover, since H is triangle-free,
this new graph is also triangle-free. Approximation of the coordinates of the vertices
ensures there are no coincident vertices.

Time to count vertices of our construction: H has 21 vertices, then two 5-cycles
are added, then five 5-cycles more. The result is a triangle-free, 4-chromatic graph
on 56 vertices (Fig. 15.6). =
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Fig. 15.6 O’Donnell’s
56-vertex 4-chromatic
graph in the plane with no
3-cycles

Beating the 6448-vertex Wormald graph with the new world record of a tiny
56-vertex graph was a striking achievement.

In closing, Paul O’Donnell observes: one reason to search for triangle-free graphs
is that they seem to be flexible. For example, H can be bent into a 4-chromatic graph,
containing many Mosers’ spindles (Fig. 15.7).

Fig. 15.7 H can be bent so
that new edges (unit
distances) are introduced.
The chromatic number of
this new graph is 4

Paul ends [Odo1] with the ultimate goal (or ultimate musing):

Perhaps flexibility will prove useful in a construction of a 5-chromatic graph in the
plane!
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15.2 A 47-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [Chi6]

Professor Kiran Chilakamarri, then of the Ohio State University (and presently of
Texas Southern University), was one of the early researchers of the chromatic num-
ber of the plane. Among other related problems he was very interested in construct-
ing the smallest possible example of a 4-chromatic unit distance graph. I have little
doubt that his work was well on the way when Paul O’Donnell published the first,
56-vertex breakthrough in these real (unlike baseball) World Series. In the fall 1995
Kiran responded by beating Paul’s world record with the 47-vertex Moth Graph
of his own, which I prominently published on the cover of January 1995 issue of
Geombinatorics.

Chilakamarri constructs his example in stages, at each stage describing the proper-
ties, shared by all possible colorings of the graph constructed. He begins with a graph
on 12 vertices and 20 edges, which he called the core graph shown in Fig. 15.8.

b

Fig. 15.8 The Core Graph

Chilakamarri then invents the right wing graph (Fig. 15.9) on 10 vertices and 12
edges, and symmetrically the left wing.

He then attaches the wings to the core and gets the Butterfly Graph (Fig. 15.10).

Finally, joining two butterflies produces the 47-vertex graph, which is proved to
be 4-chromatic (Fig. 15.11).

Kiran then proves “the existence” (i.e., the existence of an embedding in the
plane) of the Moth Graph by producing its coordinates. Finally, he proves that the
Moth Graph has girth 4 by checking (a) the vertices of the core graph do not form
an equilateral triangle (b) the left wing has no equilateral triangle (c) as we add the
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Fig. 15.9 The Right Wing graph

wings to the core no new edges are created and finally (d) as we join two butterfly
graphs, no new edges are created other than the edge we have added. =

As Kiran Chilakamarri set his new world record of 47, our World Series became
so intense in mid 1995 that Chilakamarri in this July-1995 paper mentions in end-
notes “Paul O’Donnell tells me he is shrinking the size of the example (< 407)...”
Moreover, Robert Hochberg modified O’Donnell’s 56-vertex construction to get
a 46-vertex unit distance triangle-free 4-chromatic graph, and thus beat Chilaka-
marri’s World Record of 47, but Rob, to my regret, decided against publishing it
because he too learned that O’Donnell was getting ready to roll out yet another new
world record, the 40-vertex graph.

15.3 A 40-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [Odo2]

Similarly to the [Odol] approach, Paul O’Donnell starts with the Mycielskian of
the 5-cycle Cs. This 11-vertex Mycielski—Gro6tzsch graph (we saw it in Fig. 12.8)
is the smallest triangle-free 4-chromatic graph. Since it is not a unit distance graph,
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we modify it by taking out the “central” vertex adjacent to the 5 “new” vertices, and

replacing it with five vertices each adjacent to a pair of “new” vertices as shown in
Fig. 15.12. Let us call this graph H.

Uy

=)

vy vz

Fig. 15.12 An “instructive” drawing of H is on the left. A unit distance embedding of H is
on the right

H is 3-chromatic, but all the 3-colorings share a valuable property. In every 3-
coloring, one of the sets {UH_,‘, V6tis Vll4(i+1)s VI14(i42)> U1]+(,‘+3)}, forO0<i <4
(where parentheses indicate addition modulo 5), is monochromatic. By attaching
5-cycles, one of which is shown in Fig. 15.13, to all such sets, all 3-colorings
get excluded. Thus, the resultant graph H’ is 4-chromatic and still triangle-free.
It remains to show that H' is a unit distance graph.

Fig. 15.13 The 5-cycle
up, Uy, Uz, Uy, Us is
attached to

{wy, wy, ws, wy, ws}

Wy

Construction 15.3 A 5-cycle can be attached to T = {vy, vg, v12, V13, V14}, (see the
right Fig. 15.12).

Proof We try to attach a 5-cycle wy, w,, w3, wy, ws so that the cycle edges and
all the connecting edges are length 1, Fig. 15.14. It is fairly easy to attach a unit
distance path wi, wa, w3, wg, Ws to T. The hardest part is getting ws and w; to
be distance 1 apart to complete the cycle.
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Fig. 15.14 H with a 5-cycle attached to T

Define a continuous function f(0) to be the length of the edge {w;, ws} when
vertex w) is placed at angle 6 and distance 1 from v;, and each subsequent w; is
placed at distance 1 from both w;_; and its corresponding vertex in 7'. Typically
there are two possible positions for w;, so a precise description of f(6) would
include how all of the choices are made. It suffices to say, there exists f(0) satisfying
the description above and continuous on some interval [a, »] on which f(a) < 1 and
f(b) > 1. By the Intermediate Value Theorem, for some 6y € [a, b], f(6p) = 1. =

Fig. 15.15 O’Donnell’s Pentagonal Graph
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By attaching 5-cycles to T and all of its rotations, we obtain a graph with the
desired properties. Since H had 15 vertices and we attached five 5-cycles, the result
is a 4-chromatic, triangle-free unit distance graph on 40 vertices (Fig. 15.15).

The new world record of 40 was fabulous; I proudly published it on the cover of
the July 1995 issue of Geombinatorics. However, it was not the end of the World
Series of Embedding. Paul ended his essay [Odo2] with the promise of more things
to come:

Some related questions are still wide open. Given k, is there a 4-chromatic unit distance
graph with no < k-cycles? What is the smallest 4-chromatic triangle-free unit distance
graph? And of course, is there a 5-chromatic unit distance graph in the plane? Stay
tuned to Geombinatorics for further developments.

15.4 A 23-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [HO]

Indeed, more things have come. It remains a mystery to me why Paul O’Donnell did
not include in his doctorate dissertation two world records he has set jointly with
Rob Hochberg, records which still stand today. In the dissertation, Paul mentions
this great achievement briefly, as if in passing:

In joint work with R. Hochberg [HO], the upper bounds on the sizes of the smallest
4-chromatic unit distance graphs with girths 4 and 5 were lowered even more. A 23-
vertex, girth 4, 4-chromatic unit distance graph was found. The construction involved a
generalized version of cycle attachment. A 45 vertex, girth 5, 4-chromatic unit distance
graph was found. The construction involved a generalized version of cycle attachment.

And that is all! Fortunately, I published their remarkable paper in Geombinatorics
in April 1996 [HO], and so we are able to revisit it here.

In [Odol] and [Odo2] Paul O’Donnell used an idea of attaching odd cycles
to specified subsets of vertices of a starting independent set. Here Hochberg and
O’Donnell use a more complicated notion of attaching: a cycle might not have all
of its vertices attached to the independent set, and some vertices in the independent
set may have more than one vertex of the cycle attached to them. Figure 15.16
illustrates two applications of this idea.

In Fig. 15.17A the 5-cycle (1, u, us, us, us) is partially attached (by dashed
lines) to {w, y}. Observe that in any 3-coloring, if w and y get the same color, then
us must also receive that color.

To these three vertices {w, y, us} we then attach the (bold) 5-cycle (v;, vy, v3, v4,
vs), as shown in Fig. 15.17B.

Now in any 3-coloring of this graph, if w and y (and hence us) receive the same
color, then there are only 2 colors left for the attached odd cycle making such a
3-coloring impossible. But in any 3-coloring of the square {w, x, y, z}, one of the
pairs {w, y} or {x, z} must be monochromatic. So we take a copy of the two 5-cycles
shown in Fig. 15.17B (flipped about a horizontal axis so that they are now attached
to the pair {x, y}). With the coincidence at the center of the square, this adds only
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el

Here, a 5-cycle is partially attached to the | Here, a 7-cycle is attached to the independent
independent set {v, w}. In any 3-coloring of | set {a, b, ¢, d}. Any coloring of this graph that
this graph, if v and w get the same color, | makes the independent set monochromatic,
then x must also get that color. must use at least 4 colors. Note that this graph
has girth 5.

Fig. 15.16 Attaching odd cycles to independent sets

Fig. 15.17A Attaching a 5-cycle

Fig. 15.17B Attaching a 5-cycle

nine new vertices (rather than 10 — every vertex counts when we set world records!),
creating a 23 vertex graph with no 3-coloring. This graph is shown in Fig. 15.18.
I named it Hochberg—O’Donnell’s Fish Graph.

It remains to be shown that the graph is indeed unit distance. Clearly, it suffices
to show that the 5-cycles can be attached the way we described. The proof relies
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Fig. 15.18 Hochberg—O’Donnell’s Fish Graph of order 23

on the Intermediate Value Theorem and the continuity argument. We try to attach a
cycle to a specified set of vertices, so that the cycle edges and the connecting edges
are all length 1. In fact, we do it twice: in the first, one of the edges in the cycle
will be too short, in the second, it will be too long. Since one configuration can he
obtained from the other by a continuous transformation (which does not alter the
lengths of the unit length edges), there exists an attachment where that same edge
has length 1. This works for all the attachments and partial attachments in these
constructions. We looked at this argument in greater detail earlier in this chapter
where we discussed O’Donnell’s 56- and 40-vertex record graphs. =

The problem, of course, remains open:

Open Problem 15.4 What is the smallest size of a 4-chromatic unit distance graph
of girth 4?

As you know, the smallest 4-chromatic triangle-free graph is the Mycielski—
Grotzsch Graph of 11 vertices. The Fish satisfies all the Grotzsch conditions plus
one extra: it is a unit distance graph. It is remarkable that Rob and Paul managed
with merely 23 vertices. Is this the smallest possible number of vertices? I am not
sure. I am positive though that 23 is very close to the minimum. And so, in a course
of 2 years, on the pages of Geombinatorics we traveled from 6448 vertices all the
way to 23, an incredible achievement!
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15.5 A 45-Vertex, Girth 5, 4-Chromatic, Unit Distance
Graph [HO]

Recall the Petersen Graph (Fig. 13.3) and its unit distance embedding in the plane
(Fig. 13.4) that was discovered by the distinguished triumvirate of mathematicians
Erd6s—Harary—Tutte in their famous 1965 article [EHT] (yes that is where they
famously remarked “It is easy to see especially after seeing it”). Here Hochberg
and O’Donnell pursue their second idea (Fig. 15.16 on the right). Accordingly, in
Fig. 15.19, a 7-cycle (shown in bold) is attached to a 4-vertex independent set of the
Petersen graph.

Fig. 15.19 The Petersen graph with a 7-cycle attached (by dashed lines)

The authors then simply write: “By the pigeonhole principle, in any 3-coloring
of the Petersen Graph, one of the five rotations of the set {a, b, ¢, d} will be
monochromatic.” Can you figure how the pigeons help here? Upon pondering for
a few minutes, I understood it (though not sure whether the authors had the same
argument in mind): In a 3-coloring of the Petersen Graph, at least 4 out of its 10
vertices must appear in the same color (that is the Pigeonhole Principle). Now,
which 4 vertices could that be (here the Pigeonhole Principle is of no help)? The
answer is two vertices on the outer pentagon and two on the inner star. You can now
verify (do) that the only pair of the outer monochromatic vertices that allows two
inner vertices in the same color, up to a rotation is a, ¢ (Fig. 15.19). It is then clear
that a, ¢ must be accompanied in the same color by the vertices b, d of the inside!

When 7-cycles are attached to all five rotations of {a, b, c, d}, the resulting graph
will not be 3-colorable. This gives a 45 vertex 4-chromatic graph with no 3-cycles
or 4-cycles. This beautiful graph is shown in Fig. 15.20. I gave it the name honoring
its creators, the Hochberg—O’Donnell Star Graph, and published it on the cover of
the April 1996 issue of Geombinatorics.

Finally, we need to show that the Star Graph is indeed embeddable in the plane. It
suffices to show that the 7-cycles can be attached the way we described it. The proof
relies again on the Intermediate Value Theorem, and the continuity argument. We
need to attach a 7-cycle to a specified set of vertices so that the cycle edges and the
connecting edges are all length 1. Instead we do it twice: in the first attachment one
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Fig. 15.20 Hochberg—O’Donnell’s Star Graph of order 45

of the edges in the cycle will be too short, while in the second one too long. Since one
configuration can be obtained from the other by a continuous transformation (which
does notalter the lengths of the unitlength edges), there exists an attachment where that
same edge has length 1. This works for all the attachments and partial attachments in
these constructions. We looked at this argument in a greater detail earlier in this chapter
when we discussed O’Donnell’s 56- and 40-vertex record graphs. =

Open Problem 15.5 What is the smallest size of a 4-chromatic unit distance graph
of girth 5?

I hope you have enjoyed getting acquainted with the beautiful new graphs and
the world records they represent. The Tables 15.1 and 15.2 summarize the world

Table 15.1 World records: Smallest unit distance 4-chromatic graph of Girth 4

Num. of ver- Author Pub. Date Journal

tices

6448 N. Wormald 1979 [Wor]

56 P. O’Donnell July 1994 Geombinatorics IV(1), 23-29
47 K. Chilakamarri January 1995 Geombinatorics IV(3), 64-76
46 R. Hochberg 1995 (unpublished)

40 P. O’Donnell July 1995 Geombinatorics V(1), 31-34
23 R. Hochberg & April 1996 Geombinatorics

P. O’Donnell V(4),137-141
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Table 15.2 World records: Smallest unit distance 4-chromatic graph of Girth 5

Num. of vertices Author Pub. Date Journal
6448 N. Wormald 1979 [Wor]
45 R. Hochberg & P. O’Donnell April 1996 Geombinatorics

V(4),137-141

records history, and underscore the role of Geombinatorics as the playing field of
this World Series.

It is now time to move on: we still have a lot of exciting colored and coloring
mathematics to experience. Armed with great results on colored integers in Part
VII, we will return to Paul O’Donnell’s dissertation: Part IX will be dedicated to his
main results.



16
Edge Chromatic Number of a Graph

16.1 Vizing’s Edge Chromatic Number Theorem

We can assign a color to each edge of a graph instead of its vertices. This gives birth
to the following notion.

A graph G is called n-edge colorable if we can assign one of the n colors to each
edge of G in such a way that the adjacent edges are colored differently.

The edge chromatic number x(G) also known as chromatic index of a graph G
is the smallest number n of colors for which G is n-edge colorable.

The following two statements follow straight from the definition.

Problem 16.1* For any graph G
x1(G) = A(G).
Problem 16.2 For any subgraph G of a graph G

X1(G1) = x1(G).

In 1964, the Russian mathematician Vadim G. Vizing published [Viz1l] a won-
derful result about the edge chromatic number of a graph. His proof is fairly long,
but so nice that I am going to present it here completely. Do read it with pencil and

paper!
Vizing’s Theorem 16.3 (V. G. Vizing, [Viz1]) If G is a non-empty graph, then

x1(G) = A(G)+1, ()

i.e., the edge chromatic number x;(G) of a graph is always equal to A or A 4 1,
where A = A(G).

4 A(G) is defined in Chapter 12.

A. Soifer, The Mathematical Coloring Book, 127
DOI 10.1007/978-0-387-74642-5_16, © Alexander Soifer 2009
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Vadim G. Vizing in early 1960s, when he worked on his classic theorem

Proof 1enjoyed the version of the Vizing’s proof in [BCL]. My presentation is based
on theirs—I tried to make it more visual by including many illustrations, splitting
one case into two, and adding a number of elucidations.

Part I. Preparation for the Assault: We will argue by contradiction. Assume that
the inequality (*) is not true. Then among the graphs for which (*) is not true, let G
be a graph with the smallest number of edges. In other words, G is not (A + 1)-edge
colorable; but the graph G’ obtained from G by removing one edge e, is [A(G’) +
1]-edge colorable. Since obviously A(G") < A(G), the graph G’ is (A + 1)-edge
colorable.

Let G’ be actually edge colored in A + 1 colors, i.e., every edge of the graph G
except e = uv (this equality simply denotes that the edge e connects vertices u and
v) is colored in one of the A+ 1 colors in such a way that adjacent edges are colored
differently. For each edge ¢/ = uv’ of G that is incident with u (including e), we
define its dual color as any one of the A + 1 colors that is not used to color edges
incident with vertex v’. (Since the degree of any v’ does not exceed A, we always
have at least one color to chose as dual. It may so happen that distinct edges have
the same dual color—it is all right).

We are going to construct a sequence of distinct edges ey, ey, ..., e all incident
with u as follows (Fig. 16.1). Let e = e have dual color «; (i.e., ¢ is not the color
of any edge of G incident with v). There must be an edge, call it e, of color «;
incident with u (for if not, then the edge e could be colored «;, thus producing a
(A + 1)-edge coloring of G). Let o, be the dual color of e;. If there is an edge of
color «; incident with u# and distinct from ey and e, we denote it by e, and its dual
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color by a3, etc. We have constructed a maximal (i.e., as long as possible) sequence
ey, €1, ..., e, k> 1of distinct edges. The last edge e; by construction is colored
oy and has dual color oy .

e=¢

Fig. 16.1

If there were no edge of color . incident with u, then we would recolor each
edge of our sequence ¢, ei, ..., e into its dual color, and thus achieve a (A + 1)-
edge coloring of G (do verify that!). This contradicts our initial assumption.

Therefore, there is an edge e;; of color o incident with u; but since we have
constructed the longest sequence of distinct edges ep, ey, ..., e, the edge et
must coincide with one of them: e, = ¢; for some i, 1 < i < k. Since the edges
coincide, so do their colors: o1 = a;. The color oy, of the edge e; may not be the
same as the dual color a4 of e; : oy # . Thus we get o) = «; for some
i, 1 <i < k.Denotet =i — 1, then the last equality can be written as follows:

Q1 = Q41

for some t, 0 < t < k — 1. Finally, this means that the edges e; and e; have the
same dual color.
And now the last preparatory remarks.

a. For each color a among the A+1 colors, there is an edge of color a adjacent with
the edge e = uv (for if not, e could be colored a, thus producing (A + 1)-edge
coloring of G). But since there are at most A edges incident with the vertex u,
there is a color, call it 3, assigned to an edge incident with the vertex v that is not
assigned to any edge incident with u.

b. The color 3 must be assigned to at least one edge incident with the vertex v; for
eachi =1, 2,..., k (Fig. 16.1). Indeed, if we assume that there is a vertex
Um, 1 < m < k, such that no edge incident with v,, is colored 3, then we can
change the color of ¢,, to B and change the color of each ¢;, 0 < i < m to its
dual color to obtain a (A + 1)-edge coloring of G (verify that).

Part II The Assault: A sequence of edges a;, as,..., a, of a graph is called
a path of length n if the consecutive edges of the sequence are adjacent (Fig. 16.2).
You can trace a path with a pencil without taking it off the paper all the way from
the initial vertex of the path vy to the terminal vertex of the path v,. The edge a is
called initial, while the edge a, terminal edge of the path.
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Define two paths P and R as follows: their initial vertices are vy and v, respec-
tively, and each of the paths has maximum possible length with edges alternately
colored B and a1 = ;41 (we established in Part I that colors oy and a4 coin-
cide). Denote the terminal vertices of the paths P and R by w and w’ respectively
and consider five possibilities for w and w'.

v; a O\ v
o

aj
Yo

Fig. 16.2

Case 1: w = v, forsome m, 0 <m < k — 1 (Fig. 16.3).

e=e

V=Y,

Fig. 16.3

Observe that the color oy as the dual color of the edge e, may not be adjacent
to ey, therefore the initial edge of the path P must be colored 3 and m # k.

The terminal edge of P must be colored B as well. Indeed, if alternatively the
terminal edge of P were colored o1, then we would be able to make P longer by
adding one more edge incident with v,, and colored f3 (it exists as we noticed in (b)
at the end of Part I of this proof).

Note that the vertex v, is not on P unless v,, = v;. Indeed, assume that v, is on
P and v; # v, then v, is incident with edges of P (Fig. 16.4). One of them must
be colored a4 (and the other B), but the dual color of ¢; is o] = o1, therefore
no edge of color o+ may be adjacent to e,. This contradiction proves that v, is not
on P unless v, = v,.

Oy B

Fig. 16.4
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We are ready to finish Case 1. Interchange the colors 3 and a1 on the edges of
P. Please note (and prove) that as a result of this interchange, we do not alter the
dual colors of edges ¢; for any i < m, and end up with no edge of color 3 incident
with v,,. Now to obtain a (A + 1)-edge coloring of G, we just change the color of
en to B and change the color of every e; for 0 < i < m to its dual. (Do verify that
we get a (A + 1)-edge coloring of G.) We have reached a contradiction, for G is not
(A + 1)-edge colorable.

Case 2: w' = v, for some m, 0 < m < k (Fig. 16.5).

T Y

Fig. 16.5

Observe that the color a1 = a,4 as the dual color of the edge e;, may not be
adjacent to ¢,, therefore the initial edge of the path R must be colored 3, and m # ¢.

The terminal edge of R must be colored 3 as well. Indeed if alternatively the
terminal edge of R is colored a4, then we would be able to make R longer by
adding one more edge incident with v,, and colored 3 (it exists as we showed in (b)
at the end of Part I of the proof).

The vertex v is not on R unless v,, = vy (the proof is identical to a relevant
argument in Case 1 above). Now we interchange the colors 3 and oy of the edges
of R. As aresult of this interchange, we do not alter the dual colors of edges e; for
any i # t, and end up with no edge of color 3 incident with v,,.

If m < t, we finish as in Case 1. If m > t, we change the color of e to
and change the color of every ¢;, 0 < i < m to its dual. In either case we get a
(A + 1)-edge coloring of G, which is a contradiction.

Case 3: w # w,, forany m, 0 <m < k and w # u. As in Case 1, the initial edge
of P must be colored f3.

We interchange the colors 3 and oy of the edges of P. As a result (just like in
Case 1), we do not alter the dual colors of edges e; for any i < k, and end up with
no edge of color B incident with vi. As in the previous cases, we can now obtain a
(A + 1)-edge coloring of G, a contradiction.

Case 4: w' # v, for any m # t, and w # u. This case is similar to Case 3—
consider it on your own.
Case 5: w = w’ = u. (Figs. 16.6 and 16.7)



132 IIT Coloring Graphs

Fig. 16.6

P

Fig. 16.7

Since by definition of B, u is incident with no edge colored [3, the terminal edge
of both paths P and R is colored oy ;.

If P and R have no edges in common (Fig. 16.6), then u is incident with two
edges colored a1, which cannot occur in edge coloring of a graph. But if P and R
do have an edge in common, then there is a vertex (g in Fig. 16.7) incident with at
least three edges of P and R. Since each of these three edges is colored 3 or o1,
two of them must be assigned the same color which cannot occur with two adjacent
edges of an edge colored graph. In either case we have obtained a contradiction. =

This remarkable theorem partitions graphs into two classes: class one, when
X1(G) = (G); and class two, when x1(G) = A(G) + 1.

Each class does contain a graph. The graph in Fig. 16.8 is of class one and the
graph in Fig. 16.9 is of class two. Can you prove it?

X,(G)=3=AG)

Fig. 16.8 A class one graph

%,(G)=4=AG)+1

Fig. 16.9 A class two graph
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Problem 16.4 Prove that an n-cycle C,, (n > 3) is of class one if n is even, and of
class two if n is odd.

Problem 16.5 Prove that a complete graph K, is of class one if n is even, and of
class two if n is odd.

Proof This problem does not sound exciting, does it? You are in for a nice surprise,
true mathematical recreation! In fact, do not read any further just yet, try to solve it
on your own. Then read this solution which comes from [BCL].

1. Assume the graph K, is an edge colored in A(K,) = n — 1 colors. Every vertex
is incident with n — 1 edges, which must be colored differently. Therefore, every
vertex is incident with an edge of every color.

Now take color 1. Every vertex of K, is incident to an edge of color 1, and
edges of color 1 are not adjacent. Therefore, edges of color 1 partition the n
vertices of K, into disjoint pairs. Hence, n must be even.

We proved that if K, is a graph of class one, then n is even.

2. Now let us prove that, conversely, the graph K>, is of class one.

It is true for n = 1. Assume n > 2. Denote the vertices of K, by
Vo, Vi,..., Uyy—1. We arrange the vertices vy, vj,..., Up,—; Iin a regular
(2n — 1)-gon, and place vy in its center. We join every two vertices by a straight
line segment, thereby creating K»,,.

We are ready to color the edges of Kj, in 2n — 1 colors. We assign the color
iG=1,2,..., 2,_1) to the edge vyv; and to all edges that are perpendicular to
vov;. We are done! All of the edges are colored: indeed we assigned n edges to each
color for a total of n(2n — 1) edges which is the number of edges of K»,. No two
edges of the same color are adjacent: they clearly do not share a vertex. Figure 16.10
shows all edges of color 1 for Kg. Edge sets of other colors are obtained from this
one by rotations about the center vy — this fact is true for the general case of K. =

Vs @ . V;

Fig. 16.10

Which class of graphs is “larger?” It does not appear obvious at all! Paul Erdss
and Robin J. Wilson showed in 1977 ( [EW]) that almost all graphs are of class one.
“Almost all” is made precise by the authors of [EW]:
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Problem 16.6 ( [EW]) If U, is the number of graphs with n vertices of class one,
and V, is the total number of graphs with n vertices, then % approaches 1 as n
approaches infinity.

But how do we determine which graph belongs to which class? Nobody knows!

In 1973, Lowell W. Beineke and Robin J. Wilson published [BW] the following
simple sufficient condition for a graph to be of the second class.

The edge independence number B1(G) of a graph G is the maximum number
of mutually non-adjacent edges of G. (“Mutually non-adjacent edges” means every
two edges are non-adjacent.)

Problem 16.7 ((BW]) Let G be a graph with g edges. If
q > A(G) - B1(G),

then G is of class two.

Proof Assume G is of class one, i.e., x1(G) = A(G), hence, we can think of G as
being A(G)-edge colored. How many edges of the same color can we have in G?
At most 3;(G) because the edges of the same color must be mutually non-adjacent.
Therefore, the number of edges g in G is at most A(G) - B;(G), which contradicts
the given inequality. G is of class two. =

Problem 16.8 For any graph G with p vertices
p
AEGHE]

where [%] denotes the maximum integer not exceeding %.

Proof Assume that the graph G has (3;(G) mutually non-adjacent edges. The p
vertices of G are thereby partitioned into $;(G) two-vertex subsets plus perhaps

one more subset (of vertices non-incident with any of the 3,(G) edges). Therefore,
B1 (G) < £, but as an integer B(G) < [5] .

Problems 16.7 and 16.8 join in for an immediate corollary.

Problem 16.9 Let G be a graph with p vertices and g edges. If
p
46)- %]
q>AG)- |3

then G is of class two.

The last problem shows that graphs with relatively large ratio of their number of
edges and the number of vertices are “likely” to be of class two.

Yet, conditions of Problems 16.7 and 16.9 are far from being necessary. Can you
think of a counterexample? Here is one for you:
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Problem 16.10 Show that the Peterson graph (Fig. 13.3) is of class two even though
it does not satisfy the inequalities of Problems 16.7 and 16.9.

This is a mysterious, relatively rare class two: can we use another approach to gain
an insight? We can gain an insight if we limit our consideration to planar graphs,
i.e., those that can be embedded in the plane without intersection of edges. It is easy
to find (do) class two planar graphs G with the maximum degree A(G) equal to 2,
3,4, and 5. We do not know whether the maximum degree 6 or 7 can be realized in
a class two planar graph. In 1965 Vadim G. Vizing [Viz2] proved that higher than 7
maximum degrees are impossible.

Problem 16.11 (Vizing, [Viz2, Theorem 4]) If G is a planar graph with A(G) > 8,
then G belongs to class one.

The following problem is still awaiting its solution:

Open Problem 16.12 Find criteria for a graph G to belong to class two.

16.2 Total Insanity around the Total Chromatic Number
Conjecture

In February 1992, I gave my first talk at the International Southwestern Confer-
ence on Combinatorics, Graph Theory and Computing at Florida Atlantic Univer-
sity, Boca Raton, Florida. I gave a talk about chromatic number of the plane, and
my research into the authorship of the problem. My investigative skills must have
looked good, for the British graph theorist Hugh R. Hind shared with me another
controversy. In his manuscript on total chromatic number conjecture, Hugh gave
credit for the conjecture to Vizing and Behzad. As a condition of publication, the
referee demanded that the credit be given to Behzad alone. While Hind thought that
both mathematicians authored the conjecture independently and deserved credit, he
felt that he had no choice but to comply with the referee’s demand. Hugh asked me
to investigate the authorship of the total chromatic number conjecture.

I was shocked. The referee’s ultimatum, backed by the editor (who sent the
referee report to the author), seemed to be nothing short of the cold war on the
mathematical front. What were the referee’s and the editor’s motives? Was it retal-
iation for the Soviet anti-Semitism and other violations of scientific norms? Was it
retaliation for the leading Soviet graph theorist A. A. Zykov’s ridiculously giving
in his book [Zyk3] credit for the Kuratowski Planarity Theorem to both Pontrya-
gin and Kuratowski? (Of course, Zykov’s crediting Pontryagin was outrageous, and
Pontryagin deserved no credit whatsoever.) However, life is no math—it does not
multiply two negatives to get positive—two wrongs make no right. Surely, the ref-
eree and the editor of Hind’s manuscript acted every bit as wrongly as the Soviet
apparatchiks—unless they had historical factual grounds to deny Vizing credit,
grounds they never disclosed. I accepted the call to investigate. What follows is
my report.
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Total chromatic number X, (G) of a graph G is the minimum number of colors
required for coloring vertices and edges of G so that incident and adjacent elements
are never assigned the same color.

Total Chromatic Number Conjecture 16.13 For any graph G,
x2(G) = A(G) +2.

I started my investigation right away, in Boca Raton during the same confer-
ence (February 1992). I asked the well-known graph theorist Mark K. Goldberg,
professor of computer science at Rensselaer Polytechnic Institute, whether he knew
anything about the authorship of the total chromatic number conjecture. This was a
very lucky choice, for Mark was an eye-witness to the story. Goldberg told me that
in December 1964 he arrived in Academgorodok (Academy Town), located just
outside Novosibirsk, a city in Russian Siberia, to apply for their Ph.D. program in
mathematics. During this trip he interacted with the Junior Research Staff member
Vadim G. Vizing, who shared with Goldberg his edge-chromatic number theorem
and the total chromatic number conjecture.

Three years later I was able to ask Vadim Vizing himself about the total chro-
matic number conjecture. I learned from Bjarne Tofts, a professor at Odense Uni-
versity in Denmark that Vadim G. Vizing was visiting him, and on March 12,
1995 T asked Toft to pass my e-mail with numerous questions to Vizing. I asked
biographical questions and, of course, questions about the conjecture. Two days
later, on March 14, 1995, I received the following reply (my translation from
Russian):

Dear Alexander!

At the present time [ am in Odense on B. Toft’s invitation.

I was born March 25, 1937 in Kiev. I commenced my work on Graph Theory in 1962
as a Junior Research Staff if the Institute of Mathematics in Novosibirsk, in the Depart-
ment of Computing Techniques [Computer Science]. As part of my job I had to write
a program for coloring conductors in circuits. I discovered C. E. Channon’s work,
dedicated to this question, published in 1949 (Russian translation was published in
1960). Having studied Channon’s work, I began to think about the precision of his
bound. I knew only one type of multigraphs on which his bound was precise [best
possible]. This is why I assumed that for ordinary graphs (without multiple edges)
Channon’s bound could be strengthened. It took a year and a half for me to prove my
theorem for ordinary graphs.

In early 1964 the article was sent to “Doklady AN USSR,” but was rejected by
the editorial board. In the fall of 1964 I obtained the generalization of the result to
p-graphs and published an article about it in the antology “Diskretnyi Analiz”, issue
3 [Vizl] that was released in December 1964 in Novosibirsk (I am mailing to you a
copy of this article).

In early 1964, while presenting the theorem about coloring edges of a graph at
A. A. Zykov’s’ Seminar (present were A. A. Zykov, L. S. Melnikov, K. A. Zaretskij,
V. V. Matjushkov, and others), I formulated the conjecture on the total chromatic num-
ber, which we called then conjecture on the simultaneous coloring of vertices and
edges. Many of my colleagues in Novosibirsk attempted to prove the conjecture but
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without success. By the time of publication [Viz3] of my article on unsolved problems
of Graph Theory in “Uspekhi Mat. Nauk™ (1968), in which I first published the con-
jecture, the conjecture already had wide distribution among Soviet mathematicians. In
the nearest future I will mail to you the article in Russian, in which the conjecture on
the total chromatic number of multigraph appears on p. 131.

Thus, Vizing’s recollection of creating the total chromatic number conjecture
by early 1964, verified independently by Mark Goldberg, leaves no doubts about
his authorship. Vizing’s total chromatic number conjecture was also presented by
Alexander A. Zykov at the problem session of the Manebach Colloquium in May
1967 (published in 1968 [Zyk2], p. 228). Vizing published this conjecture himself
among many other open problems in 1968 [Viz3]. In addition, any impartial expert
would agree that this conjecture was a natural continuation of the train of thought
emanating from Vizing’s famous theorem on chromatic index of the graph (Theo-
rem 16.3 above).

I then looked at articles of specialists working on the total chromatic number
of a graph. Hugh R. Hind [Hinl], [Hin2], Anthony J. W. Hilton and Hind [HH],
and Amanda G. Chetwynd almost universally credited Behzad with the conjecture.
Chetwynd even “explained” what led Behzad to discover the conjecture [Che]:

This [i.e., Brooks’ Theorem and Vizing’s Theorem] led Behzad to conjecture a similar
result for the total chromatic number.

What is wrong with this “explanation?” Everything:

1. In reading Mehdi Behzad’s 1965 thesis (Chetwynd obviously did not read it
before writing about it), it is obvious that Behzad did not know Vizing’s Theo-
rem: Behzad conjectures the statement of Vizing’s Theorem, but is able to prove
it only for graphs of maximum degree 3.

2. If Vizing’s Theorem led even Behzad to the total chromatic conjecture, it would
have surely led (and did!) Vizing himself to formulate the conjecture. Then why
does Chetwynd give no credit to Vizing?

On December 2, 2007 I contacted Professor Behzad, and asked him to present a
case in support of his sole authorship. He kindly submitted his final text of the reply
in the December 14, 2007 e-mail to me:

I started to think about my Ph.D. thesis in 1963—1964, at Michigan State University,
to be written under the supervision of Professor E. A. Nordhaus. In those days there
was only one book in the field of graph theory in English, and no courses were offered
on the subject. I was interested in vertex coloring and then line coloring. For several
months, naively, I tried to solve the 4-color problem. Then I thought of combining these
two types of colorings. I mentioned the notion, which was later called “total chromatic
number of a graph,” to Nordhaus. He liked the idea, but for several months he did
not allow me to work on the notion. Later he told me this idea was so natural that
he thought someone might have worked on the subject. Thanks to Professor Branko

5 According to Behzad, it was Nordhaus who coined the term.
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Griinbaum who resolved the problem. In my thesis I introduced this notion and pre-
sented the related conjecture. In addition, I introduced the total graph of a graph in
such a way that the total chromatic number of G was equal to the vertex chromatic
number of its total graph. My Thesis was defended in the Summer of 1965. Prior
to 1968, when Professor Vizing’s paper entitled “Some Unsolved Problems in Graph
Theory” appeared, several papers were published on topics related to total concepts;® I
informally talked about TCC in two of the conferences that I attended in 1965 and 1966
held at The University of Michigan, and the University of Waterloo. As I mentioned
before, aside from my thesis, the Proceedings of the International Symposium in the
Theory of Graphs — Rome, 1966 contains the subject and the TCC. . .

As far as I know, out of several hundred articles, theses, books, and pamphlets con-
taining TCC, none omit my name, and very many authors provide only one reference
for TCC and that is my thesis. I am not aware of a single work mentioning TCC and
giving reference to Vizing alone. There are authors who have given credit to the two
of us, but have decided to stop doing so.

I am reading Mehdi Behzad’s Ph. D. thesis [Beh]. Perhaps, due to the field being
relatively new in 1965, to me Behzad’s thesis appears light on deep proofs. How-
ever, the author, demonstrates a fine intuition: he conjectures (already published by
Vizing a year earlier) Vizing’s Theorem on edge-chromatic number of a graph (con-
jecture 1, p. 18), and formulates the total chromatic number conjecture (conjecture
1, p. 44).

Behzad and Chartrand submitted their “expository article” on total graphs to the
1966 Rome Symposium, and it was published [BC1] in 1967. It says (I just replaced
notations to contemporary ones):

It was conjectured in [Beh] that

i. A(G) = x1(G) = A(G) + 1, and
i, A(G) + 1 = x2(G) = A(G) +2

The conjecture (i) has been proved by Vizing [Viz1], but (ii) remains an open question.

The good news is that Behzad (with Chartrand) published the total chromatic
number conjecture. As to “conjecture (i)”, we are told above that Behzad conjec-
tured the chromatic index theorem, and Vizing proved Behzad’s conjecture. In real-
ity, Vizing’s paper already came out in 1964, a year before Behzad ever conjectured
this result. Of course, Vizing worked on Ais conjecture on the chromatic index much
earlier, during 1962-1963, for as he says, it took him a year and a half to prove his
conjecture. In early 1964 he finally submitted his paper.

6 Indeed, the following papers, authored or coauthored by Behzad, address total graphs, but do not
include the total chromatic number conjecture: M. Behzad and G. Chartrand, Total graphs and traversabil-
ity, Proc. Edinburgh Math. Soc. (2) 15 (1966). 117-120. M. Behzad, G. Chartarand, and J.K. Cooper Jr.
The colour numbers of complete graphs, J. Lond. Math. Soc. 42 (1967) 225-228. M. Behzad, A criterion
for the planarity of the total graphs of a graph, Proc. Cambridge Philos. Soc. 63 (1967) MR35#2771. M.
Behzad and H. Radjavi, The total group of a graph, Proc. Amer. Math. Soc. 19 (1968), 158-163.
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M. Behzad had no way of knowing about my findings showing that Vizing formu-
lated the total chromatic number conjecture in early 1964, i.e., well before Behzad.
However, Behzad knew about Vizing’s 1968 paper [Viz3], where the total chromatic
number conjecture was published. Surely, it took time, prior to the submission of this
paper, for Vizing to assemble such a large survey of unsolved problems of graph
theory. Thus, independent authorship of Vizing should not have been questioned.
Yet, Behzad’s 1971 book [BC2], p. 214] joint with Gary Chartrand, his former
fellow Ph.D. student of E. A. Nordhaus, gave the sole credit to Behzad for the
total chromatic number conjecture, as did the 1979 fine book written by Behzad,
Chartrand, and Linda Lesniak-Foster [BCL, p. 252].

I informed Professor Behzad of my findings in our phone conversation on
January 2, 2008. He was pleased that at long last someone had taken the time and
effort to investigate the credit for this famous conjecture, and that the credit was
rightfully due to the two discoverers.

Summing it all up, the total chromatic number conjecture has been first formu-
lated by Vadim G. Vizing in early 1964, and published in 1968. Mehdi Behzad
independently formulated the conjecture in the unpublished thesis in summer of
1965, and published it (jointly with Gary Chartrand) in 1967. In my opinion, this
unquestionably merits the joint credit to Vizing and Behzad.

I hope this analysis will end editorial room bias, threats and politicking, and will
restore the joint credit for the conjecture. Joint credit and correct publication dates
were given by Tommy R. Jensen and Bjarne Toft in their enlightened 1995 prob-
lem book [JT] and repeated in Reinhard Diestel’s textbook [Die]. In later papers,
e.g., [HMR], Hugh Hind, Michael Molloy, and Bruce Reed give credit to both Viz-
ing and Behzad for the concept of the total chromatic number and the conjecture.
Yet, even in 2005 the latest, 4th edition of Graphs & Digraphs [CL] by Chartrand
and Lesniak (Behzad is not listed as a coauthor), still credits M. Behzad, and Behzad
alone, for total coloring and the total chromatic number conjecture. I hope that,
having read these lines, the authors will correct the credit in their next edition.

Mehdi Behzad is a professor of mathematics at Shahid Beheshti University in
Iran. Following his visit of Denmark in 1995, Vadim Vizing, who recently worked
on the theory of scheduling, wrote to me that he was going to renew “intensive
work on graph theory,” and has indeed, as his publications show. He lives in Odessa,
Ukraine.

In spite of active work and partial results, the total chromatic number conjec-
ture remains as challenging as it is open. With an ease of formulation and appar-
ent difficulty of proving, this conjecture now belongs to mathematics’ classic open
problems.
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Carsten Thomassen’s 7-Color Theorem

One day in 1998, I was asked by The American Mathematical Monthly to referee
a manuscript submitted by one of the world’s leading graph theorists, Professor
Carsten Thomassen of The Technical University of Denmark. The paper offered
a fresh, purely graph-theoretic approach to finding the chromatic number of the
plane. I was very impressed, and asked the author to expand his too concise (for The
Monthly) presentation, and informed him of my research that proved that Edward
Nelson, and Nelson alone (without Hadwiger) was the author of the problem. In
this chapter I will present Thomassen’s attempt to find the chromatic number of the
plane. Though he has not found it—no one has—he still obtained a fine result, and
in the process showed how graph theory proper can be utilized for an assault on this
problem. I will present Thomassen’s proof with minor editorial revisions. The use
of paper and pencil is a must while reading a proof written in Thomassen’s style.

Thomassen offers a vast generalization of the popular hexagonal coloring that we
used to prove the upper bound 7 (Chapter 2) to the class of colorings that he calls
nice. He considers a graph G on a surface S that is a metric space (i.e., curve-wise
connected Hausdorff space in which each point has a neighborhood homeomorphic
to an open circular disc of the Euclidean plane). The graph G on the surface S
creates a map M (G, S), in which a region is an edge-connected component of S\G.
For his purposes, Thomassen assumes that each region that has diameter of less than
1 is homeomorphic to a Euclidean disc and is bounded by a cycle in G. I choose
to avoid a detour into basics of topology, and offer the unfamiliar reader to simply
think that S is the plane or a sphere, i.e., the graph G is drawn on the Euclidean
plane or a sphere—coloring the plane is, after all, our main goal.

The area of a subset A of S is the maximum number of pairwise disjoint open
discs of radius 1/ that can be packed in A. (If this maximum does not exist we say
that A has infinite area.) A simple closed curve C is contractible if S\C has precisely
two edge-wise connected components such that one of them is homeomorphic to an
open disc in the Euclidean plane. That component is called the inferior of C and is
denoted in#(C). (If S is a sphere, then int(C) denotes any component of S\C of the
smallest area).

Given a graph G on a surface S, Thomassen defines nice coloring of S as a col-
oring in which each color class is the union of regions (and part of their boundaries)
such that the distance between any two of these regions is greater than 1.

140 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5_17, © Alexander Soifer 2009
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Finally, I need to introduce here a map-graph duality, which we will use not only
in this chapter but in the next part as well. Given a map M, we can define the graph
of the map, or map graph I"' (M) as the graph whose vertices are the regions of
M with two vertices adjacent if and only if the corresponding regions share part of
their boundary, which is not merely a finite number of points. If the map M (G, S) is
induced by the graph G on the surface S, we will simplify the notation for the map
graphto I' (G, S).

Thomassen’s 7-Color Theorem 17.1 Let G be a connected graph on a surface S
satisfying (i), (ii), and (iii) below. Then every nice coloring of S requires at least 7
colors.

(*) Every non-contractible simple closed curve has diameter at least 2.

(**) If C is a simple closed curve of diameter less than 2, then the area of in#(C)
is at most k.

(***) The diameter of S is at least 12k + 30.

Before proving his theorem, Thomassen introduces Tool 17.2, for which he needs
a few notations and definitions.

If V(G) is the vertex set of a graph G and x € V(G), then D (x) stands for the
set of neighbors of x. For n > 2, we define D,, (x) inductively as the set of vertices in
V(G)\ [{x}U Dy (x)U...U D,_; (x)] that have a neighbor in D, (x). A graph G
is called locally finite if D, (x) is finite for each vertex x of G; and locally connected
if the minimal subgraph of G that contains D) (x) is connected for each vertex x of
G. We call G locally Hamiltonian if G has a cycle with vertex set D; (x) for each
vertex x of G.

Tool 17.2 Any connected locally finite, locally Hamiltonian graph with at least 13
vertices has a vertex of degree at least 6.

Proof If no vertex of the graph G satisfying all conditions has degree at least 6, pick
a vertex x of maximum degree. Clearly deg(x) > 3.

Assume deg(x) = 3. Since G contains a cycle with the vertex set D (x), the
subgraph of G induced by {x} U D (x) is the graph of the tetrahedron, Since maxi-
mum degree in G is 3, D, (x) is empty. Since G is connected, G is the graph of the
tetrahedron, i.e., has just four vertices, in contradiction to the assumption that G has
at least 13 vertices.

Assume now deg(x) = 4. Since vertices of D; (x) form a cycle, we can conclude
that each vertex y € D; (x) has at most one neighbor z € D, (x). Since vertices of
D (y) form a cycle, z has at least three neighbors in D (x). Thus, there are at most
four edges from D, (x) to D, (x), and therefore every vertex in D, (x) has at least
three neighbors in D (x). Hence D, (x) has at most one vertex z. Since vertices of
D (z) form a cycle, it follows that D5 (x) = @. Thus, G has at most six vertices, a
contradiction.

Finally assume deg(x) = 5. Each vertex y € D; (x) has at most two neighbors in
D, (x) because vertices of Dj(x) form a cycle and this cycle uses up two points out
of the maximum degree 5 of y. Since vertices of D;(y) form a cycle, every neighbor
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z of y in D, (x) has at least two neighbors in D (x). Observe that z cannot have
two or more neighbors in D3 (x) because then a cycle with vertex set D;(z) will
show that z has at least two neighbors in D, (x) that is, z has a total of at least six
neighbors, a contradiction. So z has at most one neighbor in D; (x) and that neighbor
has at least three neighbors in D, (x). Since there are at most 10 edges from D (x) to
D, (x), and every vertex in D; (x) has at least two neighbors in D (x), it follows that
D; (x) has at most five vertices. Hence there are at most five edges from D, (x) to
D5 (x). Since each vertex in D3 (x) has at least three neighbors in D, (x), it follows
that D (x) has at most one vertex, and thus D4 (x) = . Hence G has at most
12 vertices, a contradiction that completes the proof. =

Now we are ready to prove the theorem.

Proof of Thomassen’s Theorem Given a graph G on a surface S that satisfies (i),
(ii), and (iii). Assume the opposite, i.e., there is a nice coloring utilizing at most 6
colors. Let x be a vertex of the map graph I" = I" (G, S) and let C, be the cycle
in G bounding the corresponding region. Let us choose an orientation of C, and let
X1, X2, ..., Xk, X1 be the vertices of D (x) listed in the order in which they appear
as we traverse C,.

Thomassen first considers a simple case, which illustrates the idea of his proof.
Assume that for each vertex x, all vertices x1, x5, . .., x; are distinct. In this case, I”
is locally Hamiltonian. Since the surface § is edgewise connected, it follows that I
is connected. Since $ has diameter greater than 13, I" has more than 12 vertices, and
hence, by Tool 17.2, I" has a vertex of degree at least 6. Now x and its neighbors
must have distinct colors because x corresponds to a face of diameter < 1 on S.
This contradiction completes the proof in this case.

In the general case, a vertex may appear more than once in the sequence
X1, X2, ..., Xk, X1 above. Omit those appearances (except possibly one) of x; for
which C,, and C, have only one vertex in common. In other words, if x; appears
more than once in the new sequence, we list only those appearances for which
C,, and C, share an edge. Then any two consecutive vertices in the sequence

X1, X2, ..., Xk, X1 are neighbors in I", and thus I" is locally connected. It follows
that I" — x is connected. Moreover, if y is any other vertex of I', then I' — x — y is
connected unless y appears twice in the sequence xp, x», ..., X, thatis, C, and C,

have at least two edges in common.

Let now x and y be vertices such that C, and C,, have at least two edges e and f
in common, i.e.,y =x; = x;for1 <i < j—1 < k—1). Let R be a simple closed
curve in the regions bounded by C, and C, such that R crosses each of e and f
precisely once and has no other point in common with G. By (i), R is contractible.
Hence I' — x — y is disconnected. We say in this case that {x, y} is a 2-separator in
I'. For each vertex z in I" such that C, is in int(R) and has color 1, we pick a point
P, in int(C,). By (ii), there are at most k points P, and hence there are altogether at
most 6k vertices z such that int(C;) C int(R).

Letint(I', x, y) stand for the subgraph of I" —x — y induced by all those vertices
z in I" such that C, is in int(R) for some R. Then each connected component of
int(I", x, y) has at most 6k vertices. Since S has diameter at least 12k + 3, it follows
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that G has two vertices whose graph distance is at least 12k+2. Hence I" —x —y has
some component that is not in int(M, x, y). We claim that I" — u — v has precisely
one such component, which we call ext(M, x, y). To see this, let ey, €2, ..., e, be
the edges in C, N C,, occurring in this cyclic order on C,. Then ey, e, .. ., e, divide
Di(x)\{y} into m classes A, A,, ..., A,,. By letting {e, f}={e;, eix1}, 1 <i <
m in the preceding argument, we conclude that for each i = 1, 2,..., m, either
A; Cint(I, x, y)or A; Nint(I', x, y) = @. Since the former cannot hold for
eachi € {1, 2, ..., m}, the latter must hold for some i, and hence the former holds
for all other i € {1, 2, ..., m}. Thus, we proved that for any two vertices x, y in
I', I' — x —y has precisely one connected component ext(I", x, y) with more than
6k vertices.

If {u, v} isa2-separator in I" such that either x or y or both are in int(I", u, v),
then clearly int(I", x, y) C int(I', u, v). (To see this, we use the properties of
I' established previously and forget about S.) If no such 2-separator {u, v} exists,
then we say that {x, y} is a maximal 2-separator and that xy is a crucial edge.
Since each connected component of int(I", x, y) has at most 6k vertices, a max-
imal 2-separator exists (provided a 2-separator exists). Let H be the subgraph of
I" obtained by deleting int(I", x, y) for each maximal 2-separator {x, y}. Then
H # (. Moreover, since a shortest path in I" between two vertices in H never
uses vertices in int(I", x, y), H is connected. We can similarly prove that H is
locally connected. We now claim that H is locally Hamiltonian. Consider again a
vertex x in H and the sequence xi, X2, ..., Xk, X1 in Dj(x); (taken in I'). If this
sequence forms a Hamiltonian cycle in D;(x) in H, we are done. By definition of
H, k > 3. So assume that x; = x; where 1 <i < j —1 < k — 1. Then {x, x;}
is a 2-separator and vertices can be re-indexed so that int(I", x, x;) contains all the
vertices X1, Xi42, ..., Xj—1. We repeat this argument for each pair i, j such that
x; =xjwhere 1 <i < j—1 < k— 1. Then the vertices in x1, X2, ..., X, X that
remain after we delete all vertices in the interiors of the 2-separators form a cyclic
sequence with no repetitions. As H is connected and locally connected and has at
least three vertices (by (iii)), the preceding reduced cyclic sequence has at least two
distinct vertices. It cannot have precisely two vertices u, v because then H —u —v is
disconnected, and hence I" —u —v is disconnected (because I” is obtained from H by
“pasting graphs on edges of H”). Since one of the edges xu or xv is crucial (because
D; (x)is smaller in H than in I"), the maximality property of the 2-separator {x, u}
or {x, v} implies that ext(I", u, v) is the connected component of I — u — v
containing x. For each vertex z in that component, I" has a path of length at most 6k
from z to either x, u, or v. Hence I" has diameter at most 12k + 1, a contradiction
that proves that H is locally Hamiltonian.

If H has a vertex x of degree at least 6, we are done because x and its neighbors
must have different colors in the nice coloring. Assume now that each vertex of H
has degree at most 5. By Tool 17.2, H has at most 12 vertices. Hence H has at most
30 edges. Since I" is obtained from H by “pasting” int(I", x, y) on the crucial
edge xy for each crucial edge of H, we conclude that the diameter of I" is at most
12k + 29, a contradiction to (iii). =
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Observe: all three conditions in the theorem are essential. If any of these conditions
(i), (ii), (iii) were dropped, then the number of colors needed may decrease:

A thin two-way infinite cylinder has a nice 6-coloring, which shows that (i) can-
not be omitted.

A thin one-way infinite cylinder (with a small disc pasted on the boundary of the
cylinder to form the bottom) shows that (ii) cannot be omitted.

A sphere of diameter less than 1 has a nice coloring in 2 colors, hence (iii) cannot
be omitted.

In Chapter 24 we will look at an analogous Townsend—Woodall’s 5-Color Theo-
rem, obtained by different means.



IV
Coloring Maps

G. D. Birkhoff once told one of the authors that every great
mathematician had at some time attempted the Four Colour

Conjecture, and had for a while believed himself successful.
-- Hassler Whitney and W. T. Tutte [WT]

The word disease is quite appropriate for a puzzle which is
easy to comprehend, apparently impossible for anyone to
solve, infectious, contagious, recurrent, malignant,
painful, scarring, and sometimes even hereditary!

-- Frank Harary'

If I may be so bold as to make a conjecture, I would guess
that a map requiring five colors may be possible.
-- H. S. M. Coxeter [Cox2]

In this part, we will color regions of maps. The following few definitions will help
us formalize our intuitive notion of a map.

By allowing more than one edge to connect two vertices, we slightly generalize
a notion of a graph: what we get is called a multigraph. A multigraph that can
be drawn in the plane without intersection of its edges is called planar, while a
multigraph that is drawn in the plane without intersection of its edges is called plane.
A multigraph is called connected if for any two vertices there is a path connecting
them. An edge x of a connected multigraph G is called a bridge if the multigraph
G — x is not connected.

A plane connected multigraph without bridges is called a map. A map divides
the plane into regions. Regions are adjacent if they share at least one edge.

Coloring a map is an assignment of colors to each of the regions of the map, such
that no adjacent regions get the same color. Let n be a positive integer; a map M is
called n-colorable if there is a coloring of M in n colors.

! From the appropriately entitled paper [Harl] “The Four Color Conjecture and other graphical diseases,”
appropriately “supported in part by a grant from the National Institute of Mental Health.”
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A natural question then is what is the minimum number of colors we must use to
color any map? You can easily construct (do) an example showing that four colors
are necessary. You have likely heard the puzzle and the conjecture I am going to
introduce here as an overture to this map-coloring part.

The following puzzle originated in discussions between August Ferdinand
Mobbius and his amateur mathematician friend Adolph Weiske, and “was perhaps
originated by Weiske” [Tie2]. In his 1840 lecture, Mobius shared the puzzle with
the public. It was apparently solved even by the Bishop of London, later Archbishop
of Canterbury (see Chapter 19 for details). Wouldn’t you like to solve it on your
own and try to help the brothers!

Mobius—Weiske’s Puzzle IV-1 (Circa 1840) Once upon a time in the Far East there
lived a Prince with five sons. These sons were to inherit the kingdom after his death.
But in his will, the Prince made the condition that each of the five parts into which
the kingdom was to be divided must border on every other. . .. After the death of the
father, the five sons worked hard to find a division of the land which would conform
to his wishes; but all their efforts were in vain.2

The following conjecture, together with Fermat’s Last Theorem, had been the
two most popular open problems of mathematics.

The Four-Color Conjecture (4CC) IV-2 (Francis Guthrie, 1852 or before) Any
map in the plane is 4-colorable.

My friend Klaus Fischer of George Mason University once asked me in the early
1990s, why would one want to write about the conjecture so celebrated that every-
thing has been written about it? Well, everything is never written, I replied, and
every little bit helps.

2 [Tie2].



18
How the Four-Color Conjecture Was Born

18.1 The Problem is Born

It takes time and effort to gain access and read manuscripts. The letter containing
the first mention of the 4CC is of high importance, yet to the best of my knowledge,
its complete facsimile has never been reproduced. Selected transcriptions and frag-
ment facsimiles served a purpose, but as we will see in Section 18.2, they contained
certain shortcomings. In view of this, I am reproducing here, for the first time, the
facsimile of De Morgan’s letter to Hamilton; the relevant fragment of the latter’s
reply, analysis of these documents, and the corrected transcription of De Morgan’s
letter. I am grateful to The Board of the Trinity College Dublin, whose kind permis-
sion made reproducing of the letters [DeM1] and [Ham] possible (see the facsimiles
in this chapter on pp. 148—-151 and 154).

A. Soifer, The Mathematical Coloring Book, 147
DOI 10.1007/978-0-387-74642-5_18, © Alexander Soifer 2009
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Augustus De Morgan, Letter to W. R. Hamilton, October 23, 1852. Courtesy of the Trinity
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The written record of the problem begins with the October 23, 1852 letter that
Augustus De Morgan, Professor of Mathematics at University College, London,
writes [DeM1] to Sir William Rowan Hamilton, Professor of Mathematics at Trinity
College, Dublin (underlining in the manuscript):

My dear Hamilton?.

...A student of mine asked me to day to give him a reason for a fact which I did
not know was a fact — and do not yet. He says that if a figure be any how divided
and the compartments differently coloured so that figures with any portion of common
boundary line are differently coloured — four colours may be wanted but not more —
the following is Ais case in which four are wanted [.]

Query [:] cannot a necessity for five or more be invented [?] As far as I see at this
moment, if four ultimate compartments have each boundary line in common with one
of the others, three of them inclose the fourth, and prevent any fifth from connexion
with it. If this be true, four colours will colour any possible map without any necessity
for colour meeting colour except at a point.

Now it does seem that drawing three compartments with common boundary A B C
two and two — you cannot make a fourth take boundary from all, except by inclosing
one — But it is tricky work and I am not sure of all convolutions — What do you say?
And has it, if true [,] been noticed? My pupil says he guessed it in colouring a map of
England [.]

3 De Morgan, A., Letter to W. R. Hamilton, dated Oct. 23, 1852; TCD MS 1493, 668; Trinity College
Dublin Library, Manuscripts Department
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The more I think of it the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx did — If this
rule be true the following proposition of logic follows [.]

If A B C D be four names of which any two might be confounded by breaking
down some wall of definition, then some one of the names must be a species of some
name which includes nothing enternal to the other three [.]

Yours truly
ADeMorgan [Signed]
7 CSCT*
Oct 23/52

Twenty-eight years later, Frederick Guthrie, the student mentioned by De Morgan
in this letter, published his own account [GutFr], which publicly revealed for the first
time that the author of the 4CC was his 2-year senior brother, Francis:

Some thirty years ago, when I was attending Professor De Morgan’s class, my brother,
Francis Guthrie, who had recently ceased to attend them (and who is now professor of
mathematics at the South African University, Cape Town), showed me the fact that the
greatest necessary number of colors to be used in coloring a map so as to avoid identity
of color in lineally contiguous districts is four. I should not be justified, after this lapse
of time, in trying to give his proof, but the critical diagram was as in the margin.

T

With my brother’s permission I submitted the theorem to Professor De Morgan,
who expressed himself very pleased with it; accepted it as new; and, as I am informed
by those who subsequently attended his classes, was in the habit of acknowledging
whence he had got his information.

4 These four letters must stand for De Morgan’s address, which was 7 Camden-Street, Camden Town.
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If I remember rightly, the proof which my brother gave did not seem altogether
satisfactory to himself; but I must refer to him those interested in the subject.

Thus, we learn from the younger brother Frederick Guthrie, by now a Professor
of Chemistry and Physics that the 4CC was created by the 20-year-old student Fran-
cis Guthrie (of course, he may have been younger when the conjecture first occurred
to him), and that Francis Guthrie found a configuration showing that four colors are
necessary, shared this simple configuration with his brother Frederick, who passed
it to De Morgan. There was likely more to Francis’s proof, but it “did not seem
altogether satisfactory” to Francis, as Frederick reports above. We will likely never
learn what else Francis Guthrie deduced about this incredible for his tender age and
the state of mathematics conjecture.

Let us go back to De Morgan. The day he received the 4CC from Frederick
Guthrie, October 23, 1852, he immediately wrote about it to William Rowan
Hamilton, who was not only one of the leading mathematicians, but also De
Morgan’s “intimate friend” and lifelong correspondent.> Hamilton’s October 26,
1852 reply (Royal Post must have worked very well, as there are only 3 days
between the dates of De Morgan’s letter and Hamilton’s reply) is also preserved in
the manuscript collection of the Trinity College, Dublin. Hamilton was apparently
so obsessed with the guaternions® he discovered that he could not make himself
interested in coloring maps [Ham]:

My dear De Morgan’
I am not likely to attempt your “quaternion of colors” very soon. . .
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William R. Hamilton, Letter to A. De Morgan, October 26, 1852; a fragment. Reproduced
with kind permission by the Board of Trinity College Dublin

5 When W. R. Hamilton died, De Morgan wrote about it in his September 13, 1865 letter to Sir
J. F. W. Hershel [DeM5]: “W. R. Hamilton was an intimate friend whom I spoke to once in my life — at
Babbage’s, about 1830; but for thirty years we have corresponded.”

6 Arguably, this obsession prevented Hamilton from inventing linear algebra.

7 Hamilton, W. R., Letter to A. De Morgan, October 26, 1852; TCD MS 1493, 669; Trinity College
Dublin Library, Manuscripts Department.
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And that is all! Just the Victorian, cordial way of saying “T am not interested, lay
off my back.” De Morgan was left alone to keep the 4CC alive, and he succeeded. He
repeatedly mentioned the problem in his lectures at University College ( [GutFr]),
formulated it in his letters (we know a few such instances: [DeM1], [DeM2]® and
[DeM3]°). As was discovered in 1976 by John Wilson, a high school teacher from
Eugene, Oregon [Will], De Morgan was also first to publish the problem in his
April 14, 1860 unsigned long review [DeM4] of W. Whewell’s The Philosophy of
Discovery in the Athenaeum:

When a person colours a map, say the counties in a kingdom, it is clear he must have so
many different colours that every pair of counties which have some common boundary
line — not a mere meeting of two corners — must have different colours. Now, it must
have been always known to map-colourers that four different colours are enough.

Acquaintance of cartographers with the sufficiency of four colors appears to have
been a silly invention of De Morgan—there is no evidence that cartographers (then,
or now for that matter!) knew about it or needed to minimize the number of colors,
since juxtaposition of colors and addition of textures created sufficient representa-
tions for scores of additional colors. While De Morgan did not advance the solution
of the 4CC at all, he single handedly popularized it and assured its long life. He man-
aged to make the mathematician of the day, Arthur Cayley, hooked on the problem
so much that 18 years after the Athenaeum article, Cayley remembered the problem
that he was still unable to solve. As reported in [Cay1] and [Cay2], during the June
13, 1878 meeting of the London Mathematical Society, Cayley asked:

Has a solution been given of the statement that in colouring a map of a country, divided
into counties, only four distinct colours are required, so that no two adjacent counties
should be painted in the same colour?

Cayley also published a two-page article [Cay3] on this question. Did his choice
of the publication, Proceedings of the Royal Geographical Society and Monthly
Record of Geography, suggest that Cayley believed De Morgan on the usefulness of
the 4CC for mapmakers? Perhaps, not, but the coincidence adds a touch of humor to
our story. In the paper, Cayley showed that it suffices to prove the 4CC for trivalent
maps, as they are called now (i.e., maps in which three regions meet at every vertex):

...if in any case the figure includes four or more areas meeting in a point (such as
the sectors of a circle), then if (introducing a new area) we place at the point a small
circular area, cut out from and attaching itself each of the original sectorial areas, it
must according to the theorem be possible with four colours only to colour the new
figure; and this implies that it must be possible to colour the original figure so that
only three colours are used for the sectorial areas.

8 Locations of both [DeM2], [DeM3] come from N. L. Biggs [Big], who analyses De Morgan’s contri-
bution to the 4CC and the Separation Axiom.

9 First found by Bertha Jeffreys in 1979 [JefB].



156 IV Coloring Maps

Finally, Cayley tried to explain at length the difficulty of proving the 4CC by a
straightforward induction, and that is all he was able to do.

However, Arthur Cayley stated twice — in the course of two pages — that he
had “failed to obtain a proof” of the 4CC. These statements by one of the great
mathematicians of his time must have stirred interest in the 4CC. Professionals and
amateurs alike jumped on the opportunity to make Cayley out as “a stupid animal,”
as De Morgan put it in his letter quoted above.

The proof was very soon published in a prestigious journal by Alfred Bray
Kempe, a 30-year-old London barrister (lawyer) and avid amateur mathematician,
an expert on linkages.'? We will look at his work in Chapter 19.

18.2 A Touch of Historiography

It is very surprising that for over 100 years the confusion reined in the history of
the 4CC, one of the most popular problems in the history of mathematics. Truth
and fiction were alternating like positive and negative parts of a sin curve. Without
presenting here a complete historiography of the problem, I would just mention that
countless times Mobius—Weiske’s puzzle was mixed up with the 4CC, and conse-
quently credit for the 4CC was often given to Mobius. It has been happening even in
recent times. For example, as late as in 1958, the great geometer H. S. M. Coxeter
wrote [Cox1]:

The 4-color theorem was first mentioned by Mobius.

However, there were, authors who presented the problem’s history without fan-
tasy and “invention.” For example, Alfred Errera was about right in his December
1920 doctoral thesis [Err]:

Cayley attributed the exposition of the map theorem [sic] to De Morgan, whereas Fred-
eric Guthrie claimed, in 1880, that his brother Francis Guthrie had demonstrated [it]
some thirty years earlier.

In 1965 Kenneth O. May summarizes the 4CC’s history very well [May], and
apparently, is the first to quote De Morgan’s letter:

A hitherto overlooked letter from De Morgan to Sir William Rowan Hamilton.

May then goes on to quote De Morgan’s October 23, 1852 letter and Hamil-
ton’s reply from the monumental three-volume edition Life of Sir William Rowan
Hamilton, 1882-1889, written by Hamilton’s close friend, the Rev. Robert Perceval
Graves [Grav]. Volume 3 includes Hamilton’s correspondence with De Morgan, and
the letter of our interest, De Morgan to Hamilton of October 23, 1852 appears on
pages 422—-423. Graves was pressed for space — he wrote (vol. 3, p. v):

10 His 1877 book How to Draw a Straight Line was published again 100 years later by the National
Council of Teachers of Mathematics, with a funny (for 1977) statement on the copyright page: “Alfred
Bray Kempe, 1849-" indicating Kempe’s long life indeed.
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The ... larger portion of the volume [673 pp. long] consists of a selection from a
very extensive correspondence between Sir W. R. Hamilton and Professor Augustus
De Morgan. . .. The quantity of material was so great that I have had to exclude matter
that possessed inherent value, either because it was in subject unsuited to this work,
or because, being mathematical, the investigations carried on were too abstruse or too
extended. The general reader will perhaps complain that I have introduced more than
enough of mathematical investigation; but he will, I hope, withdraw the complaint
when he calls to mind that it was as scientific men that the writers corresponded, that
it would be unjust to them if their correspondence as printed should not retain this
character, and that the mathematical discussion did in fact most often afford suggestion
to the play of thought which, passing beyond the boundaries of science, prompted the
wit and the learned and pleasant gossip which the readers will enjoy.

Thus, May knows that Graves condensed letters—in fact, Graves used quota-
tion marks to show in practically every letter that he published only selections and
not complete letters. Graves favored “pleasant gossip” indeed. For example, in De
Morgan’s letter of our interest, he keeps in De Morgan’s trying “a fine pen with
which to write in books,” and “Having given the nibbler a fair trail, I now resume
my ordinary pen.” But Graves—and consequently May—omit all De Morgan’s
mathematical drawings, illustrating first ever thoughts on the 4CC, and they omit
an important phrase. As a fine historian, May should have looked at these impor-
tant letters in manuscript at the place where Hamilton spent his life, the place that
sponsored Graves’ biography of Hamilton, which appeared in “Dublin University
Series,” — Trinity College Dublin. He would have found there the 1900 Catalog of
the Manuscripts in the Library of Trinity College, Dublin compiled by T. K. Abbott,
where I read ([Abb], p. v):

In 1890 the Rev. Robert P. Graves presented [Trinity College, Dublin] a collection of
mss, which had belonged to Sir W. R. Hamilton, including his correspondence with
Sir John Herschel, Professor De Morgan, and others.

In fact, the two letters of our interest, catalogued as 668 and 669 (De Morgan’s
and Hamilton’s respectively) are contained in the group TCD MS 1493 of
Hamilton—De Morgan correspondence manuscripts, which were donated to the
Trinity College Dublin in 1900, as Stuart O Seanér, Assistant Librarian of the
Manuscripts Department at Trinity disclosed to me in a letter on March 21,
1997 [OSe]:

TCD MS 1493 was presented by J R H O’Regan of Marlborough, Wilts in 1900 (a
descendant of Hamilton’s through his daughter Helen) just in time to be mentioned in
T K Abbott’s Catalogue of the manuscripts in the library of Trinity College Dublin
published that year. . .

Graves’ three volume biography of Hamilton or other writings of his may reveal
that Hamilton corresponded with De Morgan and even citation of them might date
from before the papers were in a library.

Le meas
Stuart O Seanér [signed]

By now you must be wondering: which important phrase is missing in Graves
and May; I will put it in italic:
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He says that if a figure be any how divided and the compartments differently colored
so that figures with any portion of common boundary line are differently colored —
four colors may be wanted but not more — the following is his case in which four are
wanted [.]

In 1976 the missing phrase was restored by Norman L. Biggs, E. Keith Lloyd,
and Robin J. Wilson in their wonderful textbook of graph theory through its his-
tory [BLW]. To do that, the authors clearly had to see the manuscript letter or
its photocopy. Unfortunately, they misread a word while transcribing the missing
phrase, and the wrong word appeared in all editions of their book [BLW] as follows:

... the following is the [sic] case in which four are wanted [.]

In the manuscript one can clearly see the word “his” where the authors of
[BLW] put the second “the.” The difference is subtle but important: “the follow-
ing is the case” would have indicated that De Morgan showed to Hamilton his
own counterexample.!' In fact, De Morgan wrote “the following is his [i.e., stu-
dent’s] case,” i.e., De Morgan conveyed an example that four colors are wanted
which Francis Guthrie devised and passed on to De Morgan through his brother
Frederick!'?

Having established that at least one example and drawing in the De Morgan’s
letter belonged to Francis Guthrie, I wonder whether all arguments and drawings in
the letter were Francis’s as well — after all, De Morgan did not have much time to
ponder on the problem, as he wrote his letter the very day Frederick asked him for
a proof!

We have thus established that De Morgan’s contemporaneous account agreed
with Frederick Guthrie’s 1880 recollection: Frederick presented to De Morgan not
only the 4CC, but also his brother’s proof, albeit “not altogether satisfactory to him-
self [i.e., to Francis],” as Frederick put it.

In 1976 the history of the 4CC was enriched by discoveries by John Wilson
[Will], and in 1979 by Bertha S. Jeffreys of Cambridge, England [JefB], who found
additional examples of De Morgan’s writings about 4CC.

18.3 Creator of the 4 CC, Francis Guthrie

It is fascinating for me to read old newspapers: yes, they became worthless one day
after their publication. But for a reader a century later, they are a treasure trove of

1 The authors of [BLW] misread another word as well: they quote De Morgan as “T am not sure of the
[sic] convolutions,” whereas De Morgan wrote “I am not sure of all convolutions,” which makes more
sense.

12 This section had been written in early 1990s. As I have just noticed during proof-reading, a decade
later, in 2002, the third author of [BLW] and celebrated expositor Robin J. Wilson corrected this mis-
take in his popular engaging book Four Colors Suffice, Princeton University Press, Princeton. He surely
noticed the mistake independently from me, as we have not discussed it during our meetings.
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the life’s interests, people’s aspirations. They allow us to “touch” the distant culture,
and to breathe in its air.

I am looking at Cape Times of Monday, October 23, 1899. In the column of my
interest first comes The America Cup:

The possession of the America Cup was decided to-day, when the Columbia won
her second race against the Shamrock by five minutes. The Cup therefore remains
in America.

All important for people of the day Ship’s Movements come next:
The Clan Macpherson left Liverpool for Algon Bay on Thursday morning.

The Pombroks Castle arrived at Plymouth at two on Thursday afternoon.
The Spartan left St. Vincent last night.

Francis Guthrie. Courtesy of John Webb and Mathematics Department, University of
Cape Town
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Following these 1.75-inch long reports, I see something that must have mattered
to the folks of the Colony of South Africa a great deal: a 22-inch long column The
Late Professor Guthrie. Let us read a bit of it together [Gutl]:

There has just passed away from us a man who has left a greater mark upon our Colo-
nial life than will be readily recognized by many who did not come into contact with
him; or by some who have been taught by this age of self-advertisement to suppose
that no good work can be done in modesty and retirement. Professor Francis Guthrie,
L.L.B., B.A., whose death on the 19th. . .we briefly announced in Saturday’s issue, was
born in London in 1831.

We can learn much about Francis Guthrie from this eulogy [Gutl], and from
[Gut2] and [Gut3].

Born on January 22, 1831 in London, Francis Guthrie received his B.A. degree
with first class honors from the University College, London. He then earned L.L.D.,
a law degree, and for some time was a consulting barrister in Chancery practice. In
1861 Guthrie left the old world and accepted an appointment at the newly estab-
lished Graaff-Reinet College in the Colony of South Africa. Following his resig-
nation in 1875 and a brief visit to England, in 1876 Guthrie was appointed to the
Chair of Mathematics in the South African College, Cape Town (presently called
the University of Cape Town), from which he retired after 22 years on January 31
of 1899. Several months later, on October 19, 1899, Guthrie died in Claremont,
Cape Town.

Professor Guthrie was universally liked by his peers. He served on the University
Council, 1873-1879, and was Secretary of Senate during 1894. He was an early
member of South African Philosophical Society (now the Royal Society of South
Africa) and of its Council, a member of the Meteorological Commission, and for
many years the Examiner of the Cape University.

His several publications cover mathematics (none on the 4CC), meteorology, and
his true passion, botany. Guthrie and his lifelong friend Harry Bolus were pioneers in
the study of ericas of Southern Africa. In 1973 Harry Bolus discovered a new genus
on the summit (altitude 6,500 feet) of the Gnadouw-Sneeuwbergen near Graaff-
Reinet. Bolus named it in honor of his friend Guthriea capensis.

I am compelled to return to Cape Times [Gutl], as it conveys the life of the
frontier unknown to most of us through personal experience, and shows a side of
Francis Guthrie that is not widely known. Guthrie was a pioneer of the frontier. He
discovered not only the 4CC, but also routes for the railroad that determined the
future of his region of South Africa:

In 1871-2-3, when the agitation for railway extension was at its height and the battle of
the routes was being fought, Professor Guthrie ardently espoused the Midland cause.
The problem of that day was to show the Government and Parliament how, if a railway
were made to Graaff-Reinet, it could get over the Sneeuwberg Mountains to the north-
wards. Some case had to be made out before the Government would sanction even
a flying survey. Professor Guthrie, in a company with the late Charles Rubidge and
some others, climbed the mountains, aneroid in hand, in search of the most available
pass. Their efforts had for immediate result the construction of Forth Elizabeth and
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Graaff-Reinet line; and it is a tribute to the accuracy of those early amateur railway
explorers that the recent extension of that line to Middelburg follows very nearly the
route over the Lootsberg which they had suggested as the most feasible. The people
of Graaff-Reinet were not ungrateful, and a public banquet and laudatory addresses
showed their appreciation of the efforts of Professor Guthrie and his colleagues.

This remarkable 22-inch long eulogy ends with unattributed poetic lines, which
I traced to James Shirley (1596—-1666):

Only the actions of the just
Smell sweet, and blossom in the dust.

18.4 The Brother

While we are moving through the Victorian history of the problem, I can offer you
something mathematical to do as well. Frederick Guthrie (1833—-1886), by 1880
a Professor of Chemistry and Physics at the School of Science, Kensington and
the younger brother of the 4CC creator Francis, in his letter quoted above [GutFr],
created and solved a three-dimensional analog of the 4CC that Francis allegedly
neglected:

I have at various intervals urged my brother to complete the theorem in three dimen-
sions, but with little success.

It is clear that, at all events when unrestricted by continuity of curvature, the max-
imum number of solids having superficial contact each with all is infinite. Thus, to
take only one case n straight rods, one edge of whose projection forms the tangent to
successive points of a curve of one curvature, may so overlap one another that, when
pressed and flattened at their points of contact, they give n — 1 surfaces of contact.

Thus, Frederick Guthrie posed and solved the following problem:
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Problem 18.1 (Frederick Guthrie,1880). Is there a positive integer n such that n
colors suffice for proper coloring of any Euclidean three-dimensional map?

Frederick Guthrie continued:

How far the number is restricted when only one kind of superficial curvature is per-
mitted must be left to be considered by those more apt than myself to think in three
dimensions and knots.

Guthrie’s words are not precise. It seems to me that he posed the following prob-
lem:

Problem 18.2 (Frederick Guthrie, 1880) What is the minimum number of col-
ors required for proper coloring of any Euclidean three-dimensional map if each
monochromatic set is convex?

I am compelled to allow you time to ponder on an alternative solution of Prob-
lem 18.1 and a solution of Problem 18.2. We will return to them in Chapter 20.
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Victorian Comedy of Errors
and Colorful Progress

19.1 Victorian Comedy of Errors

This period in the history of The Four4-Color Conjecture (4CC) plays itself out like
a Victorian version of Shakespeare’s The Comedy of Errors. Judge for yourself!

Alfred Bray Kempe’s proof of the 4CC was announced on July 17, 1879 in
Nature [Kem1]. The proof itself was published later the same year in the American
Journal of Mathematics Pure and Applied [Kem?2], as Kempe writes (p. 194), “at
the request of the Editor-in-Chief,” i.e., James J. Sylvester.13 In accordance with
mapmakers’ myth of De Morgan—Cayley, Kempe chose the title On the Geograph-
ical Problem of the Four Colours."* The proof was an unqualified success. While
Kempe was elected a Fellow of The Royal Society based on this work on linkages,
the coloring success must have been a factor for Cayley, Sylvester and others to
nominate him for the honor.

Simplifications and variations appeared: first one by William E. Story, Associate
Editor in Charge of the American Journal of Mathematics Pure and Applied ( [Sto].
Story’s paper immediately followed the Kempe’s article [Kem2]. Simplifications
then came from Kempe himself [Kem3] and [Kem4]. New “series of proofs of the
theorem that four colours suffice for a map” by Peter Guthrie Tait followed [Tail],
[Tai2], [Tai3].

Popularity of the Four-Color Theorem (4CT) became so great that in late 1886
the Head Master of Clifton College somehow learned about it and ... offered the
problem as a “Challenge Problem” to his students:

13 Being Jewish, the famous British mathematician James Joseph Sylvester had to leave the Land of
strictly religiously controlled Oxford and Cambridge, for the New World, where he became the first
professor of mathematics in the just founded Johns Hopkins University, to the great benefit of the young
American mathematics. But that is another story.

14 We read in [Kem2], with amusement, an expansion of the De Morgan-Cayley myth: .. .it has been
stated somewhere by Professor De Morgan [must be a reference to Athenaecum [DeM4]] that it has long
been known to map-makers as a matter of experience — an experience however probably confined to
comparatively simple cases — that four colors will suffice in any case.”

A. Soifer, The Mathematical Coloring Book, 163
DOI 10.1007/978-0-387-74642-5_19, © Alexander Soifer 2009
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In colouring a plane map of counties, it is of course desired that no two counties which
have a common boundary should be coloured alike; and it is found, on trial [sic], that
four colours are always sufficient, whatever the shape or number of the counties or
areas may be. Required, a good proof of this. Why four ?'> Would it be true if the
areas are drawn so as to cover a whole sphere?

In the funniest turn of this story, the Head Master warned the contestants that
“no solution may exceed one page, 30 lines of MS., and one page of diagrams!”
Published on January 1, 1887 in the Journal of Education [Headl], the challenge
attracted a solution from such an unlikely problem solver as The Bishop of London,
whose “proof” [Head2] was published in the same journal on June 1, 1889.

Then came along the 29-year-old Percy John Heawood—who spoiled the party!
Almost with regret for his own discovery [Heal], Heawood apologetically writes:

The present article does not profess to give a proof of this original Theorem [i.e., 4CT];
in fact its aims are rather destructive than constructive, for it will be shown that there
is a defect in the now apparently recognized proof.

Yes, 11 (eleven!) years after the Kempe’s 1879 publication [Kem2], Heawood
discovered a hole in the proof (as well as in the two later versions of Kempe’s
proof [Kem3] and [Kem4]). Moreover, Heawood constructed an example showing
that Kempe’s argument as it was, could not work. There was a constructive side to
Heawood’s paper, in spite of his assurance to the contrary: he showed that Kempe’s
argument actually proves that five colors suffice for coloring any map.

In a gentlemanly way, Heawood informed Kempe first, and Kempe was the
one who reported Heawood’s findings to the London Mathematical Society at its
Thursday, April 9, 1891 meeting, while “Major P. A. MacMahon, R.A., FR.S.,
Vice-President, in the Chair” [Kem5]:

Mr. Kempe spoke on the flaw in his proof “On the Map-colour Theorem,” which had
recently been detected by Mr. P. J. Heawood, and showed that a statement by the
latter at the close of his paper failed. He further stated that he was unable to solve the
question to his satisfaction.

The authors of [BLW] researched publications of the period at hand. They
reported that they found “no complimentary references to Heawood in the popular
journals, and no record of honors granted to him.” Heawood’s work [Heal] and
his consequent papers dedicated to map coloring were certainly major contribu-
tions, and deserved more recognition. As it were, Heawood’s work [Heal] remained
almost unnoticed and unquoted by his contemporaries. Long after 1890, we can still
find papers giving credit to A. B. Kempe and Peter Guthrie Tait for proving 4CT
(see, for example [DRY]).

While giving credit to Kempe, Tait offered his own “proofs.” It appears that the
belief in Kempe’s proof was extrapolated by the contemporaries to the belief in Tait’s
proofs: I was unable to find any contemporaneous refutation of Tait’s “proofs.”

15 “Why four?” was a great question. Even today, when we have two proofs of the 4CT (see Chapters 21
and 22), we still do not really know the answer to this innocent question.
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Tait described his strategy as follows [Tail]:

The proof of the elementary theorem is given easily by induction; and then the proof
that four colours suffice for a map follows almost immediately from the theorem, by
an inversion of the demonstration just given.

This is true: Tait found a nice proof that his “elementary theorem” was equivalent
to 4CT. The trouble is, it was not so “elementary,” and moreover its proof was not
“given easily by induction.”

The Bishop of London erred too: he mistakenly believed that the Mobius—
Weiske’s problem I'V-1 was equivalent to 4CT. Many years later, in 1906, the direct
refutation of his “proof” was published by John C. Wilson [wilJC]. Both De Morgan
and Cayley, nearly half a century earlier, knew that 4CC was much more than a
mere fact that five countries in a map cannot be mutually adjacent. Obviously, the
Headmaster of Clifton College and the Bishop of London did not.

True to its genre, our Comedy of Errors has a happy end. Alfred Bray Kempe
eventually becomes the President of the London Mathematical Society. Frederick
Temple, our Bishop of London, reaches the highest religious title of the Archbishop
of Canterbury.

The great Russian poet Aleksand Pushkin ends his “Fairytale about the Gold
Cockerel” (“Craska o 3omotroMm merymke”) with the words: “A fairytale is a lie,
but with a hint, a lesson for a good lad.”'® Accordingly, our Victorian Comedy
of Errors leaves us plenty of valuable and enjoyable mathematics. Bright ideas of
Kempe, Tait, and Heawood are alive and well. Get your paper and pencil ready: in
this chapter and the next we will look at our British Victorian inheritance. As the
Bard put it:

All’s well that ends well!

19.2 2-Colorable Maps

Let us now look at some of the Victorian problems. To simplify the excursion, we
will translate the Victorian problems into today’s jargon. I suggest we start with a
warm-up.

Problem 19.1 Prove that a map formed in the plane by finitely many circles can be
2-colored (Fig. 19.1).

Proof We partition regions of the map into two classes (Fig. 19.2): those contained
in an even number of circles (color them gray), and those contained in an odd num-
ber of circles (leave them white). Clearly, neighboring regions got different colors
because when we travel across their boundary line, the parity changes. =

16 Translated from Russian by Maya Soifer. The original rhymed Russian text is:
“CKa3Ka JOKDL, Ja B Hell HaMeK!
HOOPLIM MOJIOAIAM yPOK.”
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Fig. 19.1 A map formed by circles

(2
SR
Fig. 19.2 2-Coloring of a map formed by circles

I am sure you realize that the shape of a circle is of no consequence. We can
replace circles in Problem 19.1 by their continuous one-to-one images, called simple
closed curves, because the Jordan Curve Theorem holds for them all:!”

Jordan Curve Theorem 19.2 A simple closed curve in the plane divides the plane
into two regions (inside and outside).

Problem 19.3 Prove that a map formed in the plane by finitely many simple closed
curves is 2-colorable.

We can replace simple closed curves by straight lines, or a combination of the two:

Problem 19.4 Prove that a map formed in the plane by finitely many straight lines
is 2-colorable (Fig. 19.3).

Fig. 19.3 A map formed by straight lines

17 see its proof, for example, in [BS]
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An inductive proof is well-known,!® but as is usually the case with proofs by
induction, it does not provide an insight. I found a “one-line” proof that takes advan-
tage of similarity between simple closed curves and straight lines.

Proof Attach to each line a vector perpendicular to it (Fig. 19.4). Call the half-plane
inside if it contains the vector, and outside otherwise. Repeat the proof of problem
19.1 word-by-word to complete the proof (Fig. 19.5). =

Fig. 19.4 Inventing vectors

Fig. 19.5 2-Coloring of a map formed by straight lines

Problem 19.5 Prove that a map formed in the plane by finitely many simple closed
curves and straight lines is 2-colorable.

So what is common between simple closed curves and straight lines? What
allows a 2-coloring to exist? Each vertex in the maps above is a result of the inter-
section of two or more curves or lines, and therefore, has an even degree! This fact
first appears in print on the last page of the 1879 paper by A. B. Kempe in which he
attempts to prove 4CC [Kem?2].

Kempe’s Two-Color Theorem 19.6 (A. B. Kempe, 1879, [Kem2]) A map is
2-colorable if and only if all its vertices have even degree.

Let us take another look at the map M formed by circles in Fig. 19.1. We can
construct the dual graph G(M) of the map M as follows: we represent every region
by a vertex (think of the capital city), and call two vertices adjacent if and only if

18 See, for example, [DU].



168 IV Coloring Maps

the corresponding two countries are adjacent, i.e., have a common boundary (not
just a point or finitely many points).'"> The dual graph G(M) of the map M of
Fig. 19.1 is presented in Fig. 19.6 (I bent and stretched edges to make the graph
look aesthetically pleasing).

Fig. 19.6 The dual graph of a map from Fig. 19.1

Observe: the dual graph G(M) of any map M is planar: we can draw its edges
through common boundaries of adjacent regions so that the edges will have no
points in common except the vertices of the graph.

Now the problem of coloring maps can be translated into the language of coloring
vertices of planar graphs. But, this problem is not new to us: we have already solved
it as Problem 12.2. Let us repeat it here:

Kempe’s Two-Color Theorem 19.7 (In Graph-Theoretical Language) The chro-
matic number x(G) of a graph G does not exceed 2 if and only if G contains no
odd cycles.

19.3 3-Colorable Maps

It is natural to give a name to the smallest number of colors required to color a map
M let us call it the chromatic number of a map M, or face chromatic number and
denote it by x, (M).

We have an abundance of maps of chromatic number 2 around us: maps created
by circles, straight lines, simple closed curves (Problems 19.1-19.5). Square grid
delivers us an example of large periodic map of chromatic number 2: just recall
the chessboard coloring. Can you think of a way of creating large periodic maps of

19 The idea of the dual graph of a map was one of the first ideas of graph theory: Leonard Euler used
it in 1736 to solve the Problem of Bridges of Konigsberg. The language of maps was universally used
by the first researchers of the 4CC. Yet, it is interesting to notice that while Kempe used the language of
maps in the main body of his 1879 paper [Kem2], he did describe the construction of the dual graph on
the last page of this paper.
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chromatic number 3? You have already seen a couple of such constructions in this

book, but in a totally unrelated context.

Problem 19.8 Find the chromatic number of the hexagonal map created by the old

Chinese lattice in Fig. 6.7.
Solution: Behold (Fig. 19.7):
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Fig. 19.7 3-Coloring of an ancient Chinese lattice from Fig. 6.7.

Problem 19.9 Find the chromatic number of the map in Fig. 6.6, which is formed

by octagons and squares.

Solution: Behold (Fig. 19.8).

What is special about the maps in Problems 19.8 and 19.9 that make their
chromatic number to be 37 Is it the fact that they are cubic, i.e., each vertex of
these maps has degree 37 Or is it due to an even number of neighbors of every

region?

A. B. Kempe [Kem?2] repeats Cayley’s argument that we can convert any map M

into the trivalent map M’, such that

X2 (M) < xo(M').

Kempe writes:
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Fig. 19.8 3-Coloring of Soifer’s tiling of the plane from Fig. 6.6.

I should show that the colours could be so arranged that only three should appear
at every point of concourse [i.e., vertex of the map of degree at least 3]. This may
readily be shown thus: Stick a small circular patch, with a boundary drawn round its
edge, on every point of concourse, forming new districts. Colour this map [M’]. Only
three colours can surround any district, and therefore the circular patches. Take off the
patches and colour the uncovered parts the same colour as the rest of their districts.
Only three colours surrounded the patches, and therefore only three will meet at the
points of concourse they covered.

Our maps in Problems 19.8 and 19.9 are cubic, and for cubic maps an even num-
ber of neighbors is the key indeed:

Kempe’s Three-Color Theorem 19.10 (A. B. Kempe, 1879, [Kem2]) A cubic map
M has face chromatic number 3 if and only if the boundary of each of its regions
consists of even number of edges.>’

Let us translate the Three-Color Theorem into the language of graphs by going
to the dual graph G = G (M) of the map M. Of course, since M is a trivalent map,
all regions of G are bounded by triangles (i.e., three-cycles). A plane graph, where
all regions are bounded by three-cycles, is called a triangulation.

Kempe’s Three-Color Theorem 19.11 (Three-Color Theoremfor Graphs)Let G be
a connected plane triangulation. Then the following three assertions are equivalent:
(a)the chromatic number y (G) of G satisfies the inequality x (G) < 3;

(b) the face chromatic number x,(M) of G satisfies the inequality y,(M) < 2;

(c)the degree of every vertex of G is even.

20 Kempe states only the sufficient condition, but the necessary condition is easier to prove, and was

most likely known to him.
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Proof Kempe does not prove his statement. The proof presented here is a substan-
tially simplified version of a cycle of problems from the 1952 Russian book by
Evgenii B. Dynkin and Vladimir A. Uspensky [DU].

(a) = (b). Since x(G) = 3, we can label each vertex of G with one of the colors
a, b or c. For every face we have one vertex of each of the colors a, b or c. Take a
face F; if the direction of going around its vertices a — b — c is clockwise, then
we color F red, otherwise we color F blue. It is easy to see that any two adjacent
faces are thus assigned different colors.

(b) = (a). Let G be face 2-colored red and blue. For every edge xy of G we
assign one direction (out of possible two: x — y or y — x), such that when we
travel along the assigned direction, the red triangle is on our right (and thus a blue
triangle is on our left). Obviously, for any two vertices v, w of G there is a directed
path from v to w, and while the length of such a path (i.e., the number of edges in
it) is not unique, its length modulo 3 is unique.

Assuming we proved this uniqueness (see next paragraph for the proof), the rest

is easy. Let us call our three colors 0, 1, and 2. Pick a vertex v and color it 0; then
for any vertex w of G we select one directed path P from v to w, and the remainder
upon division of the length /(P) of P by 3 determines the color we assign to w.
This guarantees that the adjacent vertices are assigned different colors (do you see
why?), and the implication (b) = (a) is proven.
Proof of Uniqueness Let us first prove that the length /(P) of any closed directed
path P is divisible by 3. Assume it is not, then among all directed closed paths of
length not divisible by 3, there is one of minimum length [, call it P’. P’ has no self-
intersections, as otherwise it could be shortened (can you see how?) in contradiction
to its minimum length. P’ partitions the plane into two areas: the inside and the
outside. We combine the outside into one region O, and as the result get a new
map M, all regions of which are already colored red and blue, except the region O
(Fig. 19.9).

Fig. 19.9

If the loop P’ has the clockwise direction, then all triangles bordering on P’ are
colored red; otherwise they are all colored blue. Since in either case all triangles bor-
dering on P’ are assigned the same color, say, red, we can complete the 2-coloring
of the map M, by assigning the outside region O the opposite color—blue.

Every edge belongs to the boundary of one red and one blue regions, therefore,
the total numbers of edges on the boundaries of all red and all blue regions are equal.
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Thus, we get the following equality:
3r=3b+1,

where r and b denote the numbers of red and blue triangles respectively (and /, as
you recall, is the length of P’). This equality contradicts the fact that / is not divisible
by 3.

Assume now that there are two directed paths P; and P, from a vertex v to a
vertex w, such that their lengths are /; and /, give different remainders upon division
by 3. Let P; be a path of length /3 from w to v. Then we get two different closed
paths P; + P, and P; + P; of lengths [; + [, and [; + I3 respectively. Therefore, in
view of the above both integers /; + I and [; + I3 are divisible by 3. But then the
number

h+b)—U+hB)y=0hL—13

is divisible by 3, and the desired uniqueness is proven.
(b) < (c). This is precisely the 2-Color Theorem we have discussed above. =

Kempe’s 3-Color Theorem, as can be easily seen, has the following corollary:

Corollary 19.12 (P. J. Heawood, 1898, [Hea2]) Let G be a connected planar graph
G. Then the following assertions are equivalent:

(a)the chromatic number x (G) of G satisfies the inequality x(G) < 3;

(b)G can be embedded (as a subgraph) into a triangulation graph G’ such that degree
of every vertex of G’ is even.

In his 1993 survey [Ste] Richard Steinberg describes the history of the 3-color
problem and its state at the time of his writing. In this otherwise wonderful historical
work, Steinberg dismisses Alfred B. Kempe in a number of unjustified ways:

The most notorious paper in the history of graph theory: the 1879 work by A. B.
Kempe [Kem?2] that contains the fallacious proof of the Four Color Theorem. ..
Kempe’s language is somewhat unclear — he was a barrister by profession.

Pierre de Fermat was a “barrister by profession” too. Does a mere fact that pro-
fessionals are paid for services, make them necessarily superior to amateurs? And
when an amateur turns professional (which happens every day), does his language
improve overnight?

Yes, Kempe’s language is not as precise as our present standards require. But the
same can be said of Tait and Heawood, yet Steinberg quotes approvingly Gabriel
Dirac’s passionate but illogical argument in defense of Heawood’s writing:

Most of the assertions stated in [Hea2] are not actually proved, only made plausible,
but they have since been proved rigorously by other writers, which indicates [sic] that
Heawood was in possession of the necessary proofs but did not choose to include them.
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As we have seen, Kempe’s last page of [Kem?2] contained a number of observa-
tions, including both the Two-Color Theorem and the Three-Color Theorem that are
listed without proof, as “two special cases” of map coloring. I believe that Kempe
knew the proofs, but omitted them possibly because his main, if not the only goal
was to prove the much more complex Four-Color Theorem.

Tomas L. Saati, in his 1967 title, calls the attempt “The Kempe Catastrophe”
[Saal]. I cannot disagree more. As we will see in the next chapter, Alfred B. Kempe
did not succeed in his goal, but what a fine try it had been, far exceeding anything
his celebrated professional predecessors De Morgan and Cayley achieved in years
of toying with the 4CC! Moreover, both known today successful assaults of 4CC
used Kempe’s approach in their foundation. Kempe came up with beautiful ideas;
his chain argument was used many times by fine twentieth century professionals—
Dénes Konig in his 1916 work on the chromatic index of bipartite graphs, and Vadim
Vizing (Chapter 16) in his famous 1964 chromatic index theorem.

For his important work on linkages, the contemporaries elected A. B. Kempe
(1849-1922) a Fellow of the Royal Society (1881) and President (1892—-1894) of
the London Mathematical (that is: Mathematical) Society. Kempe was knighted
in 1913.

19.4 The New Life of the Three-Color Problem

In the first half of the twentieth century it seemed that the Three-Color Problem
had been settled in the Victorian Age. Since the late 1940s and the 1950s, we have
witnessed the accelerating explosion of results on the relationship between the chro-
matic number of a graph and its small cycles (please, see the discussion of it in
Chapter 12). Examples of triangle-free graphs were in the mathematical air. Only
one word, planar, needed to be added for revisiting the Three-Color Problem, and
seeking a deeper understanding of what causes a map to be 3-colorable.

The first significant step of this new era of 3-colorable graphs was made by the
German mathematician Herbert Grotzsch in 1958 [Gro].

Grotzsch’s Theorem 19.13 A triangle-free planar graph is 3-colorable.

In order to demonstrate that the restriction to planar graphs cannot be omitted,
Grotzsch constructed the graph we discussed in Chapter 12 (Fig. 12.8). His the-
orem, however, allowed an improvement, which was delivered by the celebrated
geometer (and Geombinatorics’ editor from its inception in 1991 to present) Branko
Griinbaum [Grii] in 1963.

Griinbaum’s Theorem 19.14 A planar graph with at most three 3-cycles is
3-colorable.?!

21 A lemma used in the proof of Griinbaum’s theorem was corrected and proved by Valeri A. Aksionov
in 1974 [Aks].
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This result is of course best possible, as K4, a graph with four 3-cycles shows. Is
there a life after the best possible result?

In mathematics—of course! As Valeri A. Aksionov and Leonid S. Mel’nikov
observed [AM], “Griinbaum put forth the question which determined the direction
of further research.” Griinbaum defined the distance between triangles of a graph
as the length of the shortest path between vertices of various pairs of triangles.
He conjectured that if this distance is at least 1, then the planar graph is 3-colorable.
Ivan Havel, who constructed a counterexample to Griinbaum’s conjecture, posed
and refuted his own conjecture (with distance at least 2), and in the end posed a
more restrained question in 1969 [Hav].

Havel’s Open Problem 19.15 Does there exist an integer n such that if the distance
between any pair of triangles in a planar graph G is at least n, then G is 3-colorable?

Havel’s problem is still open. According to Baogang Xu (e-mail of May 10,
2007), it is known that if such an n exists, it is at least 4.

Meanwhile Richard Steinberg reasoned as follows: the restrictions on 3-cycles
have been settled; but what if we were to impose no restrictions on 3-cycles, but
instead limit 4- and 5-cycles. In his 1975 letter to the Russian mathematicians
V. A. Aksionov and L. S. Mel’nikov, Steinberg posed his now well-known and still
open problem [Ste].

Steinberg’s Open Problem 19.16 Must a planar 4- and 5-cycle-free planar graph
be 3-colorable?

The further research on Three-Color Problem was inspired by Havel’s and Stein-
berg’s open problems, and often by a combination of both of them. The explosion
of recent results is so great that the field is surely in need of a new comprehensive
survey, like the one Richard Steinberg authored in 1993. I am grateful to the Chinese
mathematician Baogang Xu for navigating me through the labyrinth of the current
state of the problem. Let us look at the explosion of 3-coloring results.

Abbott—Zhou’s Theorem 19.17 ( [AZ], 1991) A planar graph without cycles of
lengths 4 to 11 is 3-colorable.

Sanders—Zhao and Borodin’s Theorem 19.18 ( [SZ], 1995; [Bor], 1996) A planar
graph without cycles of lengths 4 to 9 is 3-colorable.

Borodin—-Glebov-Raspaud-Salavatipour’s Theorem 19.19 ( [BGRS], 2005) A
planar graph without cycles of lengths 4 to 7 is 3-colorable.

Luo—Chen-Wang’s Theorem 19.20 ([LCW], 2007) A planar graph without cycles
of lengths 4, 6, 7 and 8 is 3-colorable.

Chen-Raspaud-Wang’s Theorem 19.21 ( [CRW], 2007) A planar graph without
cycles of lengths 4, 6, 7 and 9 is 3-colorable.

In 2003, Oleg V. Borodin and André Raspaud [BR] started a direction that com-
bined Steinberg’s and Havel’s problems.
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Borodin—-Raspaud’s Theorem 19.22 (  [BR], 2003) A planar graph without
5-cycles and triangles of distance less than 4 is 3-colorable.

They also formulated two conjectures stronger than the (still open) positive
answer to Steinberg’s problem 19.16. The authors called them “Bordeaux 3-color
conjectures” — I will add the authors’ names to give them credit. By infersecting
(adjacent) triangles the authors mean those with a vertex (an edge) in common.

Bordeaux 3-Color Borodin—-Raspaud’s Conjecture 19.23 ( [BR], 2003) A planar
graph without 5-cycles and intersecting triangles is 3-colorable.

Bordeaux 3-Color Borodin—Raspaud’s Strong Conjecture 19.24 ( [BR], 2003)
A planar graph without 5-cycles and adjacent triangles is 3-colorable.

A proof of Conjecture 19.24 in the positive would imply the validity of Conjec-
ture 19.23 and the positive answer to Steinberg’s Problem 19.16.
Baogang Xu has just improved Borodin—Raspaud’s result 19.22.

Xu’s Theorem 19.25 ( [Xu2], 2007) A planar graph without 5-cycles and triangles
of distance less than 3 is 3-colorable.

In a significant improvement of Borodin et al. Theorem 19.19, Xu proved the
strongest result to date in the direction of proving Bordeaux 3-Color Borodin—
Raspaud’s Conjecture 19.24:

Xu’s Theorem 19.26 ( [Xul], 2006) A planar graph without adjacent triangles and
5- and 7-cycles is 3-colorable.

Two more very recent results have been obtained in the direction of Steinberg’s
and Havel’s problems.

Lu-Xu’s Theorem 19.27 ( [LX], 2006) A planar graph without cycles of lengths 5,
6, and 9 and without adjacent triangles is 3-colorable.

Xu’s Theorem 19.28 ( [Xu3], submitted) A planar graph without cycles of lengths
5, 6 and without triangles of distance less than 2 is 3-colorable.

The international group of mathematicians Oleg V. Borodin, Aleksey N. Glebov,
both from Russia, Tommy R. Jensen from Denmark, and André Raspaud from
France [BGJR] recently put a new twist on the 3-color oeuvre.

Borodin—-Glebov-Jensen—Raspaud’s Theorem 19.29 ( [BGJR], 2006) A planar
graph without triangles adjacent to cycles of lengths 3 to 9 is 3-colorable.

The authors have also formulated an attractive conjecture.

Borodin-Glebov-Jensen—Raspaud’s Conjecture 19.30 ([BGJR], 2006) A planar
graph without triangles adjacent to cycles of lengths 3 or 5 are 3-colorable.

It is fascinating to see how the seemingly lesser known cousin of the celebrated
4CC has flourished so beautifully and became an exciting area of mathematical
inquiry, even after 4CC was settled!



20
Kempe-Heawood’s Five-Color Theorem
and Tait’s Equivalence

20.1 Kempe’s 1879 Attempted Proof

I am compelled to present here Alfred Bray Kempe’s attempted proof of 4CC. As
you recall from Chapter 19, that proof contained an oversight, that was found a
“mere” 11 years later by Percy John Heawood. Why then do I choose to present the
unsuccessful attempt here? First of all, because of beautiful ideas Kempe invented.
Secondly, because it is not so easy to notice a flaw right away. Thirdly, because
P. J. Heawood did not have to do much to salvage Kempe’s ideas and show that, in
fact, they (i.e., Kempe’s ideas!) prove the Five-Color Theorem. And finally, because
just like their contemporaries underestimated the work of Heawood, my contempo-
raries often underestimate contributions of Kempe.

And so it comes. Fasten your seat belts, I challenge you to find Kempe’s
oversight!

I will translate both the theorem and Kempe’s proof into the usual nowadays
language of dual graphs. The authors of The Four-Color Problem [SK], the first ever
book on the subject, Thomas L. Saaty and my friend Paul C. Kainen, write (p. 7):

The notion of dual graph mentioned above was introduced by Whitney (1931) and
used to give an elegant characterization of when a graph is planar.

In fact, the notion of dual graph appears on the last page of A. B. Kempe’s 1879
paper [Kem?2], as I mentioned in the footnote after Theorem 19.6 in the previous
chapter, and in 1736 Leonard Euler had already used it. Kempe reinvented the
notion, but did not do much with it (what can one do with a promising notion that
is introduced too late, on the last page of the paper!). We will use it here to make
Kempe’s attempted proof easier to read. We will also rearrange Kempe’s proof.

The Four Color Theorem for Graphs 20.1 Chromatic number of any planar
graph does not exceed 4.

Attempted proof by Alfred Bray Kempe. First Kempe presents his brilliant
chain argument, then he rediscovers Euler’s formula 20.2, and uses it to find the
graph theory’s first set of unavoidable configurations (Tool 20.3 and the equivalent
Tool 20.3%), as it is called today. We’ll do the latter two first.

176 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5_20, © Alexander Soifer 2009
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Euler’s Formula for Maps 20.2 For any map M in the plane, the following equal-
ity holds:

R+V=E+2,

where R, V and E are number of regions, vertices and edges of M respectively.

Hint. You can add edges to M as necessary, until you get a triangulation 7' (M), such
that the Euler formula holds for M if and only if it holds for 7(M); and then use
induction. Let me not present here the complete proof: too many books have already
done so. =

Kempe’s Tool 20.3 (A. B. Kempe, 1879, [Kem2]). Any planar map contains a ver-
tex of degree at most 5.

Proof We can assume without loss of generality that each face is incident to at least
three edges, for otherwise we can insert some vertices of degree 2 to remedy such a
situation.

We will argue by contradiction. Assume that the desired statement does not hold
for a planar graph G, i.e., all V vertices of G have degree at least 6. Let R and E
stand for the numbers of regions and edges of G respectively. Since every edge is
incident to two vertices, and to two regions, we get 6V > 2F and 3R > 2E, or
V> %E and R > %E . Then by Euler’s formula 20.2, we get:

2E+1E>E+2
3 3~ '

which is absurd. =

I enjoyed the idea of translating Kempe’s attempt into the contemporary ter-
minology of unavoidable sets of reducible configurations that I found in Douglas
R. Woodall’s paper [Woo2]. I will present Kempe’s attempted proof here in this
language, for this would better prepare you for the next chapter, where we will
discuss Appel and Haken’s proof of 4CT.

A configuration C is called reducible if the minimal (in terms of the number of
vertices) counterexample G to 4CT cannot contain C, i.e., G can be reduced to a
smaller counterexample.

A finite set S of configurations is called unavoidable for a certain class @ of
maps if every map from @ contains at least one element of S. Tool 20.3 could be
reformulated in a language of unavoidable configurations:

Kempe’s Tool in Current Terms 20.3’ The set of four configurations in Fig. 20.1 is
unavoidable, i.e., at least one of them appears in any non-trivial plane triangulation.

Kempe’s argument: Kempe is set out to prove that the four configurations in
Fig. 20.1 form an unavoidable set of reducible configurations.

Assume that there is a planar graph that is not 4-colorable. Then among all planar
non 4-colorable graphs there is a graph, call it G, of minimum order (i.e., minimum
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(a) (b)

d c d c
(o) (d)

Fig. 20.1 Kempe’s unavoidable set of configurations

number of vertices). Embed G in the plane, and add edges, if necessary, to make a
triangulation 7 out of G. T is not 4-colorable as it is of the same order as G, but
T — v is 4-colorable for any vertex v. Fix a vertex v, and color T — v in four colors.
According to tool 20.3’, T contains one of the four configurations listed in Fig. 20.1.

1. If T contains a configuration (a) or (b), the 4-coloring of T — v can be eas-
ily extended to a 4-coloring of T': just assign the vertex v a color not used on the
vertices adjacent to v. A contradiction, therefore the assumption that 7 is a minimal
counterexample to 4CT is false, and thus 7" can be reduced. Configurations (a) and
(b) are reducible.

2. Let T contain a configuration (c). We will look at three subcases.

2a. If no more than three colors have been used to color the vertices a,b,c and d,
we can extend the 4-coloring of T — v to a 4-coloring of T': just assign the vertex v
a color not used on the vertices adjacent to v.

2b. Assume now that the vertices a,b,c and d are assigned four different colors:
following Kempe’s taste let these colors be red, blue, green, and yellow respectively.
Consider a subgraph Tgg of T — v that is formed by all red and green vertices of
T — v, with all edges connecting these vertices (we call Tgg a subgraph induced by
the red and green vertices). If the vertices a and ¢ belong to different components
of Trg, we interchange colors, red and green, in the component that contains the
vertex c. As a result, we get a new 4-coloring of 7' — v, but in this coloring both
vertices a and ¢ are colored red. Thus we can extend the 4-coloring of 7 — v to a
4-coloring of T': just color the vertex v green!

2c. Let us now assume that both vertices a and ¢ belong to the same component
of Tgg, 1.€., there is, what we call now the Kempe chain Cgg in Tgg that connects
a and ¢ (Fig. 20.2).
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Fig. 20.2 Kempe’s chains at work

Consider a subgraph Tyg of T — v induced by all yellow and blue vertices of
T — v. Since the chain Cgg separates the vertices b and d, they must lie in differ-
ent components of Typ. Therefore, we, interchange colors, yellow and blue, in the
component of Typ that contains the vertex b. As a result, we get a new 4-coloring
of T — v, but in this coloring both vertices b and d are colored yellow. Thus we can
extend the 4-coloring of T — v to a 4-coloring of T': just color the vertex v blue.

We have thus proved in all cases that T is 4-colorable. A contradiction, therefore
the assumption that 7 is a minimal counterexample to 4CT is false, and thus 7' can
be reduced. Configuration (c) is reducible.

3. Let finally T contain a configuration (d). We will consider three subcases.

3a. If no more than three colors have been used to color the vertices a,b,c,d and
e, we can extend the 4-coloring of 7 — v to a 4-coloring of T': just assign the vertex
v a color not used on the vertices adjacent to v.

3b. Assume now that the vertices a,b,c,d and e are assigned four different colors:
following Kempe’s choice, let these colors be red, blue, yellow, green, and blue
respectively. Consider subgraphs Tgy and Tgg of T — v that are induced by all
its red-and-yellow, and red-and-green vertices respectively. If the vertices a and ¢
belong to different components of Ty, or a and d belong to different components
of Trg, we interchange colors in the component that contains the vertex a. As the
result, we get a new 4-coloring of T — v, such that the color red is not assigned to
any of the vertices a,b,c,d and e. Thus we can extend the 4-coloring of 7 — v to a
4-coloring of T': just color the vertex v red.

3c. Let us now assume that vertices a and ¢ belong to the same component of
Try, and a and d belong to the same component of Tk, i.e., there is a Kempe chain
Cry in Tgy that connects a and ¢, and a Kempe chain Cgg in Tk that connects a
and d (Fig. 20.3).

Consider subgraphs Ts and Ty of T — v induced by all its blue-and-green and
blue-and-yellow vertices respectively. The vertex » must lie in a component of Tz
that is different from those to which d and e belong; and e lies in a component of
Tpy that is different from those to which b and ¢ belong. We, therefore, interchange
colors, blue and green, in the component of T that contains b; and blue and yellow,
in the component of Ty that contains e. As a result, b becomes green and e yellow.
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Fig. 20.3 Kempe’s chains at work

Thus, we can extend the 4-coloring of T — v to a 4-coloring of T': just color the
vertex v blue.

We have proved in all cases that T is 4-colorable. A contradiction, therefore the
assumption that 7 is a minimal counterexample to the 4CT is false, and thus 7 can
be reduced. Configuration (d) is reducible. =

The Four-Color Theorem has thus been proven, or has it? In hindsight we know
that is has not been. Have you noticed the hole? Try finding it on your own before
reading the next subsection, in which I will play hide-and-seek and reveal where the
hole is.

20.2 The Hole

The hole occurs in the subcase 3c. Everything Kempe does in the neighborhood of
the vertex v is fine! He does get rid of color blue among the vertices adjacent to v,
and therefore is able to assign blue to v.

However, while interchanging 2 colors in one component (as was done in the
subcase) 2c does create an allowable coloring of T — v, in the subcase 3¢ Kempe
interchanges coloring in fwo components. Moreover, he interchanges colors in com-
ponents of T and Tgy that share a color (blue). Thus, there is no guarantee that
what he gets in the outset is an allowable coloring of T — v (i.e., everywhere in
the graph adjacent vertices are assigned different colors). Thus, Kempe’s attempted
proof has a hole.

20.3 The Counterexample

In fact, Percy John Heawood was not only first to find the above hole: he constructed
a map such that if one follows Kempe’s argument, two adjacent regions would get
the same color assigned to them. Tomas L. Saati did not just translate Heawood’s
example into the language of graph theory, but also added niceties of symmetries to
his graph [Saa2, p. 9]. My assistant Phillip Emerich and I added further niceties of
regular hexagons and pentagons to Saati’s graph—see Fig. 20.4 for our embedding.
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Fig. 20.4 Heawood’s counter example in graph form

Letters R, B, Y, and G, stand for colors red, blue, yellow and green, respectively.

As a result of Kempe’s re-coloring, the adjacent vertices, x and z end up with the
same color assigned to them.

Heawood’s counterexample is a graph of order 25. While reading Kempe’s

attempted proof, I found a counterexample of order just 9 that refutes Kempe’s proof
as written by him.

Problem 20.4 Construct a counterexample to Kempe’s attempted proof of order not
greater than 9.

Behold (Fig. 20.5).
In fact, I believe that this is the smallest such counterexample:

Conjecture 20.5 For any graph of order less than 9, Kempe’s argument works.
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Fig. 20.5 A small counter example

20.4 Kempe-Heawood’s Five-Color Theorem

In his 1890 paper P. J. Heawood [Heal] pointed out that Kempe’s argument actually
proves that five colors suffice. When we use five colors, there is no need to simulta-
neously interchange colors in two Kempe chains, and thus Kempe’s chain argument
works. Do verify the proof of the Five-Color Theorem on your own.

I believe that the name often used today for this result, “The Heawood 5-Color
Theorem,” is unfair. While Heawood was first to formulate and prove the theorem,
he merely adjusted an ingenious argument created by Kempe. It therefore is only
fair to name the result after both inventors. I have little doubt Heawood would have
agreed!

Kempe-Heawood’s Five-Color Theorem 20.6 Five colors suffice to color any
map in the plane.

20.5 Tait’s Equivalence

Not only did Augustus De Morgan, but also Arthur Cayley contributed to spreading
the word about the 4CC. Peter Guthrie Tait is clear about it [Tail, p. 501]:

Some years ago, while I was working at knots, Professor Cayley told me of De
Morgan’s [sic] statement that four colours had been found by experience [sic] to be
sufficient for the purpose of completely distinguishing from one another the various
districts on a map.

When in 1880 Alfred B. Kempe published yet another sketch of a proof similar to
his original attempt [Kem5], Tait was apparently inspired to enter the map-coloring
arena. In 1 year, 1880, he published a paper [Tail], withdrew and replaced it with
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a one-page “abstract” [Tai2], which he expanded to an article [Tai3]. These papers
contain some amusing statements, for example [Tai3, p. 657]:

The difficulty in obtaining a simple proof of this theorem originates in the fact that it
is not true without limitation.

One can paraphrase it to say, “It is difficult to prove what is not true.” Indeed,
very much so! However, the Tait papers, also contain brilliant observations, such as
what we call Tait’s Equivalence (Problem 20.8 below). Let us start our Tait-Review
with his inductive attempt of proving 4CC.

The Four-Color Theorem 20.7 Every map in the plane is 4-colorable.

Tait’s Attempted Proof ([Tai3]): Proof by induction in the number of regions.

For a map with one region 4CC holds.

Assume it holds for any map with less than n regions, i.e., any map with less than
n regions is 4-colorable.

Given a map M with n regions, by Kempe’s Tool 20.3, M contains a region
R bounded by at most five edges. If R is bounded by two or three edges, erase
one of them, say e. The resulting map can be 4-colored by inductive assumption.
Now reinstate e. At most three colors are forbidden for coloring R (one per each
neighbor), and we, therefore, use the remaining color for R.

Let R be bounded by four edges, and adjacent regions clockwise are R, R;, Rj3
and Ry. [At least one of the two pairs of the opposite regions R; and Rz, R, and
R4, is non-adjacent; let R, and R4 be the non-adjacent regions.] We erase a pair of
opposite edges e, and e, that separate the regions R,, R and Ry (Fig. 20.6).22 The
resulting map can be 4-colored by the inductive assumption.

Now reinstate e, and e4. At most three colors are forbidden for coloring R
(because R, and Ry are assigned the same color!), and we, therefore, can use the

Fig. 20.6 Tait’s attempted proof of the Four-Color Theorem

22 Tait in [Tai3, p. 660] wrote: “either pair of opposite sides of a four-sided region may be erased, and
afterwards restored.” This choice can cause a problem if the opposite regions are adjacent, hence I had to
correct Tait’s attempt by adding the previous sentence in brackets.
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remaining color on R. Please, observe: no Kempe chain argument was used in this
case, and the proof is much shorter than in Kempe’s attempt.

Let finally R be bounded by five edges, erase a pair of non-adjacent edges, say
e; and e;. Here Tait suddenly stops and writes:

But when we erase any two non-adjacent sides of a five-sided district, a condition is
thereby imposed on the nomenclature of the remaining lines, with which I do not yet
see how generally to deal.

Of course, Tait knew that he could continue his proof by 4-coloring the resulting
map, which can be done by inductive assumption; then reinstate e; and e,, and use
Kempe chain argument, as in [Kem?2] or [Kem5]. He did not! Why?

The only plausible explanation, in my opinion, is that Tait at the very least had
doubts about the validity of Kempe’s argument in the last case, if not realized the
existence of the hole—10 years prior to Heawood’s work [Heal]. =

With mathematical Olympiad-like brilliance, Tait proves the following fabulous
equivalence. A fine statement meets as fine a proof. Enjoy!

The dual graph of a planar triangulation graph is a planar graph, whose all ver-
tices have degree 3. If all vertices of a graph have the same degree 3, we say that the
graph is regular of degree 3, or simply a 3-regular graph.

Tait’s Equivalence, Graph Version 20.8 (Tait, 1880). A planar 3-regular graph
can be (vertex) 4-colored if and only if it can be edge 3-colored.

Proof [Tai2], [Tai3]. Let vertices of a planar 3-regular graph G be 4-colored in
colors a, b, c and d. We then color edges in colors x, y, and z as follows: an edge
is colored x if it connects vertices colored a and b, or ¢ and d; an edge is colored
y if it connects vertices colored a and ¢, or b and d; and an edge is colored z if it
connects vertices colored a and d, or b and c¢. We can easily verify that a proper
edge coloring is thus obtained, i.e., no adjacent edges are assigned the same colors.
In view of symmetry, it suffices to show it for the edges incident to a vertex colored
a, which is demonstrated in Fig. 20.7.

Fig. 20.7 Proof of Tait’s equivalence

For the proof of the converse statement, Tait adds points and edges to make
degrees of every vertex even. Instead, I will subtract (remove) edges, which makes
the argument more transparent.
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Let edges of a planar 3-regular graph G be 3-colored in colors x, y, and z. Look
at the subgraph G,, of G induced by all edges colored x and y.** Every cycle of
G, must be even, as it alternates edges colored x and y. Therefore, by Kempe’s
Two-Color Theorem (problem 19.7), the vertices of G, (which comprise precisely
all vertices of G) can be 2-colored in colors, say A and B. Similarly, we create the
subgraph G, of G induced by all edges colored y and z, and color all its vertices
in 2 colors, say / and 2. We thus assigned every vertex of G one of the following
four pairs of colors: Al, A2, BI, or B2. It is easy to verify (do) that we have ended
up with the proper vertex 4-coloring of G! =

The Tait equivalence can also be formulated in the dual language of maps:

Tait’s Equivalence, Map Version 20.9 (Tait, 1880, [Tai2], [Tai3]). A map whose
underlying graph is 3-regular, can be (face) 4-colored if and only if it can be edge
3-colored.

20.6 Frederick Guthrie’s Three-Dimensional Generalization

Have you— found your own solution of Frederick Guthrie’s Problems 18.1 and 18.2?
As you know, he generalized his brother’s 4CP to the three-dimensional Euclidean
space and proved that no finite number of colors suffices.

Problem 20.10 For any positive integer n, there is a three-dimensional map that
cannot be colored in n colors (so that regions having a common boundary — and not
merely finitely many points, are assigned different colors).

In fact, unlike Mobius—Weiske’s puzzle, for any positive integer n, there are n
solids such that every two have a common boundary surface.

Second Solution. This solution appears in the 1905 paper of the Austrian mathemati-
cian and puzzlist Heinrich Tietze [Tiel]. As Frederick Guthrie before him, Tietze
showed that in the three-dimensional space we can easily construct n + 1 mutually
adjacent solids. Just put n 4+ 1 long enough parallelepipeds, numbered 1 through
n + 1 on a plane; then put n + 1 more parallelepipeds that are perpendicular to first
ones on top; and combine into one solid two parallelepipeds that are labeled with
the same number (Fig. 20.8). =

Granted, this puzzle was easy to solve. However, according to Tietze, the German
mathematician Paul Stéickel, who also solved the above problem, posed the same
question for convex solids (something that I believe Frederick Guthrie posed first,
but not in very precise words — see the end of Chapter 18). Heinrich Tietze solved
this harder problem in the same 1905 paper [Tiel].

23 substantially simplified here Tait’s language without changing his ideas. He talks about converting
every triangular face into a four-sided one by inserting one new vertex per face inside an edge. He then
throws the edges with inserted vertices away, which is equivalent to keeping precisely edges without
insertions. These kept edges are then 2-colored.
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n+1

1 2 n |[n+1

Fig. 20.8 Tietze’s argument in the 3-space

Tietze’s Theorem 20.11 (H. Tietze, 1905) For any positive integer n, there are n
convex solids such that every two have a common boundary surface.

Thus, map coloring in three dimensions did not provide as lasting a fun as has
the two-dimensional variety of map coloring.
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The Four-Color Theorem

The most famous conjecture of graph theory or
perhaps of the whole mathematics, the four colour
conjecture, became recently the theorem of Appel
and Haken.

— Paul ErdGs, 1979 %

Four-colour problem, the as yet unsolved [sic]
problem of proving as a mathematical theorem that
on any plane map only four colours are needed to
give different colours to any regions that have a
common boundary.

— Oxford English Dictionary, June 2007 [sic] Edition®

The year was 1976. I read a notice about a meeting of the Moscow Mathematical
Society in disbelief: the topic was the proof of the Four-Color Conjecture (4CC) just
obtained by two Americans, whose names did not sound familiar to me, but certainly
were destined to enter the history of mathematics, perhaps, history of culture.

So it happened: Kenneth Appel and Wolfgand Haken of the University of Illinois,
with the aid of John Koch and some 1200 hours of fast main frame computing,
converted Francis Guthrie’s 4CC into 4CT, the Four-Color Theorem.

Four-Color Theorem 21.1 (K. Appel, W. Haken and J. Koch [AH1-4]) Every pla-
nar map is four-colorable.

However concisely, in this chapter we will look, at the roots of this result
and the ideas of Appel-Haken’s proof as presented by the authors in their mono-
graph [AH4].

24 [E81.16], published in 1981 in the premier issue of Combinatorica; received by the editors on Septem-
ber 15, 1979.

25 [OED]. The New Encyclopedia Britannica did better: “The four-colour problem was solved in 1976
by a group [sic] of mathematicians at the University of Illinois, directed by Kenneth Appel and Wolfgang
Haken.”

A. Soifer, The Mathematical Coloring Book, 187
DOI 10.1007/978-0-387-74642-5_21, © Alexander Soifer 2009
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Appel and Haken’s work grew from the 1879 approach discovered by Alfred
B. Kempe (discussed in Chapter 20), improved in 1913 by George D. Birkhoff of
Harvard University, and brought into the realm of possibility by Heinrich Heesch
of the University of Hanover through his committed work over the long years
1936-1972.

Birkhoff found new reducible configurations [Bir], larger then those of Kempe.
Heesch built on the work of his predecessors and developed a theory of reducible
configurations [Heel]:

An investigation of the concepts of reduction has been attempted in the author’s
“Untersuchungen zum Vierfarbenproblem” (Mannheim, 1969, Chapter I), where the
concepts of A-, B-, C-, or D-reducible configurations are developed from the work of
A. Errera, G. D. Birkhoff, and C. E. Winn.

Heesch was first to utilize computer in his pursuit [Hee2]:

The D- or the C-reducibility of a configuration can be recognized much better by com-
puting than by such direct calculations as have been given by the authors up to now.

Above all technical contributions, Heinrich Heesch envisioned and conjectured
the existence of a finite set of unavoidable reducible configurations. Appel and
Haken paid their tribute to Heesch on the very first lines of their major paper that
preceded their great announcement [AHO]:

This work has been inspired by the work of Heesch [Heel], [Hee2] on the Four Color
Problem, especially his conjecture [Heel, p. 11, paragraph 1, and p. 216] that there
exists a finite set S of 4-color reducible configurations such that every planar map
contains at least one element of S. (This conjecture implies the 4CC but is not implied
by it.) Furthermore, in 1970 Heesch communicated an unpublished result. . .which he
calls a finitization of the Four-Color Problem.

In 1969 Heesch also pioneered a brilliant idea of discharging in search for
unavoidable sets of configurations [Heel]. This book paved the way to computer-
aided pursuits of reducibility.?®

Heesch’s role is hard to overestimate. In addition to the credits I have enumerated
above, Heesch personally influenced Haken and shared with him much of unpub-
lished ideas. In Appel and Haken’s own words [AH2]:

Haken, who had been a student at Kiel when Heesch gave his talk, communicated
with Heesch in 1967inquiring about the technical difficulties of the project of proving
Heesch’s conjecture and the possible use of more powerful electronic computers.

In 1970 Heesch communicated to Haken an unpublished result which he later
referred to as a finitization of the Four-Color Problem, namely that the first discharg-

26Looking back, it seems surprising that in his 1972 42-page survey [Saa2] of various approaches to the
4CC, T. L. Saati did not even mention the name of Heinrich Heesch.
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ing step. .., if applied to the general case, yields about 8900 z-positive configura-
tions (most of them not containing any reducible configurations) which he explicitly
exhibited. . .

Heesch asked Haken to cooperate on the project and, in 1971, communicated to
him several unpublished results on reducible configurations.

To understand how the discharging works, let us look at the following simple
example that I found in Douglas R. Woodall’s papers [Wo02], [Woo3] where he
gives credit to K. Appel and H. Haken for it.

Problem 21.2 (K. Appel and H. Haken) The set of five configurations in Fig. 21.1
is unavoidable, i.e., at least one of them appears in any plane triangulation.

(@] (e)

Fig. 21.1 An unavoidable set of configurations

Proof

1. Observations: We will argue by contradiction. Assume that there is a plane tri-
angulation G that contains none of the configurations from Fig. 21.1. We can
make the following observations:

Observation A; G has no vertices of degree less than 5, because G contains no
configurations (a), (b), and (c).

Observation B: Every vertex v of degree 5 in G has at least three neighbors of
degree 7 or greater; for otherwise v would have at least one neighbor of degree 5
and hence G would contain the forbidden configuration (d), or v would have at
least three neighbors v, v, v of degree 6. What is wrong with the latter, you
may ask? In the latter case at least 2 of the 6-valent neighbors of v, say v; and
vy, must be neighbors of each other (in the triangulation G the neighbors of v
are connected to each other in a closed path, Fig. 21.2), and thus the forbidden
configuration (e) is contained in G.
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Fig. 21.2

Observation C; Every vertex v of degree 7 has at most three neighbors of degree
5, for otherwise two of its 5-valent neighbors would be neighbors of each other
(it is similar to the argument in observation B above: prove it on your own),
which would mean precisely that G contains a configuration (d).

Observation D; Every vertex v of degree i > 8 has at most [%] neighbors
of degree 5, where for a real number » the symbol [r] denotes the maximum
integer such that [r] < r. The proof of this observation is similar to the proof of
observation C above (try it on your own).

2. Charging: To each vertex of G of degree i we assign an electrical charge equal
to 6 — i. This means that vertices of degree 5 receive unit charge, vertices of
degree 6 get zero charge, vertices of degree 7 receive charge equal negative one,
etc. In his paper [Kem?2], Kempe derives the following equality as a corollary of
his rediscovering the Euler’s formula (Problem 20.2):

A
> o6 -V =12,
i=2

where V; stands for the number of vertices of degree i. In Heesch’s language of
electrical charges, this equality means precisely that the sum of charges of all
vertices in G, i.e., the total charge in G is equal to a positive 12 units.

3. Discharging: Let us now do discharging, i.e., redistribution of charge among the
vertices without changing the total charge of G. The crux of such a proof is to
find the discharging that “works” for the set of configurations in question, which
in our case is presented in Fig. 21.1, i.e., it brings us the desired contradiction. Let
us transfer % of the charge from each vertex of degree 5 to each of its neighbors
of degree 7 or greater.

As a result, every vertex of degree 5 ends up with zero or negative charge, because
such a vertex has at least three neighbors of degree 7 or greater (see observation B
above). Vertices of degree 6 will remain with zero charge, as they are unaffected
by discharging. A vertex v of degree 7 would not end up with a positive charge,
because v has at most three neighbors of degree 5, each contributing charge % to
v (observation C). And finally, a vertex of degree i > 8 that started with a charge



21 The Four-Color Theorem 191

6 — i, in view of observation D, can end up with the charge at most

1]1i+1
6—i+ - 0
l+3|:2i|<

Thus, we end up with no vertices of position charge, which contradicts the total
charge remaining the positive 12. «

Did you like the mathematical Olympiad-like discharging argument? Then you
would enjoy proving on your own the following result first obtained without dis-
charging in 1904 by Paul August Ludwig Wernicke from Gottingen University, who
in the same year defended his doctorate under the great Hermann Minkowski.

Problem 21.3 (Wernicke, 1904, [Wer]) Prove that the set of five configurations in
Fig. 21.3 is unavoidable.

N\ v
\ 4
N 7
[ ]
/N
’ \
4 N

Fig. 21.3 An unavoidable set of configurations

Let us now look at the other critical aspect of Appel-Haken proof: reducibility.
Appel and Haken used so-called C- and D-reducibilities introduced by Heesch as
vast extensions of the technique used by Kempe. In fact, it suffices to restrict our-
selves to configurations with vertices of degree 5 and greater since Kempe showed
that vertices of lesser degree cannot occur in a minimal counterexample. The authors
give an example [AH4]:

Assume that the planar triangulation A is the minimal counterexample to the 4CC,
which contains, for example, a configuration C of Fig. 21.4(a). (Legend in Fig. 21.4(d)
shows how to read the degrees of the vertices of the configuration from the diagram in
Fig. 21.4.) Then the graph A—C obtained from A by removing C and edges connecting
C to the rest of A, must be four-chromatic. A contradiction would be obtained, if we
show that every 4-coloring of A — C can be extended to a 4-coloring of A.
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Fig. 21.4 Appel-Haken’s example of a fourteen-ring configuration

Appel and Haken repeatedly use good humor in praising the use of computer.
Here is one example (numbers 0, 1, 2, 3 on the ring in Fig. 21.4(c) indicate the four
colors we are using):

. if one were lucky, one might be able to show a fourteen-ring configuration D-
reducible with only a few years of careful work. There are obviously some slackers
who would not be fascinated by such a task. Such people, with an immorally low
tolerance for honest hard work, tend to program computers to do this task. In fact, they
find it ideally suited to computers, which are fast, meticulous, and not able to complain
about the boring aspects of the work.

Yet, of course, their solution required an enormous amount of both manual and
computer work. The crux of Appel-Haken proof was to find such a set of config-
urations that was both unavoidable and consisted of reducible configurations, the
so-called unavoidable set of reducible configurations. In one of the early, 1978
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analyses of the proof [Woo3], Douglas R. Woodall assessed this critical part as
follows:

Discharging procedure and the unavoidable set of configurations were modified every
time a configuration in the set turned out not to be C-reducible (or was not quickly
proved to be C-reducible) It is clear that these progressive modifications relied on
a large number of empirical rules, which enabled an unwanted configuration to be
excluded from the unavoidable set at the expense of possibly introducing one or more
further configurations. Appel and Haken carried out about 500 such modifications in
all. They continued until they had excluded

i. Every configuration that contained one of three “reduction obstacles”—features
that Heesch had discovered, by trial and error, to prevent configurations from
being C-reducible;

ii. Every configuration of ring size 15 or more; and

iii. Every configuration that was not proved to be reducible fairly quickly (in partic-
ular, within 90 minutes on an IBM 370-158 or 30 minutes on a 370-168).

By the time they had finished (iii), they had constructed an unavoidable set all of
whose configurations had been proved reducible; they had therefore proved the theo-
rem. Probably they had excluded from the unavoidable set many configurations that are
actually C-reducible but it turned out to be quicker to exclude any configuration that
was not quickly proved reducible, and to replace it by one or more other configurations,
than to carry the analysis of any one configuration to its limit.

The empirical rules, upon which these progressive modifications were based, were
discovered in the course of a lengthy process of trial and error with the aid of a
computer, lasting over a year. By the end of this time, however, Appel and Haken
had developed such a feeling for what was likely to work (even though they could
not always explain why) that they were able to construct the final unavoidable set
without using the computer at all. This is the crux of their achievement. Unavoidable
sets had been constructed before, and configurations had been proved reducible before,
but no-one before had been able to complete the monumental task of constructing an
unavoidable set of reducible configurations.

It was a great achievement of Appel and Haken, for they reduced the infinity of
various maps to the finite set of unavoidable reducible configurations, which needed
to be checked. The difficulty was, the set was very large, at first consisting of 1936
configurations. This reduction was a mathematical achievement, and it allowed the
use of computer (surely, with infinitely many cases, computer would have been use-
less!). The enormous computer verification used over 1200 hours of main frame
computing of the time (IBM-360 and IBM-370). By 1989, when Appel and Haken
produced the 741-page book [AH4] presenting their solution, they reduced the num-
ber of configurations to 1476. Such a surprising resolution of the famous problem,
both in its volume of work and in use of computing, was bound to cause controversy,
and it promptly has. The Appel-Haken—Koch proof of 4CT was a cultural event: it
prompted debates and reassessment in many fields of human endeavor, particularly
in mathematical and philosophical circles. In the next chapter we will look at the
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debate and some striking views it has inspired, as well as at the new proof of 4CT
and the old but still most promising Hadwiger’s Conjecture.

In a phone interview in the fall 1991 (before October 14, 1991), Wolfgang Haken
shared with me brief details of his life: born on June 21, 1928 in Berlin; obtained his
doctorate from the University of Kiel in 1953; came to the United States in 1962;
started to work on 4CC in 1968; came up with first ideas of his own in October
1970. Kenneth Ira Appel was born on October 8, 1932 in Brooklyn, New York; and
got his doctorate from the University of Michigan in 1959. During the interview,
Haken accepted my invitation to write his view of the Appel-Haken accomplish-
ment entitled, on my recommendation, in Alexandre Dumas’ style, “Fifteen Years
Later.” I offered to include here his complete unedited essay, but no text has ever
been received.

The second epigraph, from the Oxford English Dictionary [OED] shows how
very little attention is paid to mathematics: Oxford failed to notice even by
2007 the now 31-year-old solution of one of two most famous problems in the
multi-millennial history of mathematics (the other, of course, being Fermat’s Last
Theorem)!

In conclusion, I must quote from the March-2005 unpublished, but web-posted
paper by the Microsoft-Cambridge, UK researcher from the Programming Princi-
ples and Tools Group, Georges Gonthier [Gon]. With a deep insight of someone
who has verified a 4CT proof and came up with a “machine proof,” he assesses
contributions of the players to the first successful assault of 4CC:

Although Heesch had correctly devised the plan of the proof of the Four Colour The-
orem, he was unable to actually carry it out because he missed a crucial element:
computing power. The discharge rules he tried gave him a set R containing configura-
tions with a ring of size 18, for which checking reducibility was beyond the reach of
computers at the time. However, there was hope, since both the set of discharge rules
and the set R could be adjusted arbitrarily in order to make every step succeed.

Appel and Haken cracked the problem in 1976 by focusing their efforts on adjust-
ing the discharge rules rather than extending R, using a heuristic due to Heesch for
predicting whether a configuration would be reducible (with 90% accuracy), without
performing a full check. By trial and error they arrived at a set R, containing only
configurations of ring size at most 14, for which they barely had enough computing
resources to do the reducibility computation. Indeed the discharging formula had to be
complicated in many ways in order to work around computational limits. In particular
the formula had to transfer arity between non-adjacent faces, and to accommodate
this extension unavoidability had to be checked manually. It was only with the 1994
proof by Robertson et al. that the simple discharging formula that Heesch had sought
was found.

We will discuss the Robertson—Sanders—Seymour—Thomas proof and its
Gonthier’s verification in the next chapter.
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The Great Debate

Computers are useless.
They can only give you answers.
— Pablo Picasso

To reject the use of computers as what one may call
“computational amplifiers” would be akin to an
astronomer refusing to admit discoveries made by

telescope.
— Paul C. Kainen, 1993%7

I would be much happier with a computer-free proof
of the four color problem, but I am willing to accept
the Appel-Haken proof — beggars cannot be
choosers.

— Paul Erdés, 199128

Interest in the 4CC seems not to be high
in the math literature because it is now

thought to have been proven or something.
— Thomas L. Saaty, 1998%°

22.1 Thirty Plus Years of Debate

“Thirty years later,” as the Three Musketeers’s author Alexandre Dumas would have
said, the controversy surrounding the Appel and Haken solution is amazingly alive
and well. Even when the extraordinary in many respects Appel and Haken’s proof
was just announced, the President of the Mathematical Association of America Lynn
Arthur Steen was very careful [Ste]: he did not write that the conjecture had been

27 [Kail.
281 etter to A. Soifer [E91/8/14ltr].
29E-mail to A. Soifer of April 13, 1998.

A. Soifer, The Mathematical Coloring Book, 195
DOI 10.1007/978-0-387-74642-5_22, © Alexander Soifer 2009
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proven, but instead used the word “verified” in describing the most important math-
ematical event of that summer.

The proof was met with a considerable amount of confusion in the mathemat-
ical community due to the authors’ extensive use of computer. This was the first
computer-aided solution of a major, celebrated mathematical problem. As such
it naturally raised mathematical, philosophical, and psychological questions. In
Table 22.1 I put together a “representative” collection of reactions — take a long
look at it, then join me for a discussion.

Table 22.1 Reflections on the 4CT

Steen 1976  [Stee] The four color conjecture. . .was verified [sic] this
summer. . .
Appel & 1977 [AH1] Our proof of the four-color theorem suggests that
Haken there are limits to what can be achieved in
mathematics by theoretical methods alone.
Gardner 1980  [Gar3] The proof is an extraordinary achievement. . .. To

most mathematicians, however, the proof of the
four-color conjecture is deeply unsatisfactory.

Halmos 1990 [Hal] By an explosion I mean a loud noise, an
unexpected and exciting announcement, but
not necessarily a good thing. Some explosions
open new territories and promise great future
developments; others close a subject and seem
to lead nowhere. The Mordell conjecture . . . is
of the first kind; the four-color theorem of the
second.

Erdé&s 1991  [E91/8/14ltr] I would be much happier with a computer-free
proof of the four-color problem, but I am
willing to accept the Appel-Haken proof —
beggars cannot be choosers.

Graham 1993  [Hor] The things you can prove may be just tiny islands,
exceptions, compared to the vast sea of results
that cannot be proven by human thought alone.

Kainen 1993  [Kai] To reject the use of computers as what one may
call “computational amplifiers” would be akin
to an astronomer refusing to admit discoveries
made by telescope.

Hartsfield & 1994  [HR] Appel and Haken proved it by means of computer

Ringel program. The program took a long time to run,
and no human can read the entire proof,
because it is too long.

Jensen & 1995 [JT] Does there exists a short proof of the four-color

Toft theorem. . . in which all the details can be
checked by hand by a competent
mathematician in, say, two weeks?

Graham 2002  [Grad] Computers are here to stay. There are problems
for which computer helps; there are problems
for which computer may help; and there are
problems for which computer will never help.
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The confusion of mathematicians is so clear when we read the words of Martin
Garner in his celebrated Scientific American column [Gar3]:

The proof is an extraordinary achievement. . .. To most mathematicians, however, the
proof of the four-color conjecture is deeply unsatisfactory.

Which is it, “an extraordinary achievement” or “deeply unsatisfactory?” Surely
these terms are mutually exclusive! Paul Halmos, who chose to sum up the twenti-
eth century contribution to mathematics a decade too early (and thus missed a lot,
Fermat’s Last Theorem, for example), wrote in 1990 [Hal]:

By an explosion I mean a loud noise, an unexpected and exciting announcement, but
not necessarily a good thing. Some explosions open new territories and promise great
future developments; others close a subject and seem to lead nowhere. The Mordell
conjecture. . . is of the first kind; the four-color theorem of the second.

A loud noise that leads nowhere? It suffices to observe that much of graph theory
had been invented through the 124 years of attempts to settle 4CC. Nora Hartsfield
and Gerhard Ringel [HR] paint this historic event as absolutely routine, unworthy
of a debate:

Appel and Haken proved it by means of computer program. The program took a long
time to run, and no human can read the entire proof, because it is too long.

However, there were, those who gave the event much thought. In 1978, the
philosopher Thomas Tymozcko of Smith College illustrated the arrival of computer
proofs with a brilliant allegory [Tym]:

Let us consider a hypothetical example which provides a much better analogy to the
appeal to computers. It is set in the mythical community of Martian mathematicians
and concerns their discovery of the new method of proof “Simon says.” Martian math-
ematics, we suppose, developed pretty much like Earth mathematics until the arrival
on Mars of the mathematical genius Simon. Simon proved many new results by more
or less traditional methods, but after a while began justifying new results with such
phrases as “Proof is too long to include here, but I have verified it myself.” At first
Simon used this appeal only for lemmas, which, although crucial, were basically com-
binatorial in character. In his later work, however, the appeal began to spread to more
abstract lemmas and even to theorems themselves. Oftentimes other Martian mathe-
maticians could reconstruct Simon’s results, in the sense of finding satisfactory proofs;
but sometimes they could not. So great was the prestige of Simon, however, that the
Martian mathematicians accepted his results; and they were incorporated into the body
of Martian mathematics under the rubric “Simon says.”

Is Martian mathematics, under Simon, a legitimate development of standard math-
ematics? I think not; I think it is something else masquerading under the name of
mathematics. If this point is not immediately obvious, it can be made so by expand-
ing on the Simon parable in any number of ways. For instance, imagine that Simon
is a religious mystic and that among his religious teachings is the doctrine that the
morally good Martian, when it frames the mathematical question justly, can always
see the correct answer. In this case we cannot possibly treat the appeal “Simon says”
in a purely mathematical context. What if Simon were a revered political leader like
Chairman Mao? Under these circumstances we might have a hard time deciding where
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Martian mathematics left off and Martian political theory began. Still other variations
on the Simon theme are possible. Suppose that other Martian mathematicians begin
to realize that Simonized proofs are possible where the attempts at more traditional
proofs fail, and they begin to use “Simon says” even when Simon didn’t say! The
appeal “Simon says” is an anomaly in mathematics; it is simply an appeal to authority
and not a demonstration.

The point of the Simon parable is this: that the logic of the appeals “Simon says”
and “by computer” are remarkably similar. There is no great formal difference between
these claims: computers are, in the context of mathematical proofs, another kind of
authority. If we choose to regard one appeal as bizarre and the other as legitimate,
it can only be because we have some strong evidence for the reliability of the latter
and none for the former. Computers are not simply authority, but warranted authority.
Since we are inclined to accept the appeal to computers in the case of the 4CT and to
reject the appeal to Simon in the hypothetical example, we must admit evidence for the
reliability of computers into a philosophical account of computer-assisted proofs. . .

The conclusion is that the appeal to computers does introduce a new method into
mathematics.

Tymoczko is right: Appel-Haken—Koch’s proof changed the meaning of the word
“proof” by letting in a reliable experiment as allowable means, by taking away
the absolute certainty we cherished so much in the mathematical proof. Thomas L.
Saaty and Paul C. Kainen, whose great timing allowed them to publish in 1977 the
first book ever on The Four-Color Problem that included a discussion of its solution,
were first to observe the substantial but inevitable trade-off of the acceptance of such
a proof [SK, end of part one]:

To use the computer as an essential tool in their proofs, mathematicians will be forced
to give up hope of verifying proofs by hand, just as scientific observations made with
a microscope or telescope do not admit direct tactile confirmation. By the same token,
however, computer-assisted mathematical proof can reach a much larger range of phe-
nomena. There is a price for this sort of knowledge. It cannot be absolute. But the loss
of innocence has always entailed a relativistic world view; there is no progress without
the risk of error.

In the essay [Kai] written in 1993 especially for Geombinatorics, Paul C. Kainen
elaborates further on the above allegory:

To reject the use of computers as what one may call “computational amplifiers” would
be akin to an astronomer refusing to admit discoveries made by telescope.

This is certainly an elegant metaphor. However, one cannot argue with
Tymoczko’s warning about keeping the order right — we have accepted the legit-
imacy of the use of computers first, and only based on this acceptance we have
claimed the existence of the formal proof [Tym]:

Some people might be tempted to accept the appeal to computers on the ground that
it involves a harmless extension of human powers. In their view the computer merely
traces out the steps of a complicated formal proof that is really out there. In fact,
our only evidence for the existence of that formal proof presupposes the reliability of
computers.
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As Tymoczko rightly observes, the timing of Appel-Haken—Koch work was
favorable for the acceptance of their proof [Tym]:

I'suggest that if a “similar” proof had been developed twenty-five years earlier, it would
not have achieved the widespread acceptance that the 4CT has now. The hypothetical
early result would probably have been ignored, possibly even attacked (one thinks
of the early reaction to the work of Frege and of Cantor). A necessary condition for
the acceptance of a computer-assisted proof is wide familiarity on the part of mathe-
maticians with sophisticated computers. Now that every mathematician has a pocket
calculator and every mathematics department has a computer specialist that familiarity
obtains. The mathematical world was ready to recognize the Appel-Haken methodol-
ogy as legitimate mathematics.

In their 1978 essay [WW] Douglas R. Woodall and Robin Wilson state that “there
is no doubt that Appel and Haken’s proof is a magnificent achievement which will
cause many mathematicians to think afresh (or possibly for the first time) about the
role of the computer in mathematics.” Yet, they share concern with Paul Halmos and
many others:

The length of Appel and Haken’s proof is unfortunate, for two reasons. The first is that
it makes it difficult to verify. ... The other big disadvantage of a long proof is that it
tends not to give very much understanding of why the result is true. This is particularly
true of a proof that involves looking at a large number of separate cases, whether or
not it uses the computer.

Paul Erdés put the state of 4CT most aptly in his 1991 letter to me [E91/8/141tr]:

I would be much happier with a computer-free proof of the four color problem, but I
am willing to accept the Appel-Haken proof — beggars cannot be choosers.

So what are we mathematicians to do? The answer, in the form of a question,
came from the Danish graph theorists Tommy R. Jensen and Bjarne Toft in their
book of open coloring problems of graph theory [JT]:

Does there exists a short proof of the four-color theorem. . . in which all the details can
be checked by hand by a competent mathematician in, say, two weeks?

22.2 Twenty Years Later, or Another Time — Another Proof

Twenty years later, when the familiarity with and trust in computing have dramati-
cally improved, a new team of players came on 4CT stage: leading graph theorists
Neil Robertson and Paul Seymour and their young students and colleagues Daniel
Sanders and Robin Thomas. This reminded me the Hollywood film, Seven Brides
for Seven Brothers. Only here we had Four Mathematicians for Four Colors. Four
on four, they had to be able to handle 4CT, and handle they did.

In their work on graph theory, the authors thought that in a sense the validity
of H(6) (Hadwiger’s Conjecture for 6 — we will formulate it later in this chapter)
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depended upon the validity of 4CT. Thus, they felt compelled to either verify Appel—
Haken proof or find their own. They decided that the latter was an easier task.

The “four musketeers” undoubtedly realized that “20 years later,” as Alexandre
Dumas used to say (precisely the title of Alexandre Dumas’ sequel to the famed
Three Musketeers), they would have to get a much better proof than the original one
by Appel and Haken for otherwise they would be asked “why did you bother?” The
remarkable thing is that these athors have achieved just such a proof!

I first learned about it in February 1993 at Florida Atlantic University from
Ronald L. Graham, who also forwarded to me the e-mail announcement of the forth-
coming March 24, 1994 DIMACS talk by Paul Seymour, who at the time worked at
Bellcore. I asked Paul’s coauthor Neil Robertson for the details. His May 9, 1994
reply [Robl] due to its medium, e-mail, concisely and instantly summarized what
he thought was most important about the new proof:

We have a new proof, along the same lines as the AHK?® proof, relying more on the
computer, and so more reliable. The unavoidable set is in the area of 600 configurations
(<= 638), and we get a quadratic algorithm. Dan wrote a nice article about this for
SIAM (I think). Seymour, Thomas, Sanders and I are involved. With a slightly larger
unavoidable set the overall proof becomes very simple (apart from the calculations) as
we avoid almost all degeneracies by using D-reduction and reducers for C-reduction
from the single edge contraction minors of the given configuration. Will forward to
you a copy of Dan’s article.

One important point to notice here is that the proof relies more (not less!) on
the computer than Appel-Haken—Koch’s proof, and it makes the proof more (not
less) reliable due to its clear separation of human and machine tasks. The size of the
unavoidable set of reducible configurations was substantially reduced from Appel
and Haken’s 1476 to 638, but even greater improvements were in the much simpler
discharging procedure. Later that same day, Neil forwarded to me Daniel Sander’s
summary, entitled, in a word,

NEWPROOFOFTHEFOURCOLORTHEOREM.

I have got to share with you parts of this announcement summary, as it includes the
authors’ assessment of the Appel-Haken proof and comparisons of the two proofs.
I will add my comments as footnotes:

... Before and after Appel and Haken, many claims have been made to prove 4CT with
the aid of a computer, none of which held up to the test of time. But Appel and Haken’s
proof has stood; for 18 years. Why? Some may say that the proof is inaccessible.
It is so long and complicated; has anyone actually read every little detail? At least
two attempts were made to independently verify major portions of Appel and Haken’s
proof [AH2, AH3], which yielded no significant problems. Appel and Haken [AH4]
published a more complete (741 pages) version of their proof 5 years ago, but many
remain hesitant.

30 Appel, Haken and Koch.
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The author of this paper, together with Neil Robertson, Paul Seymour, and Robin
Thomas, announces a new proof of 4CT. The proof uses the same techniques as that
of Appel and Haken: discharging and reducibility. The new proof, however, makes
improvements in the complexity of the arguments. Hopefully these improvements will
help people to better understand and appreciate Appel and Haken’s method.

To describe the improvements in more detail requires a discussion of the discharg-
ing method. Simple reductions show that one need[s] only [to] consider plane triangu-
lations of minimum degree 5.

An easy manipulation of Euler’s formula gives the following equality for these
graphs: ZUEV(G) (6 — deg (v)) = 12.3! This value 6 — deg (v) has come to be known as
the charge of v. The vertices of degree 5 are the only vertices of positive charge. The
vertices of degree at least 7 have negative charge, and are known as major vertices.

The discharging method is to locally redistribute the positive charge from the ver-
tices of degree 5 into the major vertices. The sum of the new charges will equal the sum
of the old charges, and thus the[re] will be a vertex which has its new charge positive,
known as an overcharged vertex.

The structure of the graph close to an overcharged vertex is determined by the rules
that were used to discharge the vertices of degree 5. Each possible structure that can
yield an overcharged vertex must be examined [to] find within it some configuration
that is reducible (provably cannot exist in minimal counterexample to 4CT). Thus there
are the two steps of the proof of 4CT.

Discharging: defining a set of discharging rules which in turn gives a list of
configurations that a plane triangulation of minimum degree 5 must have.

Reducibility: showing that no minimal counterexample to 4CT can contain any of
these configurations.

The two forms of reducibility that Appel and Haken use are known as C-reducibility
and D-reducibility. The idea of D-reducibility is that no matter what coloring the ring
(border of the configuration) has, it can be changed by Kempe chains (swapping the
colors of an appropriate 2-colored subgraph) into a coloring that extends into a coloring
of the configuration. C-reducibility is the same idea, except with first replacing the
configuration [bly a smaller configuration, thus restricting the possible colorings of
the ring. Bernhart (see [GS]) found a new form of reducibility which can show some
configurations reducible that D- and C-reducibility cannot.

Although we were able to produce six configurations which were reducible by the
block count method, these configurations turned out not to be needed.

The new proof still uses only D- and C-reducibility, which were clearly defined by
Heesch [Heel] based upon ideas of Birkhoff [Bir].

The primary discharge rule that Appel and Haken use is the following:

A vertex x of degree 5 originally has a charge of 1. Send a charge of 1/2 from x
to each major neighbor of x. Unfortunately, this simple rule is not enough to prove
4CT. It yields a list of configurations, but not all of them are reducible. So, for each
non-reducible configuration, they define secondary discharge rules, which move the
charge around a bit more.

These new rules produce the need for even more rules, and so on, but eventually
the process stopped with a list of 1476 reducible configurations. The total number

31 This formula is due to A. B. Kempe, 1879 [Kem?2].
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of secondary discharge rules that they used was 486. A better primary discharge rule
permits improvement in both of these areas.*

Here is the primary discharge rule used in the new proof. Imagine each vertex x
of degree 5 expelling its positive charge equally in each of the five directions around
it. Thus x will send 1/5 to each of its neighbors. The major vertices have a negative
charge that attracts this positive charge that was expelled. Thus if the neighbor y of x
is major, it absorbs this 1/5. If the neighbor y is not major, the charge just keeps going,
splitting half to the left and half to the right. Let p and r be the common neighbors of
x and y, to the left and right the edge xy.

The left 1/10 rotates counterclockwise through the neighbors of p, while the right
1/10 rotates clockwise through the neighbors of r. If deg (p) > 8, its attraction is so
great that the 1/10 doesn’t make it to the next neighbor; this charge gets absorbed by p.
Otherwise, the 1/10 rotates until it reaches a major neighbor of p, unless deg p = 7,
and it has rotated through four neighbors; in this case p absorbs it. Similarly for r.
Using this primary rule, only 20 secondary discharge rules are necessary to produce a
list of 638 reducible configurations. . .

The largest size ring that Appel and Haken use is a 14-ring; their original list
had 660 14-rings. The list of 638 mentioned above contains 161 14-rings. It is not
known whether 14-rings can be avoided altogether, but at least 12-rings appear to be
necessary. . .

Totally automating the discharge analysis allowed us to try several heuristics on
how to make these choices. Having the discharge analysis automated also hinders
the possibility of errors creeping in; a human error was found in Appel and Haken’s
discharge analysis (its correction can be found in [AH4, p. 24]).

Recently, Appel and Haken [AH4] have proven a quartic algorithm to 4-color
planar graphs using their list of 1476 reducible configurations. .. we have found a
quadratic algorithm to 4-color planar graphs. . .

The reducibility and discharging programs that were used to complete the new
proof of 4CT will soon be available by anonymous ftp. The total amount of computer
time required to prove 4CT on a Sun Spark 10 is less than twenty-four hours.

About 2 years later, on February 19, 1996 I attended Paul Seymour’s plenary talk
at the International Southeastern Conference on Combinatorics, Graph Theory and
Computing at Florida Atlantic University. I knew that the new proof was superior to
the original one in a number of aspects. Yet, I was wondering what compelled the
authors to look for another computer-aided proof of 4CT. Paul Seymour addressed
it right in the beginning of his talk, as I was jotting down notes:

It was difficult to believe it [Appel-Haken’s proof]: you can’t check it. First you need a
computer. Second, non-computer part is awful: it contains hundreds of pages of notes.
You can’t understand. You are not quite sure that the theorem is true. Nobody checked
the proof. This is a bit scary.

We assumed 4CT is true in earlier work, so we had to have a sure proof. General
framework is the same, but details are better.

32 Better discharge rule prompted a reduction of secondary discharge rules from 486 in Appel and Haken
to just 20, which resulted is a much more accessible ideologically proof and a 43-page paper [RSST] vs.
the 741 book [AH4] of Appel and Haken.
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The talk ended with questions and Paul Seymour’s answers:

Erdds: Ts there going to be a normal proof?

Seymour: 1 don’t have any reason to think it is impossible. I try it from time to time.

Soifer: What are approaches to “normal proof?”’

Seymour: 1 am not going to tell you my wrong proofs. Start with a triangle, flip it
over, put a rubber band around, look for a smaller set of reducible configurations.

Soifer: Why did you use Sun Microsystems Workstation in your solution?

Seymour: This is what I have in my office.

Soifer: How long does it take to verify your proof?

Seymour: Computer can verify the proof in 5 minutes; 6 months by hand.

On May 25, 1995, when the paper [RSST] with the new proof was submitted, it
consisted of just 43 pages—a vast improvement over the 741 + 15-page monograph
[AH4]. However, with great advantages of the new proof (Table 22.2), let us not
forget, that Appel and Haken discovered a proof first. And let us remember that
“the most notorious paper in the history of graph theory: the 1879 work by A. B.
Kempe [Kem2] that contains the fallacious proof of the Four Color Theorem” [Ste],
“The Kempe Catastrophe” [Saal] — paved the way!

Table 22.2 Comparison of the Two 4CT Proofs

Robertson—Sanders
Appel-Haken—Koch ~ Seymour—Thomas

Number of secondary 486 20
discharging rules

Number of unavoidable 1476 638
configurations

Computer time to prove 1200 hours 24 hours

Computer time to verify =~ Not available 5 minutes

Speed of graph coloring  Quartic Quadratic
algorithm

Number of pages in the 741 43

final publication

March 2005 brought a new development in the 4CT saga, when Georges Gonthier
of Miscrosoft-Cambridge, UK, produced “a formal proof of the famous Four Color
Theorem that has been fully checked by the Coq proof assistant.” “It’s basically
a machine verification of our proof,” wrote Paul Seymour in his January 17, 2008
e-mail to me. Let us give the podium to Georges Gonthiers for the assessment of his
work in the unpublished but posted on the web paper [Gon]:>?

We took the work of Robertson et al. as our starting point, reusing their optimized
catalog of 633 reducible configurations, their cleverly crafted set of 32 discharge rules,

33 The Economist (April 2-8, 2005) reported “Dr. Gonthier says he is going to submit his paper to a
scientific journal in the next few weeks.” This, however, has not happened.
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and their branch-and-bound enumeration of second neighborhoods [RSST]. However,
we had to devise new algorithms and data structures for performing reducibility checks
on configurations and for matching them in second neighborhoods, as the C inte-
ger programming coding tricks they used could not be efficiently replicated in the
context of a theorem prover, which only allows pure, side effect free data structures
(e.g., no arrays). And performance was an issue: the version of the Coq system we used
needed three days to check our proof, whereas Robertson et al. only needed a three
hours. . .ten years ago! (Future releases of Coq should cut our time back to a few hours,
however.)

We compensated this performance lag in part by using more sophisticated algo-
rithms, using multiway decision diagrams (MDDs) for the reducibility computation,
concrete construction programs for representing configurations, and tree walks over a
circular zipper to do configuration matching. This sophistication was in part possible
because it was backed by formal verification; we didn’t have to “dumb down” compu-
tations or recheck their outcome to facilitate reviewing the algorithms, as Robertson
et al. did for their C programs [RSST].

Even with the added sophistication, the program verification part was the easiest,
most straightforward part of this project. It turned out to be much more difficult to find
effective ways of stating and proving “obvious” geometrical properties of planar maps.
The approach that succeeded was to turn as many mathematical problems as possible
into program verification problems.

In the concluding section, “Looking ahead,” Gonthier sees his success as a confir-
mation that the “programming” approach to theorem proving may be more effective
than the traditional “mathematical” approach, at least for researchers with computer
science background:

As with most formal developments of classical mathematical results, the most interest-
ing aspect of our work is not the result we achieved, but how we achieved it. We believe
that our success was largely due to the fact that we approached the Four Colour Theo-
rem mainly as a programming problem, rather than a formalization problem. We were
not trying to replicate a precise, near-formal, mathematical text. Even though we did
use as much of the work of Robertson et al. as we could, especially their combinatorial
analysis, most of the proofs are largely our own.

Most of these arguments follow the generate-and-test pattern exposed in Chapter 4.
We formalized most properties as computable predicates, and consequently most of
our proof scripts consisted in verifying some particular combination of outcomes by a
controlled stepping of the execution of these predicates. In many respects, these proof
scripts are closer to debugger or testing scripts than to mathematical texts. Of course
this approach was heavily influenced by our starting point, the proof of correctness of
the graph colouring function. We found that this programs-as-proof style was effective
on this first problem, so we devised a modest set of tools (our tactic shell) to support
it, and carried on with it, generalizing its use to the rest of the proof. Perhaps sur-
prisingly, this worked, and allowed us to single-handedly make progress, even solving
subproblems that had stumped our colleagues using a more orthodox approach.

We believe it is quite significant that such a simple-minded strategy succeeded on
a “higher mathematics” problem of the scale of the Four Colour Theorem. Clearly,
this is the most important conclusion one should draw from this work. The tool we
used to support this strategy, namely our tactic shell, does not rely on sophisticated
technology of any kind, so it should be relatively easy to port to other proof assistants
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(including the newer Coq). However, while the tactic shell design might be the most
obvious byproduct of our work, we believe that it should have wider implications on
the interface design of proof assistants. If, a