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This coloring book is for my late father Yuri Soifer,
a great painter, who introduced colors into my life.



To Paint a Bird

First paint a cage
With wide open door,
Then paint something
Beautiful and simple,
Something very pleasant
And much needed
For the bird;
Then lean the canvas on a tree
In a garden or an orchard or a forest –
And hide behind the tree,
Do not talk
Do not move. . .
Sometimes the bird comes quickly
But sometimes she needs years to decide
Do not give up,
Wait,
Wait, if need be, for years,
The length of waiting –
Be it short or long –
Does not carry any significance
For the success of your painting
When the bird comes –
If only she ever comes –
Keep deep silence,
Wait,
So that the bird flies in the cage,
And when she is in the cage,
Quietly lock the door with the brush,
And without touching a single feather
Carefully wipe out the cage.
Then paint a tree,
And choose the best branch for the bird
Paint green leaves



Freshness of the wind and dust of the sun,
Paint the noise of animals in the grass
In the heat of summer
And wait for the bird to sing
If the bird does not sing –
This is a bad omen
It means that your picture is of no use,
But if she sings –
This is a good sign,
A symbol that you can be
Proud of and sign,
So you very gently
Pull out one of the feathers of the bird
And you write your name
In a corner of the picture.

by Jacques Prévert1

1 [Pre]. Translation by Alexander Soifer and Maurice Stark.



Foreword

This is a unique type of book; at least, I have never encountered a book of this kind.
The best description of it I can give is that it is a mystery novel, developing on
three levels, and imbued with both educational and philosophical/moral issues. If
this summary description does not help understanding the particular character and
allure of the book, possibly a more detailed explanation will be found useful.

One of the primary goals of the author is to interest readers—in particular, young
mathematicians or possibly pre-mathematicians—in the fascinating world of elegant
and easily understandable problems, for which no particular mathematical knowl-
edge is necessary, but which are very far from being easily solved. In fact, the
prototype of such problems is the following: If each point of the plane is to be
given a color, how many colors do we need if every two points at unit distance
are to receive distinct colors? More than half a century ago it was established that
the least number of colors needed for such a coloring is either 4, or 5, or 6 or 7.
Well, which is it? Despite efforts by a legion of very bright people—many of whom
developed whole branches of mathematics and solved problems that seemed much
harder—not a single advance towards the answer has been made. This mystery, and
scores of other similarly simple questions, form one level of mysteries explored. In
doing this, the author presents a whole lot of attractive results in an engaging way,
and with increasing level of depth.

The quest for precision in the statement of the problems and the results and their
proofs leads the author to challenge much of the prevailing historical “knowledge.”
Going to the original publications, and drawing in many cases on witnesses and
on archival and otherwise unpublished sources, Soifer uncovers many mysteries. In
most cases, dogged perseverance enables him to discover the truth. All this is pre-
sented as following in a natural development from the mathematics to the history of
the problem or result, and from there to the interest in the people who produced the
mathematics. For many of the persons involved this results in information not avail-
able from any other source; in lots of the cases, the available publications present an
inaccurate (or at least incomplete) data. The author is very careful in documenting
his claims by specific references, by citing correspondence between the principals
involved, and by accounts by witnesses.

One of these developments leads Soifer to examine in great detail the life and
actions of one of the great mathematicians of the twentieth century, Bartel Leendert
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x Foreword

van der Waerden. Although Dutch, van der Waerden spent the years from 1931 to
1945 in the Nazi Germany. This, and some of van der Waerden’s activities during
that time, became very controversial after Word War II, and led Soifer to exam-
ine the moral and ethical questions relevant to the life of a scientist in a criminal
dictatorship.

The diligence with which Soifer pursues his quests for information is way beyond
exemplary. He reports exchanges with I am sure hundreds of people, via mail,
phone, email, visits – all dated and documented. The educational aspects that begin
with matters any middle-school student can understand, develop gradually into areas
of most recent research, involving not only combinatorics but also algebra, topology,
questions of foundations of mathematics, and more.

I found it hard to stop reading before I finished (in two days) the whole text.
Soifer engages the reader’s attention not only mathematically, but emotionally and
esthetically. May you enjoy the book as much as I did!

University of Washington Branko Grünbaum



Foreword

Alexander Soifer’s latest book is a fully fledged adult specimen of a new species,
a work of literature in which fascinating elementary problems and developments
concerning colorings in arithmetic or geometric settings are fluently presented and
interwoven with a detailed and scholarly history of these problems and develop-
ments.

This history, mostly from the twentieth century, is part memoir, for Professor
Soifer was personally acquainted with some of the principals of the story (the great
Paul Erdős, for instance), became acquainted with others over the 18 year inter-
val during which the book was written (Dima Raiskii, for instance, whose story is
particularly poignant), and created himself some of the mathematics of which he
writes.

Anecdotes, personal communications, and biography make for a good read, and
the readability in “Mathematical Coloring Book” is not confined to the accounts
of events that transpired during the author’s lifetime. The most important and fas-
cinating parts of the book, in my humble opinion, are Parts IV, VI, and VII, in
which is illuminated the progress along the intellectual strand that originated with
the Four-Color Conjecture and runs through Ramsey’s Theorem via Schur, Baudet,
and Van der Waerden right to the present day, via Erdős and numbers of others,
including Soifer. Not only is this account fascinating, it is indispensable: it can be
found nowhere else.

The reportage is skillful and the scholarship is impressive – this is what Seymour
Hersh might have written, had he been a very good mathematician curious to the
point of obsession with the history of these coloring problems.

The unusual combination of abilities and interests of the author make the species
of which this book is the sole member automatically endangered. But in the worlds
of literature, mathematics and literature about mathematics, unicorns can have off-
spring, even if the offspring are not exactly unicorns. I think of earlier books of
the same family as “Mathematical Coloring Book” – G. H. Hardy’s “A Mathemati-
cian’s Apology”, James R. Newman’s “The World of Mathematics”, Courant and
Robbins’ “What Is Mathematics?”, Paul Halmos’ “I Want to Be a Mathematician:
an Automathography”, or the books on Erdős that appeared soon after his death – all
of them related at least distantly to “Mathematical Coloring Book” by virtue of the
attempt to blend (whether successfully or not is open to debate) mathematics with
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xii Foreword

history or personal memoir, and it seems to me that, whatever the merits of those
works, they have all affected how mathematics is viewed and written about. And this
will be a large part of the legacy of “Mathematical Coloring Book” – besides pro-
viding inspiration and plenty of mathematics to work on to young mathematicians,
a priceless source to historians, and entertainment to those who are curious about
the activities of mathematicians, “Mathematical Coloring Book” will (we can hope)
have a great and salutary influence on all writing on mathematics in the future.

Auburn University Peter D. Johnson



Foreword

What is the minimum number of colors required to color the points of the Euclidean
plane in such a way that no two points that are one unit apart receive the same color?
Mathematical Coloring Book describes the odyssey of Alexander Soifer and fellow
mathematicians as they have attempted to answer this question and others involving
the idea of partitioning (coloring) sets.

Among other things, the book provides an up-to-date summary of our knowledge
of the most significant of these problems. But it does much more than that. It gives
a compelling and often highly personal account of discoveries that have shaped that
knowledge.

Soifer’s writing brings the mathematical players into full view, and he paints their
lives and achievements vividly and in detail, often against the backdrop of world
events at the time. His treatment of the intellectual history of coloring problems is
captivating.

Memphis State University Cecil Rousseau
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Greetings to the Reader

I bring here all: what have I lived thru,
And that what keeps my soul alive,
My rectitude and aspirations,
And what have seen my own eyes.

– Boris Pasternak, The Waves, 19312

When the form is realized, it is here to live its own
life.

– Pablo Picasso

Pasternak’s epigraph describes precisely my work on this book—I gave it all of
myself, without reservation. August Renoir believed that just as many people read
one book all their lives (the Bible, the Koran, etc.), so can he paint all his life one
painting. Likewise I could write one book all my life—in fact, I almost have, for I
have been working on this book for 18 years.

It is unfair, however, to keep the book all to myself—many colleagues have been
waiting for the birth of this book. In fact, it has been cited and even reviewed many
years ago. The first mention of it appears already in 1991 on page 336 of the book
by Victor Klee and Stan Wagon [KW], where the authors recommend the book for
“survey of later developments of the chromatic number of the plane problem.” On
page 150 of their 1995 book [JT], Tommy R. Jensen and Bjarne Toft announced that
“a comprehensive survey [of the chromatic number of the plane problem]. . .will be
given by Soifer [to appear].” Once in the 1990s my son Mark told me that he saw
my Mathematical Coloring Book available for $30 for special order at the Borders
bookstore. I offered to buy a copy!

I started writing this book when copies of my How Does One Cut a Triangle?
[Soi1] arrived from the printer, in early 1990. I told my father Yuri Soifer then

2 [Pas], Translated for this book by Ilya Hoffman. The original Russian text is:
Здесь будет все: пережитое,
И то, чем я еще живу,
Мои стремленья и устои,
И виденное наяву .

xxvi



Greetings to the Reader xxvii

that this book would be dedicated to him, and so it is. This coloring book is for
my late father, a great painter and man. Yuri lived with his sketchpad and drawing
utensils in his pocket, constantly and intensely looking at people and making sharp
momentary sketches. He was a great artist and my lifelong example of searching for
and discovering life around him, and creating art that challenged “real” life herself.
Yuri never taught me his trade, but during our numerous joint tours of art in muse-
ums and exhibitions, he pointed out beauties that only true artists could notice: a
dream of harvest in Van Gogh’s “Sower,” Rodin’s distortions in a search of greater
expressiveness. These timeless lessons allowed me to become a student of beauty,
and discover subtleties in paintings, sculptures, and movies throughout my life.

This book includes not just mathematics, but also the process of investigation,
trains of mathematical thought, and where possible, psychology of mathematical
invention. The book does not just include history and prehistory of Ramsey The-
ory and related fields, but also conveys the process of historical investigation—the
kitchen of historical research if you will. It has captivated me, and made me feel
like a Sherlock Holmes—I hope my reader will enjoy this sense of suspense and
discovery as much as I have.

The epigraph for my book is an English translation of Jacques Prévert’s genius
and concise portrayal of creative process—I know of no better. I translated it with
the help of my friend Maurice Starck from Nouvelle Caledonie, the island in the
Pacific Ocean to which no planes fly from America, but to paraphrase Rudyard
Kipling, I’d like to roll to Nouvelle Caledonie some day before I’m old!

This book is dedicated to problems involving colored objects, and results about
the existence of certain exciting and unexpected properties that occur regardless
of how these objects (points in the plane, space, integers, real numbers, subsets,
etc.) are colored. In mathematics, these results comprise Ramsey Theory, a flour-
ishing area of mathematics, with a motto that can be formulated as follows: any
coloring of a large enough system contains a monochromatic subsystem of given in
advance structure, or simply put, absolute chaos is absolutely impossible. Ramsey
Theory thus touches on many fields of mathematics, such as combinatorics, geom-
etry, number theory, and addresses new problems, often on the frontier of two or
more traditional mathematical fields. The book will also include some problems that
can be solved by inventing coloring, and results that prove the existence of certain
colorings, most famous of the latter being, of course, The Four-Color Theorem.

Most books in the field present mathematics as a flower, dried out between pages
of an old dusty volume, so dry that the colors are faded and only theorem–proof
narrative survives. Along with my previous books, Mathematical Coloring Book
will strive to become an account of a live mathematics. I hope the book will present
mathematics as a human endeavor: the reader should expect to find in it not only
results, but also portraits of their creators; not only mathematical facts, but also
open problems; not only new mathematical research, but also new historical inves-
tigations; not only mathematical aspirations, but also moral dilemmas of the times
between and during the two horrific World Wars of the twentieth century. In my
view, mathematics is done by human beings, and knowing their lives and cultures
enriches our understanding of mathematics as a product of human activity, rather
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than an abstraction which exists separately from us and comes to us exclusively as a
catalog of theorems and formulas. Indeed, new facts and artifacts will be presented
that are related to the history of the Chromatic Number of the Plane problem,
the early history of Ramsey Theory, the lives of Issai Schur, Pierre Joseph Henry
Baudet, and Bartel Leendert van der Waerden.

I hope you will join me on a journey you will never forget, a journey full of
passion, where mathematics and history are researched in the process of solving
mysteries more exciting than fiction, precisely because those are mysteries of real
affairs of human history. Can mathematics be received by all senses, like a vibrant
flower, indeed, like life itself? One way to find out is to experience this book.

While much of the book is dedicated to results of Ramsey Theory, I did not wish
to call my book “Introduction to Ramsey Theory,” for such a title would immediately
lose young talented readers’ interest. Somehow, the playfulness of Mathematical
Coloring Book appealed to me from the start, even though I was asked on occasion
whether 5-year olds would be able to color in my book between its lines. To be a
bit more serious, and on advice of Vickie Kern of the Princeton University Press,
I created a subtitle Mathematics of Coloring and the Colorful Life of Its Creators.
This book is not a “dullster” of traditional theorem–proof–theorem–proof kind. It
explores the birth of ideas and searches for its creators. I discovered very quickly
that in conveying “colorful lives of creators,” I could not always rely on encyclo-
pedias and biographical articles, but had to conduct historical investigations on my
own. It was a hard work to research some of the lives, especially that of B. L. van
der Waerden, which alone took 12 years of archival research and thinking over the
assembled evidence. Fortunately this produced a satisfying result: we have in this
book some definitive biographies, of Bartel L. van der Waerden, Pierre Joseph Henry
Baudet, Issai Schur, autobiography of Hillel Furstenberg, and others.

I always attempt to understand who made a discovery and how it was made.
Accordingly, this book tries to explore biographies of the discoverers and the psy-
chology of their creative processes. Every stone has been turned: my information
comes from numerous archives in Germany, the Netherlands, Switzerland, Ireland,
England, South Africa, the United States; invaluable and irreplaceable now inter-
views conducted with eyewitnesses; discussions held with creators. Cited bibliog-
raphy alone includes over 800 items—I have read thousands of publications in the
process of writing this book. I was inspired by people I have known personally, such
as Paul Erdős, James W. Fernandez, Harold W. Kuhn, and many others, as well as
people I have not personally met, such as Boris Pasternak, Pablo Picasso, Herbert
Read—to name a few of the many influences—or D. A. Smith, who in the discussion
after Alfred Brauer’s talk [Bra2, p. 36], wrote:

Mathematical history is a sadly neglected subject. Most of this history belongs to the
twentieth century, and a good deal of it in the memories of mathematicians still living.
The younger generation of mathematicians has been trained to consider the product,
mathematics, as the most important thing, and to think of the people who produced
it only as names attached to theorems. This frequently makes for a rather dry subject
matter.
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Milan Kundera, in his The Curtain: An Essay in Seven Parts [Kun], said about a
novel what is true about mathematics as well:

A novelist talking about the art of the novel is not a professor giving a discourse from
his podium. Imagine him rather as a painter welcoming you into his studio, where you
are surrounded by his canvases staring at you from where they lean against the walls.
He will talk about himself, but even more about other people, about novels of theirs
that he loves and that have a secret presence in his own work. According to his criteria
of values, he will again trace out for you the whole past of the novel’s history, and in
so doing will give you some sense of his own poetics of the novel.

I was also inspired by the early readers of the book, and their feedback. Stanisław
P. Radziszowski, after reviewing Chapter 27, e-mailed me on May 2, 2007:

I am very anxious to read the whole book! You are doing great service to the commu-
nity by taking care of the past, so the things are better understood in the future.

In his unpublished letter, Ernest Hemingway in a sense defended my writing of
this book for a very long time:3

When I make country, or a city, or a river in a novel it is slow work because you have
to always make it, then it is alive. But nobody makes anything quickly nor easily if it
is any good.

Branko Grünbaum, upon reading the entire manuscript, wrote in the February 28,
2008 e-mail:

Somehow it seems that 18 years would be too short a time to dig up all this information!

This book will not strike the reader by completeness or most general results.
Instead, it would give young active high school and college mathematicians an
accessible introduction to the beautiful ideas of mathematics of coloring. Mathe-
matics professionals, who may believe they know everything, would be pleasantly
surprised by the unpublished or unnoticed mathematical gems. I hope young and not
so young mathematicians alike will welcome an opportunity to try their hand—or
mind—on numerous open problems, all easily understood and not at all easy to
solve.

If the interest of my colleagues and friends at Princeton-Math is any indica-
tion, every intelligent reader would welcome an engagement in solving histori-
cal mysteries, especially those from the times of the Third Reich, World War II,
and de-Nazification of Europe. Historians of mathematics would find a lot of new
information and old errors corrected for the first time. And everyone will experience
seeing, for the first time, faces they have not seen before in print: rare photographs
of the creators of mathematics presented herein, from Francis Guthrie to Issai Schur
as a young man, from young Edward Nelson to Paul O’Donnell, from Pierre Joseph
Henry Baudet to Bartel L. van der Waerden and his family, and documents, such as

3 From the unpublished 1937 letter. Quoted from New York Times, February 10, 2008, p. AR 8.
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the one where Adolph Hitler commits a “micromanagement” of firing the Jew, Issai
Schur, from his job of professor at the University of Berlin.

This is a freely flowing book, free from a straight jacket of a typical textbook, yet
useable as a text for a host of various courses, two of which I have given to college
seniors and graduate students at the University of Colorado: What is Mathematics?,
and Mathematical Coloring Course, both presenting a “laboratory of a mathemati-
cian,” a place where students learn mathematics and its history by researching them,
and in the process realizing what mathematics is and what mathematicians do.

In writing this book, I tried to live up to the high standard, set by one of my
heroes, the great Danish film director Carl Theodore Dreyer [Dre]:

There is a certain resemblance between a work of art and a person. Just as one can talk
about a person’s soul, one can also talk about the work or art’s soul, its personality.
The soul is shown through the style, which is the artist’s way of giving expression of
his perception of the material. The style is important in attaching inspiration to artistic
form. Through the style, the artist molds the many details that make it whole. Through
style, he gets others to see the material through his eyes. . . Through the style he infuses
the work with a soul – and that is what makes it art.

Mathematics is an art. It is a poor man’s art: Nothing is needed to conceive it,
and only paper and pencil to convey.

This long work has given me so very much, in Aleksandr Pushkin’s words, “the
heavenly, and inspiration, and life, and tears, and love.”4 I have been raising this
book for 18 years, and over the past couple of years, I felt as if the book herself was
dictating her composition and content to me, while I merely served as an obedient
scribe. At 18, my book is now an adult, and deserves to separate from me to live
her own life. As Picasso put it, “When the form is realized, it is here to live its own
life.” Farewell, my child, let the world love you as I have and always will!

4 In the original Russian it sounds much better:
“И божество, и вдохновенье, 
  И  жизнь, и слезы, и любовь ”.
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1
A Story of Colored Polygons and Arithmetic
Progressions

‘Have you guessed the riddle yet?’ the Hatter said,
turning to Alice again.
‘No, I give it up,’ Alice replied. ‘What’s the answer?’
‘I haven’t the slightest idea,’ said the Hatter.
‘Nor I,’ said the March Hare.

– Lewis Carroll, A Mad Tea-Party
Alice’s Adventures in Wonderland

1.1 The Story of Creation

I recall April of 1970. The thirty judges of the Fourth Soviet Union National Math-
ematical Olympiad, of whom I was one, stayed at a fabulous white castle, half way
between the cities of Simferopol and Alushta, nestled in the sunny hills of Crimea,
surrounded by the Black Sea. This castle should be familiar to movie buffs: in 1934
the Russian classic film Vesyolye Rebyata (Jolly Fellows) was photographed here by
Sergei Eisenstein’s long-term assistant, director Grigori Aleksandrov. The problems
had been selected and sent to printers. The Olympiad was to take place a day later,
when something shocking occurred.

A mistake was found in the only solution the judges had of the problem created
by Nikolai (Kolya) B. Vasiliev, the Vice-Chair of this Olympiad and a fine problem
creator, head of the problems section of the journal Kvant from its inception in 1970
to the day of his untimely passing. What should we do? This question virtually
monopolized our lives.

We could just cross this problem out on each of the six hundred printed problem
sheets. In addition, we could select a replacement problem, but we would have to
write it in chalk by hand in every examination room, since there would be no time to
print it. Both options were rather embarrassing, desperate resolutions of the incident
for the Jury of the National Olympiad, chaired by the great mathematician Andrej
N. Kolmogorov, who was to arrive the following day. The best resolution, surely,
would have been to solve the problem, especially because its statement was quite
beautiful, and we had no counter example to it either.

A. Soifer, The Mathematical Coloring Book, 3
DOI 10.1007/978-0-387-74642-5 1, C© Alexander Soifer 2009
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Even today, 38 years later, I can close my eyes and see how each of us, thirty
judges, all fine problem solvers, worked on the problem. A few sat at the table
as if posing for Rodin’s Thinker. Some walked around as if measuring the room’s
dimensions. Andrei Suslin, who would later prove the famous Serre’s conjecture,1

went out for a hike. Someone was lying on a sofa with his eyes closed. Silence was
so absolute that you could hear a fly. The intense thinking seemed to stop the time
inside of the room. However, we were unable, on to stop the time outside. Night fell,
and with it our hopes for solving the problem in time.

Suddenly, the silence was interrupted by a victorious outcry: “I got it!” echoed
through the halls and the watch tower of the castle. It came from Alexander Livshits,
an undergraduate student at Leningrad (St. Petersburg) University, and former win-
ner of the Soviet and the International Mathematical Olympiads (a perfect 42 score
at the 1967 IMO in Yugoslavia).2 His number-theoretic solution used the method of
trigonometric sums. However, this, was the least of our troubles: we immediately
translated the solution into the language of colored polygons.

Now we had options. A decision was reached to leave the problem in because the
problem and its solution were too beautiful to be thrown away. We knew, though,
that the chances of receiving a single solution from six hundred bright Olympians
were very slim. Indeed nobody solved it.

1.2 The Problem of Colored Polygons

Here is the problem.

Problem 1.1 (N. B. Vasiliev; IV Soviet Union National Olympiad, 1970). Vertices
of a regular n-gon are colored in finitely many colors (each vertex in one color)
in such a way that for each color all vertices of that color form themselves a reg-
ular polygon, which we will call a monochromatic polygon. Prove that among the
monochromatic polygons there are two polygons that are congruent. Moreover, the
two congruent monochromatic polygons can always be found among the monochro-
matic polygons with the least number of vertices.

I first told the above story and the problem in my 1994 Olympiad book [Soi9].
It appeared in the section Further Explorations, and as such I left the pleasure of
discovering the proof to the readers. It is time for me to share the solution.

Solution of Problem 1.1 by Alexander Livshits (in “polygonal translation”): Let me
divide the problem into three parts: Preliminaries, Tool, and Proof.

Preliminaries: Given a system S of vectors �v1, �v2, . . . , �vn in the plane with a
Cartesian coordinate system, all emanating from the origin O . We would call the

1 Daniel Quillen proved it independently, and got Field’s Medal primarily for that.
2 Andrei Suslin informs me that as of 1991 Alexander worked as a computer programmer in Leningrad;
I was unable to determine his later whereabouts.
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system S symmetric if there is an integer k, 1 ≤ k < n, such that rotation of every
vector of S about O through the angle 2�k

n transforms S into itself.

Of course, the sum
∑ �vi of all vectors of a symmetric system is �0, because

∑ �vi

does not change under rotation through the angle 0 < 2�k
n < 2�.

Place a regular n-gon Pn in the plane so that its center coincides with the origin
O . Then the n vectors drawn from O to all the vertices of Pn form a symmetric
system (Fig. 1.1).

Fig. 1.1

Let �v be a vector emanating from the origin O and making the angle α with the
ray OX (Fig. 1.1). Symbol T m will denote a transformation that maps �v into the
vector T m �v of the same length as �v, but making the angle mα with OX (Fig. 1.2).

O

Fig. 1.2

To check your understanding of these concepts, please prove the following tool
on your own.

Tool 1.2 Let �v1, �v2, . . . , �vn be a symmetric system S of vectors that transforms
into itself under the rotation through the angle 0 < 2πk

n < 2π, 1 ≤ k < n, (you can
think of 2πk

n as the angle between two neighboring vectors of S). A transformation
T m applied to S produces a system T m S of vectors T m �v1, T m �v2, . . . , T m �vn that
is symmetric if n does not divide km. If n divides km, then T m �v1 = T m �v2 = . . . =
T m �vn .

Solution of Problem 1.1: We will argue by contradiction. Assume that the vertices of
a regular n-gon Pn are colored in r colors and we got subsequently r monochromatic
polygons: n1-gon Pn1 , n2-gon Pn2 , . . . , nr -gon Pnr , such that no pair of congruent
monochromatic polygons is created, i.e.,

n1 < n2 < . . . < nr .
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We create a symmetric system S of n vectors going from the origin to all ver-
tices of the given n-gon Pn . In view of Tool 1.2, a transformation T n1 applied to
S produces a symmetric system T n1 S. The sum of vectors in a symmetric system
T n1 S is zero, of course.

On the other hand, we can first partition S in accordance with its coloring into
r symmetric subsystems S1, S2, . . . , Sr , then obtain T n1 S by applying the trans-
formation T n1 to each system Si separately, and combining all T n1 Si . By Tool 1.2,
T n1 Si is a symmetric system for i = 2, . . . , r , but T n1 S consists of n1 identical
non-zero vectors. Therefore, the sum of all vectors of T n1 S is not zero. This contra-
diction proves that the monochromatic polygons cannot be all non-congruent.

Prove the last sentence of Problem 1.1 on your own:

Problem 1.3 Prove that in the setting of Problem 1.1, the two congruent monochro-
matic polynomials must exist among the monochromatic polynomials with the least
number of vertices.

Readers familiar with complex numbers may have noticed that in the proof of
Problem 1.1 we can choose the given n-gon Pn to be inscribed in a unit circle, and
position Pn with respect to the axes so that the symmetric system S of vectors could be
represented by complex numbers, which are precisely all n-th degree roots of 1. Then
the transformation T m would simply constitute raising these roots into the m-th power.

1.3 Translation into the Tongue of APs

You might be wondering what this striking problem of colored polygons has in
common with arithmetic progressions (AP), which are part of the chapter’s title.
Actually, everything! Problem 1.1 can be nicely translated into the language of infi-
nite arithmetic progressions, or APs for short.3

Problem 1.4 In any coloring (partition) of the set of integers into finitely many infi-
nite monochromatic APs, there are two APs with the same difference. Moreover,
the largest difference necessarily repeats.

Equivalently:

Problem 1.5 Any partition of the set of integers into finitely many APs can be
obtained only in the following way: N is partitioned into k APs, each of the same
difference k (where k is a positive integer greater than 1); then one of these APs is
partitioned into finitely many APs of the same difference, then one of these APs (at
this stage we have APs of two different differences) is partitioned into finitely many
APs of the same difference, etc.

3 An infinite sequence a1, a2, . . . , an, . . . is called an arithmetic progression or AP, if there for any
integer m > 1, we have the equality am = am−1 + k for a fixed k, where k is a real number called the
difference of the arithmetic progression.
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It was as delightful that our striking problem allowed two beautiful distinct for-
mulations, as it was valuable: only because of that I was able to discover the prehis-
tory of our problem.

1.4 Prehistory

Indeed, a year after I first published the story of this problem, in 1994 [Soi9],
I discovered that this exquisite bagatelle of a problem actually had a prehistory! I
became aware of it while watching a video recording of Ronald L. Graham’s most
elegant lecture Arithmetic Progressions: From Hilbert to Shelah. To my surprise,
Ron mentioned our bagatelle in the language of integer partitions. Let me present
the prehistory through the original e-mails, so that you would discover the story the
same way as I have.

April 5, 1995; Soifer to Graham:

In the beginning of your video “Arithmetic Progressions,” you present a problem of
partitioning integers into APs. You refer to Mirsky–Newman. Can you give me a more
specific reference to their paper? You also mention that their paper may not contain the
result, but that it is credited to them. How come? When did they allegedly prove it?

April 5, 1995; Graham to Soifer:

Regarding the Mirsky–Newman theorem, you should probably check with Erdős. I
don’t know that there ever was a paper by them on this result. Paul is in Israel at Tel
Aviv University.

April 6, 1995; Soifer to Erdős:

In the beginning of his video “Arithmetic Progressions,” Ron Graham presents a prob-
lem of partitioning integers into arithmetic progressions (with the conclusion that two
progressions have the same difference). Ron refers to Mirsky–Newman. He gives no
specific reference to their paper. He also mentions that their paper may not contain the
result, but that it is credited to them. . . Ron suggested that I ask you, which is what I
am doing.

I have good reasons to find this out, as in my previous book and in the one I writing
now, I credit Vasiliev (from Russia) with creating this problem before early 1970. He
certainly did, which surely does not exclude others from discovering it independently,
before or after Vasiliev.

April 8, 1995; Erdős to Soifer:

In 1950 I conjectured that there is no exact covering system in which all differences are
distinct, and this was proved by Donald J. Newman and [Leon] Mirsky a few months
later. They never published anything, but this is mentioned in some papers of mine in
the 1950s (maybe in the Summa Brasil. Math. 11(1950), 113–123 [E50.07], but I am
not sure).
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April 8, 1995; Erdős to Soifer:

Regarding that Newman’s proof, look at P. Erdős, on a problem concerning covering
systems, Mat. Lapok 3(1952), 122–128 [E52.03].

I am looking at these early Erdős’s articles. In the 1950 paper he introduces cov-
ering systems of (linear) congruences. Since each linear congruence x ≡ a (mod n)
defines an AP, we can talk about covering system of APs and define it as a set
of finitely many infinite APs, all with distinct differences, such that every integer
belongs to at least one of the APs of the system. In the 1952 paper [E52.03] Paul
introduces the problem for the first time in print (in Hungarian!):4

I conjectured that if system [of k APs with differences ni respectively] is covering then

k∑

i=1

1

ni
> 1, (1.1)

that is, the system does not uniquely cover every integer. However, I could not prove
this. For (1.1) Mirsky and Newmann [Newman] gave the following witty proof (the
same proof was found later by Davenport and Rado as well).

Wow: Leon Mirsky, Donald Newman, Harold Davenport, and Richard Rado –
quite a company of distinguished mathematicians worked on this bagatelle! Erdős
then proceeds [E52.03] with presenting this company’s proof of his conjecture,
which uses infinite series and limits.

In viewing old video recordings of Paul Erdős’s lectures at the University of
Colorado at Colorado Springs, I found a curious historical detail Paul mentioned in
his March 16, 1989 lecture: he created this conjecture in 1950 while traveling by car
from Los Angeles to New York!

1.5 Completing the Go-Round

In 1959, Paul Erdős and János Surányi published a book on the Theory of Numbers.
In 2003 English translation [ESu2] of its 1996 2nd Hungarian edition, Erdős and
Surányi present the result from the Erdős’s 1952 paper:

In a covering system of congruences [APs], the sum of the reciprocals of the moduli is
larger than 1.

Erdős and Surányi then repeat Mirsky–Newman–Davenport–Rado proof from
Erdős’s 1952 paper [E52.03]. Then there comes a surprise:

A. Lifsic [sic] gave an elementary solution to a contest problem that turned out to be
equivalent to Theorem 3.

4 In English this result was briefly mentioned, without proof, much later, in 1973 [E73.21] and 1980
[EG].
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Based again on exercises 9 and 10, it is sufficient to prove that it is not possible to
cover the integers by finitely many arithmetic progressions having distinct differences
in such a way that no two of them share a common element.

Erdős and Surányi then repeat the trick that was first discovered by us, the judges
of the Soviet National Mathematical Olympiad in May 1970, the trick of converting
the calculus solution into the Olympiad’s original problem about colored polygons!
Here is how it goes:

Wind the number line around a circle of circumference d . On this circle, the integers
represent the vertices of a regular d-sided polygon. . . The arithmetic progressions form
the vertices of disjoint regular polygons that together cover all vertices of the d-sided
polygon.

Erdős and Surányi continue by repeating, with credit, Sasha Livshits’s solution
of Kolya Vasiliev’s Problem of Colored Polygons that we have seen at the start of
this chapter.5 We have thus come to a full circle, a Merry-Go-Round from the Soviet
Union Mathematical Olympiad to Erdős and back to the same Olympiad. I hope you
have enjoyed the ride!

5 Erdős and Surányi obtained the translation of the problem into the language of polygons and the polyg-
onal proof from the 1988 Russian book [VE] by Vasiliev and Andrei Egorov, which they credit for it. In
this book, Vasiliev gives credit for the solution to Sasha Livshits—and in a sign of extreme modesty does
not credit himself with creating this remarkable colored polygon problem independently from Erdős and
in a different form.

In looking now at the original 1996 Hungarian 2nd edition [ESu1] of Erdős—Surányi book, I realize
with sadness that Paul Erdős did not see the beauties of Sasha Livshits’s proof—it did not appear in
the Hungarian edition of 1996, the year when Paul passed away. Clearly, Surányi alone added Livshits’s
proof to the 2003 English translation [ESu2] of the book.
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2
Chromatic Number of the Plane: The Problem

A great advantage of geometry lies in the fact that
in it the senses can come to the aid of thought,
and help find the path to follow.

– Henry Poincaré [Poi]

[I] can’t offer money for nice problems of other
people because then I will really go broke. . .
It is a very nice problem. If it were mine,
I would offer $250 for it.

– Paul Erdős Boca Raton, February, 1992

If Problem 8 [chromatic number of the plane] takes
that long to settle, we should know the answer by the
year 2084.

– Victor Klee & Stan Wagon [KW]

Our good ole Euclidean plane, don’t we know all about it? What else can there be
after Pythagoras and Steiner, Euclid and Hilbert? In this chapter we will look at an
open problem that exemplifies what is best in mathematics: anyone can understand
this problem; yet no one has been able to conquer it for over 58 years.

In August 1987, I attended an inspiring talk by Paul Halmos at Chapman Col-
lege in Orange, California, entitled “Some problems you can solve, and some you
cannot.” This problem was an example of a problem “you cannot solve.”

“A fascinating problem . . . that combines ideas from set theory, combinatorics,
measure theory, and distance geometry,” write Hallard T. Croft, Kenneth J. Falconer,
and Richard K. Guy in their book “Unsolved Problems in Geometry” [CFG].

“If Problem 8 takes that long to settle [as the celebrated Four-Color Conjecture],
we should know the answer by the year 2084,” write Victor Klee and Stan Wagon
in their book “New and Old Unsolved Problems in Plane Geometry” [KW].

Are you ready? Here it is:

What is the smallest number of colors sufficient for coloring the plane in such
a way that no two points of the same color are unit distance apart?

A. Soifer, The Mathematical Coloring Book, 13
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This number is called the chromatic number of the plane and is denoted by �. To
color the plane means to assign one color to every point of the plane. Please note
that here we color without any restrictions, and are not limited to “nice,” tiling-like
or map-like coloring. Given a positive integer n, we say that the plane is n-colored,
if every point of the plane is assigned one of the given n colors.

A segment here will stand for just a 2-point set. Similarly, a polygon will stand
for a finite set of point. Monochromatic set is a set whose all elements are assigned
the same color. In this terminology, we can formulate the Chromatic Number of the
Plane Problem (CNP) as follows: What is the smallest number of colors sufficient
for coloring the plane in a way that forbids monochromatic segments of length 1?

I do not know who first noticed the following result. Perhaps, Adam? Or Eve?
To be a bit more serious, I do not think that ancient Greek geometers, for example,
knew this nice fact, for they simply did not ask this kind of questions!

Problem 2.1 (Adam & Eve?) No matter how the plane is 2-colored, it contains a
monochromatic unit distance segment, i.e.,

� ≥ 3.

Solution: Toss on the given 2-colored plane an equilateral triangle T of side 1
(Fig. 2.1). We have only 2 colors while T has 3 vertices (I trust you have not forgot-
ten the Pigeonhole Principle). Two of the vertices must lie on the same color. They
are distance 1 apart.

1

11

Fig. 2.1

We can do better than Adam:

Problem 2.2 No matter how the plane is 3-colored, it contains a monochromatic
unit distance segment, i.e.,

� ≥ 4.

Solution by the Canadian geometers, brothers Leo and William Moser, (1961,
[MM]) Toss on the given 3-colored plane what we now call The Mosers Spindle
(Fig. 2.2). Every edge in the spindle has the length 1.
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Fig. 2.2 The Mosers Spindle

Assume that the seven vertices of the spindle do not contain a monochromatic
unit distance segment. Call the colors used to color the plane red, white, and blue.
The solution now will faithfully follow the children’s song: “A B C D E F G. . .”.

Let the point A be red, then B and C must be one white and one blue, there-
fore D is red. Similarly E and F must be one white and one blue, therefore G is
red. We found a monochromatic segment DG of length 1 in contradiction to our
assumption.

Observe: The Mosers Spindle has worked for us in solving Problem 2.2 precisely
because any 3 points of the spindle contain two points distance 1 apart. This implies
that in a Mosers spindle that forbids monochromatic distance 1, at most 2 points
can be of the same color. Remember this observation, for we will need it later in
Chapters 4 and 40.

When I presented the Mosers’ solution to high school mathematicians, everyone
agreed that it was beautiful and simple. “But how do you come up with a thing like
the spindle?” I was asked. As a reply, I presented a less elegant but a more natu-
rally found solution. In fact, I would call it a second version of the same solution.
Here we touch on a curious aspect of mathematics. In mathematical texts we often
see “second solution,” “third solution,” but which two solutions ought to be called
distinct? We do not know: it is not defined, and thus is a judgment call. A distinct
solution for one person could be the same solution for another. It is interesting to
notice that both versions were published in the same year, of 1961, one in Canada
and the other in Switzerland.

Second Version of the Solution (Hugo Hadwiger, 1961, [Had4]). Assume that
a 3-colored red–white–blue plane does not contain a monochromatic unit distance
segment. Then an equilateral triangle ABC of side 1 will have one vertex of each
color (Fig. 2.3). Let A be red, then B and C must be one white and one blue. The
point A′ symmetric to A with respect to the side BC must be red as well. If we rotate
our rhombus ABA’C through any angle about A, the vertex A′ will have to remain
red due to the same argument as above. Thus, we get a whole red circle of radius
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Fig. 2.3

AA′ (Fig. 2.3). Surely, it contains a cord d of length 1, both endpoints of which are
red, in contradiction to our assumption.

Does an upper bound exist for �? It is not immediately obvious. Can you find
one? Think of tiling the plane with square tiles!

Problem 2.3 There is a 9-coloring of the plane that contains no monochromatic unit
distance segments, i.e.,

� ≤ 9.

Proof We tile the plane with unit squares. Now we color one square in color 1, and
its eight neighbors in colors 2, 3, . . . , 9 (Fig. 2.4). The union of these 9 squares is
a 3 × 3 square S. Translates of S (i.e., images of S under translations) tile the plane
and determine how we color it in 9 colors.

You can easily verify (do) that no distance d in the range
√

2 < d < 2 is realized
monochromatically in the plane. Thus by shrinking all linear sizes by the factor of,
say, 1.5, we get a coloring that contains no monochromatic unit distance segments.
(Observe: due to the above inequality, we have enough cushion, so that it does not
matter in which of the two adjacent colors we color the boundaries of squares).

Fig. 2.4

Now that a tiling has helped us to solve the above problem, it is natural to ask
whether another tiling can help us improve the upper bound. One can indeed!



2 Chromatic Number of the Plane: The Problem 17

Problem 2.4 There is a 7-coloring of the plane that contains no monochromatic unit
distance segments, i.e.,

� ≤ 7.

Solution ([Had3]): We can tile the plane by regular hexagons of side 1. Now we
color one hexagon in color 1, and its six neighbors in colors 2, 3, . . . , 7 (Fig. 2.5).
The union of these seven hexagons forms a “flower” P , a highly symmetric polygon
P of 18 sides. Translates of P tile the plane and determine how we color the plane in
7 colors. It is easy to compute (please do) that each color does not have monochro-
matic segments of any length d, where 2 < d <

√
7. Thus, if we shrink all linear

sizes by a factor of, say, 2.1, we will get a 7-coloring of the plane that forbids
monochromatic unit distance segments. (Observe: due to the above inequality, we
have enough cushion so that it does not matter in which of the two adjacent colors
we color the boundaries of hexagons).

3
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Fig. 2.5 Hexagon based 7-coloring of the plane

This is the way the upper bound is proven in every book I know (e.g., [CFG]
and [KW]). Yet in 1982 the Hungarian mathematician László A. Székely found a
clever way to prove the upper bound without using hexagonal tiling.

Problem 2.5 (L. A. Szekely, [Sze1]). Prove the upper bound � ≤ 7 by tiling the
plane with . . . squares again.

Proof This is László Székely’s proof from [Sze1]. His original picture needs a small
correction in its “Fig. 2.1”, and boundary coloring needs to be addressed, which I am
doing here. We start with a row of squares of diagonal 1, with cyclically alternating
colors of the squares 1, 2, . . . , 7 (Fig. 2.6). We then obtain consecutive rows of
colored squares by shifting the preceding row to the right through 2.5 square sides.

Upper and right boundaries are included in the color of each square, except for
the square’s upper left and lower right corners.
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Fig. 2.6 Square based 7-coloring of the plane

In 1995, my former student and now well-known puzzlist Edward Pegg, Jr. sent to
me two distinct 7-colorings of the plane. In the one I am sharing with you (Fig. 2.7),
Ed uses 7-gons for 6 colors, and tiny squares for the 7th color. Interestingly, the 7th
color occupies only about one third of one percent of the plane.

In Fig. 2.7, all thick black bars have unit length. A unit of the tiling uses a hep-
tagon and half a square.

The area of each square is 0.0041222051899307168162. . .

The area of each heptagon is 0.62265127164647629646. . .

Area ratio thus is 302.0962048019455285300783627265828. . .

If one third of one percent of the plane is removed, the remainder can be 6-
colored with this tiling!

(0,0)

(x,x)

(1,0)

Fig. 2.7 7-coloring of the plane with a minimal presence of the 7th color
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The lower bound for the chromatic number of the plane (Problem 2.2) also
has proofs fundamentally different from the Mosers Spindle. In the early 1990s, I
received from my colleague and friend Klaus Fischer of George Mason University,
a finite configuration of the chromatic number 4, different from the Mosers spindle.
Klaus had no idea who created it, so I commenced tracing it back in history. Klaus
got this configuration from our common friend and colleague Heiko Harborth of
Braunschweig Technical University, Germany, who in turn referred me to his source,
Solomon W. Golomb of the University of Southern California, the famous inventor
of polyomino. He invented this graph as well, and described it in the September 10,
1991 letter to me [Gol1]:

The example you sketched of a 4-chromatic unit distance graph with ten vertices is
original with me. I originally thought of it as a 3-dimensional structure (the regular
hexagon below, the equilateral triangle above it in a plane parallel to it), and all con-
nected by unit length toothpicks. The structure is then allowed to collapse down into
the plane, to form the final figure [Fig. 2.8]. I have shown it to a number of peo-
ple, including the late Leo Moser, Martin Gardner, and Paul Erdős, as well as Heiko
Harborth. It is possible that Martin Gardner may have used it in one of his columns,
but I don’t remember. Besides my example and Moser’s original example (which I’m
reasonably sure I have seen in Gardner’s column), I have not seen any other “funda-
mental” examples. I believe what I had suggested to Dr. Harborth in Calgary was the
possibility of finding a 5-chromatic unit distance graph, having a much larger number
of edges and vertices.

In the subsequent September 25, 1991 letter [Gol2] Golomb informed me that he
likely found this example, which I will naturally call the Golomb Graph, in the time
period 1960–1965.

Second Solution of Problem 2.2: Just toss the Golomb Graph on a 3-colored (red,
white and blue) plane (Fig. 2.8). Assume that in the graph there are no adjacent (i.e.,
connected by an edge) vertices of the same color. Let the center point be colored red,
then since it is connected by unit edges to all vertices of the regular hexagon H, H
must be colored white and blue in alternating fashion. All vertices of the equilateral
triangle T are connected by unit edges to the three vertices of H of the same color,

Fig. 2.8 The Golomb Graph
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say, white. Thus, white cannot be used in coloring T , and thus T is colored red and
blue, which implies that two of the vertices of T are assigned the same color. This
contradiction proves that 3 colors are not enough to properly color the ten vertices
of the Golomb graph, let alone the whole plane.

It is amazing that the relatively easy solutions of Problems 2.2 and 2.4 give us the
best known to today’s mathematics. Bounds for the chromatic number of the plane
�. They were published almost half a century ago (in fact, they are older than that:
see next chapter for an intriguing historical account). Still, all we know is that

� = 4, or 5, or 6, or 7.

A very broad spread! Which do you think is the exact value of �? The legendary
Paul Erdős thought that � ≥ 5.

The American geometer Victor Klee of the University of Washington shared with
me in 1991 an amusing story. In 1980 he lectured in Zürich, Switzerland, where the
77-year-old celebrated algebraist Bartel L. van der Waerden (whom we will meet
frequently later in this book— see Part VII) was in attendance. When Vic presented
the state of this problem, Van der Waerden became so interested that he stopped
listening to the lecture—he started working on the problem. He tried to prove that
� = 7!

For many years I believed that � = 7, or else 6 (you will find my thoughts on
the matter in Predicting the Future, Part X of this book). Paul Erdős used to say that
“God has a transfinite Book, which contains all theorems and their best proofs, and
if He is well intentioned towards those, He shows them the Book for a moment.” If
I ever deserved the honor and had a choice, I would have asked to peek at the page
with the chromatic number of the plane problem. Wouldn’t you?
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Chromatic Number of the Plane:
An Historical Essay

[This is] a long standing open problem of Erdős.
– Hallard T. Croft, 1967

[I] cannot trace the origin of this problem.
– Paul Erdős, 1961

It is often easier to be precise about Ancient
Egyptian history than about what happened among
our contemporaries.

– Nicolaas Govert de Bruijn, 19951

It happened long ago and perhaps did not happen
at all.

– An Old Russian Joke

It is natural for one to inquire into the authorship of one’s favorite problem. As
a result, in 1991 I turned to countless articles and books. Some of the information I
found appears here in Table 3.1 – take a look. Are you confused? I was too!

As you can see in the table, Douglas R. Woodall credits Martin Gardner, who in
turn refers to Leo Moser. Hallard T. Croft calls it “a long standing open problem of
Erdős,” Gustavus J. Simmons credits “Erdős, [Frank] Harary and [William Thomas]
Tutte,” while Paul Erdős himself “cannot trace the origin of this problem”! Later
Erdős credits “Hadwiger and Nelson,” while Victor Klee and Stan Wagon state that
the problem was “posed in 1960–1961 by M. Gardner and Hadwiger.” Croft comes
again, this time with Kenneth J. Falconer and Richard K. Guy, to cautiously suggest
that the problem is “apparently due to E. Nelson” [CFG]. Yet, Richard Guy did not
know who “E. Nelson” was and why he and his coauthors “apparently” attributed
the problem to him (our conversation on the back seat of a car in Keszthely, Hungary,
when we both attended Paul Erdős’s 80th birthday conference in August of 1993).

Thus, at least seven mathematicians—a great group to be sure—were credited
with creating the problem: Paul Erdős, Martin Gardner, Hugo Hadwiger, Frank

1 [Bru6].

A. Soifer, The Mathematical Coloring Book, 21
DOI 10.1007/978-0-387-74642-5 3, C© Alexander Soifer 2009
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Table 3.1 Who created the chromatic number of the plane problem?

Publication Year Author(s) Problem creator(s) or source named

[Gar2] 1960 Gardner “Leo Moser. . .writes. . .”
[Had4] 1961 Hadwiger (after

Klee)
Nelson

[E61.21] 1961 Erdős “I cannot trace the origin of this problem”
[Cro] 1967 Croft “A long standing open problem of Erdős”
[Woo1] 1973 Woodall Gardner
[Sim] 1976 Simmons Erdős, Harary and Tutte
[E80.38]
[E81.23]

⎫
⎬

⎭
1980–1981 Erdős Hadwiger and Nelson

[E81.26]
[CFG] 1991 Croft, Falconer, and

Guy
“Apparently due to E. Nelson”

[KW] 1991 Klee and Wagon “Posed in 1960–1961 by M. Gardner and
Hadwiger”

Harary, Leo Moser, Edward Nelson, and William T. Tutte. But it was hard for me to
believe that they all created the problem, be it independently or all seven together.

I felt an urge, akin that of a private investigator, a Sherlock Holmes, to untangle
the web of conflicting accounts. It took six months to solve this historical puzzle.
A good number of mathematicians, through conversations and e-mails, contributed
their insight: Branko Grünbaum, Peter D. Johnson, Tony Hilton, and Klaus Fischer
first come to mind. I am especially grateful to Paul Erdős, Victor Klee, Martin Gard-
ner, Edward Nelson, and John Isbell for contributing their parts of the puzzle. Only
their accounts, recollections, and congeniality made these findings possible.

I commenced my investigation on June 19, 1991 by mailing a letter to Paul Erdős,
informing Paul that “I am starting a new ‘Mathematical Coloring Book’, which will
address problems where coloring is a part of a problem and/or a part of solution (a
major part),”2 and then posed the question:

There is a famous open problem of finding the chromatic number of the plane (minimal
number of colors that prevents distance one between points of the same color). Is this
your problem?

On August 10, 1991, Paul shared his appreciation of the problem, for which he
could not claim the authorship [E91/8/10ltr]:

The problem about the chromatic number of the plane is unfortunately not mine.

In a series of letters dated July 12, 1991; July 16, 1991; August 10, 1991; and
August 14, 1991, Paul also formulated for me a good number of problems related
to the chromatic number of the plane that he did create. We will look at Erdős’s
problems in the following chapters.

Having established that the author was not Paul Erdős, I moved down the list
of “candidates,” and on August 8, 1991 and again on August 30, 1991, I wrote to

2 This seems to be my first mention of what has become an 18-year long project!
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Victor Klee, Edward Nelson, and John Isbell. I shared with them my Table 3.1 and
asked what they knew about the creation of the problem. I also interviewed Professor
Nelson over the phone on September 18, 1991.

Edward Nelson created what he named “a second 4-color problem” (first being
the famous Four-Color Problem of map coloring), which we will discuss in Part IV).
In his October 5, 1991, letter [Nel2], he conveyed the story of creation:

Dear Professor Soifer:
In the autumn of 1950, I was a student at the University of Chicago and among

other things was interested in the four-color problem, the problem of coloring graphs
topologically embedded in the plane. These graphs are visualizable as nodes connected
by wires. I asked myself whether a sufficiently rich class of such graphs might possibly
be subgraphs of one big graph whose coloring could be established once and for all,
for example, the graph of all points in the plane with the relation of being unit distance
apart (so that the wires become rigid, straight, of the same length, but may cross).
The idea did not hold up, but the other problem was interesting in its own right and I
mentioned it to several people.

Eddie Nelson, c. 1950. Courtesy of Edward Nelson
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One of the people Ed Nelson mentioned the problem to was John Isbell. Half
a century later, Isbell still remembered the story very vividly when on August 26,
1991 he shared it with me [Isb1]:

. . . Ed Nelson told me the problem and χ ≥ 4 in November 1950, unless it was
October – we met in October. I said what upper bound have you, he said none, and
I worked out 7. I was a senior at the time (B.S., 1951). I think Ed had just entered
U. Chicago as a nominal sophomore and taken placement exams which placed him
a bit ahead of me, say a beginning graduate student with a gap or two in his back-
ground. I certainly mentioned the problem to other people between 1950 and 1957;
Hugh Spencer Everett III, the author of the many-worlds interpretation of quantum
mechanics, would certainly be one, and Elmer Julian Brody who did a doctorate under
Fox and has long been at the Chinese University of Hong Kong and is said to be into
classical Chinese literature would be another. I mentioned it to Vic Klee in 1958±1 . . .

Victor Klee also remembered (our phone conversation, September, 1991) hearing
the problem from John Isbell in 1957–1958. In fact, it took place before September
1958, when Professor Klee left for Europe. There he passed the problem to Hugo
Hadwiger who was collecting problems for the book Open Problems in Intuitive
Geometry to be written jointly by Erdős, Fejes–Toth, Hadwiger, and Klee (this great
book-to-be has never materialized).

Gustavus J. Simmons [Sim], in giving credit to “Erdős, Harary, and Tutte,” no
doubt had in mind their joint 1965 paper in which the three authors defined dimen-
sion of a graph (Chapter 13). The year of 1965 was too late for our problem’s
creation, and besides, the three authors have not made or claimed such a discovery.

What were the roles of Paul Erdős, Martin Gardner, and Leo Moser in the story
of creation? I am prepared to answer these questions, all except one: I am leaving
for others to research Leo Moser’s archive (maintained by his brother Willie Moser
at McGill University in Montreal) and find out how and when Leo Moser came by
the problem. What is important to me is that he did not create it independently from
Edward Nelson, as Paul Erdős informed me in his July 16, 1991, letter [E91/7/16ltr]:

I do not remember whether Moser in 1958 [possibly on June 16, 1958, the date from
which we are lucky to have a photo record] told me how he heard the problem on the
chromatic number of the plane, I only remember that it was not his problem.

Yet, Leo Moser made a valuable contribution to the survival of the problem: he
gave it to both Paul Erdős and Martin Gardner. Gardner, due to his fine taste, recog-
nized the value of this problem and included it in his October 1960 Mathematical
Games column in Scientific American ( [Gar2]), with the acknowledgement that he
received it from Leo Moser of the University of Alberta. Thus, the credit for the
first publication of the problem goes to Martin Gardner. It is beyond me why so
many authors of articles and books, as far back as 1973 ( [Woo1], for example),
gave credit for the creation of the problem to Martin Gardner, something he himself
has never claimed. In our 1991 phone conversation Martin told me for a fact that
the problem was not his, and he promptly listed Leo Moser as his source, both in
print and in his archive.
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Paul Erdős (left) and Leo Moser, June 16, 1958. Courtesy of Paul Erdős

Moreover, some authors ([KW], for example) who knew of Edward Nelson still
credited Martin Gardner and Hugo Hadwiger because it seems only written, prefer-
ably published word, was acceptable to them. Following this logic, the creation
of the celebrated Four-Color Map-Coloring Problem must be attributed to Augus-
tus De Morgan, who first wrote about it in his October 23, 1852 letter to William
Rowan Hamilton, or better yet to Arthur Cayley, whose 1878 abstract included the
first non-anonymous publication of the problem.3 Yet we all seem to agree that the
20-year-old Francis Guthrie created this problem, even though he did not publish or
even write a word about it! (See Part IV for more on this.)

Of course, a lone self-serving statement would be too weak a foundation for a
historical claim. On the other hand, independent disinterested testimonies corrobo-
rating each other comprise as solid a foundation for the attribution of the credit as
any publication. And this is precisely what my inquiry has produced. Here is just
one example of Nelson and Isbell’s selflessness. Edward Nelson tells me on August
23, 1991 [Nel1]:

I proved nothing at all about the problem . . .

John Isbell corrects Nelson in his September 3, 1991, letter [Isb2]:

Ed Nelson’s statement which you quote, “I proved nothing at all about the problem,”
can come only from a failure of memory. He proved to me that the number we are
talking about is ≥ 4, by precisely the argument in Hadwiger 1961. Hadwiger’s attri-
bution (on Klee’s authority) of that inequality to me can only be Hadwiger’s or Klee’s
mistake.

This brings us to the issue of the authorship of the bounds for �

4 ≤ � ≤ 7.

3 First publication could be attributed to De Morgan, who mentioned the problem in his 1860 book
review in Athenaeum [DeM4], albeit anonymously – see more on this in Chapter 18.
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Once again, the entire literature is off the mark by giving credit for the first
proofs to Hadwiger and the Mosers. Yes, in 1961 the famous Swiss geometer Hugo
Hadwiger published ([Had4]) the chromatic number of the plane problem together
with proofs of both bounds. yet he wrote (and nobody read!):

We thank Mr. V. L. Klee (Seattle, USA) for the following information. The problem is
due to E. Nelson; the inequalities are due to J. Isbell.

Hadwiger did go on to say:

Some years ago the author [i.e., Hadwiger] discussed with P. Erdős questions of
this kind.

Did Hadwiger imply that he created the problem independently from Nelson? We
will never know for sure, but I have my doubts about Hadwiger’s (co)authorship.
Hadwiger jointly with H. Debrunner published an excellent long problem paper in
1955 [HD1] that was extended to their wonderful, famous book in 1959 [HD2]; see
also the 1964 English translation [HDK] with Victor Klee, and the 1965 Russian
translation [HD3] edited by Isaak M. Yaglom. All of these books (and Hadwiger’s
other papers) included a number of “questions of this kind,” but did not once include
the chromatic number of the plane problem. Moreover, it seems to me that the prob-
lem in question is somewhat out of Hadwiger’s “character”: in all problems “of
this kind” he preferred to consider closed rather than arbitrary sets, in order to take
advantage of topological tools.

I shared with Paul Erdős these two-fold doubts about Hadwiger independently
creating the problem. It was especially important because Hadwiger in the quoted
above text mentioned Erdős as his witness of sorts. Paul replied in the July 16, 1991
letter [E91/7/16ltr] as follows:

I met Hadwiger only after 1950, thus I think Nelson has priority (Hadwiger died a few
years ago, thus I cannot ask him, but I think the evidence is convincing).

At 9:30–10:30 A.M. on March 10, 1994, during his talk at 25th South Eastern
International Conference on Combinatorics, Computing and Graph Theory in Boca
Raton, Florida, Paul Erdős summarized the results of my historical research in the
characteristically Erdősian style ([E94.60]):4

There is a mathematician called Nelson who in 1950 when he was an epsilon, that is
he was 18, discovered the following question. Suppose you join two points in the plane
whose distance is 1. It is an infinite graph. What is chromatic number of this graph?

Now, de Bruijn and I showed that if an infinite graph which is chromatic number k,
it always has a finite subgraph, which is chromatic number k. So this problem is really
[a] finite problem, not an infinite problem. And it was not difficult to prove that the
chromatic number of the plane is between 4 and 7. I would bet it is bigger than 4, but
I am not sure. And the problem is still open.

If it were my problem, I would certainly offer money for it. You know, I can’t offer
money for every nice problem because I would go broke immediately. I was asked once

4 Thanks to Prof. Fred Hoffman, the tireless organizer of this annual conference, I have a video tape of
this memorable Paul Erdős’s talk.
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what would happen if all your problems would be solved, could you pay? Perhaps not,
but it doesn’t matter. What would happen to the strongest bank if all the people who
have money there would ask for money back? Or what would happen to the strongest
country if they suddenly ask for money? Even Japan or Switzerland would go broke.
You see, Hungary would collapse instantly. Even the United States would go broke
immediately. . .

Actually it was often attributed to me, this problem. It is certain that I had nothing
to do with the problem. I first learned the problem, the chromatic number of the plane,
in 1958, in the winter, when I was visiting [Leo] Moser. He did not tell me from where
this nor the other problems came from. It was also attributed to Hadwiger, but Soifer’s
careful research showed that the problem is really due to Nelson.

The leading researcher of Ramsey Theory, Ronald L. Graham, has also endorsed
the results of this historical investigation in his important 2004 problem paper [Gra6]
in Geombinatorics:

It is certainly not necessary to point out to readers of this journal any facts concerning
the history and current status of this problem (which [is] due to Nelson in 1950) since
the Editor Alexander Soifer has written a scholarly treatment of this subject in this
journal [Soi18], [Soi19], [SS2].

Paul Erdős’s and Ron Graham’s acceptance of my research on the history of
this problem has had a significant effect: most researchers and expositors now give
credit to Edward Nelson for the chromatic number of the plane problem. However,
there are, unfortunate exceptions. In 2002 László Lovász and K. Vesztergombi, for
example, stated [LV] that

in 1944 Hadwiger and Nelson raised the question of finding the chromatic number of
the plane.

Of course, the problem did not exist in 1944, in Hadwiger’s cited paper or any-
where else. Moreover, Eddie Nelson was just an 11–12-year-old boy at the time!
In the same 2002 book, dedicated to the memory of Paul Erdős, one of the leading
researchers of the problem and my friend Laszló Székely (who already in 1992
attended my talk on the history of the problem at Boca Raton), goes even further
than Lovász and Vesztergombi [Sze3]:

E. Nelson and J. R. Isbell, and independently Erdős and H. Hadwiger, posed the fol-
lowing problem. . .

The fine Russian researcher of this problem A. M. Raigorodskii repeats from
Székely in his 2003 book [Raig6, p. 3], in spite of citing (thus presumably knowing)
my historical investigation in his survey [Raig3]:

There were several authors. First of all, already in the early 1940s the problem was
posed by the remarkable mathematicians Hugo Hadwiger and Paul Erdős; secondly,
E. Nelson and J. P. Isbell worked on the problem independently from Erdős and Had-
wiger.5

5 My translation from the Russian.



28 II Colored Plane

Raigorodskii then “discovers” previously non-existent connection between world
affairs and the popularity of the problem:6

In the 1940s there was W.W.II, and this circumstance is responsible for the fact that at
first chromatic numbers [sic] did not raise too thunderous an interest.

The two famous Canadian problem people, the brothers Leo and William Moser,
also published in 1961 [MM] the proof of the lower bound 4 ≤ � while solving a
different problem. Although, in my opinion, their proof is not distinct from those by
Nelson and by Hadwiger, the Mosers’ emphasis on a finite set and their invention
of the seven-point configuration, now called The Mosers’ Spindle, proved to be very
productive (Chapter 2).

Now we can finally give due credit to Edward Nelson for being the first in 1950
to prove the lower bound 4 ≤ �. Because of this bound, John Isbell recalls in his
letter [Isb1], Nelson “liked calling it a second 4CP!”

From the phone interviews with Edward Nelson on September 18 and 30, 1991,
I learned some information about the problem creator. Joseph Edward Nelson was
born on May 4, 1932 (an easy number to remember: 5/4/32), in Decatur, Georgia,
near Atlanta. The son of the Secretary of the Italian YMCA,7 Ed Nelson had studied
at a liceo (Italian prep school) in Rome. In 1949 Eddie returned to the United States
and entered the University of Chicago. The visionary Chancellor of the Univer-
sity, Robert Hutchins,8 allowed students to avoid “doing time” at the University by
passing lengthy placement exams instead. Ed Nelson had done so well on so many
exams that he was allowed to go straight to the graduate school without working for
his bachelor’s degree.

Time magazine reported young Nelson’s fine achievements in 14 exams on
December 26, 1949 [Time], next to the report on the completion of the last war-
crimes trials of the World War II (Field Marshal Fritz Erich von Manstein received
18 years in prison), assurances by General Dwight D. Eisenhower that he would
not be a candidate in the 1952 Presidential election (he certainly was—and won it),
and promise to announce Time’s “A Man of the Half-Century” in the next issue (the
Time’s choice was Winston Churchill).

Upon obtaining his doctorate from the University of Chicago in 1955, Edward
Nelson became National Science Foundation’s Postdoctoral Fellow at the Prince-
ton’s Institute for Advanced Study in 1956. Three years later he became—and still
is—a professor at Princeton University. His main areas of interest are analysis and
logic. In 1975 Edward Nelson was elected to the American Academy of Arts and
Sciences, and in 1997 to the National Academy of Sciences. During my 2002–2004
stay at Princeton, I had the pleasure to interact with Professor Nelson almost daily.

6 Ibid.
7 The Young Mens Christian Association (YMCA) is one of the oldest and largest not-for-profit commu-
nity service organizations in the world.
8 Robert Maynard Hutchins (1899–1977) was President (1929–1945) and Chancellor (1945–1951) of
the University of Chicago.
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My talk on the chromatic number of the plane problem at Princeton’s Discrete Math-
ematics Seminar was dedicated “To Edward Nelson, who created this celebrated
problem for us all.”

John Isbell was first in 1950 to prove the upper bound � ≤ 7. He used the same
hexagonal 7-coloring of the plane that Hadwiger published in 1961 [Had4]. Please
note that Hadwiger first used this coloring of the plane in 1945 [Had3], but for a
different problem: his goal was to show that there are seven congruent closed sets
that cover the plane (he also proved there that no five congruent closed sets cover the
plane). Professor John Rolfe Isbell, Ph.D. Princeton University 1954 under Albert
Tucker, has been for decades on the faculty of mathematics at the State University
of New York at Buffalo, where he is now Professor Emeritus.

Paul Erdős’s contribution to the history of this problem is two-fold. First of all,
like Augustus De Morgan did for the Four-Color Problem, Erdős kept the flaming
torch of the problem lit. He made the chromatic number of the plane problem
well-known by posing it in his countless problem talks and many publications, for
example, we see it in [E61.21], [E63.21], [E75.24], [E75.25], [E76.49], [E78.50],
[E79.04], [ESi], [E80.38], [E80.41], [E81.23], [E81.26], [E85.01], [E91.60],
[E92.19], [E92.60] and [E94.60].

Secondly, Paul Erdős created a good number of fabulous related problems. We
will discuss one of them in the next chapter.

In February 1992 at the 23rd South Eastern International Conference on Combi-
natorics, Computing and Graph Theory in Boca Raton, during his traditional Thurs-
day morning talk, I asked Paul Erdős how much he would offer for the first solution
of the chromatic number of the plane problem. Paul replied:

I can’t offer money for nice problems of other people because then I will really
go broke.

I then transformed my question into the realm of mathematics and asked Paul
“Assume this is your problem; how much would you then offer for its first solution?”
Paul answered:

It is a very nice problem. If it were mine, I would offer $250 for it.

A few years ago the price went up for the improvement of just the lower bound
part of the chromatic number of the plane problem. On Saturday, May 4, 2002,
which by the way was precisely Edward Nelson’s 70th birthday, Ronald L. Gra-
ham gave a talk on Ramsey Theory at the Massachusetts Institute of Technology
for about 200 participants of the USA Mathematical Olympiad. During the talk
he offered $1,000 for the first proof or disproof of what he called, after Nelson,
“Another 4-Color Conjecture.” The talk commenced at 10:30 AM (I attended the
talk and took notes).

Another 4-Color $1000 Problem 3.1 (Graham, May 4, 2002) Is it possible to
4-color the plane to forbid a monochromatic distance 1?

In August 2003, during his talk What is Ramsey Theory? at Berkeley [Gra4],
Graham asked for more work for $1000:
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$1000 Open Problem 3.2 (Graham, August, 2003). Determine the value of the
chromatic number χ of the plane.

It seems that presently Ron Graham believes that the chromatic number of the
plane takes on an intermediate value, between its known boundaries, for in his two
latest surveys [Gra7], [Gra8], he offers the following open problems:

$100 Open Problem 3.3 (Graham [Gra7], [Gra8]) Show that χ ≥ 5.9

$250 Open Problem 3.4 (Graham [Gra7], [Gra8]) Show that χ ≤ 6.

This prompted me to look at all Erdős’s published predictions on the chromatic
number of the plane. Let me summarize them here for you. First Erdős believes—
and communicates it in 1961 [E61.22] and 1975 [E75.24]—that the problem creator
Nelson conjectured the chromatic number to be 4; Paul enters no prediction of his
own. In 1976 [E76.49] Erdős asks:

Is this graph 4-chromatic?

In 1979 [E79.04] Erdős becomes more assertive:

It seems likely that the chromatic number is greater than four. By a theorem of de
Bruijn and myself this would imply that there are n points x1, . . . , xn in the plane
so that if we join any two of them whose distance is 1, then the resulting graph
G(x1, . . . , xn) has chromatic number > 4. I believe such an n exists but its value
may be very large.10

A certainty comes in 1980 [E80.38] and [E80.41]:

I am sure that [the chromatic number of the plane] α2 > 4 but cannot prove it.

In 1981 [E81.23] and [E81.26] we read, respectively:

It has been conjectured [by E. Nelson] that α2 = 4, but now it is generally believed
that α2 > 4.

It seems likely that χ
(
E2

)
> 4.

In 1985 [E85.01] Paul Erdős writes:

I am almost sure that h(2) > 4.

Once—just once—Erdős expresses mid-value expectations, just as Ron Graham
has in his Conjectures 3.3 and 3.4. It happened on Thursday, March 10, 1994 at
the 25th South Eastern International Conference on Combinatorics, Computing and
Graph Theory in Boca Raton. Following Erdős’s plenary talk (9:30–10:30 A.M.),
I was giving my talk at 10:50 A.M., when suddenly Paul Erdős said (and I jotted
it down):

9 Graham cites Paul O’Donnell’s Theorem 45.4 (see it later in this book) as “perhaps, the evidence that
χ is at least 5.”
10 If the chromatic number of the plane is 7, then for G(x1, . . . , xn) = 7 such an n must be greater than
6197 [Pri].
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Excuse me for interrupting, I am almost sure that the chromatic number of the plane
is greater than 4. It is not a proof, but any measurable set without distance 1 in a very
large circle has measure less than 1/4. I also do not think that it is 7.

It is time for me to speak on the record and predict the chromatic number of
the plane. I am leaning toward predicting 7 or else 4—somewhat disjointly from
Graham and Erdős’s apparent expectation. Limiting myself to just one value, I con-
jecture:

Chromatic Number of the Plane Conjecture 3.5 11

χ = 7.

If you, in fact, prove the chromatic number is 7 or 4, I do not think you would
lose Graham’s prizes. I am sure Ron will pay his prizes for disproofs as well as
for proofs. On January 26, 2007 in a personal e-mail, Graham clarified the terms of
awarding his prizes:

I always assume that we are working in ZFC (for the chromatic number of the plane!).
My monetary awards can vary depending on which audience I am talking to. I always
give the maximum of whatever I have announced (and not the sum!).

11 See more predictions in Chapter 47.



4
Polychromatic Number of the Plane and Results
Near the Lower Bound

When a great problem withstands all assaults, mathematicians create related prob-
lems. It gives them something to solve, plus sometimes there is an extra gain in this
process, when an insight into a related problem brings new ways to see and conquer
the original one. Numerous problems have been posed around the chromatic number
of the plane. I would like to share with you my favorite among them.

It is convenient to say that a monochromatic set S realizes distance d if S contains
a monochromatic segment of length d; otherwise we say that S forbids distance d.

Our knowledge about this problem starts with the celebrated 1959 book by Hugo
Hadwiger and Hans Debrunner ( [HD2], and subsequently its enhanced translations
into Russian by Isaak M. Yaglom [HD3] and into English by Victor Klee [HDK]).
Hadwiger reported in the book the contents of the September 9, 1958 letter he
received from the Hungarian mathematician A. Heppes:

Following an initiative by P. Erdős he [i.e., Heppes] considers decompositions of the
space into disjoint sets rather than closed sets. For example, we can ask whether propo-
sition 59 remains true in the case where the plane is decomposed into three disjoint
subsets. As we know, this is still unresolved.

In other words, Paul Erdős asked whether it was true that if the plane were parti-
tioned (colored) into three disjoint subsets, one of the subsets would have to realize
all distances. Soon the problem took on its current “appearance.” Here it is.

Erdős’s Open Problem 4.1 What is the smallest number of colors needed for col-
oring the plane in such a way that no color realizes all distances?12

This number had to have a name, and so in 1992 [Soi5] I named it the polychro-
matic number of the plane and denoted it by χp. The name and the notation seemed
so natural that by now it has become standard, and has (without credit) appeared in
such encyclopedic books as [JT] and [GO].

Since I viewed this to be a very important open problem, I asked Paul Erdős to
verify his authorship, suggested in passing by Hadwiger. As always, Paul was very
modest in his July 16, 1991 letter to me [E91/7/16ltr]:

12 The authors of the fine problem book [BMP] incorrectly credit Hadwiger as “first” to study this prob-
lem (p. 235). Hadwiger, quite typically for him, limited his study to closed sets.

32 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 4, C© Alexander Soifer 2009
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I am not even quite sure that I created the problem: Find the smallest number of col-
ors for the plane, so that no color realizes all distances, but if there is no evidence
contradicting it we can assume it for the moment.

My notes show that during his unusually long 2-week visit in December 1991–
January 1992 (we were working together on the book of Paul’s open problems, soon
to be completed and published by Springer under the title Problems of pgom Erdős),
Paul confirmed his authorship of this problem. In the chromatic number of the plane
problem, we were looking for colorings of the plane such that each color forbids
distance 1. In the polychromatic number problem, we are coloring the plane in such a
way that eachcolor i forbidsadistancedi . Fordistinct colors i and j , thecorresponding
forbidden distances di and d j may (but do not have to) be distinct. Of course,

χp ≤ χ.

Therefore,

χp ≤ 7.

Nothing else had been discovered during the first 12 years of this problem’s life.
Then, in 1970, Dmitry E. Raiskii, a student of the Moscow High School for Working
Youth13 105, published ( [Rai]) the lower and upper bounds for χp. We will look
here at the lower bound, leaving the upper bound to Chapter 6.

Raiskii’s Theorem 4.2 (D. E. Raiskii [Rai]) 4 ≤ χp.

Three years after Raiskii’s publication, in 1973 the British mathematician
Douglas R. Woodall from the University of Robin Hood (I mean Nottingham),
published a paper [Woo1] on problems related to the chromatic number of the
plane. Among other things, he gave his own proof of the lower bound. As I showed
in [Soi17], Woodall’s proof stemmed from a triple application of two simple ideas
of Hugo Hadwiger ( [HDK], Problems 54 and 59).

In 2003, the Russian turned Israeli mathematician Alexei Kanel-Belov commu-
nicated to me an incredibly beautiful short proof of this lower bound by the new
generation of young Russian mathematicians, all his students. The proof was found
by Alexei Merkov, a 10th grader from the Moscow High School 91, and commu-
nicated by Alexei Roginsky and Daniil Dimenstein in 1997 at a Moscow Pioneer
Palace [Poisk]. The following is the author’s proof with my gentle modifications.

Proof of the Lower Bound (A. Merkov): Assume the plane is colored in three col-
ors, red, white and blue, but each color forbids a distance: r, w, and b respectively.
Equip the 3-colored plane with the Cartesian coordinates with the origin O , and
construct in the plane three seven-point sets Sr , Sw and Sb each being the Mosers
Spindle (Fig. 2.2), such that all spindles share O as one of their seven vertices,

13 Students in such high schools hold regular jobs during the day, and attend classes at night.
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and have edges all equal to r, w, and b respectively. This construction defines 6
“red” vectors v1, . . . , v6 from the origin O to each remaining point of Sr ; 6 “white”
vectors v7, . . . , v12 from O to the points of Sw; and 6 “blue” vectors v13, . . . , v18

from O to the points of Sb − 18 vectors in all.
Introduce now the 18-dimensional Euclidean space E18 and a function M from

R18 to the plane R2 naturally defined as follows: (a1, . . . , a18) �→ a1v1+. . .+a18v18.
This function induces a 3-coloring of R18 by assigning a point of R18 the color of
the corresponding point of the plane. The first six axes of E18 we will call “red”, the
next six axes “white”, and the last six axes “blue.”

Define by W the subset in E18 of all points whose coordinates include at most
one coordinate equal to 1 for each of the three colors of the axes, and the rest (15
or more) coordinates 0. It is easy to verify (do) that W consists of 73 points. For
any fixed array of allowable in W coordinates on white and blue axes, we get the
7-element set A of points in W having these fixed coordinates on white and blue
axes. The image M(A) of the set A under the map M forms in the plane a translate of
the original seven-point set Sr . If we fix another array of white and blue coordinates,
we get another 7-element set in E18, whose image under M would form in the plane
another translate of Sr . Thus, the set W gets partitioned into 72 subsets, each of
which maps into a translate of Sr .

Now recall the observation we made after the first solution of Problem 2.2 in
Chapter 2. It implies here that any translate of the Mosers Spindle Sr contains at
most 2 red points out of its seven points. Since the set W has been partitioned into
the translates of Sr , at most 2/7 of the points of W are red. We can start all over again
in a similar way to show that at most 2/7 of the points of W are white, and similarly
to show that at most 2/7 of the points of W are blue. But 2/7 + 2/7 + 2/7 does
not add up to 1! This contradiction implies that at least one of the colors realizes all
distances, as required.

At the International Congress on Mathematical Education in 1992 in Quebec
City, I spent much time with Nikolai N. (Kolya) Konstantinov, whose mathematical
circle at the Old Building of Moscow State University I attended as an 8th grader
on Saturday afternoons during the 1962–1963 academic year. To my amazement,
I learned that the hero of this section Dmitrii Raiskii was Konstantinov’s student
as well, just 2 years my junior! It took me many years to get “the full story” out
of Kolya Konstantinov, but it was worth waiting for his February 23, 2007 e-mail,
which I am translating here from the Russian:

Dima Raiskii entered school Nr. 7 in 1965.14 He was a part of a very strong group of
students, from which several professional mathematicians came out, including Lena
Nekhludova, who won gold medal of the International Mathematical Olympiad, Andrej
Grjuntal, now chair of a department in the Institute of System Research, Vasilii Kozlov,
now professor in the department of statistics of the Mechanics-Mathematical Faculty of
the Moscow State University, and several well-known applied mathematicians.

14 This was one of the Soviet Union’s best high schools with the emphasis on mathematics, where courses
were offered by some of the great Moscow State University professors.
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Teachers of main mathematical courses were also very strong, including Joseph
Bernstein, Viktor Zhurkin, formerly a graduate of this school and now a well-known
biochemist, working in the USA.

The teaching method was based on students proving theorems of a course on their
own, and on solving a large number of meaningful problems, which required creative
abilities. . .

Dima performed well in mathematics, but was missing classes, and he had difficul-
ties in other disciplines, in which teachers did not want to pass him because of small
amount of earned credits. However, the main problem was at home. Dima’s father
thought his son was inept and insisted that Dima master a profession of a shoemaker,
so that he could somehow feed himself. When I got to know Dima’s family, I did not
see his father, probably because by then he had already left the family, but I did not
feel I had the right to ask about it.

Without any help, on his own Dima had read Hadwiger and Debrunner’s book on
combinatorial geometry.15 He told me that he solved a problem from that book and
wanted to show it to me. His presentation of the proof was in a “hall style” – very
careless and informal, and l did not understand it right away – I felt, nevertheless, that
the proof seemed plausible.

Dima then wrote down his solution. I made sure that everything was correct.
However, Dima did not have an experience of writing articles, and so I undertook
the “combing” of the text, and gave it the usual for publication look – I introduced
several notations and terms. My work was purely technical; the published text did
not contain my single idea. There was, however, an example, inserted by the Editor
of Mamematiqeskie zametki [Mathematical Notes]16 Stechkin.17 Then a funny
episode happened. The inserted paragraph Stechkin ended with the phrase “the author
thanks Stechkin for this example.” Dima, however, thought that the word “author”
refers to Stechkin in this case, and could not understand how Stechkin could thank
himself.

Meanwhile clouds were thickening over Dima’s head. The school wanted to expel
him for absences, and he got into a children section of a psychiatric hospital. I visited
him there. I saw lads of a school age behaving themselves quite freely. The counselors
looked upon it nonchalantly – what can one ask of the sick ones? One boy, for example,
asked, what would happen if to throw Brezhnev18 into a toilet bowl and flush the toilet?
And other silliness of the same kind.

After the release from the hospital, Dima [was expelled from the mathematical
school Nr. 7 and] transferred to the school [Nr. 105] for working youth. There his
affairs got even worse. He was finishing his senior 11th year, and the teachers’ council
had to decide whether to graduate the student, who missed countless classes and had
almost no grades. At that time, the school received a letter from England. The thing
is, at the end of Dima’s published article there was the school’s number, where he
studied at the time of the article’s publication. The letter was written by the professor

15 [HD3].
16 The journal where this article appeared.
17 Sergei Borisovich Stechkin, a noted Russian mathematician – see his example and more about this
story in chapter 6.
18 Head of the Soviet Union at the time.
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who worked on the same problem, but did not succeed. He informed Raiskii that he
was sending him all the materials because he would no longer work on this problem,
but hoped that Raiskii would be interested in acquainting himself with this unfinished
work. This was not just a letter, but a thick packet, and the letter opened with “Dear
Professor Raiskii.” The lady-principal looked very gloomily during the teachers’ coun-
cil meeting dedicated to the question of Raiskii’s graduation. She opened the meeting
by acquainting the teachers with the content of this letter. She then said, “Let us grad-
uate him.”

In conclusion, let me add that Raiskii’s family difficulties continued. Of course,
Dima’s psyche was not fully normal, but I think that his mother’s psyche played a
more negative role in his life than his own psyche. Here is one of her tricks. After
Dima was released from the hospital, she wrote a letter to the minister of educa-
tion complaining about me and P. S. Alexandrov.19 The school [number 7] prin-
cipal Volkov showed me this letter (which the ministry forwarded to the school).
Dima’s mother claimed in this letter that Alexandrov and Konstantinov politically
corrupted the child, and inoculated the child with the anti-Soviet views. It went
on further to claim that Konstantinov established the power over all Moscow psy-
chiatrists and they all dance to his tune. The principal read this letter to me seri-
ously, without any smile, until the last phrase when he finally allowed himself to
laugh. I do not think it would be interesting to describe other tricks of Dima’s
mother.

While a high school student, Dima tried to solve mathematical problems many
times. In particular, while participating in the Moscow Mathematical Olympiad, he
worked not at all on the problems of the Olympiad, but on his own problems. He then
got involved in the Eastern games of the mind – but I am not an expert in them, and do
not remember their names. After that, I think, you know more about Dima than I do.

I wish you success [with the book]. Kolya.

On the Christmas day, December 25, 2003, the hero of this section, Dima Raiskii,
told me how he came across the polychromatic number of the plane problem:

I learned about our coloring problem while reading the book Combinatorial Geometry
of the Plane by Hadwiger and Debrunner [HD3]. This book was a part of the 3rd prize
that I received at the Moscow Mathematical Olympiad of the 8th graders.

In my phone conversation with Dima Raiskii, I expressed my regret that he left
mathematics after such a brilliant first paper. “Mathematicians appeared boring to
me,” Dima replied, and added: “They were constantly suffering from a feeling of
guilt toward each other, or tried to make others repent. I felt much more at ease
with Go players.” And so Dima worked as a programmer and spent his time playing
the ancient Chinese game Go. Then he gave up the city life, as he informed me on
February 6, 2003:

I now settled in a remote village, where there is neither post nor computer. However,
when I come to the city, I visit an internet-salon. What is new with your studies of
African cultures? Are there meditative practices in Africa?

19 Pavel Sergeevich Alexandrov, one of Russia’s great mathematicians.
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In his e-mails sent on the go from internet cafés, Dima described his involvement
in Go, meditation, and writing books to aid others with meditation and spirituality.

On March 17, 2003 I read:

In the latter years I have played Go. This is the only game richer than chess; it is
popular in China, Japan, Korea, etc. One of my students later became the Russian
Champion for players up to the age of 10. According to the tradition, many Go players
do meditative exercises in the style of Zen because this game equally uses both sides
of the brain. In a close circle, I taught Zen meditation. In the East, however, many
Buddhist authorities use Christian texts for teaching meditation. I am now preparing a
small book of exercises for people raised in the Christian culture. . .

P.S.: Go (brought to Europe by Lasker) is a most interesting object for computer
modeling – in this regard, Go is richer than chess. One of my acquaintances is the
European Champion in Go programming. Are people at Princeton involved in it?

Dima asked me several times to publish his results as a joint work of his and
Nikolai Nikolaevich (Kolya) Konstantinov, his and my mathematics teacher, who—
for better or for worse—influenced my choice of mathematics as profession. Dima
insisted on sharing credit with Kolya, and Kolya categorically refused his share,
because in his opinion, all of the ideas belonged to Dima.

Dima does not communicate with many people. Even his greetings to his
Moscow teacher Konstantinov he sends via me in the USA. His e-mails to me
are always inquisitive and warm. In his November 23, 2006 e-mail he expresses an
appreciation of our correspondence:

News from you always improve my mood. Give my regards to Nikolai Nikolaevich
[Konstantinov].

In his last e-mail to date, on December 19, 2007, Dima wrote:

I was always interested in the Eastern culture and studies of the Eastern religions. In
the old times, however, I could not have publications [on these subjects], and instead
had a lot of troubles. It seems likely that something will be published in the nearest
time. This will start my public “biography.” Will you be interested in my article? . . .

Yours always, Dima.

Dear Dima Raiskii, through the years of our correspondence, we became not
only pen pals, but also friends. The societal pressure altered his life similarly to the
changes in the life of Grisha Perelman, who abandoned mathematics at the peak
of his creative powers, after conquering the celebrated Poincare and Geometriza-
tion conjectures. Their unprotected moral purity and extreme sensitivity made it
difficult for them to deal with the ills of the society in general and the mathemat-
ical community in particular. Our friendship has provided Dima with an outlet for
his thoughts and communication. I hope someone has offered the same to Grisha
Perelman.

P.S.: After this book went into production, I informed Dima that his theorem and
biography will appear in it, as will Van der Waerden’s theorem and biography. On
May 3, 2008 Dima replied:
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Sasha, thank you very much! My biography and biography of Van der Waerden - not a
bad combination. I will be telling my fellow villagers: “Once upon a time I am sitting
with Vanya,20 this Vanya, you know, which is der Waerden, who...” Will definitely read
your book. Happy [W.W.II] Victory Day!

Paul Erdős proposed yet another related problem (e.g., see [E85.01]). For a given
finite set S of r positive numbers, a set of forbidden distances if you will, we define
the graph GS(E2), whose vertices are the points of the plane, and a pair of points is
adjacent if and only if the distance between them belongs to S. Denote

χr = max
S

χ
(
GS(E2)

)
.

“It is easy to see that lim
r→∞ χr

/
r = ∞,” Erdős writes, and poses a question:

Erdős’s Conjecture 4.3 Does χr grow polynomially?

It is natural to call the chromatic number χS
(
E2

)
of the graph GS(E2) the

S-chromatic number of the plane. One can pose a more general and hard problem,
and in fact, it is an old problem of Paul Erdős (“I asked long ago,” Paul says in
[E94.60]):

Erdős’s Open Problem 4.4 Given S, find the S-chromatic number χS
(
E2

)
of

the plane.

The difficulty of this problem should be clear to you: for a 1-element set S this is
the chromatic number of the plane problem!

20 Vanya is a nickname for Ivan. Dima is playing with the likeness of Van [der Waerden] and Vanya.



5
De Bruijn–Erdős Reduction to Finite Sets
and Results Near the Lower Bound

We can expand the notion of the chromatic number to any subset S of the plane. The
chromatic number �(S) of S is the smallest number of colors sufficient for coloring
the points of S in such a way that forbids monochromatic unit segments.

In 1951 Nicolaas Govert de Bruijn and Paul Erdős published a very powerful tool
( [BE2]) that will help us with this and other problems. We will formulate and prove
it in Part V. In our setting here, it implies the following.

De Bruijn–Erdős Compactness Theorem 5.121 The chromatic number of the
plane is equal to the maximum chromatic number of its finite subsets.

Thus, as Paul Erdős used to say, the problem of finding the chromatic number of
the plane is a problem about finite sets in the plane.22

There are other, easier questions about finite sets in the plane. Solve the following
two problems on your own.

Problem 5.2 Find the smallest number �3 of points in a plane set whose chromatic
number is equal to 3.

Problem 5.3 (L. Moser and W. Moser, [MM]) Find the smallest number �4 of points
in a plane set whose chromatic number is 4. (Answer: �4 = 7).

Victor Klee and Stan Wagon posed the following open problem [KW]:

Open Problem 5.4 When k is 5, 6, or 7, what is the smallest number �k of points in
a plane set whose chromatic number is equal to k?

Of course, Problem 5.4 makes sense only if � > 4. In the latter case this problem
suggests a way to attack the chromatic number of the plane problem by constructing
new “spindles.”

When you worked on Problems 5.2 and 5.3, you probably remembered our Prob-
lems 2.1 and 2.2. Indeed, those problems provided optimal configurations (Figs. 2.1
and 2.2) for Problems 5.2 and 5.3. Both optimal configurations were built of equi-
lateral triangles of side 1. Can we manage without them?

21 The axiom of choice is assumed in this result.
22 Or so we all thought until recently. Because of that, I chose to leave this chapter as it was written in
the early 1990s. BUT: see Part X of the book for latest developments.

A. Soifer, The Mathematical Coloring Book, 39
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Problem 5.5 Find the smallest number �3 of points in a plane set without unit equi-
lateral triangles whose chromatic number is equal to 3.

Solution: �3 = 5. The regular pentagon of side 1 (Fig. 5.1) delivers a minimal
configuration of chromatic number 3.

It is easy to 2-color any four-point set A, B, C, D without equilateral triangles
of side 1. Just color A red. All points distance 1 from A color blue; these are the
second generation points. All uncolored points distance 1 from any point of the
second generation, we color red; these are the third generation points. All uncolored
points distance 1 from the points of the third generation, we color blue. If we did not
color all four points, we start this process all over again by coloring any uncolored
point red. If this algorithm were to define the color of any point not uniquely, we
would have an odd-sided n-gon with all sides 1, i.e., an equilateral triangle (since
n ≤ 4), which cannot be present, and thus would provide the desired contradiction.

Fig. 5.1 Equilateral pentagon of side 1

For four colors this was for a while an open problem first posed by Paul Erdős in
July 1975, (and published in 1976), who, as was usual for him, offered to “buy” the
first solution—for $25.

Paul Erdős’s $25 Problem 5.6 [E76.49] Let S be a subset of the plane which con-
tains no equilateral triangles of size 1. Join two points of S if their distance is 1.
Does this graph have chromatic number 3?

If the answer is no, assume that the graph defined by S contains no Cl [cycles of
length l] for 3 ≤ l ≤ t and ask the same question.

It appears that Paul Erdős was not sure of the outcome—which was rare for him.
Moreover, from the next publication of the problem in 1979 [E79.04], it is clear that
Paul expected that triangle-free unit distance graphs had chromatic number 3, or
else chromatic number 3 can be forced by prohibiting all small cycles up to Ck for
a sufficiently large k:

Paul Erdős’s $25 Problem 5.7 [E79.04] “Let our n points [in the plane] are such
that they do not contain an equilateral triangle of side 1. Then their chromatic
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number is probably at most 3, but I do not see how to prove this. If the conjecture
would unexpectedly [sic] turn out to be false, the situation can perhaps be saved by
the following new conjecture:

There is a k so that if the girth of G(x1, . . . , xn) is greater than k, then its
chromatic number is at most three—in fact, it will probably suffice to assume that
G(x1, . . . , xn) has no odd circuit of length ≤ k.”23

Erdős’s first surprise arrived in 1979 from Australia: Nicholas Wormald, then
of the University of Newcastle, Australia, disproved the first, easier, triangle-free
conjecture 5.6. Erdős paid $25 reward for the surprise, and promptly reported it in
his next 1978 talk (published 3 years later [E81.23]):

Wormald in a recent paper (which is not yet published) disproved my original con-
jecture – he found a [set] S for which [the unit distance graph] G1(S) has girth 5 and
chromatic number 4. Wormald’s construction uses elaborate computations and is fairly
complicated.

In his paper [Wor], Wormald proved the existence of a set S of 6448 (!) points
without triangles and quadrilaterals with all sides 1, whose chromatic number was
4, while being aided by a computer. I would like to give you a taste of the initial
Wormald construction (or, more precisely, the Blanche Descartes construction that
Wormald was able to embed in the plane), but it is a better fit in Chapter 12.

The size of Wormald’s example, of course, did not appear to be anywhere near
optimal. Surely, it must have been possible to do the job with less than 6448 points!
In my March-1992 talk at the Conference on Combinatorics, Graph Theory and
Computing at Florida Atlantic University, I shared this Paul Erdős’s old question,
but I put it in a form of competition:

Open Problem 5.8 Find the smallest number �4 of points in a plane set without
unit equilateral triangles whose chromatic number is 4. Construct such a set S of �4

points.

The result exceeded my wildest dreams: a number of young mathematicians,
including graduate students, were inspired by this talk and entered the race I pro-
posed. Coincidentally, during that academic year, with the participation of the cel-
ebrated geometer Branko Grünbaum, and of Paul Erdős, whose problem papers set
the style, I started a new and unique journal Geombinatorics. This journal was dedi-
cated to problem-posing essays on discrete and combinatorial geometry and related
areas (it is still alive and well now, 17 years later). The aspirations of the journal
were clear from my 1991 editor’s page in issue 3 of volume I:

In a regular journal, papers appear 1 to 2 years after research is completed. By then
even the author may not be excited any more about his results. In Geombinatorics we
can exchange open problems, conjectures, aspirations, work-in-progress that is still
exciting to the author, and therefore exciting to the reader.

23 The symbol G(x1, . . . , xn) denotes the graph on the listed inside parentheses n vertices, with two
vertices adjacent if and only if they are unit distance apart.
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A true World Series played out on the pages of Geombinatorics around Prob-
lem 5.8. The graphs obtained by the record setters were as mathematically signif-
icant as they were beautiful. I have to show them to you—see them discussed in
detail in Chapters 14 and 15.

Many attempts to increase the lower bound of the chromatic number of the plane
were not successful. The Rutgers University’s Ph.D. student Rob Hochberg believed
(and still does) that the chromatic number of the plane was 4, while his roommate
and fellow Ph.D. student Paul O’Donnell was of the opposite opinion. They man-
aged to get alone in spite of this disagreement of the mathematical kind. On January
7, 1994, Rob sent me an e-mail to that effect:

Alex, hello. Rob Hochbeg here. (The one who’s gonna prove χ
(
R2

) = 4.). . .. It seems
that Paul O’Donnell is determined to do his Ph. D. thesis by constructing a 5-chromatic
unit distance graph in the plane. He’s got several interesting 4-chromatic graphs, and
great plans. We still get along.

Two months later, Paul O’Donnell’s abstract in the Abstracts book of the Interna-
tional Conference on Combinatorics, Graph Theory and Computing in Boca Raton,
Florida included the following words:

The chromatic number of the plane is between four and seven. A five-chromatic sub-
graph would raise the lower bound. If I discover such a subgraph, I will present it.

We all came to his talk of course (it was easy for me, as I spoke immediately
before Paul in the same room). However, at the start of his talk, Paul simply said
“not yet,” and went on to show his impressive 4-chromatic graph of girth 4. Five
years later, on May 25, 1999, Paul O’Donnell defended his doctorate at Rutgers
University. I served as the outside member of his Ph.D. defense committee. In fact,
it appears that my furniture had something to do with Paul O’Donnell’s remarkable
dissertation, for in the dissertation’s Acknowledgements he wrote:

Thanks to Alex. It all came to me as I drifted off to sleep on your couch.

The problem of finding a 5-chromatic unit distance graph—or proving that one
does not exist—still remains open. However, much was learned about 4-chromatic
unit distance graphs. The best of these results, in my opinion, was contained in this
doctoral dissertation of Paul O’Donnell. He completely solved Paul Erdős’s prob-
lem 5.7, and delivered to Paul Erdős an ultimate surprise by negatively answering
his general conjecture:

O’Donnell’s Theorem 5.9 ([Odo3, Odo4, Odo5]) There exist 4-chromatic unit dis-
tance graphs of arbitrary finite girth.

I chose to divide the proof of this result between Parts III and IX. See you there!



6
Polychromatic Number of the Plane and Results
Near the Upper Bound

6.1 Stechkin’s 6-Coloring

In Chapter 4 we discussed the polychromatic number χp of the plane, and looked at
the 1970 paper [Rai] by Dmitry E. Raiskii where he was first to prove that 4 is the
lower bound of χp. The paper also contained the upper bound:

χp ≤ 6.

The example proving this upper bound was found by S. B. Stechkin and pub-
lished with his permission by D. E. Raiskii in [Rai]. Stechkin has never gotten a
credit in the West for his example. Numerous articles and books credited Raiskii
(except for Raiskii himself!). How did it happen? As everyone else, I read the
English translation of Raiskii’s paper [Rai]. It said (italics are mine):

S. B. Stechkin noted that the plane can be decomposed into six sets such that all dis-
tances are not realized in any one of them. A corresponding example is presented here
with the author’s solution.

I wondered: the author of what?, The author of the paper (as everyone decided)?
But there is very little need for a “solution” once the example is found. I felt as if
once again I was a Sherlock Holmes. I ordered a copy of the original Russian text,
and I read it in disbelief:

A corresponding example is presented here with the author’s permission.

Stechkin permitted Raiskii to publish Stechkin’s example! The translator mixed
up somewhat similarly looking Russian words and “innocently” created a myth
(Table 6.1).

Table 6.1 Translator’s Folly

Russian word English translation

rexenie solution
pazrexenie permission

Let us roll back to the mathematics of this example.

A. Soifer, The Mathematical Coloring Book, 43
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Problem 6.1 (S. B. Stechkin, [Rai]). χp ≤ 6, i.e., there is a 6-coloring of the plane
such that no color realizes all distances.

Solution by S. B. Stechkin [Rai]: The “unit of the construction” is a parallelo-
gram that consists of four regular hexagons and eight equilateral triangles, all of
side lengths 1 (Fig. 6.1). We color the hexagons in colors 1, 2, 3, and 4. Triangles
of the tiling we partition into two types: we assign color 5 to the triangles with a
vertex below its horizontal base; and color 6 to the triangles with a vertex above
their horizontal base. While coloring, we consider every hexagon to include its
entire boundary except its one rightmost and two lowest vertices; and every triangle
does not include any of its boundary points. Now we can tile the entire plane with
translates of the “unit of the construction.”

Fig. 6.1 S.B.Stechkin’s 6-coloring of the plane

An easy construction solved Problem 6.1—easy to understand after it was found.
The trick was to find it, and Sergej B. Stechkin found it first. Christopher Columbus
too “just ran into” America! I got hooked.

6.2 Best 6-Coloring of the Plane

I felt that if our ultimate goal was to find the chromatic number χ of the plane or to
at least improve the known bounds (4 ≤ χ ≤ 7), it may be worthwhile to somehow
measure how close a given coloring of the plane is to achieving this goal. In 1992, I
introduced such a measurement, and named it coloring type.

Definition 6.2 (A. Soifer [Soi5], [Soi6]) Given an n-coloring of the plane such that
the color i does not realize the distance di (1 ≤ i ≤ n). Then we would say that this
coloring is of type (d1, d2, . . . , dn).

This new notion of type was so natural and helpful that it received the ultimate
compliment of becoming a part of the mathematical folklore: it appeared every-
where without a credit to its inventor (look, for example, p. 14 of the fundamental
991-page long monograph [GO]).
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It would have been a great improvement in our search for the chromatic num-
ber of the plane if we were to find a 6-coloring of type (1,1,1,1,1,1), or to show
that one does not exist. With the appropriate choice of a unit, we can make the
1970 Stechkin coloring to have type (1, 1, 1, 1, 1

2 , 1
2 ). Three years later, in 1973

Douglas R. Woodall [Woo1] found the second 6-coloring of the plane with all dis-
tances not realized in any color. Woodall’s coloring had a special property that the
author desired for his purposes: each of the six monochromatic sets was closed. His
example, however, had three “missing distances”: it had type (1, 1, 1, 1√

3
, 1√

3
, 1

2
√

3
).

Apparently, Woodall unsuccessfully tried to reduce the number of distinct distances,
for he wrote “I have not managed to make two of the three ‘missing distances’ equal
in this way” ( [Woo1], p. 193).

In 1991, in search for a “good” coloring I looked at a tiling with regular octagons
and squares that I saw in many Russian public toilettes (Fig. 6.2).

1

1

Fig. 6.2 “Russian toilette tiling”

But “The Russian toilette tiling” did not work! See it for yourself:

Problem 6.3 Prove that the set of all squares in the tiling of Fig. 6.2 (even without
their boundaries) realizes all distances.

I then decided to shrink the squares until their diagonal became equal to the
distance between two closest squares. Simultaneously (!) the diagonal of the now
non-regular octagon became equal to the distance between the two octagons marked
with 1 in Fig. 6.2. I was in business!

Problem 6.4 (A. Soifer [Soi6]) There is a 6-coloring of the plane of type
(1, 1, 1, 1, 1, 1√

5
).

Solution: We start with two squares, one of side 2 and the other of diagonal
1 (Fig. 6.3). We can use them to create the tiling of the plane with squares and
(non-regular) octagons (Fig. 6.5). Colors 1, . . . , 5 will consist of octagons; we will
color all squares in color 6. With each octagon and each square we include half of
its boundary (bold lines in Fig. 6.4) without the endpoints of that half. It is easy to
verify (please do) that

√
5 is not realized by any of the colors 1, . . . , 5; and 1 is not

realized by the color 6. By shrinking all linear sizes by a factor of
√

5, we get the
6-coloring of type (1, 1, 1, 1, 1, 1√

5
).
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To simplify a verification, observe that the unit of my construction is bounded by
the bold line in Fig. 6.5; its translates tile the plane.

Fig. 6.3 Basis of the construction

Fig. 6.4 Coloring of the boundaries

4

1

3

5

3

5

2

4

2

4

1

3

1

3

5

2

5

2

4

1

Fig. 6.5 A. Soifer’s 6-coloring of the plane

I had mixed feelings when I obtained the result of problem 6.4 in early August
1991. On the one hand, I knew the result was “close but no cigar”: after all, a
6-coloring of type (1,1,1,1,1,1) has not been found. On the other hand, I thought
that the latter 6-coloring may not exist, and if so, my 6-coloring would be the best
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possible. There was another consideration as well. While in a Ph.D. program in
Moscow, I hoped to produce the longest paper that might still be accepted by a
major journal (I had one published in 1973 that in manuscript was 56 pages long :-).
This time I was concerned with a “dual record”: how short can a paper be and still
contain enough “beef” to be refereed in and published? The paper [Soi6] solving
problem 6.4 was 1.5 pages long, plus pictures. It was accepted within a day. It also
gave birth to a new definition and an open problem.

Definition 6.5 ( [HS1]) Almost chromatic number χa of the plane is the minimal
number of colors that are required for coloring the plane so that almost all (i.e., all
but one) colors forbid unit distance, and the remaining color forbids a distance.

We have the following inequalities for χa :

4 ≤ χa ≤ 6.

The lower bound follows from Dmitry Raiskii’s [Rai]. I proved the upper bound
in problem 6.4 above [Soi6]. This naturally gave birth to a new problem, which is
still open:

Open Problem 6.6 ( [HS1]) Find χa .

6.3 The Age of Tiling

Hadwiger’s, Stechkin’s and my ornaments (Figs. 2.4, 6.1, and 6.5 respectively)
delivered new mathematical results. They were also aesthetically pleasing. Have

Fig. 6.6 Ancient Chinese Lattice
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Fig. 6.7 Ancient Chinese Lattice

Fig. 6.8 Ancient Chinese Lattice

we contributed something, however little, to the arts? Not really. Nothing is new
in the world of art. We can find Henry Moore’s aesthetics in pre-Columbian art
and Picasso’s cubistic geometrization of form in the art of Sub-Saharan Africa. Our
ornaments too were known for over 1,000 years to artists of China, India, Persia,
Turkey, and Europe. Figures 6.6, 6.7, and 6.8 reproduced with the kind permission
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of the Harvard-Yenching Institute from the wonderful 1937 book A Grammar of
Chinese Lattice by Daniel Sheets Dye ( [Dye]), show how those ornaments were
implemented in old Chinese lattices.

If it is any consolation, I can point out that our Chinese ancestors did not invent
the beauty and strength of the honeycomb either: bees were here first!



7
Continuum of 6-Colorings of the Plane

In 1993 another 6-coloring was found by Ilya Hoffman and I ( [HS1], [HS2]). Its
type was (1, 1, 1, 1, 1,

√
2−1). The story of this discovery is noteworthy. In the sum-

mer of 1993 I was visiting my Moscow cousin Leonid Hoffman, a well-known New
Vienna School composer. His 15-year-old son Ilya studied violin at the Gnesin’s
Music High School. Ilya set out to find out what I was doing in mathematics, and did
not accept any general answers. He wanted particulars. I showed him my 6-coloring
(Problem 6.4), and Ilya got busy. The very next day he showed me the Stechkin
coloring (Fig. 6.1) that he discovered on his own! “Great,” I replied, “but you are
23 years too late.” A few days later, he came up with a new idea of using a 2-square
tiling. Ilya had an intuition of a virtuoso fiddler and no mathematical culture—I
calculated the sizes the squares had to have for the 6-coloring to do the job we
needed, and the joint work of the unusual musician–mathematician team was born.
Today at 30, Ilya has completed the graduate school of Moscow Conservatory in
the class of the celebrated violist and conductor Yuri Bashmet, and is now one of
Russia’s hottest violists and a winner of several international competitions.

Problem 7.1 (I. Hoffman and A. Soifer [HS1], [HS2]) There is a 6-coloring of the
plane of type (1, 1, 1, 1, 1,

√
2 − 1).

Solution: We tile the plane with squares of diagonals 1 and
√

2 − 1 (Fig. 7.1).
We use colors 1, . . . , 5 for larger squares, and color 6 for all smaller squares. With
each square we include half of its boundary, the left and lower sides, without the
endpoints of this half (bold lines in Fig. 7.2).

To easily verify that this coloring does the job, observe the unit of the construc-
tion that is bounded by the bold line in Fig. 7.1; its translates tile the plane.

The two examples, found in solutions of Problems 6.4 and 7.1 prompted me in
1993 to introduce a new terminology for this problem, and to translate the results
and problems into this new language.

Open Problem 7.2 (A. Soifer [Soi7], [Soi8]) Find the 6-realizable set X6 of
all positive numbers α such that there exists a 6-coloring of the plane of type
(1, 1, 1, 1, 1, α).

50 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 7, C© Alexander Soifer 2009
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Fig. 7.1 Hoffman-Soifer’s 6-coloring of the plane

Fig. 7.2

In this new language, the results of Problems 6.4 and 7.1 can be written as
follows:

1√
5
,
√

2 − 1 ∈ X6.

Now we have two examples of “working” 6-colorings. But what do they have
in common? It is not obvious, is it? After a while I realized that they were two
extreme examples of the general case, and in fact a much better result was possible,
describing a whole continuum of “working” 6-colorings!

Theorem 7.3 (A. Soifer [Soi7], [Soi8])

[√
2 − 1,

1√
5

]

⊆ X6,
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y 
x ω

1 

Fig. 7.3

i.e., for every α ∈
[√

2 − 1, 1√
5

]
there is a 6-coloring of type (1, 1, 1, 1, 1, α).24

Proof Let a unit square be partly covered by a smaller square, which cuts off the unit
square vertical and horizontal segments of lengths x and y respectively, and forms
with it an angle � (Fig. 7.3). These squares induce the tiling of the plane that consists
of non-regular octagons congruent to each other and “small” squares (Fig. 7.4).

Now we are ready to color this tiling in 6 colors. Denote by F the unit of our
construction, bounded by a bold line (Fig. 7.4) and consisting of 5 octagons and
5 “small” squares. Use colors 1 through 5 for the octagons inside F and color 6 for
all “small” squares. Include in the colors of octagons and “small” squares the parts
of their boundaries that are shown in bold in Fig. 7.5. Translates of F tile the plane
and thus determine the 6-coloring of the plane. We now wish to select parameters to
guarantee that each color forbids a distance.

4

5

3

2 1

4

5

3

2 1

4

5

3

2 1

4

5

3

2 1

Fig. 7.4

24 Symbol [a, b], a < b, as usual, stands for the line segment, including its endpoints a and b.
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Fig. 7.5

At first, the complexity of computations appeared unassailable to me. However, a
true Math Olympiad approach (i.e., good choices of variables, clever substitutions,
and nice optimal properties of the chosen tilings) allowed for successful sailing.

Let x ≤ y (Fig. 7.3). It is easy to see (Figs. 7.6 and 7.7) that we can split each
“small” square into four congruent right triangles with legs x and y and a square of
side y − x .

The requirement for each color to forbid a distance produces the following sys-
tem of two inequalities (Fig. 7.6):

{
d1 ≥ d2

d3 ≥ d4
(7.1)

d2 
  d1 

  d3

  d4 

Fig. 7.6

y – x

Fig. 7.7
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Figures 7.6 and 7.7 allow for an easy representation of all di , (i = 1, 2, 3, 4) in
terms of x and y. As a result, we get the following system of inequalities:

√

(1 + y − x)2 + (2x)2 ≥
√

1 + (1 − 2x)2

1 − x − y ≥
√

2
(
x2 + y2

)

⎫
⎪⎬

⎪⎭
(7.2)

Solving for x each of the two inequalities (7.2) separately, we unexpectedly get
the following system:

x2 + 2 (1 − y) x + (
y2 + 2y − 1

) ≥ 0

x2 + 2 (1 − y) x + (
y2 + 2y − 1

) ≤ 0

}

Therefore, we get an equation (!) in x and y:

x2 + 2 (1 − y) x + (
y2 + 2y − 1

) = 0.

Treating this as the equation in x , we obtain a unique (!) solution for x as a
function of y that satisfies the system (7.2) of inequalities:

x =
√

2 − 4y + y − 1, where 0 ≤ y ≤ 0.5. (7.3)

Since 0 ≤ x ≤ y, we get even narrower bounds for y : 0.25 ≤ y ≤ √
2 − 1.

For any value of y within these bounds, x is uniquely determined by (7.3) and is
accompanied by the equalities (!) d1 = d2 and d3 = d4.

Thus, we have showed that for every y ∈ [0.25,
√

2 − 1] there is a 6-coloring of
type (1, 1, 1, 1, 1, α). But what values can α take on? Surely,

α = d4

d2
. (7.4)

Let us introduce a new variable Y = √
2 − 4y, where Y ∈ [2 − √

2, 1], i.e.,
4y = −Y 2 + 2, and figure out x from (7.3) as a function of Y :

4y = −Y 2 + 2
4x = −Y 2 + 4Y − 2

}

(7.5)

Now substituting from (7.1) and (7.2) the expressions for d4 and d2 into (7.4) and
using (7.5) to get rid of x and y everywhere, we get a “nice” expression for α2 as a
function of Y (do verify my algebraic manipulations on your own):

α2 = Y 4 − 4Y 3 + 8Y 2 − 8Y + 4

Y 4 − 8Y 3 + 24Y 2 − 32Y + 20
.
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By substituting Z = Y − 2, where Z ∈
[
−√

2,−1
]
, we get a simpler function

α2 of Z :

α2 = 1 + 4Z (Z2 + 2Z + 2)

Z4 + 4
.

To observe the behavior of the function α2, we compute its derivative:

(α2)′ = − 4

(Z4 + 4)2
(Z6 + 4Z5 + 6Z4 − 12Z2 − 16Z − 8).

Normally there is nothing promising about finding exact roots of an algebraic
polynomial of degree greater than 4. But we are positively lucky here, for this sixth
degree polynomial can be nicely decomposed into factors:

(α2)′ = − 4

(Z4 + 4)2
(Z2 − 2)

[
(Z + 1)2 + 1

]2
.

Hence, the derivative has only two zeros. In fact, in the segment of our interest[
−√

2,−1
]
, the only extremum of α2 occurs when Z = −√

2. Going back

from Z to Y to y, we see that on the segment y ∈
[
0.25,

√
2 − 1

]
the function

α = α(y) decreases from α = 1√
5

≈ 0.44721360 (i.e., 6-coloring of problem

6.4) to α = √
2 − 1 ≈ 0.41421356 (i.e., 6-coloring of Problem 7.1). Since the

function α = α(y) is continuous and increasing on
[
0.25,

√
2 − 1

]
, it takes on each

intermediate value from the segment
[√

2 − 1, 1√
5

]
, and only once.

We have proved the required result, and much more:

For every angle ω between the small and the large squares (Fig. 7.3), there are—
and unique—sizes of the two squares (and unique squares intersection parameters x
and y), such that the constructed 6-coloring has type (1, 1, 1, 1, 1, α) for a uniquely
determined α.

This is a remarkable fact: the “working” solutions barely exist—they comprise
something of a curve in a three-dimensional space of the angle ω and two linear
variables x and y! We have thus found a continuum of permissible values for α and
a continuum of “working” 6-colorings of the plane.

Remark: The problem of finding the 6-realizable set X6 has a close relationship
with the problem of finding the chromatic number χ of the plane. Its solution would
shed light—if not solve—the chromatic number of the plane problem:
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if 1 /∈ X6, then χ = 7;

if 1 ∈ X6, then χ ≤ 6.

I am sure you understand that problem 7.2, formulated in just two words, is
extremely difficult.

In 1999, the Russian authorities accused my coauthor and great young musician
Ilya Hoffman of computer hacking and imprisoned him before the trial as “dan-
ger to the society.” I flew to Moscow, met with the presiding judge, met with and
received support from members of the Russian Parliament “Duma,” human rights
leaders, Vice President of the Russian Academy of Sciences and the celebrated jurist
Vladimir Nikolaevich Kudriavtsev.25 When the trial came, Ilya was released home
from the courtroom. While in prison, he was not allowed to play viola, so Ilya wrote
music and mathematics. This page he sent to me from his cell (page 56):

Ilya discovered a new 6-coloring of the plane. Four colors consist of regular
hexagons of diameter 1, and two colors occupy rhombuses. By carefully assigning
colors to the boundaries, we get the 6-coloring of type

(1, 1, 1, 1,

√
3

2
,

√
3

2
).

25 In 1951, Stalin’s Prosecutor General Vyshinskii announced a new legal doctrine: “one is guilty whom
the court finds guilty.” The presumption of innocence he called “bourgeois superstition.” The young senior
lieutenant rose to speak against the new Stalin’s doctrine. This amazing hero was V. N. Kudryavtsev.
It was unforgettable to meet this heroic man and get his full support.
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Chromatic Number of the Plane in Special
Circumstances

As you know from Chapters 4 and 6, in 1973, 3 years after Dmitry E. Raiskii,
Douglas R. Woodall published the paper [Woo1] on problems related to the chro-
matic number of the plane. In the paper he gave his own proofs of Raiskii’s inequal-
ities of Problems 4.1 and 6.1. In the same paper, Woodall also formulated and
attempted to prove a lower bound for the chromatic number of the plane for the
special case of map-type coloring of the plane. This was the main result of [Woo1].
However, in 1979 the mathematician from the University of Aberdeen Stephen
Phillip Townsend found an error in Woodall’s proof, and constructed a counterex-
ample demonstrating that one essential component of Woodall’s proof was false.
Townsend had also found a proof of this statement, which was much more elaborate
than Woodall’s unsuccessful attempt.

The intriguing history of this discovery and Townsend’s wonderful proof are a
better fit in Chapter 24, as a part of our discussion of map coloring—do not overlook
them! Here I will formulate an important corollary of Townsend’s proof.

Chromatic Number of Map-Colored Plane 8.1 The chromatic number of the
plane under map-type coloring is 6 or 7.

Woodall showed that this result implies one more meritorious statement:

Closed Chromatic Number of the Plane 8.2 ( [Woo1]). The chromatic number of
the plane under coloring with closed monochromatic sets is 6 or 7.

I do not like to use the Greek word “lemma” since there is an appropriate English
word “tool” :-). And I would like to offer my readers the following tool from topol-
ogy to prove on their own. We will use this tool in the proof that follows.

Tool 8.3 If a bounded closed set S does not realize a distance d, then there is ε > 0
such that S does not realize any distance from the segment [d − ε, d + ε].

Proof of Result 8.2 [Woo1]: Assume that the union of closed sets A1, A2, . . . , An

covers the plane and for each i the set Ai does not realize a distance di . Place onto
the plane a unit square lattice L , and choose an arbitrary closed unit square U of
L . Choose also i from the set {1, 2, . . . , n}. Denote by C(U )i the closed set that
contains all points of the plane that are at most distance di from a point in U . The set

A. Soifer, The Mathematical Coloring Book, 57
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Ai ∩ C (U )i is closed and bounded, thus by Tool 8.3 there is εi (U ) such that no two
points of Ai , at least one of which lies in U , realize any distance from the segment

[di − εi (U ) , di + εi (U )] . (8.1)

Denote by ε (U ) the minimum of εi (U ) over all i = 1, 2, . . . , n.
Now for the square U we choose a positive integer m (U ) such that

1

2m(U )

√
2 <

1

2
ε (U ) . (8.2)

On the unit square U we place a square lattice L’ of little closed squares u of
side 1

2m(U ) . The inequality (8.2) guarantees that the diagonal of u is shorter than half
of our epsilon ε (U ).

For each little square u contained in each unit square U of the entire plane, we
determine f (u) = min {i : u ∩ Ai �= ∅}, and then for each i = 1, 2, . . . , n define
the monochromatic color set of our new n-coloring of the plane as follows:

Bi =
⋃

f (u)=i

u. (8.3)

As unions of closed squares u, each Bi is closed, and all Bi together cover the
plane. The interiors of these n sets Bi are obviously disjoint. All there is left to prove
is that the set Bi does not realize the distance di . Indeed, assume that the points b,c
of Bi are distance di apart. The points b,c belong to little squares u1,u2 respectively,
each little square of side 1

2m(U ) . Due to the definition (8.3) of Bi , the squares u1,u2

contain points a1,a2 from Ai respectively. With vertical bars denoting the distance
between two points, and by utilizing the inequality (8.2) we get:

|b, c| − ε (U ) < |a1, a2| < |b, c| + ε (U ) ,

i.e.,

di − ε (U ) < |a1, a2| < di + ε (U ) ,

which contradicts (8.1).
Thus, the chromatic number under the conditions of result 8.2 is not smaller than

the chromatic number under the conditions of result 8.1.

During 1993–1994 a group of three young undergraduate students Nathanial
Brown, Nathan Dunfield, and Greg Perry, in a series of three essays, (their first
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publications,) proved on the pages of Geombinatorics [BDP1], [BDP2], [BDP3]26

that a similar result is true for coloring with open monochromatic sets. Now the
youngsters are professors of mathematics, Nathan at the University of Illinois at
Urbana-Champaign, and Nathanial at Pennsylvania State University.

Open Chromatic Number of the Plane 8.4 (Brown–Dunfield–Perry). The chro-
matic number of the plane under coloring with open monochromatic sets is 6
or 7.

26 The important problem book [BMP] mistakenly cites only one of these series of three papers. It also
incorrectly states that the authors proved only the lower bound 5, whereas they raised the lower bound to
6.



9
Measurable Chromatic Number of the Plane

9.1 Definitions

As you know, the length of a segment [a,b], a < b, on the line E1 is defined as
b − a. Area A of a rectangle R = [a1, b1] × [a2, b2], ai < bi on the plane E2 is
defined as A = (b1 −a1)(b2 −a2). The French mathematician Henri Léon Lebesgue
(1875–1941) generalized the notion of area to a vast class of plane sets. In place of
area, he used the term measure. For a set S in the plane, we define its outer measure
μ∗(S) as follows:

μ∗(S) = inf
∑

i

A(Ri ), (9.1)

with the infimum taken over all coverings of S by a countable sequence {Ri } of
rectangles. When the infimum exists, S is said to be Lebesgue-measurable or – since
we consider here no other measures—measurable set—if for any set B in the plane,
μ∗ (B) = μ∗ (B ∩ S) + μ∗ (B\S). For a measurable set S, its measure is defined by
μ (S) = μ∗(S).

Any rectangle is measurable, and its measure coincides with its area. It is shown
in every measure theory text that all closed sets and all open sets are measurable.
Giuseppe Vitali (1875–1932) was first to show that in the standard system of axioms
ZFC for set theory (Zermelo–Fraenkel system plus the Axiom of Choice), there are
non-measurable subsets of the set R of real numbers.

We will use the same definition (9.1) for Lebesgue measure on the line E1, when
the infimum is naturally taken over all covering sequences {Ri } of segments. For
measure of S on the line we will use the symbol l(S). Generalization of the notion
of measure to n-dimensional Euclidean space En is straight forward; here we will
use the symbol μn(S). In particular, for n = 2, we will omit the subscript and simply
write μ(S).

9.2 Lower Bound for Measurable Chromatic Number
of the Plane

While a graduate student in Great Britain, Kenneth J. Falconer proved the following
important result [Fal]:

60 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 9, C© Alexander Soifer 2009
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Falconer’s Theorem 9.1 Let R2 =
4⋃

i=1
Ai be a covering of the plane by four disjoint

measurable sets. Then one of the sets Ai realizes distance 1.

In other words, the measurable chromatic number χm of the plane is equal to 5,
6, or 7.

I found his 1981 publication [Fal1] to be too concise and not self-contained for
the result that I viewed as very important. Accordingly, I asked Kenneth Falconer,
currently a professor and dean at the University of St. Andrews in Scotland, for a
more detailed and self-contained exposition. In February 2005, I received Kenneth’s
manuscript, hand-written especially for this book, which I am delighted to share
with you.

Before we prove his result, we need to get armed with some basic definitions and
tools of the measure theory.

A non-empty collection ·� of subsets of E2 is called σ -field, if ·� is closed under
taking complements and countable unions, i.e.,

∗) if A ∈ ·�, then E2\A ∈ ·�; and
∗∗) if A1, A2, . . . , An, . . . ∈ ·�, then

∞⋃

i=1
Ai ∈ ·�.

Exercise 9.2 Show that any σ -field ·� is closed under countable intersection and set
difference. Also, show that ·� contains the empty set ∅ and the whole space E2.

It is shown in all measure theory textbooks that the collection of all measurable
sets is a σ -field. The intersection of all σ -fields containing the closed sets is a σ -field
containing the closed sets, the minimal such σ -field with respect to inclusion. Its
elements are called Borel sets. Since closed sets are measurable and the collection
of all measurable sets is a σ -field, it follows that all Borel sets are measurable.

(Observe that in place of the plane E2 we can consider the line E1 or an
n-dimensional Euclidean space En , and define their Borel sets.)

The following notations will be helpful:

C(x, r ) – Circle with center at x and radius r ;
B(x, r ) – Circular disk (or ball) with center at x and radius r .

For a measurable set S and a point x , we define the Lebesgue density, or simply
density, of S at x as follows:

D(S, x) = lim
x→0

μ(S ∩ B(x, r ))

μ(B(x, r ))
,

where μ (B(x, r )) is, of course, equal to πr2.

Lebesgue Density Theorem (LDT) 9.3 For a measurable set S ⊂ E2, the density
D(S, x) exists and equals 1 if x ∈ S and 0 if x ∈ R2\S, except for a set of points x
of measure 0.
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For a measurable set A, denote

Ã = {x ∈ A : D(A, x) = 1}.

Then due to LDT, we get μ( Ã
A) = 0, i.e., Ã is ‘almost the same’ as A.27

Observe also that μ (S ∩ B(x, r )) is a continuous function of x for r > 0; therefore,
Ã is a Borel set.

We will define the density boundary of a set A as follows:

�A = {x : D(A, x) �= 0, 1 or does not exist}.

By LDT,

μ(�A) = 0.

You can find on your own or read in [Cro] the proof of the following tool:

Tool 9.4 For a measurable set A ⊂ R2, such that both μ(A) > 0 and μ(R2\A) > 0,
we have �A �= ∅.

Tool 9.5 If R2 =
4⋃

i=1
Ai is a covering of the plane by four disjoint measurable sets,

then
4⋃

i=1
Ãi is a disjoint union with the complement M ≡

4⋃

i=1
�Ai .

Proof follows from Tool 9.4 and the observation that if x ∈ �Ai then also x ∈ �A j

for some j �= i .

The next tool claims the existence of two concentric circles with the common
center in M, which intersect M in length 0.

Tool 9.6 Let M be as in Tool 9.5; there exists x ∈ M such that

l(C(x, 1) ∩ M) = l
(

C(x,
√

3) ∩ M

)
= 0.

x 

y

z 

w 

1 1 

1 

1 1 

Fig. 9.1

27 Here A
B stands for the symmetric difference of these two sets, i.e., A
B = (A\B) ∪ (B\A).
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I will omit the proof, but include Falconer’s insight: “The point of this lemma is
that if we place the “double equilateral triangle” [Fig. 9.1] of side 1 in almost all
orientations with a vertex at x , the point x essentially has “2 colors” in any coloring
of the plane, and other points just one color. (Note |xw| = √

3.)”

Tool 9.7 Let R2 =
4⋃

i=1
Ai be a covering of the plane by four disjoint measurable

sets, none of which realizes distance 1. Let x ∈ M as in Tool 9.6, say without loss

of generality x ∈ �A1 and x ∈ �A2. Then l
(

C(x,
√

3)\( Ã1 ∪ Ã2

)
= 0.

Proof Since x ∈ �A1 and x ∈ �A2, there exists ε > 0 such that

(1) ε <
μ(A1∩B(x,r ))

πr2 < 1 − ε for some arbitrarily small r , and

(2) ε <
μ(A2∩B(x,r ))

πr2 < 1 − ε for some arbitrarily small r .

Consider the diamond (Fig. 9.1) consisting of two unit equilateral triangles xyz
and yzw, where x is the point fixed in the statement of this tool, and y, z, w /∈ M

(this happens for almost all orientations of the diamond, by Tool 9.6). Thus suppose
y ∈ Ãi(y), z ∈ Ãi(z), w ∈ Ãi(w), where i(y), i(z), i(w) ∈ {1, 2, 3, 4}. For
sufficiently small r , say r < r0, we get:

(3) 1 − ε
4 <

μ(Ai(y)∩B(y,r ))
πr2 ≤ 1;

(4) 1 − ε
4 <

μ(Ai(z)∩B(z,r ))
πr2 ≤ 1;

(5) 1 − ε
4 <

μ(Ai(w)∩B(w,r ))
πr2 ≤ 1.

We can now choose r < r0 such that (1) holds (as well as (3), (4), (5)). Let v be
a vector going from the origin to a point in B (0, r ) and consider translation of the
diamond x, y, z, w through v, i.e., to the diamond x + v, y + v, z + v, w + v. Now
(1), (3), (4), (5) imply that

1

πr2
μ

({
v ∈ B(0, r ) : x + v ∈ A1, y + v ∈ Ai(y), z + v ∈ Ai(z), w + v ∈ Ai(w)

})

> ε − ε

4
− ε

4
− ε

4
> 0.

Thus, we can choose v ∈ B (0, r ) such that x + v ∈ A1, y + v ∈ Ai(y), z + v ∈
Ai(z), w + v ∈ Ai(w). Since by our assumption none of the sets Ai , i = 1, 2, 3, 4
realizes distance 1, we conclude (by looking at the translated diamond) that 1 �=
i (y) , 1 �= i (z) , i (y) �= i (z) , i (z) �= i (w), and i (w) �= i (y).

The same argument, using (2), (3), (4), (5) produces 2 �= i (y) , 2 �= i (z) , i (y) �=
i (z) , i (z) �= i (w), and i (w) �= i (y). Therefore, i(y), i(z) are 3 and 4 in some
order, and thus i(w) = 1 or 2, i.e., w ∈ Ã1 or w ∈ Ã2.

By Tool 9.6, this holds for almost every orientation of the diamond. Since |xw| =√
3, we conclude that for almost all w ∈ C(x,

√
3), we get w ∈ Ã1 or w ∈ Ã2. Thus,

l
(

C(x,
√

3)\ (
Ã1 ∪ Ã2

)) = 0, as required.
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Tool 9.8 Let C be a circle of radius r > 1
2 and let E1, E2 be disjoint measurable

subsets of C such that l (C\(E1 ∪ E2) = 0. Then if ϕ = 2 sin−1
(

1
2r

)
is an irrational

multiple of π , either E1 or E2 contains a pair of points distance 1 apart.

1
r

ϕ

Fig. 9.2

Proof Assume that neither E1 or E2 contains a pair of points distance 1 apart.
Parameterize C (Fig. 9.2) by angle θ (mod 2π ).

Let l(E1) > 0, then by LDT, there is θ and ε > 0 such that

l(E1 ∩ (θ − ε, θ + ε)) >
3

4
2ε.

Let θ1 be an angle. Since ϕ is an irrational multiple of π , there is a positive integer
n such that

|θ1 − (2nϕ + θ )| <
1

4
ε (mod 2 π ).

Since neither E1 or E2 contain a pair of points distance 1 apart, we get (with
angles counted mod 2π ):

l (E1 ∩ (θ + kϕ − ε, θ + kϕ + ε)) = l (E1 ∩ (θ − ε, θ + ε)) for even k, and
l (E1 ∩ (θ + kϕ − ε, θ + kϕ + ε)) = 2ε − l (E1 ∩ (θ − ε, θ + ε)) for odd k.

In particular, l (E1 ∩ (θ + 2nϕ − ε, θ + 2nϕ + ε)) > 3
4 2ε, thus

l (E1 ∩ (θ1 − ε, θ + ε)) >
3

4
2ε − ε

4
− ε

4
= ε.

Hence for all θ1,

l (E1 ∩ (θ1 − ε, θ + ε))

2ε
≥ 1

2
,
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and by LDT l (C\E1) = 0. This means that E1 is almost all of C , and therefore
contains a pair of points until distance apart, a contradiction.

Surprisingly, we need a tool from abstract algebra, or number theory.

Tool 9.9 For any positive integer m,
(

1 − i
√

11
)2m

�= (−12)m .

Proof It suffices to note that Q
(√−11

)
is an Euclidean quadratic field, therefore,

its integer ring Z
(√−11

)
(with units +1/ − 1) has unique factorization. (See

Chapters 7 and 8 in the standard abstract algebra textbook [DF] for a proof).
I believe that an alternative proof is possible: it should be not hard to show that

the left side cannot be an integer for any m.

Now we are ready to prove Falconer’s Theorem 9.1.

Proof of Falconer’s Theorem 9.10 Let R2 =
4⋃

i=1
Ai be a covering of the plane by

four disjoint measurable sets, none of which realizes distance 1. Due to Tool 9.6,

there is x ∈ M such that l
(

C(x,
√

3)\( Ã1 ∪ Ã2

)
= 0. Taking E1 = Ã1, E2 = Ã2

and r = √
3, we get, the desired result by Tool 9.8—if only we can prove that

ϕ = sin−1
(

1
2
√

3

)
is an irrational multiple of π . We have sin θ = 1

2
√

3
; cos θ =

√
11

2
√

3
.

Assume mθ is an integer multiple of 2π for some integral 2m. Then

(√
11

2
√

3
+ i

1

2
√

3

)2m

= 1

or

(
1 − i

√
11

)2m
= (−12)m .

We are done, as the last equality contradicts Tool 9.9.

9.3 Kenneth J. Falconer

I am always interested in learning about the life and personality of the author whose
result impressed me, aren’t you! Accordingly, I asked Kenneth to tell me about
himself and his life. The following account comes from his September 30, 2005,
e-mail to me.

I was born on 25th January 1952 at Hampton Court on the outskirts of London (at a
maternity hospital some 100 metres from the gates of the famous Palace). This was
two weeks before Queen Elizabeth II came to the throne and when food rationing
was still in place. My father had served in India for 6 years during the war while my
mother brought up my brother, 12 years my senior, during the London blitz. My parents
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were both school teachers, specializing in English, my brother studied history before
becoming a Church of England minister, and I was very much the ‘black sheep’ of the
family, having a passionate interest in mathematics and science from an early age. . .

I gained a scholarship to Corpus Christi College, Cambridge to read mathematics
and after doing well in the Mathematical Tripos I continued in Cambridge as a research
student, supervised by Hallard Croft. I worked mainly on problems in Euclidean geom-
etry, particularly on convexity and of tomography (the mathematics of the brain scan-
ner) and obtained my PhD in 1977.

I had the good fortune to obtain a Research Fellowship at Corpus Christi College,
where I continued to study geometrical problems, including the fascinating problem of
the chromatic number of the plane, showing in particular that the chromatic number of
a measurable colouring of the plane was at least 5. Also around this time I worked on
generalizations of the Kakeya problem (the construction of plane sets of zero area con-
taining a line segment in every direction). Thus I encountered Besicovitch’s beautiful
idea of thinking of such sets as duals of what are now termed ‘fractals’, with directional
and area properties corresponding to certain projections of the fractals. This led to my
‘digital sundial’ construction – a subset of R3 with prescribed projections in (almost)
all directions. . .

In 1980 I moved to Bristol University as a Lecturer, where the presence of theoretical
physicist Michael Berry, and analyst John Marstrand were great stimulii. Here I started to
workongeometricmeasure theory,or fractalgeometry, inparticular lookingatproperties
of Hausdorff measures and dimensions, and projections and intersections of fractals. . .

It became clear to me that much of the classical work of Besicovitch and his
School on the geometry of sets and measures had been forgotten, and in 1985 I pub-
lished my first book ‘The Geometry of Fractal Sets’ to provide a more up to date and
accessible treatment. This was around the time that fractals were taking the world by
storm, following Mandelbrot’s conceptually foundational work publicised in his book
‘The Fractal Geometry of Nature’ which unified the mathematics and the scientific
applications of fractals. My book led to requests for another at a level more suited to
postgraduate and advanced undergraduate students and in 1990 I published ‘Fractal
geometry – Mathematical Foundations and Applications’ which has been widely used
in courses and by researchers, and has been referred to at conferences as ‘the book
from which we all learnt our fractal mathematics’. A sequel ‘Techniques in Fractal
Geometry’ followed in 1998. In collaboration with Hallard Croft and Richard Guy, I
also authored ‘Unsolved Problems in Geometry’, a collection of easy to state unsolved
geometrical problems. Happily (also sadly!) many of the problems in the book are no
longer unsolved!. . .

In 1993 I was appointed Professor at the University of St Andrews in Scotland, where
I have been ever since. Although St Andrews is a small town famous largely for its
golf, the University has a thriving mathematics department, in particular for analysis and
combinatorial algebra, to say nothing of its renowned History of Mathematics web site.
I became Head of the School of Mathematics and Statistics in 2001, with the inevitable
detrimental effect on research time. I was elected a Fellow of the Royal Society of Edin-
burgh in 1998, and to the Council of the London Mathematical Society in 2000. . .

My main leisure activity is long distance walking and hillwalking. I have climbed
all 543 mountains in Britain over 2500 feet high. I am a keen member of the Long Dis-
tance Walkers Association, having been Editor of their magazine ‘Strider’ from 1986–
91 and Chairman from 2000–03. I have completed the last 21 of the LDWA’s annual
hundred mile non-stop cross-country walks in times ranging from 26 to 32 hours.
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When in 1958 Paul Erdős learned about the chromatic number of the plane problem,
he created a number of related problems, some of which we have discussed in the
preceding chapters. Paul also generalized the problem to n-dimensional Euclidean
space Rn . On October 2, 1991 I received a letter from him, which contained a his-
torical remark [E91/10/2ltr]:28

I certainly asked for the chromatic number of E(n) long ago (30 years).

He was interested in both asymptotic behavior as n increased, and in the exact
values of the chromatic number for small n, first of all n = 3.

As we have already discussed in Chapter 4, in 1970 Dmitry E. Raiskii [Rai]
proved the lower bound for n-dimensional Euclidean spaces.

Raiskii’s Lower Bound 10.1 (Raiskii, 1970).

n + 2 ≤ χ
(
En

)
.

For n = 3 this, of course, gives 5 ≤ χ
(
E3

)
. This lower bound for the three-

dimensional space had withstood 30 years, until in 2000 Oren Nechushtan of Tel
Aviv University improved it (and published 2 years later [Nec]):

Best Known Lower Bound for R3 10.2 (Nechushtan, 2000).

6 ≤ χ
(
E3

)
.

The obvious upper bound of 27 for the chromatic number of 3-dimensional space
was reduced to 21 (it is proved in [Cou1], where credit is given to this book; but of
course, I had nothing to do with it). Then the time had come for David Coulson of
Melbourne University, who reduced the upper bound to 18 [Cou1]. Pay attention to
the dates, as it seems Coulson’s papers are slow to appear in print. The upper bound
of 18 was first submitted in 1993 to the Transaction of the American Mathematical
Society (on September 27, 1993 I received e-mail from Coulson to that effect). Then
(I assume due to lack of interest in the Transactions for this kind of mathematics)

28 Curiously, Paul wrote an improbable date on the letter: “1977 VII 25”.
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Coulson submitted it to Discrete Mathematics on April 24, 1995; he revised the
paper on August 30, 1996, and finally published it in 1997 [Cou1], 4 years after the
initial submission.

Coulson then achieved a truly amazing improvement: he obtained the upper
bound of 15 by using face-centered cubic lattice (see Conway and Sloane [CS] for
more about 3-dimesional lattices). The upper bound of 15 also took 4 years to appear
in print. It was submitted to Discrete Mathematics on December 9, 1998. A month
later I received this manuscript to referee under number DM 9298. Amazingly, a
copy of my February 27, 1999 report survives. I suggested five stylistic improve-
ments, and wrote:

I found the main result to be of high importance to the field. Indeed, Coulson has
dramatically improved his own previous bound of 18 by proving that 15 is an upper
bound of the chromatic number of the 3-space. He conjectures that 15 is the best pos-
sible upper bound if one uses a lattice based coloring. His argument in favor of this
conjecture is good, and we would encourage the author to pursue the proof. . .

The author hints that his methods may produce similar results in other dimensions.
Again, the referee would encourage the pursuit of these results.

I am at a loss to explain why the revised manuscript was received by the editors
only about 2 years later, on December 11, 2000. While writing these lines, I am
looking at the uncorrected proofs that I received from the author—they are dated to
2001. The paper was published much later yet, in 2002 [Cou2].

In August 2002, David Coulson and I played a very unusual role at the Congress
of the World Federation of National Mathematics Competitions in Melbourne: we
were co-presenters of an 80-minute plenary talk, entitled 50 Years of Chromatic
Number of the Plane (we did not sing a duet but rather spoke one at a time). I spoke
about the problem, its history and results for the plane. In his part, David spoke
about his results on upper bounds of the chromatic number of the 3-space. After the
talk, I invited David to submit a version of his part of the talk to Geombinatorics,
where it appeared very quickly, in January issue of 2003 [Cou3].

Best Upper Bound for R3 10.3 (Coulson, 1998–2002).

χ
(
E3

) ≤ 15.

Curiosity surrounding this result did not end with its publication. It was published
again in 2003 by another pair of authors, Rados Radoicic and Géza Tóth [RT]. By the
time they received the proofs, the authors saw the Coulson’s publication. They added
it to the bibliography, and chose to publish their proof based on the same tiling of
3-space. In a copy of this paper downloaded from an author’s homepage I read:

Very recently, Coulson [Cou2] also [sic] proved our [sic] Theorem, moreover, he found
essentially the same coloring.

The comment in the published journal version was fairer toward Coulson:

Added in proof. Very recently, Coulson [Cou2] has independently found a very similar
15-coloring of 3-space.
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I do not agree with the characterization “very recently,” for Coulson first sub-
mitted his paper quite a bit earlier, on December 9, 1998. Yet I have no doubts in
my mind that Radoicic–Tóth found their proof independently and before reading
Coulson’s proof. I believe this is a borderline case as far as credit is concerned. I am
assigning credit to Coulson alone for the following reasons:

1. Radoicic and Tóth saw Coulson’s publication before they received their proofs;
2. Their proof is not essentially different from Coulson’s;
3. Coulson first submitted his paper many years prior, in 1998;
4. Coulson circulated his preprint fairly widely ever since 1998 (I was one of the

recipients).

As I mentioned in my referee report, Coulson informally conjectured that the
upper bound of 15 is best possible for lattice coloring. I dare to conjecture much
more: I think it is the exact value for 3-space every bit as likely as 7 is for the plane:

Chromatic Number of 3-Space Conjecture 10.4

χ
(
E3

) = 15.

Life in 4 and 5 dimensions was studied by Kent C antwell in his 1996 work
[Can1]. His lower bounds are still best known today.

Best Lower Bounds for E4 and E5 10.5 (Cantwell, 1996).

χ
(
E4

) ≥ 7;

χ
(
E5

) ≥ 9.

On March 31, 2008, a month after this book had been submitted to Springer, I
received an impressive submission to Geombinatorics from Josef Cibulka of Charles
University in Prague. His main result offered the new lower bound for the chromatic
number of E6:

Best Lower Bounds for E6 10.6 (Cibulka, 2008).

χ
(
E6

) ≥ 11.

In reply to my inquiry, Josef answered on April 1, 2008:

I am first year graduate student; actually, most results of the submitted paper are from
my diploma thesis.

Do not miss Cibulka’s paper in Geombinatorics: it will appear in issue XVIII(2)
in October 2008. Other results of this paper are a better fit in the next chapter.

A long time ago Paul Erdős conjectured, and often mentioned in his problem
talks [E75.24], [E75.25], [E79.04], [E80.38], [E81.23], [E81.26] that the chromatic
number χ (En) of the Euclidean n-space En grows exponentially in n. In his words:
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Erdős’s Conjecture on Asymptotic Behavior of the Chromatic Number of En

10.7 χ (En) tends to infinity exponentially.

This conjecture was settled in the positive by a set of two results, the 1972
exponential upper bound, found by D. G. Larman and C. A. Rogers, and the 1981
exponential lower bound established by P. Frankl and R. M. Wilson:

Frankl–Wilson’s Asymptotic Lower Bound 10.7 (Frankl and Wilson,1981, [FW])

(1 + o (1)) 1.2n ≤ χ
(
En

)
.

Larman–Rogers’ Asymptotic Upper Bound 10.8 (1972, [LR])

χ
(
En

) ≤ (3 + o (1))n .

Asymptotically Larman–Rogers’ upper bound remains best possible still today.
Frankl–Wilson’s Asymptotic Lower Bound has recently been improved:

Raigorodskii’s Asymptotic Lower Bound 10.9 (2000, [Raig2])

(1.239 . . . + o (1))n ≤ χ
(
En

)
.

Obviously, there is a gap between the lower and upper bounds, and it would be
very desirable to narrow it down.

In Chapter 4 you have met the polychromatic number χp of the plane and in
Chapters 4, 6 and 7 seen the results. This notion naturally generalizes to the poly-
chromatic number χp (En) of Euclidean n-dimensional space En . Dmitry E. Raiskii,
whom we met in Chapter 4, was first to publish a relevant result [Rai]:

Raiskii’s Lower Bound 10.10

n + 2 ≤ χp
(
En

)
.

Larman and Rogers [LR] proved the same asymptotic upper bound for the poly-
chromatic number, as they did for the chromatic number:

Larman–Rogers Upper Bound 10.11

χp
(
En

) ≤ (3 + o (1))n .

They also conjectured that χp (En) grows exponentially in n. The positive proof
of the conjecture, started by Larman and Rogers, was completed by Frankl and
Wilson [FW]:

Frankl–Wilson Lower Bound 10.12

(1 + o (1)) 1.2n ≤ χp
(
En

)
.
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Problem 4.4 can be considered in n-dimensional Euclidean space too. For a given
finite set S of r positive numbers, called a set of forbidden distances, we define the
graph GS(Rn), whose vertices are points of the Euclidean n-space En , and a pair
of points is adjacent if and only if the distance between them belongs to S. We will
naturally call the chromatic number χS (En) of the graph GS(Rn) the S-chromatic
number of n-space En . The following problem is as general as it is hard:

Erdős’s Open Problem 10.13 Given S, find the S-chromatic number χS (En) of the
space En .

By de Bruijn–Erdős compactness theorem that we met in chapter 5, the problem
of investigating S-chromatic number of En is a finite.29

29 De Bruijn–Erdős Theorem assumes the axiom of choice– see Chapters 46–48 for more.
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I would like to mention here one more direction of assault on the chromatic number
of the plane. By placing Cartesian coordinates on the plane E2, we get an algebraic
representation of the plane as the set of all ordered pairs (x, y) with coordinates x
and y from the set R of real numbers, with the distance between two points defined
as usual:

E2 = {(x, y) : x, y ∈ R}. (11.1)

Since by De Bruijn–Erdős’s Theorem 5.1 it suffices to deal with finite subsets
of R2, we can surely restrict the coordinates in (11.1) to some subset of R. The
problem is, which subset should we choose?

A set A is called countable if there is a one-to-one correspondence between A
and the set of positive integers N .

For any set C , we define C2 as the set of all ordered pairs (c1, c2), where c1 and
c2 are elements of C :

C2 = {(c1, c2) : c1, c2 ∈ C}.

Open Problem 11.1 Find a countable subset C of the set of real numbers R such
that the chromatic number �(C2) is equal to the chromatic number �(E2) of
the plane.

The set Q of all rational numbers would not work, as Douglas R. Woodall showed
in 1973.

Chromatic Number of Q2 11.2 (D. R. Woodall, [Woo1])

χ (Q2) = 2.

Proof by D. R. Woodall ([Woo1]): We need to color the points of the rational plane
Q2, i.e., the set of ordered pairs (r1, r2), where r1 and r2 are rational numbers. We
partition Q2 into disjoint classes as follows: we put two pairs (r1, r2), and (q1, q2)
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into the same class if and only if both r1 − q1 and r2 − q2 have odd denominators

when written in their lowest terms (an integer n is written in its lowest terms as
n

1
).

This partition of Q2 into subsets has an important property: if the distance
between two points of Q2 is 1, then both points belong to the same subset of the
partition! Indeed, let the distance between (r1, r2), and (q1, q2) be equal to 1. This
means precisely that

√

(r1 − q1)2 + (r2 − q2)2 = 1,

i.e.,

(r1 − q1)2 + (r2 − q2)2 = 1

Let r1 − q1 = a

b
and r2 − q2 = c

d
be these differences written in their lowest

terms. We have
(a

b

)2
+

( c

d

)2
= 1

i.e.,

a2d2 + b2c2 = b2d2.

Therefore, b and d must be both odd (can you see why?), i.e., by our definition
above, (r1, r2), and (q1, q2) must belong to the same subset.

Since any class of our partition can be obtained from any other class of the par-
tition by a translation (can you prove this?), it suffices for us to color just one class,
and extend the coloring to the whole Q2 by translations. Let us color the class that
contains the point (0,0). This class consists of the points (r1, r2), where in their
lowest terms the denominators of both r1, r2 are odd (can you see why?). We color

red the points of the form
(o

o
,

o

o

)
and

( e

o
,

e

o

)
, and color blue the points of the form

(o

o
,

e

o

)
and

( e

o
,

o

o

)
, where o stands for an odd number and e for an even number.

In this coloring, two points of the same color may not be distance 1 apart (prove this
on your own).

Then there came a “legendary unpublished manuscript,” as Peter D. Johnson, Jr.
referred [Joh8] to the paper by Miro Benda, then with the University of Washington,
and Micha Perles, then with the Hebrew University, Jerusalem. The widely circu-
lated and admired manuscript was called Colorings of Metric Spaces. Peter Johnson
tells its story on the pages of Geombinatorics [Joh8]:

The original manuscript of “Colorings. . .,” from which some copies were made and
circulated (and then copies were made of the copies, etc.), was typed in Brazil in 1976.
I might have gotten my first or second generation copy in 1977. . . . The paper was a
veritable treasure trove of ideas, approaches, and results, marvelously informative and
inspiring.
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During the early and mid 1980s “Colorings. . .” was mentioned at a steady rhythm,
in my experience, at conferences and during visits. I don’t remember who said what
about it, or when (except for a clear memory of Joseph Zaks mentioning it, at the
University of Waterloo, probably in 1987), but it must surely win the all-time prize for
name recognition in the “unpublished manuscript” category.

Johnson’s story served as an introduction and homage to the conversion of the
unpublished manuscript into the Benda–Perles publication [BP] in Geombinatorics’
January 2000 issue.

This paper, dreamed up in the fall of 1975 over a series of lunches the two authors
shared in Seattle, created a new, algebraic approach to the chromatic number of the
plane problem. Moreover, it formulated a number of open problems, not directly
connected to the chromatic number of the plane, problems that gave algebraic chro-
matic investigations their own identity. Let us take a look at a few of their results
and problems. First of all, Benda and Perles prove (independently; apparently they
did not know about the Woodall’s paper) Woodall’s result 11.2 about the chromatic
number of the rational plane. They are a few years too late to coauthor the result,
but their analysis allows an insight into the algebraic structure that we do not find in
Woodall’s paper. They then use this insight to establish more sophisticated results
and the structure of the rational spaces they study.

Chromatic Number of Q3 11.3 (Benda & Perles [BP])

�(Q3) = 2.

Chromatic Number of Q4 11.4 (Benda & Perles [BP])

�(Q4) = 4.

Benda and Perles then pose important problems.

Open Problem 11.5 (Benda & Perles [BP]) Find �(Q5) and, in general, �(Qn).

Open Problem 11.6 (Benda & Perles [BP]) Find the chromatic number of Q2(
√

2)
and, in general, of any algebraic extension of Q2.

This direction was developed by Peter D. Johnson, Jr. from Auburn University
[Joh1], [Joh2], [Joh3], [Joh4], [Joh5] and [Joh6]; Joseph Zaks from the University
of Haifa, Israel [Zak1], [Zak2], [Zak4], [Zak6], [Zak7]; Klaus Fischer from George
Mason University [Fis1], [Fis2]; Kiran B. Chilakamarri [Chi1], [Chi2], [Chi4]; Dou-
glas Jungreis, Michael Reid, and David Witte ([JRW]); and Timothy Chow ([Cho]).
In fact, Peter Johnson has published in 2006 in Geombinatorics “A Tentative History
and Compendium” of this direction of research inquiry [Joh9]. I refer the reader to
this survey and works cited there for many exciting results of this algebraic direction.

In the recent years Matthias Mann from Germany entered the scene and
discovered partial solutions of Problem 11.5, which he published in Geombina-
torics [Man1].

Lower Bound for Q5 11.7 (Mann [Man1])

�(Q5) ≥ 7.
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This jump from �(Q4) = 4 explains the difficulty in finding �(Q5), exact
value of which remains open. Matthias then found a few more important lower
bounds [Man2].

Lower Bounds for Q6, Q7 and Q8 11.8 (Mann [Man2])

�(Q6) ≥ 10;

�(Q7) ≥ 13;

�(Q8) ≥ 16.

In reply to my request, Matthias Mann wrote about himself on January 4, 2007:

As I have not spent much time on Unit Distance-Graphs since the last article in Geom-
binatorics 2003, I do not have any news concerning this topic. To summarize, I found
the following chromatic numbers:

Q5 >= 7
Q6 >= 10
Q7 >= 13
Q8 >= 16

The result for Q8 improved the upper bounds for the dimensions 9–13.
For the Q7 I think that I found a graph with chromatic number 14, but up to now I

cannot prove this result because I do not trust the results of the computer in this case.
Now something about me: I was born on May 12th 1972 and studied mathematics at

the University of Bielefeld, Germany from 1995–2000. I wrote my Diploma-thesis (the
“Dipl.-Math.” is the old German equivalent to the Master) in 2000. It was supervised by
Eckhard Steffen, who has worked on edge-colorings. I had the opportunity to choose
the topic of my thesis freely, so I red the book “Graph Coloring Problems” by Tommy
Jensen and Bjarne Toft (Wiley Interscience 1995) and was very interested in the article
about the Hadwiger-Nelson-Problem, and found the restriction to rational spaces even
more interesting. After reading articles of Zaks and Chilakamarri (a lot of them in
Geombinatorics), I started to work on the problem with algorithms.

Unfortunately, I had no opportunity to write a Ph.D.-thesis about unit distance-
graphs, so I started work as an information technology consultant in 2000.

In the previous chapter, you have already met Josef Cibulka, a first year graduate
student at Charles University in Prague. His essay submitted to Geombinatorics
on March 31, 2008, a month after this book was sent off to Springer, contained
new lower bounds for the chromatic numbers of rational spaces, improving Mann’s
results:

Newest Lower Bounds for Q5 and Q7 11.9 (Cibulka, [Cib])

�(Q5) ≥ 8;

�(Q7) ≥ 15.

Cibulka’s paper will be published in the October 2008 issue XVIII(2) of Geom-
binatorics.
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We started this chapter with Woodall’s 2-coloring of the rational plane
(result 11.2). I would like to finish with it, as a musical composition requires.
This Woodall’s coloring has been used in July 2007 by the Australian undergrad-
uate student Michael Payne to construct a wonderful example of a unit distance
graph—do not miss it in Chapter 46!



III
Coloring Graphs



12
Chromatic Number of a Graph

12.1 The Basics

The notion of a graph is so basic, and so unrestrictive, that graphs appear in all fields
of mathematics, and indeed in all fields of scientific inquiry.

A graph G is just a non-empty set V (G) of vertices and a set E(G) of unordered
pairs {v1, v2} of vertices called edges. If e = {v1, v2} is an edge, we say that e and v1

are incident, as are e and v2; we also say that v1 and v2 are adjacent or are neighbors.
Simple, don’t you think?
By all standards of book writing, I am now supposed to give you an example of

a graph. Why don’t you create your own example instead! As the set V of vertices
take the set of all cities you have ever visited. Call two cities a and b from V adjacent
if you have ever traveled from one of them to the other. Let us denote Your Travel
graph by T (Y ).

We can certainly represent T (Y ) in the plane. Just take a map of the world, plot
the dot for each city you’ve been in, and draw the lines (edges) of all of your travels
(the shape of edges does not matter, but do not connect two adjacent vertices a and
b of T (Y ) by more than one edge even if you have traveled various routes between
a and b).

We often represent graphs in the plane as we have just done for T (Y ), where the
only things that matter are the set of vertices (but not their positions), and which
vertices are adjacent (but not the shape of edges, which we presume have no points
in common, except vertices of the graph incident with them).

In fact, you can think of a graph as a set of pins some of which are connected
by rubber bands. So we consider the graph unchanged if we reposition the pins and
stretch the rubber bands. Thus, we call two graphs isomorphic if “pins” of one of
them can be repositioned and its “rubber bands” can be stretched so that this graph
becomes graphically identical to the other graph.

More formally, two graphs G and G1 are called isomorphic if there is a one-to-
one correspondence f : V → V1 of their vertex sets that preserves adjacency, i.e.,
vertices v1 and v2 of G are adjacent if and only if the vertices f (v1) and f (v2) of
G1 are adjacent.

A. Soifer, The Mathematical Coloring Book, 79
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For example, the two graphs in Fig. 12.1 are isomorphic while the two graphs
in Fig. 12.2 are not (prove both facts on your own, or see the proof, for example,
in [BS] pp. 102–105).

Fig. 12.1 Isomorphic
graphs

Fig. 12.2 Non-isomorphic
graphs

I would like to get to our main interest, coloring, as soon as possible. Thus, I will
stop my introduction to graphs here and refer you to [BS] for a little more about
graphs; you will find much more in books dedicated exclusively to graphs, such
as [BLW], [Har0], [BCL] and a great number of other books. In fact, graph theory
is lucky: it has inspired more enjoyable books than most other relatively new fields.

The notion of the chromatic number of the plane (Chapter 2) was clearly moti-
vated by a much older notion of the chromatic number of a graph. As Paul Erdős
put it in his 1991 letter to me [E91/10/2ltr]:

Chromatic number of a graph is ancient.

The chromatic number χ (G) of a graph G is the minimum number n of colors
with which we can color the vertices of G in such a way that no edge of G is
monochromatic (i.e., no edge ab has both vertices a and b identically colored). In
this case we can also say that G is an n-chromatic graph.

A graph G is called n-colorable if it can be colored in n colors without monochro-
matic edges. In this case, of course, χ (G) ≤ n.

Let us determine chromatic numbers of some popular (and important) graphs.
A n-path Pn from x to y is a graph consisting of n distinct vertices v1, v2, . . . , vn

and edges v1v2, v2v3, . . . , vn−1vn , where x = v1, y = vn . If n ≥ 3 and we add
the edge vnv1, we obtain an n-cycle Cn .

Problem 12.1 Prove that

χ (Cn) =
{

2, if n is even
3, if n is odd

Problem 12.2 For a graph G, χ (G) ≤ 2 if and only if G contains no n-cycles for
any odd n.

Such a graph has a special name: bipartite graph.
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In particular, the complete bipartite graph Km,n has m vertices of one color and n
vertices of the other, and two vertices are adjacent if and only if they have different
colors. In Fig. 12.3 you can find examples of complete bipartite graphs.

Fig. 12.3 Examples of
complete bipartite graphs

A complete graph Kn consists of n vertices every two of which are adjacent. In
Fig. 12.4 you will find complete graphs Kn for small values of n.

Fig. 12.4 Examples of
complete graphs

Problem 12.3 Is there an upper limit to chromatic numbers of graphs?

Solution: Since every two vertices of Kn are adjacent, they all must be assigned
distinct colors. Thus χ (Kn) = n, and there is no upper limit to chromatic numbers
of graphs.

The number of edges incident to a vertex v of the graph G is called the degree
of v, and is denoted by degGv. The maximal degree of a vertex in G is denoted by
Δ(G).

If v is a vertex of a graph G, then G − v denotes a new graph obtained from G
by deleting v and its incident edges.

Problem 12.4 For any graph G with finitely many vertices

χ (G) ≤ Δ(G) + 1.

Proof Let G be a graph of chromatic number χ (G) = n. If there is a vertex v in G,
such that χ (G − v) = n, we replace G by G − v. We can continue this process of
deleting one vertex at a time with its incident edges until we get a graph G1, such
that χ (G1) = n but χ (G1 − v) ≤ n − 1 for any vertex v of G1.

Let v1 be the vertex of maximum degree in G1, then
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Δ(G) ≥ Δ(G1) = degG1
v1.

If we can prove that degG1v1 ≥ n − 1, then coupled with the inequality above,
we would get Δ(G) ≥ n − 1, which is exactly the desired inequality.

Assume the opposite, i.e., degG1v1 ≤ n − 2. Since χ (G1 − v1) ≤ n − 1, we color
the graph G1 − v1 in n − 1 colors. In order to get a (n − 1)-coloring of G1, we have
to just color the vertex v1. We can do it because degG1v1 ≤ n − 2, i.e., v1 is adjacent
to at most n − 2 other vertices of G1 (Fig. 12.5), thus at least one of the n − 1 colors
is unused around v1. We use it on v1. Thus, χ (G1) ≤ n − 1, in contradiction to
χ (G1) = n.

Fig. 12.5

R. Leonard Brooks of Trinity College, Cambridge, in his now classic theorem,
reduced the above upper bound by 1 (for most graphs), to the best possible general
bound. His result was communicated by William T. Tutte on November 15, 1940
and published the following year [Bro].

Brooks’ Theorem 12.5 ([Bro]) If Δ(G) = n > 2 and the graph G has no compo-
nent Kn then

χ (G) ≤ Δ(G).

12.2 Chromatic Number and Girth

W. T. Tutte, R. L. Brooks and Company pulled off the Blanche Descartes stint not
unlike the better known Nicolas Bourbaki. Arthur M. Hobbs and James G. Oxley
convey the story of Blanche Descartes in the memorial article “William T. Tutte
1917–2002” [HO]:

Not long after he started his undergraduate studies at Cambridge, Tutte was introduced
by his chess-playing friend R. Leonard Brooks to two of Brooks’s fellow mathematics
students, Cedric A. B. Smith and Arthur Stone. The four became fast friends and Tutte
came to refer to the group as “the Gang of Four,” or “the Four”. The Four joined the
Trinity Mathematical Society and devoted many hours to studying unsolved mathe-
matics problems together.

They were most interested in the problem of squaring a rectangle or square that
is, of finding squares of integer side lengths that exactly cover, without overlaps, a
rectangle or square of integer side lengths. If the squares are all of different sizes, the
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squaring is called perfect. While still undergraduates at Cambridge, the Four found an
ingenious solution involving currents in the wires of an electrical network. . .

The Gang of Four were typical lively undergraduates. They decided to create a
very special mathematician, Blanche Descartes, a mathematical poetess. She published
at least three papers, a number of problems and solutions, and several poems. Each
member of the Four could add to Blanche’s works at any time, but it is believed that
Tutte was her most prolific contributor.

The Four carefully refused to admit Blanche was their creation. Visiting Tutte’s
office in 1968, Hobbs had the following conversation with him:

Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I could
buy your extra copy?”

Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.”

However, I found at least one occasion when Tutte allowed to use his name in
place of Blanche Descartes. Paul Erdős narrates [E87.12]:

Tutte sometimes published his results under the pseudonym Blanche Descartes, and in
one of my papers quoting this result I referred to Tutte. Smith wrote me a letter saying
that Blanche Descartes will be annoyed that I attributed her results to Tutte (he clearly
was joking since he knew that I know the facts), but Richard [Rado] was very precise
and when in our paper I wanted to refer to Tutte, Richard only agreed after I got a letter
from Smith stating that my interpretation was correct.

You may wonder, what paper by Blanche Descartes does Paul Erdős refer to? Our
story commences with the problem [Des1] Blanche Descartes published in April
1947. To simplify the original language used by Descartes, let me introduce here a
notion of the girth of a graph G as the smallest number of edges in a cycle in G.

Descartes’ Problem 12.6 ( [Des1], 1947) Find a 4-chromatic graph of girth 6.

Descartes’ solution appeared in 1948 [Des2]. This was the start of an exciting
train of mathematical thought. In 1949 the first Russian graph theorist Alexander A.
Zykov produced the next result [Zyk1]. He limited the restriction to just triangles,
but asked in return for arbitrarily large chromatic number:

Zykov’s Result 12.7 ( [Zyk1], 1949) There exist a triangle-free graph of arbitrarily
large chromatic number.

Zykov’s 1949 comprehensive publication [Zyk1] contained a construction
proving his result. The cold war and the consequent limited exchange of infor-
mation apparently made Zykov’s advance unknown in the West. In 1953, Peter
Ungar formulated the same problem in the American Mathematical Monthly [Ung],
which attracted much of attention and results. The Monthly chose not to publish
the proposer’s solution (which was supposedly similar to that of Zykov). Instead
in 1954 The Monthly published a solution by Blanche Descartes [Des3], which
both generalized Descartes’ own 1948 result and solved Zykov–Ungar’s problem:
Descartes constructed graphs of arbitrarily large chromatic number which contained
no cycles of less than six lines. This [Des3] was the Blanche Descartes’ paper
that Paul Erdős referred to in the quote above, and it was written by William T.
Tutte alone.
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John B. Kelly and Le Roy M. Kelly obtained a very similar construction in the
same year ( [KK]). Finally Jan Mycielski, originally from Poland and now Professor
Emeritus at the University of Colorado at Boulder, published his original construc-
tion [Myc] in 1955.

Let us look at mathematics of this explosion of constructions. We will start with
an exercise showing how to increase the chromatic number by attaching 3-cycles.

Problem 12.8 Let T be a 3-cycle with its vertices labeled 1, 2, and 3, and R a set
of 7 vertices labeled 1, 2, . . ., 7 (Fig. 12.6). For each 3-element subset V of the
foundation set R we construct a copy TV of T and attach it to R by joining vertex
1 of TV with the lowest numbered vertex of V , vertex 2 of TV with the middle
numbered vertex of V , and vertex 3 of TV with the highest numbered vertex of V .
In Fig. 12.7, for example, this connection is drawn for V = {2, 3, 6}.

Fig. 12.6 A 3-cycle and the foundation set R

Fig. 12.7 A 3-cycle attached to the foundation set R

Since the number of 3-element subsets of the 7-element set R is equal to

(
7
3

)

=
7·6·5
1·2·3 = 35, the resultant graph G has 7+3 ·35 = 112 vertices. Prove that �(G) = 4.

Proof Four colors suffice to color G, since each Tv in G can be colored with the
first three colors and all the vertices of R with the fourth color. Thus �(G) ≤ 4.

Assume now that the graph G is 3-colored. Then by the Pigeonhole Principle,
among the seven vertices of R there are three, say vertices 2, 3, and 6 that are
colored in the same color, say color A. Then (Fig. 12.7) the color A is not present in
the coloring of T{2,3,6}, thus T{2,3,6} is 2-colored. But this is a contradiction since by
Problem 12.1 a 3-cycle cannot be 2-colored. Hence, �(G) = 4.

Problem 12.9 Use the construction of Problem 12.8 with the Mosers Spindle
(Fig. 2.2) in place of T and a 25-point foundation set R. What is the chromatic
number of the resulting graph G? How many vertices does G have?
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The answer should serve as a hint: a 5-chromatic graph on 25 + 7

(
25
7

)

=
3, 364, 925 vertices.

In his monograph [Har0], Frank Harary discloses the secret authorship of one
result: “this so-called lady [Descartes] is actually a non-empty subset of {Brooks,
Smith, Stone, Tutte}; in this [Des3] case {Tutte}.” Let us take a look at Blanche
Descartes’ (Tutte’s) construction.

Blanche Descartes’s Construction 12.10 [Des3] For any integer n > 1 there
exists an n-chromatic graph Gn of girth 6.

Proof For the case n = 2 we just pick a 6-cycle: G2 = C6. For n ≥ 3 we define
a sequence of graphs G3, G4 . . . , Gn, . . . by induction. Let G3 be a 7-cycle:
G3 = C7.

Assume that the graph Gk is defined and has Mk vertices. We need to construct
Gk+1. The construction is the same as in problem 12.8. Let R be a set of k(Mk −
1) + 1 vertices. For each Mk-element subset U of R we construct a copy GU

k of Gk ,
then pick a one-to-one correspondence f U between the vertices of U and GU

k (two
Mk-element sets surely have one), and finally connect by edges the corresponding
vertices of U and GU

k . The resulting graph is Gk+1.
Thus, we have constructed the graphs G3, G4, . . . , Gn, . . . . No graph Gn has a

cycle of less than 6 edges (can you prove it?).
By induction we can prove that �(Gn) ≥ n for every n ≥ 3. Indeed, G3 is

3-chromatic as an odd cycle.
Assume that �(Gk) ≥ k for some k ≥ 3. We need to prove that

χ (Gk+1) ≥ k + 1.

If to the contrary �(Gk+1) ≤ k, then by the Pigeonhole Principle, out of k(Mk −
1)+1 vertices of the set R, there will have to be an Mk-element subset U of vertices
all colored in same color, say color A. But then color A is not present in the copy
GU

k of Gk , i.e., the graph Gk can be (k − 1)-colored in contradiction to the inductive
assumption. The induction is complete.

Please note that we proved the inequality �(Gn) ≥ n. Since we want to have
the equality, we may have to delete (one at a time) some vertices of Gn and their
incident edges until we end up with G ′

n such that �(G ′
n) = n.

Mycielski’s Construction 12.11 [Myc] For any integer n > 1 there exists a
triangle-free n-chromatic graph.

Proof You may ask why should we bother to prove the result that is weaker than
Descartes’ and Kelly & Kelly’s result 12.10? It is simply because this is a different
construction and it will work best for us in Section 15.1.

Start with a triangle-free (k − 1)-chromatic graph G. For each vertex vi of G add
a new vertex wi adjacent to all neighbors of vi . Next, add a new vertex z adjacent
to all new vertices wi . The chromatic number of this new graph is k, and it is still
triangle-free.
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Fig. 12.8 The Mycielski–Grötzsch Graph

Observe that if we were to start with a 5-cycle, then the graph generated
by the Mycielski’s construction is the unique smallest triangle-free 4-chromatic
graph (Fig. 12.8). Three years later, in 1958, this graph was independently found
by Herbert Grötzsch [Grö], and thus it makes sense to call it the Mycielski–
Grötzsch Graph. We will discuss Grötzsch’s reasons for discovering this graph in
Section 19.3.

The next major advance in our train of thought took place in 1959, when Paul
Erdős, using probabilistic methods, dramatically strengthened the result 12.10.

Erdős’s Theorem 12.12 (P. Erdős, [E59.06]). For every two integers m, n ≥ 2,
there exists an n-chromatic graph of girth m.

An alternative, non-probabilistic proof of this result was obtained in 1968 by the
Hungarian mathematician László Lovász [Lov1].

The greatest result was still to come 30+ years after Lovász. Paul O’Donnell
proved the existence of 4-chromatic unit distance graphs of arbitrary girth. We will
look at this remarkable piece of work later in the book, in Chapters 14 and 45.

Paul Erdős posed numerous exciting open problems related to the chromatic
number of a graph. Let me share with you one such still open problem that I found
in Paul’s 1994 problem paper [E94.26].

Erdős’s Open Problem on 4-Chromatic Graphs 12.13 Let G be a 4-chromatic
graph with lengths of the cycles m1 < m2 < . . . . Can min (mi+1 − mi ) be arbitrarily
large? Can this happen if the girth of G is large?

12.3 Wormald’s Application

In Chapter 5, I described Paul Erdős’s problem conquered by Nicholas C. Wormald
[Wor]. Wormald’s first step was to construct what I will call the Wormald Graph;
he then embedded it in the plane. In the construction Wormald used the Descartes
construction of Problem 12.10. In Problem 12.8 I showed how one can use this
construction; analogously, Wormald uses a 5-cycle in place of T and a 13-point
foundation set R. For each 5-element subset V of R he constructs a copy TV of T ,
fixes a one-to-one correspondence of the vertices of V and TV and attaches TV to V
by connecting the corresponding vertices.
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He ends up with the graph G on 13 + 5

(
13
5

)

= 6448 vertices. Wormald uses

5-cycles because his goal is to construct a 4-chromatic graph of girth 5. I leave the
pleasure of proving these facts to the reader:

Problem 12.14 (N. C. Wormald, [Wor]) Prove that the Wormald graph G is indeed
a 4-chromatic girth 5 graph.

So what is so special about Nicholas Wormald’s 1979 paper [Wor]? Even though
independently discovered (I think), didn’t he use the construction that was published
25 years earlier by Blanche Descartes [Des3]? The real Wormald’s trick was to
embed his huge 6448-vertex graph in the plane, i.e., draw his graph on the plane with
all adjacent vertices, and only them, distance 1 apart. In my talk at the conference
dedicated to Paul Erdős’s 80th birthday in Keszthely, Hungary in July 1993, I pre-
sented Wormald’s graph as a picture frame without a picture inside it, to indicate that
Wormald proved the existence and did not actually draw his graph. Nick Wormald
accepted my challenge and on September 8, 1993 mailed to me a drawing of the
actual plane embedding of his graph. I am happy to share his drawing with you
here. Ladies and Gentlemen, the Wormald Graph! (Fig. 12.9).

Fig. 12.9 The 6448-vertex
Wormald Graph embedded
in the plane

In his doctoral dissertation (May 25, 1999, Rutgers University) Paul O’Donnell
offered a much simpler embedding than the Wormald’s one—see it in Chapter 14,
where I present Paul’s machinery for embedding unit distance graphs in the plane.

However, the following problem, is open.

Open Problem 12.15 Find the smallest number �4 of vertices in a 4-chromatic unit
distance graph without 3- and 4-cycles.

We know, of course, ( [Wor]) that �4 ≤ 6448. Chapters 14 and 15 will be dedi-
cated to major improvements in this direction.



13
Dimension of a Graph

13.1 Dimension of a Graph

In 1965, a distinguished group of mathematicians consisting of Paul Erdős,
Frank Harary, and William Thomas Tutte created a notion of the dimension of
a graph ([EHT]).

They defined the dimension of a graph G, denoted dimG, as the minimum number
n such that G can be embedded in the n-dimensional Euclidean space En with
every edge of G being a segment of length 1. We will call such an embedding here
1-embedding.

Dimensions of some popular graphs can be easily found.

Problem 13.1 (EHT) Prove the following equalities for complete graphs:

dimK3 = 2,

dimK4 = 3,

dimKn = n − 1.

The symbol Kn − x denotes the graph obtained from the complete graph Kn by
deleting one edge x ; due to symmetry of all edges, this graph is well defined.

Problem 13.2 ([EHT]) Prove that

dim(K3 − x) = 1,

dim(K4 − x) = 2,

In general,

dim(Kn − x) = n − 2.

Now let us take a look at complete bipartite graphs.

88 A. Soifer, The Mathematical Coloring Book,
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Problem 13.3 ([EHT])1 Prove that for m ≥ 1

dimKm,1 = 2,

except for m = 1, 2 when dimKm,1 = 1.

Proof Let S be a circle of radius 1 with center in O . By connecting arbitrary m
points A1, A2, . . . , Am of S with O we get a desired embedding of Km,1 in the
plane (Fig. 13.1).

The graphs K1,1 and K2,1 can obviously be 1-embedded in the line E1, thus dim
K2,1 = 1.

Fig. 13.1

Problem 13.4 ([EHT]) Prove that for m ≥ 2

dimKm,2 = 3,

except for m = 2 when dimK2,2 = 2.

Proof Let ABC be an isosceles triangle with |AB| = |BC | = 1. As we rotate ABC
about AC, the point B orbits a circle S (Fig. 13.2). By connecting arbitrary m points

Fig. 13.2

1 The article [EHT] contains a minor oversight: it says “Obviously, for every n > 1, dimK1,n = 2.”
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A1, A2, . . . , Am of S with both A and C , we get a desired embedding of Km,2 in
the 3-space E3.

Since m ≥ 2, the graph Km,2 can be 1-embedded in the plane E2 if and only if
m = 2. Prove the last statement on your own.

Problem 13.5 ([EHT]) Prove that for m ≥ n ≥ 3

dimKm,n = 4.

Proof In the solution of Problem 13.4 (Fig. 13.2) we had points of a one-
dimensional “circle” (i.e., the two points A and C) distance 1 from the points
of a circle S. Similarly in the Euclidean four-dimensional space E4 we can find two
circles S1 and S2 such that any point of S1 is distance 1 from any point of S2. We
pick the circle S1 in the plane through the coordinate axes X and Y ; the circle S2

in the plane through the coordinate axes Z and W . Both S1 and S2 have center at
the origin O = (0, 0, 0, 0) and radius 1√

2
. We then just pick m points on S1 and n

points on S2.
This solution was obtained by Lenz in 1955 according to Paul Erdős. Formally

(i.e., algebraically) it goes as follows. Let {ui } be the m vertices of the first color
and let {v j } be the n vertices of the second color (remember, we are constructing
a complete bypartite graph). We pick coordinates in E4 for ui = (xi , yi , 0, 0)
and for v j = (0, 0, z j , w j ) in such a way that they lie on our circles S1 and S2

respectively, i.e., x2
i + y2

i = 1
2 and z2

j + w2
j = 1

2 . Then the distance between every
pair ui , v j will be equal to 1 (verify it using the definition of the distance in E4).

It is not difficult to show (do) that for m ≥ n ≥ 3 the graph Km,n cannot be
1-embedded in the 3-space E3.

Problem 13.6 ([EHT]) Find the dimension of the Petersen graph shown in Fig. 13.3.

Solution: I enjoyed the style of the article [EHT]. I quote this solution in its entirety
in order to show you what I mean:

“It is easy to see (especially after seeing it) that the answer is 2; Fig. 13.4).”
Paul Erdős told me that Frank Harary wrote this solution for their joint article.

Fig. 13.3 The Petersen Graph

By connecting all vertices of an n-gon (n ≥ 3) with one other vertex, we get
the graph Wn called the wheel with n spokes. Figure 13.5 shows some popular
wheels.
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Fig. 13.4 Embedding of the Petersen Graph in the plane

Fig. 13.5 A few wheels

Problem 13.7 (EHT]) The edges and vertices of a cube form a graph Q3. Find its
dimension.
Solution: dimQ3 = 2. Just think of Fig. 13.6 as drawn in the plane!

Fig. 13.6 Embedding of the cube’s skeleton in the plane

The following two problems are for your own enjoyment.

Problem 13.8 ([EHT]) Prove that

dimWn = 3,

except for the “odd” number n = 6 when dimW6 = 2.

Problem 13.9 ([EHT]) A cactus is a graph in which no edge is on more than one
cycle. Prove that for any cactus C

dimC ≤ 2.

I hope you have enjoyed finding dimensions of graphs. There is no known sys-
tematic method for determining it, but it has its good side. As the authors of [EHT]
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put it, “the calculation of the dimension of a given graph is at present in the nature
of mathematical recreation.”

However, there is, one general inequality in [EHT] that connects the dimension
and the chromatic number of a graph.

Problem 13.10 ([EHT]) For any graph G,

dimG ≤ 2�(G).

I totally agree with the authors of [EHT] that “the proof of this theorem is a
simple generalization of the argument” used in Problem 13.5. However, for the
benefit of young readers not too fluent with n-dimensional spaces, I am present-
ing here both a geometric ideology of the solution as well as a formal algebraic
proof.

Geometric Idea: Let χ (G) = n. In the Euclidean 2n-dimensional space E2n we
can find n circles S1, S2, . . . , Sn such that the distance between any two points
from distinct circles is equal to 1. We pick the circle S1 in the plane through the
coordinate axes X1 and X2; the circle S2 in the plane through the coordinate axes
X3 and X4; . . .; the circle Sn in the plane through the coordinate aces X2n−1 and
X2n . All n circles have center at the origin and radius 1√

2
.

Finally, when we color G in n colors, (it can be done since χ (G) = n) we get, say,
k1 points of color 1, k2 points of color 2, . . . , kn points of color n. Accordingly, we
pick arbitrary k1 points on S1, k2 points on S2, . . . , kn points on Sn for the desired
1-embedding of G.

Algebraic Solution: Let
{
u1

i

}
be the k1 vertices of color 1,

{
u2

i

}
the k2 points of

color 2, . . . , {un
i } the kn vertices of color n. We pick coordinates in E2n for these

vertices as follows:

u1
i = (x1

i , x2
i , 0, 0, . . . , 0)

u2
i = (0, 0, x3

i , x4
i , 0, . . . , 0)

· · · · · · · · · · · · · · ·
un

i = (0, 0, 0, 0, . . . , x2n−1
i , x2n

i )

in such a way that they lie on our circles S1, S2, . . . , Sn respectively (see Geometric
Idea above), i.e.,

(x1
i )2 + (x2

i )2 = 1

2

(x3
i )2 + (x4

i )2 = 1

2
· · · · · · · · · · · ·

(x2n−1
i )2 + (x2n

i )2 = 1

2
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Then the distance between every pair of points that belong to different circles
is equal to 1 (can you see why?). Thus, the distance between any two points of
different colors of the graph G in this embedding in E2n is equal to 1. (We do not
have to care at all about the distances between two points of G of the same color:
they are not adjacent in G.) We got a 1-embedding of G in the space E2n , therefore,
dimG ≤ 2n.

If it so happened that every vertex of a graph G1 is also a vertex of a graph G,
and every edge of G1 is also an edge of G, then the graph G1 is called a subgraph
of the graph G.

Prove on your own the following property of subgraphs.

Problem 13.11 For every subgraph G1 of a graph G,

dimG1 ≤ dimG.

During his December 1991–January 1992 two-week visit with me in Colorado
Springs, Paul Erdős posed the following (quite solvable, I think) problem:

Erdős’s Open Problem 13.12 What is the smallest number of edges in a graph G,
such that dimG = 4?

13.2 Euclidean Dimension of a Graph

I enjoyed the Erdős–Harary–Tutte paper [EHT] very much. However, there was, one
more thing I expected from the notions of 1-embedding and dimension but did not
get. I hoped they would unite the chromatic number of a plane set (Chapter 5) and
the chromatic number of a graph (Chapter 12). Here is what I meant. I wanted to
consider such embeddings of a graph G in the plane E2 (and more generally in the
n-dimensional space En) that the chromatic number of a plane set V of the vertices
of the embedded graph G is equal to the chromatic number of G.

It was certainly not the case with 1-embeddings discussed above. The chromatic
number of the 1-embedded set V of vertices of a graph G may not be uniquely
defined. Take, for example, the cycle C4. We can 1-embed it in the plane so that
its vertex set V has the chromatic number 2 (just think of a square), but we can
also 1-embed C4 so that V has the chromatic number 3 (think of a rhombus with a
π/3 angle).

The notions of the chromatic number of the plane and the chromatic number of
a plane set have been generalized by Paul Erdős to Euclidean n-spaces nearly half a
century ago:

Let S be a subset of the n-dimensional Euclidean space En (S may coincide with
En). The chromatic number �(S) of S is the smallest number of colors with which
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we can color the points of S in such a way that no color contains a monochromatic
segment of length 1.2

Thus, if we adjoin two points a, b of S with an edge if and only if the distance
|ab| = 1, we will get the graph G, such that the chromatic number of the graph G
is equal to the chromatic number of its vertex set S:

�(G) = �(S). (∗)

Two new definitions, as well as most of the problems below, occurred to me on
September 9, 1991. I remember this day very well: my daughter Isabelle Soulay
Soifer was born on this day at 6 in the evening.

On September 12, 1991, I sent the news to Paul Erdős:

On the Jewish New Year, 9/9/1991 the baby girl Isabelle Soifer was born.

In my September 15, 1991 letter, I shared with Paul the mathematical find of
Isabelle’s birthday:

I enjoyed Erdős-Harary-Tutte 1965 article where dimension of a graph was introduced.
(Apparently Harary and Tutte did not particularly like it: dimension of a graph did not
appear in their books on graph theory.)

In my book though I am going to introduce a more precise notion. An embedding of
a graph G into En we call Euclidean if two vertices v, w of G are adjacent if and only if
in En the segment vw has length 1. Euclidean dimension of a graph G is the minimum
n such that there is an Euclidean embedding of G in En (notation EdimG). Of course,
dimG ≤ EdimG. But a strict inequality is possible: let W6 be the wheel with 6 spokes,
and W6

′ [a wheel] without 1 spoke [my drawing in the letter is the Fig. 13.7]. Then
dimW6

′ = 2 < 3 = EdimW6
′. Also there is a graph G and its subgraph G1 such that

EdimG1 > EdimG. Just take W6
′ ⊆ W6.

W6

Fig. 13.7

This Euclidean dimension (rather than dimension) of a graph connects precisely
chromatic numbers of a graph and [of] a plane set:

If a graph G is Euclideanly embedded in En, then χ (G) = χ (V ), where χ (G) is
the chromatic number of the graph, and χ (V ) is the chromatic number of the vertex
set V of G (i.e., subset of En).

2 Victor Klee was first to prove (unpublished) that �(En) is finite for any positive integer n.
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What do you think?

Paul Erdős’s reply arrived on October 2, 1991. Following the family affairs, “I
am very sorry to hear about your father’s death [Yuri Soifer, June 20, 1907–June
17, 1991], but congratulations for the birth of Isabelle,” Paul expressed his approval
of the new notion of the Euclidean dimension of a graph and commenced posing
problems about it [E91/10/2ltr]:

“Can EdimG − dimG be arbitrarily large?”

Little did I know at the time that, in fact, Paul Erdős himself with Miklós
Simonovits invented the Euclidean dimension before me—in 1980—they called
it faithful dimension [ESi], and Paul did not remember his own baby-definition
when he discussed it with me! Of course, the credit for the discovery goes to
Erdős and Simonovits. However, in my opinion, the term Euclidean dimen-
sion more faithfully names the essence of the notion, and so I will keep this
term here.

Let us summarize the definitions and the early knowledge that we have.
A one-to-one mapping of the vertex set V of a graph G into an Euclidean space

En we call Euclidean embedding of G in the En if two vertices v, w of G are adjacent
if and only if the distance between f (v) and f (w) is equal to 1.

In other words, to obtain an Euclidean embedding of G in the En , we need to
draw G in En with every edge of G being a segment of length 1 and the distance
between two non-adjacent vertices being not equal to 1.

We define the Euclidean dimension of a graph G, denoted EdimG, as the mini-
mum number n such that G has an Euclidean embedding in the En .

Now we do get the desired connection:

Problem 13.13 The chromatic number of a graph G is equal to the chromatic num-
ber of its vertex set V when G is “Euclideanly” embedded in En for some n.

The two dimensions are connected by the following inequality:

Problem 13.14 Prove that for any graph G

dimG ≤ EdimG.

For some popular graphs we have the equality:

Problem 13.15 For any complete graph Kn

dimKn = EdimKn

i.e., EdimKn = n − 1.

Problem 13.16 For any complete bipartite graph Km,n

dimKm,n = EdimKm,n .
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Problem 13.17 For any wheel Wn

dimWn = EdimWn

i.e., EdimWn = 3 except for the “odd” number n = 6 when EdimW6 = 2.

Problem 13.18 For any graph G,

dimG ≤ EdimG ≤ 2�(G).

The new notion makes sense only if there is a graph G for which dimG 	=
EdimG. And it does:

Problem 13.19 Find a graph G such that

dimG < EdimG.

The inequality dimG1 ≤ dimG that is trivially true for any subgraph G1 of a
graph G, may not be true at all for the Euclidean dimension:

Problem 13.20 Construct an example of a graph G and its subgraph G1 such that
EdimG1 > EdimG.

Solutions to Problems 13.19 and 13.20 Take the wheel W6 with six spokes
(Fig. 13.7) and knock out one spoke (Fig. 13.8). Let us prove that the resulting
graph W6

′ has the Euclidean dimension 3, even though EdimW6 = 2.

W6
′

A 

B 

O 

C 

Fig. 13.8

Indeed, when we draw the graph W6
′ in the plane so that its every edge is a

segment of length 1, the rigid construction of W6
′ leaves no options for the distance

OA. It is equal to 1 even though the spoke is missing! Thus, there is no Euclidean
embedding of W6

′ in the plane. It is easy to Euclideanly embed W6
′ in 3-space E3:

start with the plane W6
′ depicted in Fig. 13.8 and rotate BAC in the space about the

axis BC.
We proved that EdimW6

′ > EdimW6. Thus, problem 13.20 is solved.
Problem 13.19 is solved at the same time because dimW6

′ = 2, and therefore,

EdimW ′
6 > dimW ′

6.
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The question that Paul Erdős posed to me, “Can EdimG – dimG be arbitrarily
large?”– was answered positively by him and Simonovits 11 years earlier:

Problem 13.21 [ESi]. For any positive n, there is a graph G such that dimG ≤ 4
while n − 2 ≤ EdimG ≤ n − 1.

Hint: In Problem 13.5, we saw that for n ≥ 3, dimKn,n = 4. Let G be the
graph obtained from Kn,n by removing a 1-factor, i.e., G is a graph on 2n ver-
tices x1, . . . , xn and y1, . . . , yn with edges xi y j for all i 	= j . Clearly, dimG ≤
dimKn,n = 4. Show that G cannot be Euclideanly embedded in the space Rn−3, but
can be Euclideanly embedded in Rn−1.

Erdős and Simonovits also found an upper bound for the Euclidean dimension of
a graph. Their results showed that the Euclidean dimension of a graph G is related
to the maximal vertex degree Δ (G) and not to its chromatic number χ (G):

Problem 13.22 [ES] For any graph G, EdimG ≤ 2Δ (G) + 1.

Nine years later, this bound was slightly improved by László Lovász, Michael
Saks and A. Schrijver:

Problem 13.23 [LSS] For any graph G, EdimG ≤ 2Δ (G).

Surprisingly, this bound still seems to be the best known.
We are now ready to continue our discussion of Nicholas Wormald’s paper [Wor],

started in Chapter 5 and continued in Chapter 12. The big deal was not to construct
his 4-chromatic graph G without 3- and 4-cycles. The real Wormald’s trick was to
Euclideanly embed his huge 6448-vertex graph G in the plane, which he accom-
plished with the use of his ingenuity and a computer. Read more about how he
has done it in his paper [Wor]. Here I would like to discuss one approach to the
chromatic number of the plane problem.

If you believe that the chromatic number � of the plane is at least 5, here is what
you can do to prove it. You can create a 5-chromatic graph G, and then Euclideanly
embed G in the plane. “Easier said than done,” you say? Sure, but let us discuss it,
then who knows? You just might succeed!

The 3,364,925-vertex graph G that we constructed in Problem 12.9 is surely
5-chromatic. But we constructed it with the use of the Mosers spindle; thus, G has
a lot of triangles. It very well may be too rigid to have an Euclidean embedding in
the plane.

We can replace the Mosers spindle with, say, the Mycielski–Grötzsch Graph
(Fig. 12.8), and use the same construction as we did in Problems 12.8, 12.9,

and 12.10. We would get a 5-chromatic graph G with 41 + 11

(
41
11

)

=
34,754,081,689 vertices. This graph G has no triangles. But does it have an
Euclidean embedding in the plane? To begin with, I do not think (check it out)
the Grötzsch graph itself has an Euclidean embedding in the plane.

No, we need to start with a very “flexible” graph having an Euclidean embedding
in the plane. Let us start with the Wormald Graph G (Section 12.3) and the foun-
dation set R of 6447 × 4 + 1 = 25, 789 points. For every 6448-element subset V
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of R we attach a copy GV of G. We get a 5-chromatic graph G1 without triangles,

with 25, 789 + 6448

(
25798
6448

)

vertices. Does G1 have an Euclidean embedding?

Computers are better today than in 1978 when Nicholas Wormald completed his
paper [Wor]. Are computers good enough for this task? Are we, mathematicians of
today, good enough to break through these computational walls?



14
Embedding 4-Chromatic Graphs in the Plane

14.1 A Brief Overture

In Chapters 1 and 2 we got acquainted with examples of 4-chomatic unit distance
graphs, the Mosers Spindle, and the Golomb Graph. In Chapters 5 and 12 we
met Paul Erdős’s $25 Problem 5.6, and its partial solution by Nicholas Wormald,
who used Blanche Descartes’ construction of a 4-chromatic graph and his own
embedding of that graph in the plane. Wormald’s result was improved time and
time again on the pages of Geombinatorics by Paul O’Donnell, Rob Hochberg, and
Kiran Chilacamarri. Upon constructing a promising graph G, the authors of the new
4-chromatic unit distance examples used a 2-part approach to complete their task:

1. Graph-Theoretic Part. Show that the chromatic number of a graph G is 4 and
the graph has no short cycles.

2. Geometric Part. Embed G in the plane in such a way that every pair of adjacent
vertices is distance 1 apart and non-adjacent vertices are not 1 apart (like in the
previous chapter dealing with the Euclidean dimension).

In this chapter we will concentrate on the essentials of part 2—tools for embed-
ding in the plane, as developed and presented by Paul O’Donnell [Odo3], [Odo4],
[Odo5]. In the next chapter, we will look at the world records in the new sport of
embedding. Do use pen and pencil as you read this chapter.

We say that a k-vertex graph G with vertices V = {u1, u2, . . . , uk} is attached
to a set of vertices V ∗ = {

u∗
1, u∗

2, . . . , u∗
k

}
if the vertices of G are connected via a

matching to V (i.e., via a one-to-one correspondence of V to V ∗ and connection of
the corresponding vertices by new edges).

The shadow of G, denoted G∗, is the set to which G is attached. We often choose
the graph G to be an odd cycle. The odd cycles are attached to subsets of a large
independent (i.e., no pair of vertices is adjacent) set of size n. The n independent
vertices are called foundation vertices.

If vertices of G are placed in points of the plane so that adjacent vertices are
exactly distance 1 apart, we say this is a unit distance embedding of G. Thus in
the plane, if the odd cycle {u1, u2, . . . , uk} is attached to

{
u∗

1, u∗
2, . . . , u∗

k

}
, then

the vertices u1, u2, . . . , uk, u∗
1, u∗

2, . . . , u∗
k are fixed points in the plane such that for

A. Soifer, The Mathematical Coloring Book, 99
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some permutation σ, ui is distance 1 from u∗
σ (i) and from ui−1 and ui+1 (indices are

added modulo k) for 1 < i < k. Since the vertices can be relabeled, we assume that
ui is adjacent to u∗

i in the attachment. Usually we do not want distinct vertices to be
placed in the same point in the plane. If vertices of G are placed in distinct points
of the plane so that adjacent vertices are exactly distance 1 apart we say this is a
proper unit distance embedding of G. A graph with a proper unit distance embed-
ding is called a unit distance graph in the plane. In this section, higher dimensional
analogues are not considered, and so unit distance graph will mean unit distance
graph in the plane. In our geometric contexts the terms point and vertex will be used
interchangeably, while the term edge will mean a unit length edge. The following
continuity argument of the attachment procedure is important, and Paul O’Donnell
uses it in most of the results of this section:

Continuity Argument 14.1 Given fixed points in the plane:

u∗
1 = (x1, y1) , u∗

2 = (x2, y2) , . . . , u∗
k = (xk, yk) ,

and a point u1 on the unit circle centered at u∗
1. Let ui be a point distance 1 from both

ui−1 and u∗
1 for 2 ≤ i ≤ k. (In the following examples the distance between ui−1 and

u∗
1 is less than 2, so there are two points satisfying the distance restrictions; let ui be

the one closer to the corresponding point in the attachment.) For an appropriately
chosen arc along the unit circle centered at u∗

1, ui is a continuous function of u1.
If there exist two points ushort

1 and ulong
1 such that the distance between ushort

1 and
the corresponding ushort

k is less than 1, while the distance between ulong
1 and the

corresponding ulong
k is greater than 1, then due to continuity there must be a point,

uunit
1 such that the distance between uunit

1 and the corresponding uunit
k is exactly 1.

In other words, the set of points
{
u∗

1, u∗
2, . . . , u∗

k

}
has a k-cycle attached, namely,{

uunit
1 , uunit

2 , . . . , uunit
k

}
.

The foundation points are distributed among four regions. They are placed in
�-balls centered at the following four points:

C1 = (0, 0)

C2 = (0, 0.9)

C3 = (0.9, 0.9)

C4 = (0.9, 0)

Since � is very close to zero, it is impossible to attach a cycle to k points if they
are all inside the same �-ball. The partitioning of the foundation points is designed
to prevent such an occurrence. Can a k-cycle be attached if the points are distributed
among at least two of the �-balls? Yes, they can. First, k-cycles are attached to k
foundation points placed exactly at some or all of C1, C2, C3, or C4. Next, the
points are moved slightly so the k-cycles are attached to k distinct points, each
placed in the appropriate �-ball surrounding C1, C2, C3, or C4. This prevents the
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foundation vertices from coinciding. Then some of the vertices are moved slightly
to eliminate all coincidences.

In Geombinatorics [Odo5] (but not in his dissertation [Odo3]), O’Donnell intro-
duces a useful notion of type:

a set of foundation vertices has type (a1, a2, a3, a4)δ if it consists of ai vertices placed
in the δ-ball around Ci , 1 ≤ i ≤ 4.

14.2 Attaching a 3-Cycle to Foundation Points in 3 Balls

Only �-balls around points C1, C2, and C3 are dealt with for the basic argument.
To distinguish between the preliminary and final situations, the foundation vertices
coincident with C1, C2, C3 are denoted

{
v∗

1 , v
∗
2 , . . . , v

∗
k

}
, paths or cycles attached

to them are denoted v1, v2, . . . , vk , while the foundation vertices inside the �-balls
around C1, C2, C3 are denoted

{
u∗

1, u∗
2, . . . , u∗

k

}
and paths or cycles, attached to

them, are denoted u1, u2, . . . , uk .
O’Donnell starts by attaching a triangle.

Tool 14.2 A 3-cycle can be attached to the set of foundation points {C1, C2, C3}.
Proof Using the points listed in the Appendix at the end of this chapter (rounded
to five decimal places), two 3-vertex unit distance paths are attached to C1, C2 and
C3. In the first path, T short

1 , T short
2 , T short

3 , the distance from T short
1 to T short

3 is less

than 0.99. In the second path T long
1 , T long

2 , T long
3 , the distance from T long

1 to T long
3 is

greater than 1.01 (Fig. 14.1).

Fig. 14.1 A “too short” attachment and a “too long attachment” are shown together on the
left. The “just right” attachment is on the right. (All unlabeled edges have unit length.)

Since one path is obtained from the other by continuously sliding the starting ver-
tex, by the continuity argument there must be a path for which the distance between
the first and last vertices is exactly one. This is a required attached 3-cycle.

Now we will relax the condition of Tool 14.2 and allow the 3 foundation vertices
to be anywhere inside δ-balls, not just at their centers. Given δ > 0, let u∗

1, u∗
2

and u∗
3 be foundation vertices placed anywhere inside δ-balls, centered at C1, C2

and C3 respectively. If δ is small enough, we will show that a cycle can be attached
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to the foundation set {u∗
1, u∗

2, u∗
3} which is very close to the cycle attached to the

foundation set {C1, C2, C3} (which we have already accomplished in Tool 14.2).

Tool 14.3 There exists δ > 0 such that a 3-cycle can be attached to any foundation
vertex set of type (1, 1, 1, 0)δ .

Proof Given ε > 0, choose δ so that we can find “too short” and “tool long” paths
whose vertices are less than ε from the corresponding “too short” and “tool long”
paths attached to {C1, C2, C3}. This is possible due to the continuity argument. As
in Tool 14.2, we get a “just right” path, which is the required cycle.

14.3 Attaching a k-Cycle to a Foundation Set of Type
(a1, a2, a3, 0)δ

To generalize the above construction to k-cycles, where k > 3 is odd, other special
points are needed. The three triangle points, denoted T1, T2, and T3, are the points
of the 3-cycle attached to C1 C2, and C3. Three spoke points, S1, S2, and S3, are
the points such that Si is unit distance from Ti and Ci , for 1 ≤ i ≤ 3. We define
“triangle” points T short

i and T long
i and “spoke points” Sshort

i and Slong
i analogously

for 1 ≤ i ≤ 3. At first, cycles or paths are attached which coincide with these
triangle and spoke points. The shadows of these cycles coincide with the center
points C1, C2, and C3. We then use the continuity argument to show the existence
of cycles very close to these.

Tool 14.4 Let k ≥ 3 be an odd number. For all positive integers a1, a2, a3, such
that a1 + a2 + a3 = k, a k-cycle consisting only of edges from Ti to Ti+1 (addition
modulo 3), and Ti to Si , for 1 ≤ i ≤ 3, can be attached to the union of ai points at
Ci , 1 ≤ i ≤ 3.

Proof The work involved in attaching 5-cycles contains all the details of the
general case. Suppose, for example, we want to attach a 5-cycle to the set{
u∗

1, u∗
1a, u∗

1b, u∗
2, u∗

3

}
(where the number in the subscript indicates the δ-ball

containing the vertex).
By Tool 14.3, for δ small enough, we can attach a 3-cycle u1, u2, u3 to the

foundation vertices
{
u∗

1, u∗
2, u∗

3

}
. We just need to insert a “detour” into this cycle.

Instead of going from u1 to u2, we go from u1 to u1a to u1b, which is arbitrarily close
to u1. We then continue to u2 to u3 and finally back to u1. Of course, we cannot
actually construct the 5-cycle directly from the 3-cycle. Instead, we construct “too
short” and “too long” 5-paths with corresponding vertices within ε of the vertices
of the “too short” and “too long” 3-paths used to construct the 3-cycle (see Tools
14.2 and 14.3). Given ε, we choose δ such that this is possible. By the continuity
argument, we get a “just right” 5-path. This is an attached 5-cycle (Fig. 14.2).

Of course it did not matter that three foundation vertices were in the same δ-ball.
Only two were necessary for the argument to work. The basic idea is to take a
3-cycle u1, u2, u3 and construct a 5-cycle u1, z, u1, u2, u3. It does not matter
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Fig. 14.2 A 5-cycle
attached to a set of type δ

(3, 1, 1, 0)

where the foundation vertex z is so long as it’s close enough to u1 so that unit length
edges can be connected to z (i.e., z should be less than 2 units away from u1).

For example, suppose we want to attach a 5-cycle to
{
u∗

1, u∗
1a, u∗

2, u∗
3, u∗

3a

}
. We

find “too short” and “too long” 5-paths that are arbitrarily close to the corresponding
“too short” and “too long” 3-paths. By the continuity argument, we get a 5-cycle
(Fig. 14.3).

Similarly (using induction and considering two cases as discussed above),
k-cycles can be attached to k points by first looking at a (k − 2)-cycle attached to
k − 2 points, and then performing the insertion procedure described above. The
cycle will look like a triangle with a few spokes coming off some of the vertices.

Fig. 14.3 A 5-cycle
attached to a set of type δ

(2, 1, 2, 0)

By symmetry, we can now attach k-cycles to sets of types (a1, a2, 0, a4)δ ,
(a1, 0, a3, a4)δ , and (0, a2, a3, a4)δ . What if we need to place the foundation vertices
in all 4 of the δ -balls? In fact, for our purposes we need only the case when the
partitioning of the foundation vertices puts just one foundation vertex in the δ-ball
around C4, so only this case needs to be considered.
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14.4 Attaching a k-Cycle to a Foundation Set of Type
(a1, a2, a3, 1)δ

Tool 14.5 Let k ≥ 5 be an odd number. For all positive integers a1, a2, a3, a4 such
that a1 + a2 + a3 + a4 = k and a4 = 1; there exists δ > 0 such that a k-cycle can be
attached to any foundation set of type (a1, a2, a3, 1)δ .

Proof The argument of the previous section applies here as well. At least one of
a1, a2, a3 is greater than 1, say a1. We first find a (k − 2)-cycle attached to a set
of type (a1 − 1, a2, a3, 0)δ and then replace the vertex u1 in the cycle by a path
u1, u4, u1a . This produces an attached k-cycle. Like before, we really do all the
work on the “too short” and “too long” paths, and use the continuity argument to
prove the existence of the desired “just right” cycle (Fig. 14.4).

Fig. 14.4 An 11-cycle attached to a set of type δ (5, 1, 4, 1). The cycle and the attaching
edges are shown on the left. The cycle alone is shown on the right

14.5 Attaching a k-Cycle to Foundation Sets of Types
(a1, a2, 0, 0)δ and (a1, 0, a3, 0)δ

We have shown that an odd cycle can be attached to k points placed inside δ-balls
around any 3 or all 4 of Cl. C2. C3. and C4. But what if the points are distributed
between δ -balls around just two of the center points? The crucial step is still attach-
ing a triangle. Once it is shown that a triangle can be attached to the center points,
the previous arguments show that a k-cycle can be attached for any odd k > 3.
We simply think of one of the δ-balls as two overlapping δ-balls (so now we have
3 balls).
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Tool 14.6 Let k ≥ 3 be an odd positive integer. For all positive integers al , a2 such
that al + a2 = k there exists δ such that a k-cycle can be attached to any foundation
set of type (a1, a2, 0, 0)δ .

Proof Without loss of generality, assume a1 ≥ 2. We attach a 3-cycle to two vertices
at C1 and one vertex at C2, using the same notation as before for the triangle points,
only here triangle points with subscripts 1 or 2 correspond to C1 while those with
subscript 3 correspond to C2 (see the left drawing of Fig. 14.5).

Using the points listed in the appendix (rounded to five decimal places), two
3-vertex paths are attached to C1, C1 and C2. In the first path, T short

1 , T short
2 , T short

3 ,

the distance from T short
1 to T short

3 is less than 1. In the second path, T long
1 , T long

2 , T long
3 ,

the distance from T long
1 to T long

3 is greater than 1. Since one path is obtained from the
other by continuously sliding the starting vertex, by the continuity argument there
must be a path for which the distance between the first and the last vertices is exactly
1. This is the desired attached 3-cycle.

Now we attach the k-cycle. Let a′
1 and a′′

1 be positive integers such that a′
1 +a′′

1 =
a1. We treat C1 as if it were two separate vertices C′

1 and C′′
1 and use the machinery

from the previous section to find δ such that any a′
1 points in the δ-ball around

C′
1, a′′

1 points in the δ-ball around C′′
1, and a2 points in the δ-ball around C2, can

have a k-cycle attached. In other words, any al points in the δ-ball around C1 and a2

points in the δ-ball around C2 can have a k-cycle attached.

Fig. 14.5 Attaching a 3-cycle to {C1, Cl, C2} on the left. Attaching a 3-cycle to {C1, Cl, C3}
on the right

This allows the attachment of k-cycles if the center points are distance 0.9 from
each other, like C1 and C2. The configuration consisting of C1 and C3, can be han-
dled similarly.

Tool 14.7 Let k ≥ 3 be an odd positive integer. For all positive integers al , a3 such
that al + a3 = k there exists δ such that a k-cycle can be attached to any foundation
set of type (a1, 0, a3, 0)δ .

Proof We just need to show that we can attach a 3-cycle to 1 vertex at the center of
one δ-ball and 2 vertices at the center of the other. As in the proof of the previous
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tool, we use the “too short,” “too long,” “just right” continuity argument. (see the
right drawing of Fig. 14.5). The Appendix at the end of this chapter contains the
coordinates of the special points (rounded to five decimal places).

14.6 Removing Coincidences

If two vertices from a graph are placed at the same points in the plane, small
cycles may inadvertently be created. We must ensure that no vertices coincide. For
δ small enough, the regions containing the foundation vertices are disjoint from
the regions containing cycle vertices. Furthermore, the foundation vertices can be
placed anywhere in the δ-balls, so we choose distinct locations for all of them. It is
possible, however, for cycle vertices to coincide. In small graphs it can be verified
computationally that this doesn’t occur. For larger graphs Paul O’Donnell develops
procedures to remove these coincidences.

If vertices from two different attached cycles coincide, one foundation vertex is
moved slightly causing all vertices of the one attached cycle to move slightly while
no vertices of the other cycle move. “Slightly” means not enough to introduce any
new coincidences. If vertices from the same cycle coincide, a modification of this
method is used to remedy it.

Tool 14.8 If there is an embedding of a unit distance graph G with m ≥ 1 pairs of
coincident vertices, then there is an embedding with fewer than m pairs of coincident
vertices.

Proof Given an embedding of G with coincident vertices u and w, we shift some
of the vertices of G, subject to several restrictions: no foundation vertex can move
outside its δ-ball, and no new coincidences may be introduced. Let ε1 be the minimal
distance between any foundation point and the boundary of the containing it δ-ball;
let ε2 be the minimal distance between any two non-coincident vertices; we define

ε = min
{
ε1,

ε2

2

}
.

Given ε > 0, we choose δ′, 0 < δ′ < ε, such that if a foundation vertex is
moved a distance less than δ′, then no vertex moves a distance ε or greater. Since
the foundation vertices are not moved more than ε1, they remain inside their δ-balls,
thus all k-cycles can still be attached. Since all non-coincident pairs of vertices are
at least ε2 apart, the movement by less than ε2/2 does not create new coincidences.
Let us consider two cases.

Case 1 Assume u and w are on different cycles: u is on the cycle u = u1, u2, . . .

while w is on the cycle w = w1, w2, . . . .
Let u j be a vertex such that no wi is attached to the foundation vertex u∗

j . Moving
u j+1 along the unit circle centered at u∗

j+1 causes each vertex in the cycle

u j+1, u j+2, . . . , uk, u1, . . . , u j−1
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to move to maintain unit distance from its foundation vertex and from the preceding
cycle vertex. We move u j+1 so that no vertex has moved more than ε and thus
there is a point unit distance from u j−1 and u j+1 and distance less than δ′ from
u j . This point is the new location of u j . Now we move u∗

j that same distance so it
is unit distance from the new u j . Of course, moving u∗

j may shift vertices of cycles
attached to it by distances less than ε, but no new coincidences are introduced. Since
u1 moves and w1 does not, at least one coincidence is removed.

Case 2 Assume u and w are on the same cycle; to reflect that we call them u1

and ui . We choose a cycle vertex u j different from the coincident vertices and apply
the procedure described in case 1. The only foundation vertex that moves is u∗

j . The
only point in the ε-ball around the coincident vertices which is distance 1 from u∗

1
and u∗

i is the original location of those points (u1 and ui ). Since u1 and ui moved
while u∗

1 and u∗
i did not, they no longer coincide. As before no new coincidences

are introduced.

This has been a display of Paul O’Donnell’s embedding machinery and his pre-
sentation of it [Odo3], [Odo4], [Odo5]. Can we get an immediate reward from his
tool chest? As you know from Chapter 12, Wormald embedded his 6448-vertex
graph in the plane. He started with 13 foundation points forming the vertices of a

regular 13-gon, attached and embedded whopping

(
13
5

)

5-cycles, and made sure

that no coincidences occurred.
O’Donnell was able to do it much easier—let us take a look.

14.7 O’Donnell’s Embeddings

Embedding the Wormald Graph: Place four foundation vertices in each of the
δ-balls centered at C1, C2, and C3, plus one foundation vertex in the δ-ball cen-
tered at C4. The embedding tools above allow the attachment of all 5-cycles and
elimination of all coincidences that may occur. The unit distance embedding of the
Wormald graph is thus accomplished!

Wormald hints that with a considerable effort he probably could embed a larger
Blanche Descartes graph, which is constructed by attaching all 7-cycles to the foun-
dation of 19 vertices. No wonder he does not actually deal with it: for one, this
is a 352,735-vertext graph, and thus calculations would have grown dramatically;
moreover, Wormald admits that he does not see his approach going any further than
a graph of girth 6.

The embedding of this 352,735-vertex graph too becomes trivial, compliments
of O’Donnell’s embedding tools.

Embedding the 352,735-vertex Graph: Indeed, just place six foundation ver-
tices in each of the δ-balls centered at C1, C2, and C3, plus one foundation vertex
in the δ-ball centered at C4. The embedding tools above allow the attachment of all
7-cycles and elimination of all coincidences that may occur.
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The next chapter is dedicated to the World Records of Embedding—join me for
the exciting World Series!

14.8 Appendix

Vertices used to show a cycle can be attached to vertices at the points C1, C2, and
C3.

T short
1 (0.99635, 0.08533)

T short
2 (0.98269, 1.08524)

T short
3 (1.84978, 0.58709)

T short
4 (0.9980, 0.06319)

Sshort
1 (0.57208, −0.82020)

Sshort
2 (0.65177, 0.14158)

Sshort
3 (1.64588, 1.56608)

Sshort
14 (1.60981, −0.70439), distance 1 from C4 & T short

1
Sshort

24 (1.77788, 0.47888), distance 1 from C4 & T short
2

Sshort
34 (1.81111, −0.41216), distance 1 from C4 & T short

3

T long
1 (0.99541, 0.09567)

T long
2 (0.98069, 1.09556)

T long
3 (1.85956, 0.61850)

T long
4 (0.99280, 0.11977)

Slong
1 (0.58056, −0.81422)

Slong
2 (0.65971, 0.14848)

Slong
3 (1.62357, 1.59025)

Slong
14 (1.65414, −0.65671), distance 1 from C4 & T long

1

Slong
24 (1.77374, 0.48640), distance 1 from C4 & T long

2

Slong
34 (1.82462, −0.38089), distance 1 from C4 & T long

3
T1 (0.99591, 0.09038)
T2 (0.98173, 1.09028)
T3 (1.85476, 0.60261)
S1 (0.57623, −0.81729)
S2 (0.65565, 0.14494)
S3 (1.63492, 1.57815)
S14 (1.63230, −0.68098), distance 1 from C4 & T1

S24 (1.77587, 0.48255), distance 1 from C4 & T2

S34 (1.81794, −0.39671), distance 1 from C4 & T3

Vertices used to show a cycle can be attached to vertices at the points C1, C2:

T short
1 (−0.06194, 0.99808)

T short
2 (0.83339, 0.55268)

T short
3 (0.75995, 1.54998)
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T short
4 (0.83339, 0.55268)

Sshort
1 (0.83339. 0.55268)

Sshort
2 (−0.06194, 0.99808)

Sshort
3 (0.94288, 0.56685)

T long
1 (−0.08916, 0.99602)

T long
2 (0.81800, 0.57522)

T long
3 (0.74037, 1.57220)

T long
4 (0.81800, 0.57522)

Slong
1 (0.81800, 0.57522)

Slong
2 (−0.08916, 0.99602)

Slong
3 (0.95233, 0.59493)

T1 (−0.07551, 0.99715)
T2 (0.82580, 0.56397)
T3 (0.75029, 1.56111)
S1 (0.82580, 0.56397)
S2 (−0.07551, 0.99715)
S3 (0.94768, 0.58079)



15
Embedding World Records

Around the 1991–1992 New Year, Paul Erdős and I had been writing the book
Problems of p.g.o.m. Erdős in my home in Colorado Springs,3 when Ron Graham
called, and invited me to come to the Florida Atlantic University in March 1992,
so that we can finally meet in person at the South-Eastern International Conference
on Combinatorics, Graph Theory and Computing. I had just started publishing the
problem-posing quarterly Geombinatorics, and at that conference I introduced it to
the colleagues for the first time while giving a talk on the chromatic number of the
plane problem. As a result, a group of young brilliant Ph. D. students, including
Paul O’Donnell and Rob Hochberg, got excited about the problem and the new
journal. Geombinatorics has become the main home for related problems and results
outshining, in regards to these problems, all top journals on combinatorial theory
and discrete geometry. One of the most exciting consequences was the competition
for the smallest unit distance triangle-free graph, which from now on I will call
Embedding World Series.

As you recall from Chapter 5, in 1975 Paul Erdős posed a problem to prove or
disprove the existence of 4-chromatic unit distance graphs of girth 4, 5, and higher.
Nicholas Wormald constructed a girth 5 graph on 6448 vertices (Chapter 12). In
my talk I asked for the smallest example, and the World Series began in the earnest
on the pages of Geombinatorics! New records were set by Paul O’Donnell, Rob
Hochberg, and Kiran Chilakamarri; some new record graphs earned names, such
as the Moth Graph, the Fish Graph, etc. and appeared on the covers of Geombi-
natorics. Let me, for the first time, present here this competition, current records
and record holders. You will also see that, once the mathematical constructions and
proofs were out of the way, the record holders went on to find “beautiful,” symmetric
embeddings of their graphs, the ones to which they—or else I—gave special names.

3 Since this Coloring Book is finally finished, I am getting back to finishing Problems of p.g.o.m. Erdős
book, so stay tuned.

110 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 15, C© Alexander Soifer 2009
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15.1 A 56-Vertex, Girth 4, 4-Chromatic Unit Distance
Graph [Odo1]

As we have touched on in Section 12.2, in 1955 Jan Mycielski [Myc] invented a
method of constructing triangle-free graphs of arbitrary chromatic number k: Start
with a triangle-free (k −1)-chromatic graph G. For each vertex vi ∈ V (G) add a
vertex wi adjacent to all vertices in the neighborhood of vi . Next, add a vertex z
adjacent to all of the new vertices. The chromatic number of this new graph is k,
and it is still triangle-free. Let us call this graph Mycielskian of G and denote M(G).
Unfortunately, the resultant graph does not often embed in the plane. Notice that if a
vertex of G has degree 3 or more, then the Mycielskian M(G) of G contains a K2,3.
The plane contains no unit distance K2,3 subgraph, so the starting graph G must
have maximum degree at most two for the Mycielskian to be a unit distance graph.
Thus, the only candidates for the unit distance version of the Mycielski construction
are unions of paths and cycles. However, the Mycielskian of an odd cycle does not
embed in the plane, so the Mycielski construction does not give a 4-chromatic unit
distance graph. The Mycielskian of at least one even cycle does embed.

The 5-cycle u1, u2, u3, u4, u5 is said to be attached to the set of vertices
{v1, v2, v3, v4, v5} if vi is adjacent to ui for 1 ≤ i ≤ 5 (Fig. 15.1). Such an
attachment is a useful operation because it can increase the chromatic number of a
graph from 3 to 4 without introducing any 3-cycles.

The graph H in Fig. 15.2 is the Mycielskian of the 10-cycle C10. With basic
geometry and algebra H can be embedded in the plane, but, O’Donnell reports, Rob
Hochberg pointed out a nicer proof which shows why this is so. H is a subgraph
of the projection of the 5-cube along a diagonal onto the plane. The coordinates
of the vertices v1, v3, v5, v7, v9 are the fifth roots of unity, while the edges are
all unit length since they are translations of these unit vectors. This graph is only
3-chromatic, thus we will attach 5-cycles to make it 4-chromatic.

Fig. 15.1 The 5-cycle
u1, u2, u3, u4, u5 is
attached to
{v1, v2, v3, v4, v5}
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Fig. 15.2 H is the Mycielskian of C10

Construction 15.1 A5-cyclecanbeattachedto thesubgraph R ={v1, v3, v5, v7, v9}
of the graph H of Fig. 15.2.

Proof Center a regular pentagon of side length 1 at the origin and rotate it until the
distance from one of its vertices to v1 is 1 (Fig. 15.3). Then the respective distances

Fig. 15.3 H with one 5-cycle attached
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from the other vertices of the pentagon to the other vertices of the graph R will
all be 1.

Does this attachment remind you the construction of the Golomb Graph
(Fig. 2.8)? It should, for the Golomb Graph was O’Donnell’s inspiration for this
nice construction.

Construction 15.2 A 5-cycle can be attached to the subgraph T = {w1, w3, w6,

w8, z} of the graph H of Fig. 15.2.

Proof The proof relies on the intermediate value theorem and the continuity argu-
ment introduced in the beginning of Chapter 14. Described a little less formally,
we try to attach a 5-cycle to the five vertices of T so that the cycle edges and the
connecting edges are all length one. In fact, we try it twice. The problem with the
attachments is that in the first, one of the edges in the cycle is too short, in the second,
it, is too long. Since one configuration is obtained from the next by a continuous
transformation, there exists an attachment where that same edge has length one.
Thus, T can have a 5-cycle attached (Fig. 15.4).

Fig. 15.4 The “Short” Attachment and The “Long” Attachment shown together on the left.
The “Just Right” Attachment is on the right. (All unlabeled edges are of unit length.)

The most efficient way to verify these attachments is by computer, although it
is necessary to make sure that the error made by approximating the numbers does
not affect any of the inequalities. The error in the numbers listed below is < 10−5,
which does not affect the results.

Let Ci be the unit circle around the i th vertex in H . Let u1, u2, u3, u4, u5

be a path with unit length edges and with ui on Ci . This almost gives an attached
5-cycle. The attaching edges are all unit distance since each ui is on the unit cir-
cle around some vertex in H , and the four-path edges are unit distance. This path
can be slid back and forth in a continuous manner with each ui tracing out an
arc on Ci . One such path is approximately (0.95, 0.74413), (−0.04916, 0.70312),
(−0.62463, −0.11470), (0.13436, −0.76580), (0.974661, −0.22369). The vertices
of this path form a “too short attachment” where all distances are one except from
u5 to u1 where the distance is about 0.968.
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A second path which can be obtained from the first one by continuous sliding is
(1.1, 0.85536), (0.13069, 0.60954), (−0.61938, −0.05183), (0.10423, −0.74206),
(0.97027, −0.24204). The vertices of this path form a “too long attachment” where
the u5 to u1 distance is 1.10. By continuity, there is a “just right attachment” where
the edge from u5 to u1 is exactly one. The exact coordinates of this attachment are
unknown, but for claiming their existence, it suffices to show that a 5-cycle can be
attached to our set (Fig. 15.4).

Construction 15.1 allows us to attach a 5-cycle to {vl , v3, v5, v7, v9}. Similarly,
we can attach another 5-cycle to {v2, v4, v6, v8, vl0}. We get the new graph, call
it H ′. In a proper 3-coloring of H ′ the vertices in {vl , v3, v5, v7, v9} cannot get
the same color since that leaves only 2 colors for the attached 5-cycle. The same
holds for {v2, v4, v6, v8, vl0}. This is enough to rule out most of the 3-colorings
of H ′. In fact, aside from the vertices of the attached 5-cycles, the coloring of H ′ is
completely determined up to symmetries. This coloring is shown in Fig. 15.5 (the
attached 5-cycles are not shown in the figure). Note that there are numerous ways to
color the attached 5-cycles, but their attachment forces the rest of the graph to have
a unique coloring up to a permutation of the colors and rotation of the graph.

Fig. 15.5 The vertices of H
must have this coloring up
to symmetries when two
5-cycles are attached. (The
attached 5-cycles are not
shown.)

In particular, in every 3-coloring of H ′, for some j, 1 ≤ j ≤ 5, the set
{w j , w j+2 w j+5, w j+7, z} (addition modulo 10) is monochromatic, where z and the
wi are as in Fig. 15.2. By attaching 5-cycles to all five of these sets, we exclude all
3-colorings. The result is a 4-chromatic graph. Moreover, since H is triangle-free,
this new graph is also triangle-free. Approximation of the coordinates of the vertices
ensures there are no coincident vertices.

Time to count vertices of our construction: H has 21 vertices, then two 5-cycles
are added, then five 5-cycles more. The result is a triangle-free, 4-chromatic graph
on 56 vertices (Fig. 15.6).
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Fig. 15.6 O’Donnell’s
56-vertex 4-chromatic
graph in the plane with no
3-cycles

Beating the 6448-vertex Wormald graph with the new world record of a tiny
56-vertex graph was a striking achievement.

In closing, Paul O’Donnell observes: one reason to search for triangle-free graphs
is that they seem to be flexible. For example, H can be bent into a 4-chromatic graph,
containing many Mosers’ spindles (Fig. 15.7).

Fig. 15.7 H can be bent so
that new edges (unit
distances) are introduced.
The chromatic number of
this new graph is 4

Paul ends [Odo1] with the ultimate goal (or ultimate musing):

Perhaps flexibility will prove useful in a construction of a 5-chromatic graph in the
plane!
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15.2 A 47-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [Chi6]

Professor Kiran Chilakamarri, then of the Ohio State University (and presently of
Texas Southern University), was one of the early researchers of the chromatic num-
ber of the plane. Among other related problems he was very interested in construct-
ing the smallest possible example of a 4-chromatic unit distance graph. I have little
doubt that his work was well on the way when Paul O’Donnell published the first,
56-vertex breakthrough in these real (unlike baseball) World Series. In the fall 1995
Kiran responded by beating Paul’s world record with the 47-vertex Moth Graph
of his own, which I prominently published on the cover of January 1995 issue of
Geombinatorics.

Chilakamarri constructs his example in stages, at each stage describing the proper-
ties, shared by all possible colorings of the graph constructed. He begins with a graph
on 12 vertices and 20 edges, which he called the core graph shown in Fig. 15.8.

Fig. 15.8 The Core Graph

Chilakamarri then invents the right wing graph (Fig. 15.9) on 10 vertices and 12
edges, and symmetrically the left wing.

He then attaches the wings to the core and gets the Butterfly Graph (Fig. 15.10).
Finally, joining two butterflies produces the 47-vertex graph, which is proved to

be 4-chromatic (Fig. 15.11).
Kiran then proves “the existence” (i.e., the existence of an embedding in the

plane) of the Moth Graph by producing its coordinates. Finally, he proves that the
Moth Graph has girth 4 by checking (a) the vertices of the core graph do not form
an equilateral triangle (b) the left wing has no equilateral triangle (c) as we add the
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Fig. 15.9 The Right Wing graph

wings to the core no new edges are created and finally (d) as we join two butterfly
graphs, no new edges are created other than the edge we have added.

As Kiran Chilakamarri set his new world record of 47, our World Series became
so intense in mid 1995 that Chilakamarri in this July-1995 paper mentions in end-
notes “Paul O’Donnell tells me he is shrinking the size of the example (≤ 40?) . . .”
Moreover, Robert Hochberg modified O’Donnell’s 56-vertex construction to get
a 46-vertex unit distance triangle-free 4-chromatic graph, and thus beat Chilaka-
marri’s World Record of 47, but Rob, to my regret, decided against publishing it
because he too learned that O’Donnell was getting ready to roll out yet another new
world record, the 40-vertex graph.

15.3 A 40-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [Odo2]

Similarly to the [Odo1] approach, Paul O’Donnell starts with the Mycielskian of
the 5-cycle C5. This 11-vertex Mycielski—Grötzsch graph (we saw it in Fig. 12.8)
is the smallest triangle-free 4-chromatic graph. Since it is not a unit distance graph,
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Fig. 15.10 Chilakamarri’s Butterfly Graph

Fig. 15.11 Chilakamarri’s Moth Graph
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we modify it by taking out the “central” vertex adjacent to the 5 “new” vertices, and
replacing it with five vertices each adjacent to a pair of “new” vertices as shown in
Fig. 15.12. Let us call this graph H .

Fig. 15.12 An “instructive” drawing of H is on the left. A unit distance embedding of H is
on the right

H is 3-chromatic, but all the 3-colorings share a valuable property. In every 3-
coloring, one of the sets

{
v1+i , v6+i , v11+(i+1), v11+(i+2), v11+(i+3)

}
, for 0 ≤ i ≤ 4

(where parentheses indicate addition modulo 5), is monochromatic. By attaching
5-cycles, one of which is shown in Fig. 15.13, to all such sets, all 3-colorings
get excluded. Thus, the resultant graph H ′ is 4-chromatic and still triangle-free.
It remains to show that H ′ is a unit distance graph.

Fig. 15.13 The 5-cycle
ul , u2, u3, u4, u5 is
attached to
{w1, w2, w3, w4, w5}

Construction 15.3 A 5-cycle can be attached to T = {v1, v6, v12, v13, v14}, (see the
right Fig. 15.12).

Proof We try to attach a 5-cycle w1, w2, w3, w4, w5 so that the cycle edges and
all the connecting edges are length 1, Fig. 15.14. It is fairly easy to attach a unit
distance path w1, w2, w3, w4, w5 to T . The hardest part is getting w5 and w1 to
be distance 1 apart to complete the cycle.
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Fig. 15.14 H with a 5-cycle attached to T

Define a continuous function f (θ ) to be the length of the edge {w1, w5} when
vertex w1 is placed at angle θ and distance 1 from v1, and each subsequent wi is
placed at distance 1 from both wi−1 and its corresponding vertex in T . Typically
there are two possible positions for wi , so a precise description of f (θ ) would
include how all of the choices are made. It suffices to say, there exists f (θ ) satisfying
the description above and continuous on some interval [a, b] on which f (a) < 1 and
f (b) > 1. By the Intermediate Value Theorem, for some θ0 ∈ [a, b], f (θ0) = 1.

Fig. 15.15 O’Donnell’s Pentagonal Graph
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By attaching 5-cycles to T and all of its rotations, we obtain a graph with the
desired properties. Since H had 15 vertices and we attached five 5-cycles, the result
is a 4-chromatic, triangle-free unit distance graph on 40 vertices (Fig. 15.15).

The new world record of 40 was fabulous; I proudly published it on the cover of
the July 1995 issue of Geombinatorics. However, it was not the end of the World
Series of Embedding. Paul ended his essay [Odo2] with the promise of more things
to come:

Some related questions are still wide open. Given k, is there a 4-chromatic unit distance
graph with no < k-cycles? What is the smallest 4-chromatic triangle-free unit distance
graph? And of course, is there a 5-chromatic unit distance graph in the plane? Stay
tuned to Geombinatorics for further developments.

15.4 A 23-Vertex, Girth 4, 4-Chromatic, Unit Distance
Graph [HO]

Indeed, more things have come. It remains a mystery to me why Paul O’Donnell did
not include in his doctorate dissertation two world records he has set jointly with
Rob Hochberg, records which still stand today. In the dissertation, Paul mentions
this great achievement briefly, as if in passing:

In joint work with R. Hochberg [HO], the upper bounds on the sizes of the smallest
4-chromatic unit distance graphs with girths 4 and 5 were lowered even more. A 23-
vertex, girth 4, 4-chromatic unit distance graph was found. The construction involved a
generalized version of cycle attachment. A 45 vertex, girth 5, 4-chromatic unit distance
graph was found. The construction involved a generalized version of cycle attachment.

And that is all! Fortunately, I published their remarkable paper in Geombinatorics
in April 1996 [HO], and so we are able to revisit it here.

In [Odo1] and [Odo2] Paul O’Donnell used an idea of attaching odd cycles
to specified subsets of vertices of a starting independent set. Here Hochberg and
O’Donnell use a more complicated notion of attaching: a cycle might not have all
of its vertices attached to the independent set, and some vertices in the independent
set may have more than one vertex of the cycle attached to them. Figure 15.16
illustrates two applications of this idea.

In Fig. 15.17A the 5-cycle (u1, u2, u3, u4, u5) is partially attached (by dashed
lines) to {w, y}. Observe that in any 3-coloring, if w and y get the same color, then
u5 must also receive that color.

To these three vertices {w, y, u5} we then attach the (bold) 5-cycle (v1, v2, v3, v4,

v5), as shown in Fig. 15.17B.
Now in any 3-coloring of this graph, if w and y (and hence u5) receive the same

color, then there are only 2 colors left for the attached odd cycle making such a
3-coloring impossible. But in any 3-coloring of the square {w, x, y, z}, one of the
pairs {w, y} or {x, z} must be monochromatic. So we take a copy of the two 5-cycles
shown in Fig. 15.17B (flipped about a horizontal axis so that they are now attached
to the pair {x, y}). With the coincidence at the center of the square, this adds only
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Here, a 5-cycle is partially attached to the
independent set {v, w}. In any 3-coloring of
this graph, if v and w get the same color,
then x must also get that color.

Here, a 7-cycle is attached to the independent
set {a, b, c, d}. Any coloring of this graph that
makes the independent set monochromatic,
must use at least 4 colors. Note that this graph
has girth 5.

Fig. 15.16 Attaching odd cycles to independent sets

Fig. 15.17A Attaching a 5-cycle

Fig. 15.17B Attaching a 5-cycle

nine new vertices (rather than 10 – every vertex counts when we set world records!),
creating a 23 vertex graph with no 3-coloring. This graph is shown in Fig. 15.18.
I named it Hochberg–O’Donnell’s Fish Graph.

It remains to be shown that the graph is indeed unit distance. Clearly, it suffices
to show that the 5-cycles can be attached the way we described. The proof relies
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Fig. 15.18 Hochberg–O’Donnell’s Fish Graph of order 23

on the Intermediate Value Theorem and the continuity argument. We try to attach a
cycle to a specified set of vertices, so that the cycle edges and the connecting edges
are all length 1. In fact, we do it twice: in the first, one of the edges in the cycle
will be too short, in the second, it will be too long. Since one configuration can he
obtained from the other by a continuous transformation (which does not alter the
lengths of the unit length edges), there exists an attachment where that same edge
has length 1. This works for all the attachments and partial attachments in these
constructions. We looked at this argument in greater detail earlier in this chapter
where we discussed O’Donnell’s 56- and 40-vertex record graphs.

The problem, of course, remains open:

Open Problem 15.4 What is the smallest size of a 4-chromatic unit distance graph
of girth 4?

As you know, the smallest 4-chromatic triangle-free graph is the Mycielski–
Grötzsch Graph of 11 vertices. The Fish satisfies all the Grötzsch conditions plus
one extra: it is a unit distance graph. It is remarkable that Rob and Paul managed
with merely 23 vertices. Is this the smallest possible number of vertices? I am not
sure. I am positive though that 23 is very close to the minimum. And so, in a course
of 2 years, on the pages of Geombinatorics we traveled from 6448 vertices all the
way to 23, an incredible achievement!
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15.5 A 45-Vertex, Girth 5, 4-Chromatic, Unit Distance
Graph [HO]

Recall the Petersen Graph (Fig. 13.3) and its unit distance embedding in the plane
(Fig. 13.4) that was discovered by the distinguished triumvirate of mathematicians
Erdős–Harary–Tutte in their famous 1965 article [EHT] (yes that is where they
famously remarked “It is easy to see especially after seeing it”). Here Hochberg
and O’Donnell pursue their second idea (Fig. 15.16 on the right). Accordingly, in
Fig. 15.19, a 7-cycle (shown in bold) is attached to a 4-vertex independent set of the
Petersen graph.

Fig. 15.19 The Petersen graph with a 7-cycle attached (by dashed lines)

The authors then simply write: “By the pigeonhole principle, in any 3-coloring
of the Petersen Graph, one of the five rotations of the set {a, b, c, d} will be
monochromatic.” Can you figure how the pigeons help here? Upon pondering for
a few minutes, I understood it (though not sure whether the authors had the same
argument in mind): In a 3-coloring of the Petersen Graph, at least 4 out of its 10
vertices must appear in the same color (that is the Pigeonhole Principle). Now,
which 4 vertices could that be (here the Pigeonhole Principle is of no help)? The
answer is two vertices on the outer pentagon and two on the inner star. You can now
verify (do) that the only pair of the outer monochromatic vertices that allows two
inner vertices in the same color, up to a rotation is a, c (Fig. 15.19). It is then clear
that a, c must be accompanied in the same color by the vertices b, d of the inside!

When 7-cycles are attached to all five rotations of {a, b, c, d}, the resulting graph
will not be 3-colorable. This gives a 45 vertex 4-chromatic graph with no 3-cycles
or 4-cycles. This beautiful graph is shown in Fig. 15.20. I gave it the name honoring
its creators, the Hochberg–O’Donnell Star Graph, and published it on the cover of
the April 1996 issue of Geombinatorics.

Finally, we need to show that the Star Graph is indeed embeddable in the plane. It
suffices to show that the 7-cycles can be attached the way we described it. The proof
relies again on the Intermediate Value Theorem, and the continuity argument. We
need to attach a 7-cycle to a specified set of vertices so that the cycle edges and the
connecting edges are all length 1. Instead we do it twice: in the first attachment one



15 Embedding World Records 125

Fig. 15.20 Hochberg–O’Donnell’s Star Graph of order 45

of the edges in the cycle will be too short, while in the second one too long. Since one
configuration can be obtained from the other by a continuous transformation (which
doesnotalter the lengthsof theunit lengthedges), thereexistsanattachmentwhere that
same edge has length 1. This works for all the attachments and partial attachments in
these constructions. We looked at this argument in a greater detail earlier in this chapter
when we discussed O’Donnell’s 56- and 40-vertex record graphs.

Open Problem 15.5 What is the smallest size of a 4-chromatic unit distance graph
of girth 5?

I hope you have enjoyed getting acquainted with the beautiful new graphs and
the world records they represent. The Tables 15.1 and 15.2 summarize the world

Table 15.1 World records: Smallest unit distance 4-chromatic graph of Girth 4

Num. of ver-
tices

Author Pub. Date Journal

6448 N. Wormald 1979 [Wor]
56 P. O’Donnell July 1994 Geombinatorics IV(1), 23–29
47 K. Chilakamarri January 1995 Geombinatorics IV(3), 64–76
46 R. Hochberg 1995 (unpublished)
40 P. O’Donnell July 1995 Geombinatorics V(1), 31–34
23 R. Hochberg &

P. O’Donnell
April 1996 Geombinatorics

V(4),137–141
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Table 15.2 World records: Smallest unit distance 4-chromatic graph of Girth 5

Num. of vertices Author Pub. Date Journal

6448 N. Wormald 1979 [Wor]
45 R. Hochberg & P. O’Donnell April 1996 Geombinatorics

V(4),137–141

records history, and underscore the role of Geombinatorics as the playing field of
this World Series.

It is now time to move on: we still have a lot of exciting colored and coloring
mathematics to experience. Armed with great results on colored integers in Part
VII, we will return to Paul O’Donnell’s dissertation: Part IX will be dedicated to his
main results.



16
Edge Chromatic Number of a Graph

16.1 Vizing’s Edge Chromatic Number Theorem

We can assign a color to each edge of a graph instead of its vertices. This gives birth
to the following notion.

A graph G is called n-edge colorable if we can assign one of the n colors to each
edge of G in such a way that the adjacent edges are colored differently.

The edge chromatic number �1(G) also known as chromatic index of a graph G
is the smallest number n of colors for which G is n-edge colorable.

The following two statements follow straight from the definition.

Problem 16.14 For any graph G

�1(G) ≥ Δ(G).

Problem 16.2 For any subgraph G1 of a graph G

�1(G1) ≤ �1(G).

In 1964, the Russian mathematician Vadim G. Vizing published [Viz1] a won-
derful result about the edge chromatic number of a graph. His proof is fairly long,
but so nice that I am going to present it here completely. Do read it with pencil and
paper!

Vizing’s Theorem 16.3 (V. G. Vizing, [Viz1]) If G is a non-empty graph, then

�1(G) ≤ Δ(G) + 1, (∗)

i.e., the edge chromatic number �1(G) of a graph is always equal to Δ or Δ + 1,
where Δ = Δ(G).

4 Δ(G) is defined in Chapter 12.

A. Soifer, The Mathematical Coloring Book, 127
DOI 10.1007/978-0-387-74642-5 16, C© Alexander Soifer 2009
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Vadim G. Vizing in early 1960s, when he worked on his classic theorem

Proof I enjoyed the version of the Vizing’s proof in [BCL]. My presentation is based
on theirs—I tried to make it more visual by including many illustrations, splitting
one case into two, and adding a number of elucidations.

Part I. Preparation for the Assault: We will argue by contradiction. Assume that
the inequality (∗) is not true. Then among the graphs for which (∗) is not true, let G
be a graph with the smallest number of edges. In other words, G is not (Δ + 1)-edge
colorable; but the graph G ′ obtained from G by removing one edge e, is [Δ(G ′) +
1]-edge colorable. Since obviously Δ(G ′) ≤ Δ(G), the graph G ′ is (Δ + 1)-edge
colorable.

Let G ′ be actually edge colored in Δ + 1 colors, i.e., every edge of the graph G
except e = uv (this equality simply denotes that the edge e connects vertices u and
v) is colored in one of the Δ+1 colors in such a way that adjacent edges are colored
differently. For each edge e′ = uv′ of G that is incident with u (including e), we
define its dual color as any one of the Δ + 1 colors that is not used to color edges
incident with vertex v′. (Since the degree of any v′ does not exceed Δ, we always
have at least one color to chose as dual. It may so happen that distinct edges have
the same dual color—it is all right).

We are going to construct a sequence of distinct edges e0, e1, . . . , ek all incident
with u as follows (Fig. 16.1). Let e = e0 have dual color α1 (i.e., α1 is not the color
of any edge of G incident with v). There must be an edge, call it e1, of color α1

incident with u (for if not, then the edge e could be colored α1, thus producing a
(Δ + 1)-edge coloring of G). Let α2 be the dual color of e1. If there is an edge of
color α2 incident with u and distinct from e0 and e1, we denote it by e2 and its dual
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color by α3, etc. We have constructed a maximal (i.e., as long as possible) sequence
e0, e1, . . . , ek, k ≥ 1 of distinct edges. The last edge ek by construction is colored
αk and has dual color αk+1.

Fig. 16.1

If there were no edge of color αk+1 incident with u, then we would recolor each
edge of our sequence e0, e1, . . . , ek into its dual color, and thus achieve a (Δ + 1)-
edge coloring of G (do verify that!). This contradicts our initial assumption.

Therefore, there is an edge ek+1 of color αk+1 incident with u; but since we have
constructed the longest sequence of distinct edges e0, e1, . . . , ek , the edge ek+1

must coincide with one of them: ek+1 = ei for some i, 1 ≤ i ≤ k. Since the edges
coincide, so do their colors: �k+1 = �i . The color �k of the edge ek may not be the
same as the dual color αk+1 of ek : �k+1 �= �k . Thus we get �k+1 = �i for some
i, 1 ≤ i < k. Denote t = i − 1, then the last equality can be written as follows:

�k+1 = �t+1

for some t, 0 ≤ t ≤ k − 1. Finally, this means that the edges ek and et have the
same dual color.

And now the last preparatory remarks.

a. For each color � among the Δ+1 colors, there is an edge of color � adjacent with
the edge e = uv (for if not, e could be colored �, thus producing (Δ + 1)-edge
coloring of G). But since there are at most Δ edges incident with the vertex u,
there is a color, call it �, assigned to an edge incident with the vertex v that is not
assigned to any edge incident with u.

b. The color � must be assigned to at least one edge incident with the vertex vi for
each i = 1, 2, . . . , k (Fig. 16.1). Indeed, if we assume that there is a vertex
vm, 1 ≤ m ≤ k, such that no edge incident with vm is colored �, then we can
change the color of em to � and change the color of each ei , 0 ≤ i ≤ m to its
dual color to obtain a (Δ + 1)-edge coloring of G (verify that).

Part II The Assault: A sequence of edges a1, a2, . . . , an of a graph is called
a path of length n if the consecutive edges of the sequence are adjacent (Fig. 16.2).
You can trace a path with a pencil without taking it off the paper all the way from
the initial vertex of the path v0 to the terminal vertex of the path vn . The edge a1 is
called initial, while the edge an terminal edge of the path.
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Define two paths P and R as follows: their initial vertices are vk and vt respec-
tively, and each of the paths has maximum possible length with edges alternately
colored β and αk+1 = αt+1 (we established in Part I that colors �k+1 and �t+1 coin-
cide). Denote the terminal vertices of the paths P and R by w and w′ respectively
and consider five possibilities for w and w′.

v0

v1 v2

vn - 1

vn

a1

a2
an

Fig. 16.2

Case 1: w = vm for some m, 0 ≤ m ≤ k − 1 (Fig. 16.3).

Fig. 16.3

Observe that the color �k+1 as the dual color of the edge ek , may not be adjacent
to ek , therefore the initial edge of the path P must be colored � and m �= k.

The terminal edge of P must be colored � as well. Indeed, if alternatively the
terminal edge of P were colored �k+1, then we would be able to make P longer by
adding one more edge incident with vm and colored � (it exists as we noticed in (b)
at the end of Part I of this proof).

Note that the vertex vt is not on P unless vm = vt . Indeed, assume that vt is on
P and vt �= vm , then vt is incident with edges of P (Fig. 16.4). One of them must
be colored �k+1 (and the other �), but the dual color of et is �t+1 = �k+1, therefore
no edge of color �k+1 may be adjacent to et . This contradiction proves that vt is not
on P unless vt = vm .

Fig. 16.4
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We are ready to finish Case 1. Interchange the colors � and �k+1 on the edges of
P . Please note (and prove) that as a result of this interchange, we do not alter the
dual colors of edges ei for any i < m, and end up with no edge of color � incident
with vm . Now to obtain a (Δ + 1)-edge coloring of G, we just change the color of
em to � and change the color of every ei for 0 ≤ i < m to its dual. (Do verify that
we get a (Δ+ 1)-edge coloring of G.) We have reached a contradiction, for G is not
(Δ + 1)-edge colorable.
Case 2: w′ = vm for some m, 0 ≤ m ≤ k (Fig. 16.5).

Fig. 16.5

Observe that the color �k+1 = �t+1 as the dual color of the edge et , may not be
adjacent to et , therefore the initial edge of the path R must be colored �, and m �= t .

The terminal edge of R must be colored � as well. Indeed if alternatively the
terminal edge of R is colored �k+1, then we would be able to make R longer by
adding one more edge incident with vm and colored � (it exists as we showed in (b)
at the end of Part I of the proof).

The vertex vk is not on R unless vm = vk (the proof is identical to a relevant
argument in Case 1 above). Now we interchange the colors � and �k+1 of the edges
of R. As a result of this interchange, we do not alter the dual colors of edges ei for
any i �= t , and end up with no edge of color � incident with vm .

If m < t , we finish as in Case 1. If m > t , we change the color of e to �
and change the color of every ei , 0 ≤ i < m to its dual. In either case we get a
(Δ + 1)-edge coloring of G, which is a contradiction.
Case 3: w �= wm for any m, 0 ≤ m < k and w �= u. As in Case 1, the initial edge
of P must be colored �.

We interchange the colors � and �k+1 of the edges of P . As a result (just like in
Case 1), we do not alter the dual colors of edges ei for any i < k, and end up with
no edge of color � incident with vk . As in the previous cases, we can now obtain a
(Δ + 1)-edge coloring of G, a contradiction.
Case 4: w′ �= vm for any m �= t , and w′ �= u. This case is similar to Case 3—
consider it on your own.
Case 5: w = w′ = u. (Figs. 16.6 and 16.7)
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Fig. 16.6

Fig. 16.7

Since by definition of �, u is incident with no edge colored �, the terminal edge
of both paths P and R is colored �k+1.

If P and R have no edges in common (Fig. 16.6), then u is incident with two
edges colored �k+1, which cannot occur in edge coloring of a graph. But if P and R
do have an edge in common, then there is a vertex (g in Fig. 16.7) incident with at
least three edges of P and R. Since each of these three edges is colored � or �k+1,
two of them must be assigned the same color which cannot occur with two adjacent
edges of an edge colored graph. In either case we have obtained a contradiction.

This remarkable theorem partitions graphs into two classes: class one, when
�1(G) = (G); and class two, when �1(G) = Δ(G) + 1.

Each class does contain a graph. The graph in Fig. 16.8 is of class one and the
graph in Fig. 16.9 is of class two. Can you prove it?

χ
1
(G) = 3 = Δ(G)

Fig. 16.8 A class one graph

χ
1
(G) = 4 = Δ(G) + 1 

Fig. 16.9 A class two graph
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Problem 16.4 Prove that an n-cycle Cn, (n ≥ 3) is of class one if n is even, and of
class two if n is odd.

Problem 16.5 Prove that a complete graph Kn is of class one if n is even, and of
class two if n is odd.

Proof This problem does not sound exciting, does it? You are in for a nice surprise,
true mathematical recreation! In fact, do not read any further just yet, try to solve it
on your own. Then read this solution which comes from [BCL].

1. Assume the graph Kn is an edge colored in Δ(Kn) = n − 1 colors. Every vertex
is incident with n − 1 edges, which must be colored differently. Therefore, every
vertex is incident with an edge of every color.

Now take color 1. Every vertex of Kn is incident to an edge of color 1, and
edges of color 1 are not adjacent. Therefore, edges of color 1 partition the n
vertices of Kn into disjoint pairs. Hence, n must be even.

We proved that if Kn is a graph of class one, then n is even.
2. Now let us prove that, conversely, the graph K2n is of class one.

It is true for n = 1. Assume n ≥ 2. Denote the vertices of K2n by
v0, v1, . . . , v2n−1. We arrange the vertices v0, v1, . . . , v2n−1 in a regular
(2n − 1)-gon, and place v0 in its center. We join every two vertices by a straight
line segment, thereby creating K2n .

We are ready to color the edges of K2n in 2n − 1 colors. We assign the color
i (i = 1, 2, . . . , 2n−1) to the edge v0vi and to all edges that are perpendicular to
v0vi . We are done! All of the edges are colored: indeed we assigned n edges to each
color for a total of n(2n − 1) edges which is the number of edges of K2n . No two
edges of the same color are adjacent: they clearly do not share a vertex. Figure 16.10
shows all edges of color 1 for K8. Edge sets of other colors are obtained from this
one by rotations about the center v0 – this fact is true for the general case of K2n .

Fig. 16.10

Which class of graphs is “larger?” It does not appear obvious at all! Paul Erdős
and Robin J. Wilson showed in 1977 ( [EW]) that almost all graphs are of class one.
“Almost all” is made precise by the authors of [EW]:
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Problem 16.6 ( [EW]) If Un is the number of graphs with n vertices of class one,
and Vn is the total number of graphs with n vertices, then Un

Vn
approaches 1 as n

approaches infinity.

But how do we determine which graph belongs to which class? Nobody knows!
In 1973, Lowell W. Beineke and Robin J. Wilson published [BW] the following

simple sufficient condition for a graph to be of the second class.
The edge independence number �1(G) of a graph G is the maximum number

of mutually non-adjacent edges of G. (“Mutually non-adjacent edges” means every
two edges are non-adjacent.)

Problem 16.7 ([BW]) Let G be a graph with q edges. If

q > Δ(G) · �1(G),

then G is of class two.

Proof Assume G is of class one, i.e., �1(G) = Δ(G), hence, we can think of G as
being Δ(G)-edge colored. How many edges of the same color can we have in G?
At most �1(G) because the edges of the same color must be mutually non-adjacent.
Therefore, the number of edges q in G is at most Δ(G) · �1(G), which contradicts
the given inequality. G is of class two.

Problem 16.8 For any graph G with p vertices

β1(G) ≤
[ p

2

]

where
[ p

2

]
denotes the maximum integer not exceeding p

2 .

Proof Assume that the graph G has �1(G) mutually non-adjacent edges. The p
vertices of G are thereby partitioned into �1(G) two-vertex subsets plus perhaps
one more subset (of vertices non-incident with any of the �1(G) edges). Therefore,

�1 (G) ≤ p
q , but as an integer �1(G) ≤

[
p
q

]
.

Problems 16.7 and 16.8 join in for an immediate corollary.

Problem 16.9 Let G be a graph with p vertices and q edges. If

q > Δ(G) ·
[ p

2

]

then G is of class two.

The last problem shows that graphs with relatively large ratio of their number of
edges and the number of vertices are “likely” to be of class two.

Yet, conditions of Problems 16.7 and 16.9 are far from being necessary. Can you
think of a counterexample? Here is one for you:
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Problem 16.10 Show that the Peterson graph (Fig. 13.3) is of class two even though
it does not satisfy the inequalities of Problems 16.7 and 16.9.

This is a mysterious, relatively rare class two: can we use another approach to gain
an insight? We can gain an insight if we limit our consideration to planar graphs,
i.e., those that can be embedded in the plane without intersection of edges. It is easy
to find (do) class two planar graphs G with the maximum degree Δ(G) equal to 2,
3, 4, and 5. We do not know whether the maximum degree 6 or 7 can be realized in
a class two planar graph. In 1965 Vadim G. Vizing [Viz2] proved that higher than 7
maximum degrees are impossible.

Problem 16.11 (Vizing, [Viz2, Theorem 4]) If G is a planar graph with Δ(G) ≥ 8,
then G belongs to class one.

The following problem is still awaiting its solution:

Open Problem 16.12 Find criteria for a graph G to belong to class two.

16.2 Total Insanity around the Total Chromatic Number
Conjecture

In February 1992, I gave my first talk at the International Southwestern Confer-
ence on Combinatorics, Graph Theory and Computing at Florida Atlantic Univer-
sity, Boca Raton, Florida. I gave a talk about chromatic number of the plane, and
my research into the authorship of the problem. My investigative skills must have
looked good, for the British graph theorist Hugh R. Hind shared with me another
controversy. In his manuscript on total chromatic number conjecture, Hugh gave
credit for the conjecture to Vizing and Behzad. As a condition of publication, the
referee demanded that the credit be given to Behzad alone. While Hind thought that
both mathematicians authored the conjecture independently and deserved credit, he
felt that he had no choice but to comply with the referee’s demand. Hugh asked me
to investigate the authorship of the total chromatic number conjecture.

I was shocked. The referee’s ultimatum, backed by the editor (who sent the
referee report to the author), seemed to be nothing short of the cold war on the
mathematical front. What were the referee’s and the editor’s motives? Was it retal-
iation for the Soviet anti-Semitism and other violations of scientific norms? Was it
retaliation for the leading Soviet graph theorist A. A. Zykov’s ridiculously giving
in his book [Zyk3] credit for the Kuratowski Planarity Theorem to both Pontrya-
gin and Kuratowski? (Of course, Zykov’s crediting Pontryagin was outrageous, and
Pontryagin deserved no credit whatsoever.) However, life is no math—it does not
multiply two negatives to get positive—two wrongs make no right. Surely, the ref-
eree and the editor of Hind’s manuscript acted every bit as wrongly as the Soviet
apparatchiks—unless they had historical factual grounds to deny Vizing credit,
grounds they never disclosed. I accepted the call to investigate. What follows is
my report.
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Total chromatic number �2 (G) of a graph G is the minimum number of colors
required for coloring vertices and edges of G so that incident and adjacent elements
are never assigned the same color.

Total Chromatic Number Conjecture 16.13 For any graph G,

�2 (G) ≤ Δ (G) + 2.

I started my investigation right away, in Boca Raton during the same confer-
ence (February 1992). I asked the well-known graph theorist Mark K. Goldberg,
professor of computer science at Rensselaer Polytechnic Institute, whether he knew
anything about the authorship of the total chromatic number conjecture. This was a
very lucky choice, for Mark was an eye-witness to the story. Goldberg told me that
in December 1964 he arrived in Academgorodok (Academy Town), located just
outside Novosibirsk, a city in Russian Siberia, to apply for their Ph.D. program in
mathematics. During this trip he interacted with the Junior Research Staff member
Vadim G. Vizing, who shared with Goldberg his edge-chromatic number theorem
and the total chromatic number conjecture.

Three years later I was able to ask Vadim Vizing himself about the total chro-
matic number conjecture. I learned from Bjarne Tofts, a professor at Odense Uni-
versity in Denmark that Vadim G. Vizing was visiting him, and on March 12,
1995 I asked Toft to pass my e-mail with numerous questions to Vizing. I asked
biographical questions and, of course, questions about the conjecture. Two days
later, on March 14, 1995, I received the following reply (my translation from
Russian):

Dear Alexander!
At the present time I am in Odense on B. Toft’s invitation.

I was born March 25, 1937 in Kiev. I commenced my work on Graph Theory in 1962
as a Junior Research Staff if the Institute of Mathematics in Novosibirsk, in the Depart-
ment of Computing Techniques [Computer Science]. As part of my job I had to write
a program for coloring conductors in circuits. I discovered C. E. Channon’s work,
dedicated to this question, published in 1949 (Russian translation was published in
1960). Having studied Channon’s work, I began to think about the precision of his
bound. I knew only one type of multigraphs on which his bound was precise [best
possible]. This is why I assumed that for ordinary graphs (without multiple edges)
Channon’s bound could be strengthened. It took a year and a half for me to prove my
theorem for ordinary graphs.

In early 1964 the article was sent to “Doklady AN USSR,” but was rejected by
the editorial board. In the fall of 1964 I obtained the generalization of the result to
p-graphs and published an article about it in the antology “Diskretnyi Analiz”, issue
3 [Viz1] that was released in December 1964 in Novosibirsk (I am mailing to you a
copy of this article).

In early 1964, while presenting the theorem about coloring edges of a graph at
A. A. Zykov’s’ Seminar (present were A. A. Zykov, L. S. Melnikov, K. A. Zaretskij,
V. V. Matjushkov, and others), I formulated the conjecture on the total chromatic num-
ber, which we called then conjecture on the simultaneous coloring of vertices and
edges. Many of my colleagues in Novosibirsk attempted to prove the conjecture but
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without success. By the time of publication [Viz3] of my article on unsolved problems
of Graph Theory in “Uspekhi Mat. Nauk” (1968), in which I first published the con-
jecture, the conjecture already had wide distribution among Soviet mathematicians. In
the nearest future I will mail to you the article in Russian, in which the conjecture on
the total chromatic number of multigraph appears on p. 131.

Thus, Vizing’s recollection of creating the total chromatic number conjecture
by early 1964, verified independently by Mark Goldberg, leaves no doubts about
his authorship. Vizing’s total chromatic number conjecture was also presented by
Alexander A. Zykov at the problem session of the Manebach Colloquium in May
1967 (published in 1968 [Zyk2], p. 228). Vizing published this conjecture himself
among many other open problems in 1968 [Viz3]. In addition, any impartial expert
would agree that this conjecture was a natural continuation of the train of thought
emanating from Vizing’s famous theorem on chromatic index of the graph (Theo-
rem 16.3 above).

I then looked at articles of specialists working on the total chromatic number
of a graph. Hugh R. Hind [Hin1], [Hin2], Anthony J. W. Hilton and Hind [HH],
and Amanda G. Chetwynd almost universally credited Behzad with the conjecture.
Chetwynd even “explained” what led Behzad to discover the conjecture [Che]:

This [i.e., Brooks’ Theorem and Vizing’s Theorem] led Behzad to conjecture a similar
result for the total chromatic number.

What is wrong with this “explanation?” Everything:

1. In reading Mehdi Behzad’s 1965 thesis (Chetwynd obviously did not read it
before writing about it), it is obvious that Behzad did not know Vizing’s Theo-
rem: Behzad conjectures the statement of Vizing’s Theorem, but is able to prove
it only for graphs of maximum degree 3.

2. If Vizing’s Theorem led even Behzad to the total chromatic conjecture, it would
have surely led (and did!) Vizing himself to formulate the conjecture. Then why
does Chetwynd give no credit to Vizing?

On December 2, 2007 I contacted Professor Behzad, and asked him to present a
case in support of his sole authorship. He kindly submitted his final text of the reply
in the December 14, 2007 e-mail to me:

I started to think about my Ph.D. thesis in 1963—1964, at Michigan State University,
to be written under the supervision of Professor E. A. Nordhaus. In those days there
was only one book in the field of graph theory in English, and no courses were offered
on the subject. I was interested in vertex coloring and then line coloring. For several
months, naively, I tried to solve the 4-color problem. Then I thought of combining these
two types of colorings. I mentioned the notion, which was later called “total chromatic
number of a graph,”5 to Nordhaus. He liked the idea, but for several months he did
not allow me to work on the notion. Later he told me this idea was so natural that
he thought someone might have worked on the subject. Thanks to Professor Branko

5 According to Behzad, it was Nordhaus who coined the term.
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Grünbaum who resolved the problem. In my thesis I introduced this notion and pre-
sented the related conjecture. In addition, I introduced the total graph of a graph in
such a way that the total chromatic number of G was equal to the vertex chromatic
number of its total graph. My Thesis was defended in the Summer of 1965. Prior
to 1968, when Professor Vizing’s paper entitled “Some Unsolved Problems in Graph
Theory” appeared, several papers were published on topics related to total concepts;6 I
informally talked about TCC in two of the conferences that I attended in 1965 and 1966
held at The University of Michigan, and the University of Waterloo. As I mentioned
before, aside from my thesis, the Proceedings of the International Symposium in the
Theory of Graphs – Rome, 1966 contains the subject and the TCC. . .

As far as I know, out of several hundred articles, theses, books, and pamphlets con-
taining TCC, none omit my name, and very many authors provide only one reference
for TCC and that is my thesis. I am not aware of a single work mentioning TCC and
giving reference to Vizing alone. There are authors who have given credit to the two
of us, but have decided to stop doing so.

I am reading Mehdi Behzad’s Ph. D. thesis [Beh]. Perhaps, due to the field being
relatively new in 1965, to me Behzad’s thesis appears light on deep proofs. How-
ever, the author, demonstrates a fine intuition: he conjectures (already published by
Vizing a year earlier) Vizing’s Theorem on edge-chromatic number of a graph (con-
jecture 1, p. 18), and formulates the total chromatic number conjecture (conjecture
1, p. 44).

Behzad and Chartrand submitted their “expository article” on total graphs to the
1966 Rome Symposium, and it was published [BC1] in 1967. It says (I just replaced
notations to contemporary ones):

It was conjectured in [Beh] that

i. Δ(G) ≤ �1(G) ≤ Δ(G) + 1, and
ii. Δ(G) + 1 ≤ �2(G) ≤ Δ(G) + 2

The conjecture (i) has been proved by Vizing [Viz1], but (ii) remains an open question.

The good news is that Behzad (with Chartrand) published the total chromatic
number conjecture. As to “conjecture (i)”, we are told above that Behzad conjec-
tured the chromatic index theorem, and Vizing proved Behzad’s conjecture. In real-
ity, Vizing’s paper already came out in 1964, a year before Behzad ever conjectured
this result. Of course, Vizing worked on his conjecture on the chromatic index much
earlier, during 1962–1963, for as he says, it took him a year and a half to prove his
conjecture. In early 1964 he finally submitted his paper.

6 Indeed, the following papers, authored or coauthored by Behzad, address total graphs, but do not
include the total chromatic number conjecture: M. Behzad and G. Chartrand, Total graphs and traversabil-
ity, Proc. Edinburgh Math. Soc. (2) 15 (1966). 117–120. M. Behzad, G. Chartarand, and J.K. Cooper Jr.
The colour numbers of complete graphs, J. Lond. Math. Soc. 42 (1967) 225–228. M. Behzad, A criterion
for the planarity of the total graphs of a graph, Proc. Cambridge Philos. Soc. 63 (1967) MR35#2771. M.
Behzad and H. Radjavi, The total group of a graph, Proc. Amer. Math. Soc. 19 (1968), 158–163.
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M. Behzad had no way of knowing about my findings showing that Vizing formu-
lated the total chromatic number conjecture in early 1964, i.e., well before Behzad.
However, Behzad knew about Vizing’s 1968 paper [Viz3], where the total chromatic
number conjecture was published. Surely, it took time, prior to the submission of this
paper, for Vizing to assemble such a large survey of unsolved problems of graph
theory. Thus, independent authorship of Vizing should not have been questioned.
Yet, Behzad’s 1971 book [BC2], p. 214] joint with Gary Chartrand, his former
fellow Ph.D. student of E. A. Nordhaus, gave the sole credit to Behzad for the
total chromatic number conjecture, as did the 1979 fine book written by Behzad,
Chartrand, and Linda Lesniak-Foster [BCL, p. 252].

I informed Professor Behzad of my findings in our phone conversation on
January 2, 2008. He was pleased that at long last someone had taken the time and
effort to investigate the credit for this famous conjecture, and that the credit was
rightfully due to the two discoverers.

Summing it all up, the total chromatic number conjecture has been first formu-
lated by Vadim G. Vizing in early 1964, and published in 1968. Mehdi Behzad
independently formulated the conjecture in the unpublished thesis in summer of
1965, and published it (jointly with Gary Chartrand) in 1967. In my opinion, this
unquestionably merits the joint credit to Vizing and Behzad.

I hope this analysis will end editorial room bias, threats and politicking, and will
restore the joint credit for the conjecture. Joint credit and correct publication dates
were given by Tommy R. Jensen and Bjarne Toft in their enlightened 1995 prob-
lem book [JT] and repeated in Reinhard Diestel’s textbook [Die]. In later papers,
e.g., [HMR], Hugh Hind, Michael Molloy, and Bruce Reed give credit to both Viz-
ing and Behzad for the concept of the total chromatic number and the conjecture.
Yet, even in 2005 the latest, 4th edition of Graphs & Digraphs [CL] by Chartrand
and Lesniak (Behzad is not listed as a coauthor), still credits M. Behzad, and Behzad
alone, for total coloring and the total chromatic number conjecture. I hope that,
having read these lines, the authors will correct the credit in their next edition.

Mehdi Behzad is a professor of mathematics at Shahid Beheshti University in
Iran. Following his visit of Denmark in 1995, Vadim Vizing, who recently worked
on the theory of scheduling, wrote to me that he was going to renew “intensive
work on graph theory,” and has indeed, as his publications show. He lives in Odessa,
Ukraine.

In spite of active work and partial results, the total chromatic number conjec-
ture remains as challenging as it is open. With an ease of formulation and appar-
ent difficulty of proving, this conjecture now belongs to mathematics’ classic open
problems.
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Carsten Thomassen’s 7-Color Theorem

One day in 1998, I was asked by The American Mathematical Monthly to referee
a manuscript submitted by one of the world’s leading graph theorists, Professor
Carsten Thomassen of The Technical University of Denmark. The paper offered
a fresh, purely graph-theoretic approach to finding the chromatic number of the
plane. I was very impressed, and asked the author to expand his too concise (for The
Monthly) presentation, and informed him of my research that proved that Edward
Nelson, and Nelson alone (without Hadwiger) was the author of the problem. In
this chapter I will present Thomassen’s attempt to find the chromatic number of the
plane. Though he has not found it—no one has—he still obtained a fine result, and
in the process showed how graph theory proper can be utilized for an assault on this
problem. I will present Thomassen’s proof with minor editorial revisions. The use
of paper and pencil is a must while reading a proof written in Thomassen’s style.

Thomassen offers a vast generalization of the popular hexagonal coloring that we
used to prove the upper bound 7 (Chapter 2) to the class of colorings that he calls
nice. He considers a graph G on a surface S that is a metric space (i.e., curve-wise
connected Hausdorff space in which each point has a neighborhood homeomorphic
to an open circular disc of the Euclidean plane). The graph G on the surface S
creates a map M(G, S), in which a region is an edge-connected component of S\G.
For his purposes, Thomassen assumes that each region that has diameter of less than
1 is homeomorphic to a Euclidean disc and is bounded by a cycle in G. I choose
to avoid a detour into basics of topology, and offer the unfamiliar reader to simply
think that S is the plane or a sphere, i.e., the graph G is drawn on the Euclidean
plane or a sphere—coloring the plane is, after all, our main goal.

The area of a subset A of S is the maximum number of pairwise disjoint open
discs of radius 1/2 that can be packed in A. (If this maximum does not exist we say
that A has infinite area.) A simple closed curve C is contractible if S\C has precisely
two edge-wise connected components such that one of them is homeomorphic to an
open disc in the Euclidean plane. That component is called the interior of C and is
denoted int(C). (If S is a sphere, then int(C) denotes any component of S\C of the
smallest area).

Given a graph G on a surface S, Thomassen defines nice coloring of S as a col-
oring in which each color class is the union of regions (and part of their boundaries)
such that the distance between any two of these regions is greater than 1.

140 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 17, C© Alexander Soifer 2009
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Finally, I need to introduce here a map-graph duality, which we will use not only
in this chapter but in the next part as well. Given a map M , we can define the graph
of the map, or map graph Γ (M) as the graph whose vertices are the regions of
M with two vertices adjacent if and only if the corresponding regions share part of
their boundary, which is not merely a finite number of points. If the map M(G, S) is
induced by the graph G on the surface S, we will simplify the notation for the map
graph to Γ (G, S).

Thomassen’s 7-Color Theorem 17.1 Let G be a connected graph on a surface S
satisfying (i), (ii), and (iii) below. Then every nice coloring of S requires at least 7
colors.

(∗) Every non-contractible simple closed curve has diameter at least 2.
(∗∗) If C is a simple closed curve of diameter less than 2, then the area of int(C)

is at most k.
(∗∗∗) The diameter of S is at least 12k + 30.

Before proving his theorem, Thomassen introduces Tool 17.2, for which he needs
a few notations and definitions.

If V (G) is the vertex set of a graph G and x ∈ V (G), then D1 (x) stands for the
set of neighbors of x . For n > 2, we define Dn (x) inductively as the set of vertices in
V (G)\ [{x} ∪ D1 (x) ∪ . . . ∪ Dn−1 (x)

]
that have a neighbor in Dn−1 (x). A graph G

is called locally finite if D1 (x) is finite for each vertex x of G; and locally connected
if the minimal subgraph of G that contains D1 (x) is connected for each vertex x of
G. We call G locally Hamiltonian if G has a cycle with vertex set D1 (x) for each
vertex x of G.

Tool 17.2 Any connected locally finite, locally Hamiltonian graph with at least 13
vertices has a vertex of degree at least 6.

Proof If no vertex of the graph G satisfying all conditions has degree at least 6, pick
a vertex x of maximum degree. Clearly deg(x) ≥ 3.

Assume deg(x) = 3. Since G contains a cycle with the vertex set D1 (x), the
subgraph of G induced by {x} ∪ D1 (x) is the graph of the tetrahedron, Since maxi-
mum degree in G is 3, D2 (x) is empty. Since G is connected, G is the graph of the
tetrahedron, i.e., has just four vertices, in contradiction to the assumption that G has
at least 13 vertices.

Assume now deg(x) = 4. Since vertices of D1 (x) form a cycle, we can conclude
that each vertex y ∈ D1 (x) has at most one neighbor z ∈ D2 (x). Since vertices of
D1(y) form a cycle, z has at least three neighbors in D1 (x). Thus, there are at most
four edges from D1 (x) to D2 (x), and therefore every vertex in D2 (x) has at least
three neighbors in D1 (x). Hence D2 (x) has at most one vertex z. Since vertices of
D1(z) form a cycle, it follows that D3 (x) = Ø. Thus, G has at most six vertices, a
contradiction.

Finally assume deg(x) = 5. Each vertex y ∈ D1 (x) has at most two neighbors in
D2 (x) because vertices of D1(x) form a cycle and this cycle uses up two points out
of the maximum degree 5 of y. Since vertices of D1(y) form a cycle, every neighbor
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z of y in D2 (x) has at least two neighbors in D1 (x). Observe that z cannot have
two or more neighbors in D3 (x) because then a cycle with vertex set D1(z) will
show that z has at least two neighbors in D2 (x) that is, z has a total of at least six
neighbors, a contradiction. So z has at most one neighbor in D3 (x) and that neighbor
has at least three neighbors in D2 (x). Since there are at most 10 edges from D1 (x) to
D2 (x), and every vertex in D2 (x) has at least two neighbors in D1 (x), it follows that
D2 (x) has at most five vertices. Hence there are at most five edges from D2 (x) to
D3 (x). Since each vertex in D3 (x) has at least three neighbors in D2 (x), it follows
that D3 (x) has at most one vertex, and thus D4 (x) = Ø. Hence G has at most
12 vertices, a contradiction that completes the proof.

Now we are ready to prove the theorem.

Proof of Thomassen’s Theorem Given a graph G on a surface S that satisfies (i),
(ii), and (iii). Assume the opposite, i.e., there is a nice coloring utilizing at most 6
colors. Let x be a vertex of the map graph Γ = Γ (G, S) and let Cx be the cycle
in G bounding the corresponding region. Let us choose an orientation of Cx and let
x1, x2, . . . , xk, x1 be the vertices of D1 (x) listed in the order in which they appear
as we traverse Cx .

Thomassen first considers a simple case, which illustrates the idea of his proof.
Assume that for each vertex x , all vertices x1, x2, . . . , xk are distinct. In this case, Γ

is locally Hamiltonian. Since the surface S is edgewise connected, it follows that Γ

is connected. Since S has diameter greater than 13, Γ has more than 12 vertices, and
hence, by Tool 17.2, Γ has a vertex of degree at least 6. Now x and its neighbors
must have distinct colors because x corresponds to a face of diameter < 1 on S.
This contradiction completes the proof in this case.

In the general case, a vertex may appear more than once in the sequence
x1, x2, . . . , xk, x1 above. Omit those appearances (except possibly one) of xi for
which Cxi and Cx have only one vertex in common. In other words, if xi appears
more than once in the new sequence, we list only those appearances for which
Cxi and Cx share an edge. Then any two consecutive vertices in the sequence
x1, x2, . . . , xk, x1 are neighbors in Γ , and thus Γ is locally connected. It follows
that Γ − x is connected. Moreover, if y is any other vertex of Γ , then Γ − x − y is
connected unless y appears twice in the sequence x1, x2, . . . , xk , that is, Cx and Cy

have at least two edges in common.
Let now x and y be vertices such that Cx and Cy have at least two edges e and f

in common, i.e., y = xi = x j for 1 ≤ i < j − 1 < k − 1). Let R be a simple closed
curve in the regions bounded by Cx and Cy such that R crosses each of e and f
precisely once and has no other point in common with G. By (i), R is contractible.
Hence Γ − x − y is disconnected. We say in this case that {x, y} is a 2-separator in
Γ . For each vertex z in Γ such that Cz is in int(R) and has color 1, we pick a point
Pz in int(Cz). By (ii), there are at most k points Pz and hence there are altogether at
most 6k vertices z such that int(Cz) ⊆ int(R).

Let int(Γ, x, y) stand for the subgraph of Γ − x − y induced by all those vertices
z in Γ such that Cz is in int(R) for some R. Then each connected component of
int(Γ, x, y) has at most 6k vertices. Since S has diameter at least 12k +3, it follows
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that G has two vertices whose graph distance is at least 12k+2. Hence Γ −x −y has
some component that is not in int(M, x, y). We claim that Γ −u −v has precisely
one such component, which we call ext(M, x, y). To see this, let e1, e2, . . . , em be
the edges in Cx ∩Cy occurring in this cyclic order on Cx . Then e1, e2, . . . , em divide
D1(x)\{y} into m classes A1, A2, . . . , Am . By letting {e, f } = {ei , ei+1}, 1 ≤ i <

m in the preceding argument, we conclude that for each i = 1, 2, . . . , m, either
Ai ⊆ int(Γ, x, y) or Ai ∩ int(Γ, x, y) = Ø. Since the former cannot hold for
each i ∈ {1, 2, . . . , m}, the latter must hold for some i , and hence the former holds
for all other i ∈ {1, 2, . . . , m}. Thus, we proved that for any two vertices x, y in
Γ, Γ − x − y has precisely one connected component ext(Γ, x, y) with more than
6k vertices.

If {u, v} is a 2-separator in Γ such that either x or y or both are in int(Γ, u, v),
then clearly int(Γ, x, y) ⊂ int(Γ, u, v). (To see this, we use the properties of
Γ established previously and forget about S.) If no such 2-separator {u, v} exists,
then we say that {x, y} is a maximal 2-separator and that xy is a crucial edge.
Since each connected component of int(Γ, x, y) has at most 6k vertices, a max-
imal 2-separator exists (provided a 2-separator exists). Let H be the subgraph of
Γ obtained by deleting int(Γ, x, y) for each maximal 2-separator {x, y}. Then
H �= Ø. Moreover, since a shortest path in Γ between two vertices in H never
uses vertices in int(Γ, x, y), H is connected. We can similarly prove that H is
locally connected. We now claim that H is locally Hamiltonian. Consider again a
vertex x in H and the sequence x1, x2, . . . , xk, x1 in D1(x); (taken in Γ ). If this
sequence forms a Hamiltonian cycle in D1(x) in H , we are done. By definition of
H, k ≥ 3. So assume that xi = x j where 1 ≤ i < j − 1 < k − 1. Then {x, xi }
is a 2-separator and vertices can be re-indexed so that int(Γ, x, xi ) contains all the
vertices xi+1, xi+2, . . . , x j−1. We repeat this argument for each pair i, j such that
xi = x j where 1 ≤ i < j − 1 < k − 1. Then the vertices in x1, x2, . . . , xk, x1 that
remain after we delete all vertices in the interiors of the 2-separators form a cyclic
sequence with no repetitions. As H is connected and locally connected and has at
least three vertices (by (iii)), the preceding reduced cyclic sequence has at least two
distinct vertices. It cannot have precisely two vertices u, v because then H −u−v is
disconnected, and hence Γ −u−v is disconnected (because Γ is obtained from H by
“pasting graphs on edges of H”). Since one of the edges xu or xv is crucial (because
D1 (x) is smaller in H than in Γ ), the maximality property of the 2-separator {x, u}
or {x, v} implies that ext(Γ, u, v) is the connected component of Γ − u − v

containing x . For each vertex z in that component, Γ has a path of length at most 6k
from z to either x, u, or v. Hence Γ has diameter at most 12k + 1, a contradiction
that proves that H is locally Hamiltonian.

If H has a vertex x of degree at least 6, we are done because x and its neighbors
must have different colors in the nice coloring. Assume now that each vertex of H
has degree at most 5. By Tool 17.2, H has at most 12 vertices. Hence H has at most
30 edges. Since Γ is obtained from H by “pasting” int(Γ, x, y) on the crucial
edge xy for each crucial edge of H , we conclude that the diameter of Γ is at most
12k + 29, a contradiction to (iii).
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Observe: all three conditions in the theorem are essential. If any of these conditions
(i), (ii), (iii) were dropped, then the number of colors needed may decrease:

A thin two-way infinite cylinder has a nice 6-coloring, which shows that (i) can-
not be omitted.

A thin one-way infinite cylinder (with a small disc pasted on the boundary of the
cylinder to form the bottom) shows that (ii) cannot be omitted.

A sphere of diameter less than 1 has a nice coloring in 2 colors, hence (iii) cannot
be omitted.

In Chapter 24 we will look at an analogous Townsend–Woodall’s 5-Color Theo-
rem, obtained by different means.
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Coloring Maps

G. D. Birkhoff once told one of the authors that every great
mathematician had at some time attempted the Four Colour
Conjecture, and had for a while believed himself successful.

-- Hassler Whitney and W. T. Tutte [WT]

The word disease is quite appropriate for a puzzle which is
easy to comprehend, apparently impossible for anyone to
solve, infectious, contagious, recurrent, malignant,
painful, scarring, and sometimes even hereditary!

-- Frank Harary1

If I may be so bold as to make a conjecture, I would guess
that a map requiring five colors may be possible.

-- H. S. M. Coxeter [Cox2]

In this part, we will color regions of maps. The following few definitions will help
us formalize our intuitive notion of a map.

By allowing more than one edge to connect two vertices, we slightly generalize
a notion of a graph: what we get is called a multigraph. A multigraph that can
be drawn in the plane without intersection of its edges is called planar, while a
multigraph that is drawn in the plane without intersection of its edges is called plane.
A multigraph is called connected if for any two vertices there is a path connecting
them. An edge x of a connected multigraph G is called a bridge if the multigraph
G − x is not connected.

A plane connected multigraph without bridges is called a map. A map divides
the plane into regions. Regions are adjacent if they share at least one edge.

Coloring a map is an assignment of colors to each of the regions of the map, such
that no adjacent regions get the same color. Let n be a positive integer; a map M is
called n-colorable if there is a coloring of M in n colors.

1 From the appropriately entitled paper [Har1] “The Four Color Conjecture and other graphical diseases,”
appropriately “supported in part by a grant from the National Institute of Mental Health.”
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A natural question then is what is the minimum number of colors we must use to
color any map? You can easily construct (do) an example showing that four colors
are necessary. You have likely heard the puzzle and the conjecture I am going to
introduce here as an overture to this map-coloring part.

The following puzzle originated in discussions between August Ferdinand
Möbius and his amateur mathematician friend Adolph Weiske, and “was perhaps
originated by Weiske” [Tie2]. In his 1840 lecture, Möbius shared the puzzle with
the public. It was apparently solved even by the Bishop of London, later Archbishop
of Canterbury (see Chapter 19 for details). Wouldn’t you like to solve it on your
own and try to help the brothers!

Möbius–Weiske’s Puzzle IV-1 (Circa 1840) Once upon a time in the Far East there
lived a Prince with five sons. These sons were to inherit the kingdom after his death.
But in his will, the Prince made the condition that each of the five parts into which
the kingdom was to be divided must border on every other. . .. After the death of the
father, the five sons worked hard to find a division of the land which would conform
to his wishes; but all their efforts were in vain.2

The following conjecture, together with Fermat’s Last Theorem, had been the
two most popular open problems of mathematics.

The Four-Color Conjecture (4CC) IV-2 (Francis Guthrie, 1852 or before) Any
map in the plane is 4-colorable.

My friend Klaus Fischer of George Mason University once asked me in the early
1990s, why would one want to write about the conjecture so celebrated that every-
thing has been written about it? Well, everything is never written, I replied, and
every little bit helps.

2 [Tie2].



18
How the Four-Color Conjecture Was Born

18.1 The Problem is Born

It takes time and effort to gain access and read manuscripts. The letter containing
the first mention of the 4CC is of high importance, yet to the best of my knowledge,
its complete facsimile has never been reproduced. Selected transcriptions and frag-
ment facsimiles served a purpose, but as we will see in Section 18.2, they contained
certain shortcomings. In view of this, I am reproducing here, for the first time, the
facsimile of De Morgan’s letter to Hamilton; the relevant fragment of the latter’s
reply, analysis of these documents, and the corrected transcription of De Morgan’s
letter. I am grateful to The Board of the Trinity College Dublin, whose kind permis-
sion made reproducing of the letters [DeM1] and [Ham] possible (see the facsimiles
in this chapter on pp. 148–151 and 154).

A. Soifer, The Mathematical Coloring Book, 147
DOI 10.1007/978-0-387-74642-5 18, C© Alexander Soifer 2009



148 IV Coloring Maps



18 How the Four-Color Conjecture Was Born 149



150 IV Coloring Maps



18 How the Four-Color Conjecture Was Born 151

Augustus De Morgan, Letter to W. R. Hamilton, October 23, 1852. Courtesy of the Trinity
College, Dublin
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The written record of the problem begins with the October 23, 1852 letter that
Augustus De Morgan, Professor of Mathematics at University College, London,
writes [DeM1] to Sir William Rowan Hamilton, Professor of Mathematics at Trinity
College, Dublin (underlining in the manuscript):

My dear Hamilton3.
. . .A student of mine asked me to day to give him a reason for a fact which I did

not know was a fact – and do not yet. He says that if a figure be any how divided
and the compartments differently coloured so that figures with any portion of common
boundary line are differently coloured – four colours may be wanted but not more –
the following is his case in which four are wanted [.]

Query [:] cannot a necessity for five or more be invented [?] As far as I see at this
moment, if four ultimate compartments have each boundary line in common with one
of the others, three of them inclose the fourth, and prevent any fifth from connexion
with it. If this be true, four colours will colour any possible map without any necessity
for colour meeting colour except at a point.

Now it does seem that drawing three compartments with common boundary A B C
two and two – you cannot make a fourth take boundary from all, except by inclosing
one – But it is tricky work and I am not sure of all convolutions – What do you say?
And has it, if true [,] been noticed? My pupil says he guessed it in colouring a map of
England [.]

3 De Morgan, A., Letter to W. R. Hamilton, dated Oct. 23, 1852; TCD MS 1493, 668; Trinity College
Dublin Library, Manuscripts Department
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The more I think of it the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx did – If this
rule be true the following proposition of logic follows [.]

If A B C D be four names of which any two might be confounded by breaking
down some wall of definition, then some one of the names must be a species of some
name which includes nothing enternal to the other three [.]

Yours truly
ADeMorgan [Signed]

7 CSCT4

Oct 23/52

Twenty-eight years later, Frederick Guthrie, the student mentioned by De Morgan
in this letter, published his own account [GutFr], which publicly revealed for the first
time that the author of the 4CC was his 2-year senior brother, Francis:

Some thirty years ago, when I was attending Professor De Morgan’s class, my brother,
Francis Guthrie, who had recently ceased to attend them (and who is now professor of
mathematics at the South African University, Cape Town), showed me the fact that the
greatest necessary number of colors to be used in coloring a map so as to avoid identity
of color in lineally contiguous districts is four. I should not be justified, after this lapse
of time, in trying to give his proof, but the critical diagram was as in the margin.

With my brother’s permission I submitted the theorem to Professor De Morgan,
who expressed himself very pleased with it; accepted it as new; and, as I am informed
by those who subsequently attended his classes, was in the habit of acknowledging
whence he had got his information.

4 These four letters must stand for De Morgan’s address, which was 7 Camden-Street, Camden Town.
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If I remember rightly, the proof which my brother gave did not seem altogether
satisfactory to himself; but l must refer to him those interested in the subject.

Thus, we learn from the younger brother Frederick Guthrie, by now a Professor
of Chemistry and Physics that the 4CC was created by the 20-year-old student Fran-
cis Guthrie (of course, he may have been younger when the conjecture first occurred
to him), and that Francis Guthrie found a configuration showing that four colors are
necessary, shared this simple configuration with his brother Frederick, who passed
it to De Morgan. There was likely more to Francis’s proof, but it “did not seem
altogether satisfactory” to Francis, as Frederick reports above. We will likely never
learn what else Francis Guthrie deduced about this incredible for his tender age and
the state of mathematics conjecture.

Let us go back to De Morgan. The day he received the 4CC from Frederick
Guthrie, October 23, 1852, he immediately wrote about it to William Rowan
Hamilton, who was not only one of the leading mathematicians, but also De
Morgan’s “intimate friend” and lifelong correspondent.5 Hamilton’s October 26,
1852 reply (Royal Post must have worked very well, as there are only 3 days
between the dates of De Morgan’s letter and Hamilton’s reply) is also preserved in
the manuscript collection of the Trinity College, Dublin. Hamilton was apparently
so obsessed with the quaternions6 he discovered that he could not make himself
interested in coloring maps [Ham]:

My dear De Morgan7

I am not likely to attempt your “quaternion of colors” very soon. . .

William R. Hamilton, Letter to A. De Morgan, October 26, 1852; a fragment. Reproduced
with kind permission by the Board of Trinity College Dublin

5 When W. R. Hamilton died, De Morgan wrote about it in his September 13, 1865 letter to Sir
J. F. W. Hershel [DeM5]: “W. R. Hamilton was an intimate friend whom I spoke to once in my life – at
Babbage’s, about 1830; but for thirty years we have corresponded.”
6 Arguably, this obsession prevented Hamilton from inventing linear algebra.
7 Hamilton, W. R., Letter to A. De Morgan, October 26, 1852; TCD MS 1493, 669; Trinity College
Dublin Library, Manuscripts Department.
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And that is all! Just the Victorian, cordial way of saying “I am not interested, lay
off my back.” De Morgan was left alone to keep the 4CC alive, and he succeeded. He
repeatedly mentioned the problem in his lectures at University College ( [GutFr]),
formulated it in his letters (we know a few such instances: [DeM1], [DeM2]8 and
[DeM3]9). As was discovered in 1976 by John Wilson, a high school teacher from
Eugene, Oregon [WilJ], De Morgan was also first to publish the problem in his
April 14, 1860 unsigned long review [DeM4] of W. Whewell’s The Philosophy of
Discovery in the Athenaeum:

When a person colours a map, say the counties in a kingdom, it is clear he must have so
many different colours that every pair of counties which have some common boundary
line – not a mere meeting of two corners – must have different colours. Now, it must
have been always known to map-colourers that four different colours are enough.

Acquaintance of cartographers with the sufficiency of four colors appears to have
been a silly invention of De Morgan—there is no evidence that cartographers (then,
or now for that matter!) knew about it or needed to minimize the number of colors,
since juxtaposition of colors and addition of textures created sufficient representa-
tions for scores of additional colors. While De Morgan did not advance the solution
of the 4CC at all, he single handedly popularized it and assured its long life. He man-
aged to make the mathematician of the day, Arthur Cayley, hooked on the problem
so much that 18 years after the Athenaeum article, Cayley remembered the problem
that he was still unable to solve. As reported in [Cay1] and [Cay2], during the June
13, 1878 meeting of the London Mathematical Society, Cayley asked:

Has a solution been given of the statement that in colouring a map of a country, divided
into counties, only four distinct colours are required, so that no two adjacent counties
should be painted in the same colour?

Cayley also published a two-page article [Cay3] on this question. Did his choice
of the publication, Proceedings of the Royal Geographical Society and Monthly
Record of Geography, suggest that Cayley believed De Morgan on the usefulness of
the 4CC for mapmakers? Perhaps, not, but the coincidence adds a touch of humor to
our story. In the paper, Cayley showed that it suffices to prove the 4CC for trivalent
maps, as they are called now (i.e., maps in which three regions meet at every vertex):

. . .if in any case the figure includes four or more areas meeting in a point (such as
the sectors of a circle), then if (introducing a new area) we place at the point a small
circular area, cut out from and attaching itself each of the original sectorial areas, it
must according to the theorem be possible with four colours only to colour the new
figure; and this implies that it must be possible to colour the original figure so that
only three colours are used for the sectorial areas.

8 Locations of both [DeM2], [DeM3] come from N. L. Biggs [Big], who analyses De Morgan’s contri-
bution to the 4CC and the Separation Axiom.
9 First found by Bertha Jeffreys in 1979 [JefB].
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Finally, Cayley tried to explain at length the difficulty of proving the 4CC by a
straightforward induction, and that is all he was able to do.

However, Arthur Cayley stated twice – in the course of two pages – that he
had “failed to obtain a proof” of the 4CC. These statements by one of the great
mathematicians of his time must have stirred interest in the 4CC. Professionals and
amateurs alike jumped on the opportunity to make Cayley out as “a stupid animal,”
as De Morgan put it in his letter quoted above.

The proof was very soon published in a prestigious journal by Alfred Bray
Kempe, a 30-year-old London barrister (lawyer) and avid amateur mathematician,
an expert on linkages.10 We will look at his work in Chapter 19.

18.2 A Touch of Historiography

It is very surprising that for over 100 years the confusion reined in the history of
the 4CC, one of the most popular problems in the history of mathematics. Truth
and fiction were alternating like positive and negative parts of a sin curve. Without
presenting here a complete historiography of the problem, I would just mention that
countless times Möbius–Weiske’s puzzle was mixed up with the 4CC, and conse-
quently credit for the 4CC was often given to Möbius. It has been happening even in
recent times. For example, as late as in 1958, the great geometer H. S. M. Coxeter
wrote [Cox1]:

The 4-color theorem was first mentioned by Möbius.

However, there were, authors who presented the problem’s history without fan-
tasy and “invention.” For example, Alfred Errera was about right in his December
1920 doctoral thesis [Err]:

Cayley attributed the exposition of the map theorem [sic] to De Morgan, whereas Fred-
eric Guthrie claimed, in 1880, that his brother Francis Guthrie had demonstrated [it]
some thirty years earlier.

In 1965 Kenneth O. May summarizes the 4CC’s history very well [May], and
apparently, is the first to quote De Morgan’s letter:

A hitherto overlooked letter from De Morgan to Sir William Rowan Hamilton.

May then goes on to quote De Morgan’s October 23, 1852 letter and Hamil-
ton’s reply from the monumental three-volume edition Life of Sir William Rowan
Hamilton, 1882–1889, written by Hamilton’s close friend, the Rev. Robert Perceval
Graves [Grav]. Volume 3 includes Hamilton’s correspondence with De Morgan, and
the letter of our interest, De Morgan to Hamilton of October 23, 1852 appears on
pages 422–423. Graves was pressed for space – he wrote (vol. 3, p. v):

10 His 1877 book How to Draw a Straight Line was published again 100 years later by the National
Council of Teachers of Mathematics, with a funny (for 1977) statement on the copyright page: “Alfred
Bray Kempe, 1849–” indicating Kempe’s long life indeed.
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The . . . larger portion of the volume [673 pp. long] consists of a selection from a
very extensive correspondence between Sir W. R. Hamilton and Professor Augustus
De Morgan. . .. The quantity of material was so great that I have had to exclude matter
that possessed inherent value, either because it was in subject unsuited to this work,
or because, being mathematical, the investigations carried on were too abstruse or too
extended. The general reader will perhaps complain that I have introduced more than
enough of mathematical investigation; but he will, I hope, withdraw the complaint
when he calls to mind that it was as scientific men that the writers corresponded, that
it would be unjust to them if their correspondence as printed should not retain this
character, and that the mathematical discussion did in fact most often afford suggestion
to the play of thought which, passing beyond the boundaries of science, prompted the
wit and the learned and pleasant gossip which the readers will enjoy.

Thus, May knows that Graves condensed letters—in fact, Graves used quota-
tion marks to show in practically every letter that he published only selections and
not complete letters. Graves favored “pleasant gossip” indeed. For example, in De
Morgan’s letter of our interest, he keeps in De Morgan’s trying “a fine pen with
which to write in books,” and “Having given the nibbler a fair trail, I now resume
my ordinary pen.” But Graves—and consequently May—omit all De Morgan’s
mathematical drawings, illustrating first ever thoughts on the 4CC, and they omit
an important phrase. As a fine historian, May should have looked at these impor-
tant letters in manuscript at the place where Hamilton spent his life, the place that
sponsored Graves’ biography of Hamilton, which appeared in “Dublin University
Series,” – Trinity College Dublin. He would have found there the 1900 Catalog of
the Manuscripts in the Library of Trinity College, Dublin compiled by T. K. Abbott,
where I read ([Abb], p. v):

In 1890 the Rev. Robert P. Graves presented [Trinity College, Dublin] a collection of
mss, which had belonged to Sir W. R. Hamilton, including his correspondence with
Sir John Herschel, Professor De Morgan, and others.

In fact, the two letters of our interest, catalogued as 668 and 669 (De Morgan’s
and Hamilton’s respectively) are contained in the group TCD MS 1493 of
Hamilton–De Morgan correspondence manuscripts, which were donated to the
Trinity College Dublin in 1900, as Stuart Ó Seanór, Assistant Librarian of the
Manuscripts Department at Trinity disclosed to me in a letter on March 21,
1997 [OSe]:

TCD MS 1493 was presented by J R H O’Regan of Marlborough, Wilts in 1900 (a
descendant of Hamilton’s through his daughter Helen) just in time to be mentioned in
T K Abbott’s Catalogue of the manuscripts in the library of Trinity College Dublin
published that year. . .

Graves’ three volume biography of Hamilton or other writings of his may reveal
that Hamilton corresponded with De Morgan and even citation of them might date
from before the papers were in a library.
Le meas

Stuart Ó Seanór [signed]

By now you must be wondering: which important phrase is missing in Graves
and May; I will put it in italic:



158 IV Coloring Maps

He says that if a figure be any how divided and the compartments differently colored
so that figures with any portion of common boundary line are differently colored –
four colors may be wanted but not more – the following is his case in which four are
wanted [.]

In 1976 the missing phrase was restored by Norman L. Biggs, E. Keith Lloyd,
and Robin J. Wilson in their wonderful textbook of graph theory through its his-
tory [BLW]. To do that, the authors clearly had to see the manuscript letter or
its photocopy. Unfortunately, they misread a word while transcribing the missing
phrase, and the wrong word appeared in all editions of their book [BLW] as follows:

. . . the following is the [sic] case in which four are wanted [.]

In the manuscript one can clearly see the word “his” where the authors of
[BLW] put the second “the.” The difference is subtle but important: “the follow-
ing is the case” would have indicated that De Morgan showed to Hamilton his
own counterexample.11 In fact, De Morgan wrote “the following is his [i.e., stu-
dent’s] case,” i.e., De Morgan conveyed an example that four colors are wanted
which Francis Guthrie devised and passed on to De Morgan through his brother
Frederick!12

Having established that at least one example and drawing in the De Morgan’s
letter belonged to Francis Guthrie, I wonder whether all arguments and drawings in
the letter were Francis’s as well – after all, De Morgan did not have much time to
ponder on the problem, as he wrote his letter the very day Frederick asked him for
a proof!

We have thus established that De Morgan’s contemporaneous account agreed
with Frederick Guthrie’s 1880 recollection: Frederick presented to De Morgan not
only the 4CC, but also his brother’s proof, albeit “not altogether satisfactory to him-
self [i.e., to Francis],” as Frederick put it.

In 1976 the history of the 4CC was enriched by discoveries by John Wilson
[WilJ], and in 1979 by Bertha S. Jeffreys of Cambridge, England [JefB], who found
additional examples of De Morgan’s writings about 4CC.

18.3 Creator of the 4 CC, Francis Guthrie

It is fascinating for me to read old newspapers: yes, they became worthless one day
after their publication. But for a reader a century later, they are a treasure trove of

11 The authors of [BLW] misread another word as well: they quote De Morgan as “I am not sure of the
[sic] convolutions,” whereas De Morgan wrote “I am not sure of all convolutions,” which makes more
sense.
12 This section had been written in early 1990s. As I have just noticed during proof-reading, a decade
later, in 2002, the third author of [BLW] and celebrated expositor Robin J. Wilson corrected this mis-
take in his popular engaging book Four Colors Suffice, Princeton University Press, Princeton. He surely
noticed the mistake independently from me, as we have not discussed it during our meetings.
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the life’s interests, people’s aspirations. They allow us to “touch” the distant culture,
and to breathe in its air.

I am looking at Cape Times of Monday, October 23, 1899. In the column of my
interest first comes The America Cup:

The possession of the America Cup was decided to-day, when the Columbia won
her second race against the Shamrock by five minutes. The Cup therefore remains
in America.

All important for people of the day Ship’s Movements come next:

The Clan Macpherson left Liverpool for Algon Bay on Thursday morning.
The Pombroks Castle arrived at Plymouth at two on Thursday afternoon.
The Spartan left St. Vincent last night.

Francis Guthrie. Courtesy of John Webb and Mathematics Department, University of
Cape Town
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Following these 1.75-inch long reports, I see something that must have mattered
to the folks of the Colony of South Africa a great deal: a 22-inch long column The
Late Professor Guthrie. Let us read a bit of it together [Gut1]:

There has just passed away from us a man who has left a greater mark upon our Colo-
nial life than will be readily recognized by many who did not come into contact with
him; or by some who have been taught by this age of self-advertisement to suppose
that no good work can be done in modesty and retirement. Professor Francis Guthrie,
L.L.B., B.A., whose death on the 19th. . .we briefly announced in Saturday’s issue, was
born in London in 1831.

We can learn much about Francis Guthrie from this eulogy [Gut1], and from
[Gut2] and [Gut3].

Born on January 22, 1831 in London, Francis Guthrie received his B.A. degree
with first class honors from the University College, London. He then earned L.L.D.,
a law degree, and for some time was a consulting barrister in Chancery practice. In
1861 Guthrie left the old world and accepted an appointment at the newly estab-
lished Graaff-Reinet College in the Colony of South Africa. Following his resig-
nation in 1875 and a brief visit to England, in 1876 Guthrie was appointed to the
Chair of Mathematics in the South African College, Cape Town (presently called
the University of Cape Town), from which he retired after 22 years on January 31
of 1899. Several months later, on October 19, 1899, Guthrie died in Claremont,
Cape Town.

Professor Guthrie was universally liked by his peers. He served on the University
Council, 1873–1879, and was Secretary of Senate during 1894. He was an early
member of South African Philosophical Society (now the Royal Society of South
Africa) and of its Council, a member of the Meteorological Commission, and for
many years the Examiner of the Cape University.

His several publications cover mathematics (none on the 4CC), meteorology, and
his true passion, botany. Guthrie and his lifelong friend Harry Bolus were pioneers in
the study of ericas of Southern Africa. In 1973 Harry Bolus discovered a new genus
on the summit (altitude 6,500 feet) of the Gnadouw-Sneeuwbergen near Graaff-
Reinet. Bolus named it in honor of his friend Guthriea capensis.

I am compelled to return to Cape Times [Gut1], as it conveys the life of the
frontier unknown to most of us through personal experience, and shows a side of
Francis Guthrie that is not widely known. Guthrie was a pioneer of the frontier. He
discovered not only the 4CC, but also routes for the railroad that determined the
future of his region of South Africa:

In 1871-2-3, when the agitation for railway extension was at its height and the battle of
the routes was being fought, Professor Guthrie ardently espoused the Midland cause.
The problem of that day was to show the Government and Parliament how, if a railway
were made to Graaff-Reinet, it could get over the Sneeuwberg Mountains to the north-
wards. Some case had to be made out before the Government would sanction even
a flying survey. Professor Guthrie, in a company with the late Charles Rubidge and
some others, climbed the mountains, aneroid in hand, in search of the most available
pass. Their efforts had for immediate result the construction of Forth Elizabeth and
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Graaff-Reinet line; and it is a tribute to the accuracy of those early amateur railway
explorers that the recent extension of that line to Middelburg follows very nearly the
route over the Lootsberg which they had suggested as the most feasible. The people
of Graaff-Reinet were not ungrateful, and a public banquet and laudatory addresses
showed their appreciation of the efforts of Professor Guthrie and his colleagues.

This remarkable 22-inch long eulogy ends with unattributed poetic lines, which
I traced to James Shirley (1596–1666):

Only the actions of the just
Smell sweet, and blossom in the dust.

18.4 The Brother

While we are moving through the Victorian history of the problem, I can offer you
something mathematical to do as well. Frederick Guthrie (1833–1886), by 1880
a Professor of Chemistry and Physics at the School of Science, Kensington and
the younger brother of the 4CC creator Francis, in his letter quoted above [GutFr],
created and solved a three-dimensional analog of the 4CC that Francis allegedly
neglected:

I have at various intervals urged my brother to complete the theorem in three dimen-
sions, but with little success.

It is clear that, at all events when unrestricted by continuity of curvature, the max-
imum number of solids having superficial contact each with all is infinite. Thus, to
take only one case n straight rods, one edge of whose projection forms the tangent to
successive points of a curve of one curvature, may so overlap one another that, when
pressed and flattened at their points of contact, they give n − 1 surfaces of contact.

Thus, Frederick Guthrie posed and solved the following problem:
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Problem 18.1 (Frederick Guthrie,1880). Is there a positive integer n such that n
colors suffice for proper coloring of any Euclidean three-dimensional map?

Frederick Guthrie continued:

How far the number is restricted when only one kind of superficial curvature is per-
mitted must be left to be considered by those more apt than myself to think in three
dimensions and knots.

Guthrie’s words are not precise. It seems to me that he posed the following prob-
lem:

Problem 18.2 (Frederick Guthrie, 1880) What is the minimum number of col-
ors required for proper coloring of any Euclidean three-dimensional map if each
monochromatic set is convex?

I am compelled to allow you time to ponder on an alternative solution of Prob-
lem 18.1 and a solution of Problem 18.2. We will return to them in Chapter 20.



19
Victorian Comedy of Errors
and Colorful Progress

19.1 Victorian Comedy of Errors

This period in the history of The Four4-Color Conjecture (4CC) plays itself out like
a Victorian version of Shakespeare’s The Comedy of Errors. Judge for yourself!

Alfred Bray Kempe’s proof of the 4CC was announced on July 17, 1879 in
Nature [Kem1]. The proof itself was published later the same year in the American
Journal of Mathematics Pure and Applied [Kem2], as Kempe writes (p. 194), “at
the request of the Editor-in-Chief,” i.e., James J. Sylvester.13 In accordance with
mapmakers’ myth of De Morgan–Cayley, Kempe chose the title On the Geograph-
ical Problem of the Four Colours.14 The proof was an unqualified success. While
Kempe was elected a Fellow of The Royal Society based on this work on linkages,
the coloring success must have been a factor for Cayley, Sylvester and others to
nominate him for the honor.

Simplifications and variations appeared: first one by William E. Story, Associate
Editor in Charge of the American Journal of Mathematics Pure and Applied ( [Sto].
Story’s paper immediately followed the Kempe’s article [Kem2]. Simplifications
then came from Kempe himself [Kem3] and [Kem4]. New “series of proofs of the
theorem that four colours suffice for a map” by Peter Guthrie Tait followed [Tai1],
[Tai2], [Tai3].

Popularity of the Four-Color Theorem (4CT) became so great that in late 1886
the Head Master of Clifton College somehow learned about it and . . . offered the
problem as a “Challenge Problem” to his students:

13 Being Jewish, the famous British mathematician James Joseph Sylvester had to leave the Land of
strictly religiously controlled Oxford and Cambridge, for the New World, where he became the first
professor of mathematics in the just founded Johns Hopkins University, to the great benefit of the young
American mathematics. But that is another story.
14 We read in [Kem2], with amusement, an expansion of the De Morgan-Cayley myth: “. . .it has been
stated somewhere by Professor De Morgan [must be a reference to Athenaeum [DeM4]] that it has long
been known to map-makers as a matter of experience – an experience however probably confined to
comparatively simple cases – that four colors will suffice in any case.”

A. Soifer, The Mathematical Coloring Book, 163
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In colouring a plane map of counties, it is of course desired that no two counties which
have a common boundary should be coloured alike; and it is found, on trial [sic], that
four colours are always sufficient, whatever the shape or number of the counties or
areas may be. Required, a good proof of this. Why four ?15 Would it be true if the
areas are drawn so as to cover a whole sphere?

In the funniest turn of this story, the Head Master warned the contestants that
“no solution may exceed one page, 30 lines of MS., and one page of diagrams!”
Published on January 1, 1887 in the Journal of Education [Head1], the challenge
attracted a solution from such an unlikely problem solver as The Bishop of London,
whose “proof” [Head2] was published in the same journal on June 1, 1889.

Then came along the 29-year-old Percy John Heawood—who spoiled the party!
Almost with regret for his own discovery [Hea1], Heawood apologetically writes:

The present article does not profess to give a proof of this original Theorem [i.e., 4CT];
in fact its aims are rather destructive than constructive, for it will be shown that there
is a defect in the now apparently recognized proof.

Yes, 11 (eleven!) years after the Kempe’s 1879 publication [Kem2], Heawood
discovered a hole in the proof (as well as in the two later versions of Kempe’s
proof [Kem3] and [Kem4]). Moreover, Heawood constructed an example showing
that Kempe’s argument as it was, could not work. There was a constructive side to
Heawood’s paper, in spite of his assurance to the contrary: he showed that Kempe’s
argument actually proves that five colors suffice for coloring any map.

In a gentlemanly way, Heawood informed Kempe first, and Kempe was the
one who reported Heawood’s findings to the London Mathematical Society at its
Thursday, April 9, 1891 meeting, while “Major P. A. MacMahon, R.A., F.R.S.,
Vice-President, in the Chair” [Kem5]:

Mr. Kempe spoke on the flaw in his proof “On the Map-colour Theorem,” which had
recently been detected by Mr. P. J. Heawood, and showed that a statement by the
latter at the close of his paper failed. He further stated that he was unable to solve the
question to his satisfaction.

The authors of [BLW] researched publications of the period at hand. They
reported that they found “no complimentary references to Heawood in the popular
journals, and no record of honors granted to him.” Heawood’s work [Hea1] and
his consequent papers dedicated to map coloring were certainly major contribu-
tions, and deserved more recognition. As it were, Heawood’s work [Hea1] remained
almost unnoticed and unquoted by his contemporaries. Long after 1890, we can still
find papers giving credit to A. B. Kempe and Peter Guthrie Tait for proving 4CT
(see, for example [DR]).

While giving credit to Kempe, Tait offered his own “proofs.” It appears that the
belief in Kempe’s proof was extrapolated by the contemporaries to the belief in Tait’s
proofs: I was unable to find any contemporaneous refutation of Tait’s “proofs.”

15 “Why four?” was a great question. Even today, when we have two proofs of the 4CT (see Chapters 21
and 22), we still do not really know the answer to this innocent question.
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Tait described his strategy as follows [Tai1]:

The proof of the elementary theorem is given easily by induction; and then the proof
that four colours suffice for a map follows almost immediately from the theorem, by
an inversion of the demonstration just given.

This is true: Tait found a nice proof that his “elementary theorem” was equivalent
to 4CT. The trouble is, it was not so “elementary,” and moreover its proof was not
“given easily by induction.”

The Bishop of London erred too: he mistakenly believed that the Möbius–
Weiske’s problem IV-1 was equivalent to 4CT. Many years later, in 1906, the direct
refutation of his “proof” was published by John C. Wilson [wilJC]. Both De Morgan
and Cayley, nearly half a century earlier, knew that 4CC was much more than a
mere fact that five countries in a map cannot be mutually adjacent. Obviously, the
Headmaster of Clifton College and the Bishop of London did not.

True to its genre, our Comedy of Errors has a happy end. Alfred Bray Kempe
eventually becomes the President of the London Mathematical Society. Frederick
Temple, our Bishop of London, reaches the highest religious title of the Archbishop
of Canterbury.

The great Russian poet Aleksand Pushkin ends his “Fairytale about the Gold
Cockerel” (“Ckazka o zolotom petuxke”) with the words: “A fairytale is a lie,
but with a hint, a lesson for a good lad.”16 Accordingly, our Victorian Comedy
of Errors leaves us plenty of valuable and enjoyable mathematics. Bright ideas of
Kempe, Tait, and Heawood are alive and well. Get your paper and pencil ready: in
this chapter and the next we will look at our British Victorian inheritance. As the
Bard put it:

All’s well that ends well!

19.2 2-Colorable Maps

Let us now look at some of the Victorian problems. To simplify the excursion, we
will translate the Victorian problems into today’s jargon. I suggest we start with a
warm-up.

Problem 19.1 Prove that a map formed in the plane by finitely many circles can be
2-colored (Fig. 19.1).

Proof We partition regions of the map into two classes (Fig. 19.2): those contained
in an even number of circles (color them gray), and those contained in an odd num-
ber of circles (leave them white). Clearly, neighboring regions got different colors
because when we travel across their boundary line, the parity changes.

16 Translated from Russian by Maya Soifer. The original rhymed Russian text is:
“Ckazka lo��, da v ne� namek!
dobrym molodcam urok.”
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Fig. 19.1 A map formed by circles

Fig. 19.2 2-Coloring of a map formed by circles

I am sure you realize that the shape of a circle is of no consequence. We can
replace circles in Problem 19.1 by their continuous one-to-one images, called simple
closed curves, because the Jordan Curve Theorem holds for them all:17

Jordan Curve Theorem 19.2 A simple closed curve in the plane divides the plane
into two regions (inside and outside).

Problem 19.3 Prove that a map formed in the plane by finitely many simple closed
curves is 2-colorable.

We can replace simple closed curves by straight lines, or a combination of the two:

Problem 19.4 Prove that a map formed in the plane by finitely many straight lines
is 2-colorable (Fig. 19.3).

Fig. 19.3 A map formed by straight lines

17 see its proof, for example, in [BS]
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An inductive proof is well-known,18 but as is usually the case with proofs by
induction, it does not provide an insight. I found a “one-line” proof that takes advan-
tage of similarity between simple closed curves and straight lines.

Proof Attach to each line a vector perpendicular to it (Fig. 19.4). Call the half-plane
inside if it contains the vector, and outside otherwise. Repeat the proof of problem
19.1 word-by-word to complete the proof (Fig. 19.5).

Fig. 19.4 Inventing vectors

Fig. 19.5 2-Coloring of a map formed by straight lines

Problem 19.5 Prove that a map formed in the plane by finitely many simple closed
curves and straight lines is 2-colorable.

So what is common between simple closed curves and straight lines? What
allows a 2-coloring to exist? Each vertex in the maps above is a result of the inter-
section of two or more curves or lines, and therefore, has an even degree! This fact
first appears in print on the last page of the 1879 paper by A. B. Kempe in which he
attempts to prove 4CC [Kem2].

Kempe’s Two-Color Theorem 19.6 (A. B. Kempe, 1879, [Kem2]) A map is
2-colorable if and only if all its vertices have even degree.

Let us take another look at the map M formed by circles in Fig. 19.1. We can
construct the dual graph G(M) of the map M as follows: we represent every region
by a vertex (think of the capital city), and call two vertices adjacent if and only if

18 See, for example, [DU].
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the corresponding two countries are adjacent, i.e., have a common boundary (not
just a point or finitely many points).19 The dual graph G(M) of the map M of
Fig. 19.1 is presented in Fig. 19.6 (I bent and stretched edges to make the graph
look aesthetically pleasing).

Fig. 19.6 The dual graph of a map from Fig. 19.1

Observe: the dual graph G(M) of any map M is planar: we can draw its edges
through common boundaries of adjacent regions so that the edges will have no
points in common except the vertices of the graph.

Now the problem of coloring maps can be translated into the language of coloring
vertices of planar graphs. But, this problem is not new to us: we have already solved
it as Problem 12.2. Let us repeat it here:

Kempe’s Two-Color Theorem 19.7 (In Graph–Theoretical Language) The chro-
matic number χ (G) of a graph G does not exceed 2 if and only if G contains no
odd cycles.

19.3 3-Colorable Maps

It is natural to give a name to the smallest number of colors required to color a map
M ; let us call it the chromatic number of a map M, or face chromatic number and
denote it by χ2 (M).

We have an abundance of maps of chromatic number 2 around us: maps created
by circles, straight lines, simple closed curves (Problems 19.1–19.5). Square grid
delivers us an example of large periodic map of chromatic number 2: just recall
the chessboard coloring. Can you think of a way of creating large periodic maps of

19 The idea of the dual graph of a map was one of the first ideas of graph theory: Leonard Euler used
it in 1736 to solve the Problem of Bridges of Königsberg. The language of maps was universally used
by the first researchers of the 4CC. Yet, it is interesting to notice that while Kempe used the language of
maps in the main body of his 1879 paper [Kem2], he did describe the construction of the dual graph on
the last page of this paper.
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chromatic number 3? You have already seen a couple of such constructions in this
book, but in a totally unrelated context.

Problem 19.8 Find the chromatic number of the hexagonal map created by the old
Chinese lattice in Fig. 6.7.

Solution: Behold (Fig. 19.7):

Fig. 19.7 3-Coloring of an ancient Chinese lattice from Fig. 6.7.

Problem 19.9 Find the chromatic number of the map in Fig. 6.6, which is formed
by octagons and squares.

Solution: Behold (Fig. 19.8).

What is special about the maps in Problems 19.8 and 19.9 that make their
chromatic number to be 3? Is it the fact that they are cubic, i.e., each vertex of
these maps has degree 3? Or is it due to an even number of neighbors of every
region?

A. B. Kempe [Kem2] repeats Cayley’s argument that we can convert any map M
into the trivalent map M ′, such that

χ2(M) ≤ χ2(M ′).

Kempe writes:
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Fig. 19.8 3-Coloring of Soifer’s tiling of the plane from Fig. 6.6.

I should show that the colours could be so arranged that only three should appear
at every point of concourse [i.e., vertex of the map of degree at least 3]. This may
readily be shown thus: Stick a small circular patch, with a boundary drawn round its
edge, on every point of concourse, forming new districts. Colour this map [M ′]. Only
three colours can surround any district, and therefore the circular patches. Take off the
patches and colour the uncovered parts the same colour as the rest of their districts.
Only three colours surrounded the patches, and therefore only three will meet at the
points of concourse they covered.

Our maps in Problems 19.8 and 19.9 are cubic, and for cubic maps an even num-
ber of neighbors is the key indeed:

Kempe’s Three-Color Theorem 19.10 (A. B. Kempe, 1879, [Kem2]) A cubic map
M has face chromatic number 3 if and only if the boundary of each of its regions
consists of even number of edges.20

Let us translate the Three-Color Theorem into the language of graphs by going
to the dual graph G = G(M) of the map M . Of course, since M is a trivalent map,
all regions of G are bounded by triangles (i.e., three-cycles). A plane graph, where
all regions are bounded by three-cycles, is called a triangulation.

Kempe’s Three-Color Theorem 19.11 (Three-ColorTheoremforGraphs)Let G be
a connected plane triangulation. Then the following three assertions are equivalent:

(a)the chromatic number χ (G) of G satisfies the inequality χ (G) ≤ 3;

(b)the face chromatic number χ2(M) of G satisfies the inequality χ2(M) ≤ 2;

(c)the degree of every vertex of G is even.

20 Kempe states only the sufficient condition, but the necessary condition is easier to prove, and was
most likely known to him.
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Proof Kempe does not prove his statement. The proof presented here is a substan-
tially simplified version of a cycle of problems from the 1952 Russian book by
Evgenii B. Dynkin and Vladimir A. Uspensky [DU].

(a) ⇒ (b). Since χ (G) = 3, we can label each vertex of G with one of the colors
a, b or c. For every face we have one vertex of each of the colors a, b or c. Take a
face F ; if the direction of going around its vertices a → b → c is clockwise, then
we color F red, otherwise we color F blue. It is easy to see that any two adjacent
faces are thus assigned different colors.

(b) ⇒ (a). Let G be face 2-colored red and blue. For every edge xy of G we
assign one direction (out of possible two: x → y or y → x), such that when we
travel along the assigned direction, the red triangle is on our right (and thus a blue
triangle is on our left). Obviously, for any two vertices v, w of G there is a directed
path from v to w, and while the length of such a path (i.e., the number of edges in
it) is not unique, its length modulo 3 is unique.

Assuming we proved this uniqueness (see next paragraph for the proof), the rest
is easy. Let us call our three colors 0, 1, and 2. Pick a vertex v and color it 0; then
for any vertex w of G we select one directed path P from v to w, and the remainder
upon division of the length l(P) of P by 3 determines the color we assign to w.
This guarantees that the adjacent vertices are assigned different colors (do you see
why?), and the implication (b) ⇒ (a) is proven.

Proof of Uniqueness Let us first prove that the length l(P) of any closed directed
path P is divisible by 3. Assume it is not, then among all directed closed paths of
length not divisible by 3, there is one of minimum length l, call it P ′. P ′ has no self-
intersections, as otherwise it could be shortened (can you see how?) in contradiction
to its minimum length. P ′ partitions the plane into two areas: the inside and the
outside. We combine the outside into one region O , and as the result get a new
map M1, all regions of which are already colored red and blue, except the region O
(Fig. 19.9).

Fig. 19.9

If the loop P ′ has the clockwise direction, then all triangles bordering on P ′ are
colored red; otherwise they are all colored blue. Since in either case all triangles bor-
dering on P ′ are assigned the same color, say, red, we can complete the 2-coloring
of the map M1 by assigning the outside region O the opposite color—blue.

Every edge belongs to the boundary of one red and one blue regions, therefore,
the total numbers of edges on the boundaries of all red and all blue regions are equal.
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Thus, we get the following equality:

3r = 3b + l,

where r and b denote the numbers of red and blue triangles respectively (and l, as
you recall, is the length of P ′). This equality contradicts the fact that l is not divisible
by 3.

Assume now that there are two directed paths P1 and P2 from a vertex v to a
vertex w, such that their lengths are l1 and l2 give different remainders upon division
by 3. Let P3 be a path of length l3 from w to v. Then we get two different closed
paths P1 + P2 and P1 + P3 of lengths l1 + l2 and l1 + l3 respectively. Therefore, in
view of the above both integers l1 + l2 and l1 + l3 are divisible by 3. But then the
number

(l1 + l2) − (l1 + l3) = l2 − l3

is divisible by 3, and the desired uniqueness is proven.
(b) ⇔ (c). This is precisely the 2-Color Theorem we have discussed above.

Kempe’s 3-Color Theorem, as can be easily seen, has the following corollary:

Corollary 19.12 (P. J. Heawood, 1898, [Hea2]) Let G be a connected planar graph
G. Then the following assertions are equivalent:

(a)the chromatic number χ (G) of G satisfies the inequality χ (G) ≤ 3;

(b)G can be embedded (as a subgraph) into a triangulation graph G ′ such that degree
of every vertex of G ′ is even.

In his 1993 survey [Ste] Richard Steinberg describes the history of the 3-color
problem and its state at the time of his writing. In this otherwise wonderful historical
work, Steinberg dismisses Alfred B. Kempe in a number of unjustified ways:

The most notorious paper in the history of graph theory: the 1879 work by A. B.
Kempe [Kem2] that contains the fallacious proof of the Four Color Theorem. . .

Kempe’s language is somewhat unclear – he was a barrister by profession.

Pierre de Fermat was a “barrister by profession” too. Does a mere fact that pro-
fessionals are paid for services, make them necessarily superior to amateurs? And
when an amateur turns professional (which happens every day), does his language
improve overnight?

Yes, Kempe’s language is not as precise as our present standards require. But the
same can be said of Tait and Heawood, yet Steinberg quotes approvingly Gabriel
Dirac’s passionate but illogical argument in defense of Heawood’s writing:

Most of the assertions stated in [Hea2] are not actually proved, only made plausible,
but they have since been proved rigorously by other writers, which indicates [sic] that
Heawood was in possession of the necessary proofs but did not choose to include them.
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As we have seen, Kempe’s last page of [Kem2] contained a number of observa-
tions, including both the Two-Color Theorem and the Three-Color Theorem that are
listed without proof, as “two special cases” of map coloring. I believe that Kempe
knew the proofs, but omitted them possibly because his main, if not the only goal
was to prove the much more complex Four-Color Theorem.

Tomas L. Saati, in his 1967 title, calls the attempt “The Kempe Catastrophe”
[Saa1]. I cannot disagree more. As we will see in the next chapter, Alfred B. Kempe
did not succeed in his goal, but what a fine try it had been, far exceeding anything
his celebrated professional predecessors De Morgan and Cayley achieved in years
of toying with the 4CC! Moreover, both known today successful assaults of 4CC
used Kempe’s approach in their foundation. Kempe came up with beautiful ideas;
his chain argument was used many times by fine twentieth century professionals—
Dénes König in his 1916 work on the chromatic index of bipartite graphs, and Vadim
Vizing (Chapter 16) in his famous 1964 chromatic index theorem.

For his important work on linkages, the contemporaries elected A. B. Kempe
(1849–1922) a Fellow of the Royal Society (1881) and President (1892–1894) of
the London Mathematical (that is: Mathematical) Society. Kempe was knighted
in 1913.

19.4 The New Life of the Three-Color Problem

In the first half of the twentieth century it seemed that the Three-Color Problem
had been settled in the Victorian Age. Since the late 1940s and the 1950s, we have
witnessed the accelerating explosion of results on the relationship between the chro-
matic number of a graph and its small cycles (please, see the discussion of it in
Chapter 12). Examples of triangle-free graphs were in the mathematical air. Only
one word, planar, needed to be added for revisiting the Three-Color Problem, and
seeking a deeper understanding of what causes a map to be 3-colorable.

The first significant step of this new era of 3-colorable graphs was made by the
German mathematician Herbert Grötzsch in 1958 [Grö].

Grötzsch’s Theorem 19.13 A triangle-free planar graph is 3-colorable.

In order to demonstrate that the restriction to planar graphs cannot be omitted,
Grötzsch constructed the graph we discussed in Chapter 12 (Fig. 12.8). His the-
orem, however, allowed an improvement, which was delivered by the celebrated
geometer (and Geombinatorics’ editor from its inception in 1991 to present) Branko
Grünbaum [Grü] in 1963.

Grünbaum’s Theorem 19.14 A planar graph with at most three 3-cycles is
3-colorable.21

21 A lemma used in the proof of Grünbaum’s theorem was corrected and proved by Valeri A. Aksionov
in 1974 [Aks].
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This result is of course best possible, as K4, a graph with four 3-cycles shows. Is
there a life after the best possible result?

In mathematics—of course! As Valeri A. Aksionov and Leonid S. Mel’nikov
observed [AM], “Grünbaum put forth the question which determined the direction
of further research.” Grünbaum defined the distance between triangles of a graph
as the length of the shortest path between vertices of various pairs of triangles.
He conjectured that if this distance is at least 1, then the planar graph is 3-colorable.
Ivan Havel, who constructed a counterexample to Grünbaum’s conjecture, posed
and refuted his own conjecture (with distance at least 2), and in the end posed a
more restrained question in 1969 [Hav].

Havel’s Open Problem 19.15 Does there exist an integer n such that if the distance
between any pair of triangles in a planar graph G is at least n, then G is 3-colorable?

Havel’s problem is still open. According to Baogang Xu (e-mail of May 10,
2007), it is known that if such an n exists, it is at least 4.

Meanwhile Richard Steinberg reasoned as follows: the restrictions on 3-cycles
have been settled; but what if we were to impose no restrictions on 3-cycles, but
instead limit 4- and 5-cycles. In his 1975 letter to the Russian mathematicians
V. A. Aksionov and L. S. Mel’nikov, Steinberg posed his now well-known and still
open problem [Ste].

Steinberg’s Open Problem 19.16 Must a planar 4- and 5-cycle-free planar graph
be 3-colorable?

The further research on Three-Color Problem was inspired by Havel’s and Stein-
berg’s open problems, and often by a combination of both of them. The explosion
of recent results is so great that the field is surely in need of a new comprehensive
survey, like the one Richard Steinberg authored in 1993. I am grateful to the Chinese
mathematician Baogang Xu for navigating me through the labyrinth of the current
state of the problem. Let us look at the explosion of 3-coloring results.

Abbott–Zhou’s Theorem 19.17 ( [AZ], 1991) A planar graph without cycles of
lengths 4 to 11 is 3-colorable.

Sanders–Zhao and Borodin’s Theorem 19.18 ( [SZ], 1995; [Bor], 1996) A planar
graph without cycles of lengths 4 to 9 is 3-colorable.

Borodin–Glebov–Raspaud–Salavatipour’s Theorem 19.19 ( [BGRS], 2005) A
planar graph without cycles of lengths 4 to 7 is 3-colorable.

Luo–Chen–Wang’s Theorem 19.20 ( [LCW], 2007) A planar graph without cycles
of lengths 4, 6, 7 and 8 is 3-colorable.

Chen–Raspaud–Wang’s Theorem 19.21 ( [CRW], 2007) A planar graph without
cycles of lengths 4, 6, 7 and 9 is 3-colorable.

In 2003, Oleg V. Borodin and André Raspaud [BR] started a direction that com-
bined Steinberg’s and Havel’s problems.
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Borodin–Raspaud’s Theorem 19.22 ( [BR], 2003) A planar graph without
5-cycles and triangles of distance less than 4 is 3-colorable.

They also formulated two conjectures stronger than the (still open) positive
answer to Steinberg’s problem 19.16. The authors called them “Bordeaux 3-color
conjectures” – I will add the authors’ names to give them credit. By intersecting
(adjacent) triangles the authors mean those with a vertex (an edge) in common.

Bordeaux 3-Color Borodin–Raspaud’s Conjecture 19.23 ( [BR], 2003) A planar
graph without 5-cycles and intersecting triangles is 3-colorable.

Bordeaux 3-Color Borodin–Raspaud’s Strong Conjecture 19.24 ( [BR], 2003)
A planar graph without 5-cycles and adjacent triangles is 3-colorable.

A proof of Conjecture 19.24 in the positive would imply the validity of Conjec-
ture 19.23 and the positive answer to Steinberg’s Problem 19.16.

Baogang Xu has just improved Borodin–Raspaud’s result 19.22.

Xu’s Theorem 19.25 ( [Xu2], 2007) A planar graph without 5-cycles and triangles
of distance less than 3 is 3-colorable.

In a significant improvement of Borodin et al. Theorem 19.19, Xu proved the
strongest result to date in the direction of proving Bordeaux 3-Color Borodin–
Raspaud’s Conjecture 19.24:

Xu’s Theorem 19.26 ( [Xu1], 2006) A planar graph without adjacent triangles and
5- and 7-cycles is 3-colorable.

Two more very recent results have been obtained in the direction of Steinberg’s
and Havel’s problems.

Lu-Xu’s Theorem 19.27 ( [LX], 2006) A planar graph without cycles of lengths 5,
6, and 9 and without adjacent triangles is 3-colorable.

Xu’s Theorem 19.28 ( [Xu3], submitted) A planar graph without cycles of lengths
5, 6 and without triangles of distance less than 2 is 3-colorable.

The international group of mathematicians Oleg V. Borodin, Aleksey N. Glebov,
both from Russia, Tommy R. Jensen from Denmark, and André Raspaud from
France [BGJR] recently put a new twist on the 3-color oeuvre.

Borodin–Glebov–Jensen–Raspaud’s Theorem 19.29 ( [BGJR], 2006) A planar
graph without triangles adjacent to cycles of lengths 3 to 9 is 3-colorable.

The authors have also formulated an attractive conjecture.

Borodin–Glebov–Jensen–Raspaud’s Conjecture 19.30 ( [BGJR], 2006) A planar
graph without triangles adjacent to cycles of lengths 3 or 5 are 3-colorable.

It is fascinating to see how the seemingly lesser known cousin of the celebrated
4CC has flourished so beautifully and became an exciting area of mathematical
inquiry, even after 4CC was settled!
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Kempe–Heawood’s Five-Color Theorem
and Tait’s Equivalence

20.1 Kempe’s 1879 Attempted Proof

I am compelled to present here Alfred Bray Kempe’s attempted proof of 4CC. As
you recall from Chapter 19, that proof contained an oversight, that was found a
“mere” 11 years later by Percy John Heawood. Why then do I choose to present the
unsuccessful attempt here? First of all, because of beautiful ideas Kempe invented.
Secondly, because it is not so easy to notice a flaw right away. Thirdly, because
P. J. Heawood did not have to do much to salvage Kempe’s ideas and show that, in
fact, they (i.e., Kempe’s ideas!) prove the Five-Color Theorem. And finally, because
just like their contemporaries underestimated the work of Heawood, my contempo-
raries often underestimate contributions of Kempe.

And so it comes. Fasten your seat belts, I challenge you to find Kempe’s
oversight!

I will translate both the theorem and Kempe’s proof into the usual nowadays
language of dual graphs. The authors of The Four-Color Problem [SK], the first ever
book on the subject, Thomas L. Saaty and my friend Paul C. Kainen, write (p. 7):

The notion of dual graph mentioned above was introduced by Whitney (1931) and
used to give an elegant characterization of when a graph is planar.

In fact, the notion of dual graph appears on the last page of A. B. Kempe’s 1879
paper [Kem2], as I mentioned in the footnote after Theorem 19.6 in the previous
chapter, and in 1736 Leonard Euler had already used it. Kempe reinvented the
notion, but did not do much with it (what can one do with a promising notion that
is introduced too late, on the last page of the paper!). We will use it here to make
Kempe’s attempted proof easier to read. We will also rearrange Kempe’s proof.

The Four Color Theorem for Graphs 20.1 Chromatic number of any planar
graph does not exceed 4.

Attempted proof by Alfred Bray Kempe. First Kempe presents his brilliant
chain argument, then he rediscovers Euler’s formula 20.2, and uses it to find the
graph theory’s first set of unavoidable configurations (Tool 20.3 and the equivalent
Tool 20.3’), as it is called today. We’ll do the latter two first.

176 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 20, C© Alexander Soifer 2009
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Euler’s Formula for Maps 20.2 For any map M in the plane, the following equal-
ity holds:

R + V = E + 2,

where R, V and E are number of regions, vertices and edges of M respectively.

Hint. You can add edges to M as necessary, until you get a triangulation T (M), such
that the Euler formula holds for M if and only if it holds for T (M); and then use
induction. Let me not present here the complete proof: too many books have already
done so.

Kempe’s Tool 20.3 (A. B. Kempe, 1879, [Kem2]). Any planar map contains a ver-
tex of degree at most 5.

Proof We can assume without loss of generality that each face is incident to at least
three edges, for otherwise we can insert some vertices of degree 2 to remedy such a
situation.

We will argue by contradiction. Assume that the desired statement does not hold
for a planar graph G, i.e., all V vertices of G have degree at least 6. Let R and E
stand for the numbers of regions and edges of G respectively. Since every edge is
incident to two vertices, and to two regions, we get 6V ≥ 2E and 3R ≥ 2E , or
V ≥ 1

3 E and R ≥ 2
3 E . Then by Euler’s formula 20.2, we get:

2

3
E + 1

3
E ≥ E + 2,

which is absurd.

I enjoyed the idea of translating Kempe’s attempt into the contemporary ter-
minology of unavoidable sets of reducible configurations that I found in Douglas
R. Woodall’s paper [Woo2]. I will present Kempe’s attempted proof here in this
language, for this would better prepare you for the next chapter, where we will
discuss Appel and Haken’s proof of 4CT.

A configuration C is called reducible if the minimal (in terms of the number of
vertices) counterexample G to 4CT cannot contain C , i.e., G can be reduced to a
smaller counterexample.

A finite set S of configurations is called unavoidable for a certain class Φ of
maps if every map from Φ contains at least one element of S. Tool 20.3 could be
reformulated in a language of unavoidable configurations:

Kempe’s Tool in Current Terms 20.3’ The set of four configurations in Fig. 20.1 is
unavoidable, i.e., at least one of them appears in any non-trivial plane triangulation.

Kempe’s argument: Kempe is set out to prove that the four configurations in
Fig. 20.1 form an unavoidable set of reducible configurations.

Assume that there is a planar graph that is not 4-colorable. Then among all planar
non 4-colorable graphs there is a graph, call it G, of minimum order (i.e., minimum



178 IV Coloring Maps

Fig. 20.1 Kempe’s unavoidable set of configurations

number of vertices). Embed G in the plane, and add edges, if necessary, to make a
triangulation T out of G. T is not 4-colorable as it is of the same order as G, but
T − v is 4-colorable for any vertex v. Fix a vertex v, and color T − v in four colors.
According to tool 20.3’, T contains one of the four configurations listed in Fig. 20.1.

1. If T contains a configuration (a) or (b), the 4-coloring of T − v can be eas-
ily extended to a 4-coloring of T : just assign the vertex v a color not used on the
vertices adjacent to v. A contradiction, therefore the assumption that T is a minimal
counterexample to 4CT is false, and thus T can be reduced. Configurations (a) and
(b) are reducible.

2. Let T contain a configuration (c). We will look at three subcases.
2a. If no more than three colors have been used to color the vertices a,b,c and d,

we can extend the 4-coloring of T − v to a 4-coloring of T : just assign the vertex v

a color not used on the vertices adjacent to v.
2b. Assume now that the vertices a,b,c and d are assigned four different colors:

following Kempe’s taste let these colors be red, blue, green, and yellow respectively.
Consider a subgraph TRG of T − v that is formed by all red and green vertices of
T − v, with all edges connecting these vertices (we call TRG a subgraph induced by
the red and green vertices). If the vertices a and c belong to different components
of TRG , we interchange colors, red and green, in the component that contains the
vertex c. As a result, we get a new 4-coloring of T − v, but in this coloring both
vertices a and c are colored red. Thus we can extend the 4-coloring of T − v to a
4-coloring of T : just color the vertex v green!

2c. Let us now assume that both vertices a and c belong to the same component
of TRG , i.e., there is, what we call now the Kempe chain CRG in TRG that connects
a and c (Fig. 20.2).
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Fig. 20.2 Kempe’s chains at work

Consider a subgraph TY B of T − v induced by all yellow and blue vertices of
T − v. Since the chain CRG separates the vertices b and d, they must lie in differ-
ent components of TY B . Therefore, we, interchange colors, yellow and blue, in the
component of TY B that contains the vertex b. As a result, we get a new 4-coloring
of T − v, but in this coloring both vertices b and d are colored yellow. Thus we can
extend the 4-coloring of T − v to a 4-coloring of T : just color the vertex v blue.

We have thus proved in all cases that T is 4-colorable. A contradiction, therefore
the assumption that T is a minimal counterexample to 4CT is false, and thus T can
be reduced. Configuration (c) is reducible.

3. Let finally T contain a configuration (d). We will consider three subcases.
3a. If no more than three colors have been used to color the vertices a,b,c,d and

e, we can extend the 4-coloring of T − v to a 4-coloring of T : just assign the vertex
v a color not used on the vertices adjacent to v.

3b. Assume now that the vertices a,b,c,d and e are assigned four different colors:
following Kempe’s choice, let these colors be red, blue, yellow, green, and blue
respectively. Consider subgraphs TRY and TRG of T − v that are induced by all
its red-and-yellow, and red-and-green vertices respectively. If the vertices a and c
belong to different components of TRY , or a and d belong to different components
of TRG , we interchange colors in the component that contains the vertex a. As the
result, we get a new 4-coloring of T − v, such that the color red is not assigned to
any of the vertices a,b,c,d and e. Thus we can extend the 4-coloring of T − v to a
4-coloring of T : just color the vertex v red.

3c. Let us now assume that vertices a and c belong to the same component of
TRY , and a and d belong to the same component of TRG , i.e., there is a Kempe chain
CRY in TRY that connects a and c, and a Kempe chain CRG in TRG that connects a
and d (Fig. 20.3).

Consider subgraphs TBG and TBY of T − v induced by all its blue-and-green and
blue-and-yellow vertices respectively. The vertex b must lie in a component of TBG

that is different from those to which d and e belong; and e lies in a component of
TBY that is different from those to which b and c belong. We, therefore, interchange
colors, blue and green, in the component of TBG that contains b; and blue and yellow,
in the component of TBY that contains e. As a result, b becomes green and e yellow.
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Fig. 20.3 Kempe’s chains at work

Thus, we can extend the 4-coloring of T − v to a 4-coloring of T : just color the
vertex v blue.

We have proved in all cases that T is 4-colorable. A contradiction, therefore the
assumption that T is a minimal counterexample to the 4CT is false, and thus T can
be reduced. Configuration (d) is reducible.

The Four-Color Theorem has thus been proven, or has it? In hindsight we know
that is has not been. Have you noticed the hole? Try finding it on your own before
reading the next subsection, in which I will play hide-and-seek and reveal where the
hole is.

20.2 The Hole

The hole occurs in the subcase 3c. Everything Kempe does in the neighborhood of
the vertex v is fine! He does get rid of color blue among the vertices adjacent to v,
and therefore is able to assign blue to v.

However, while interchanging 2 colors in one component (as was done in the
subcase) 2c does create an allowable coloring of T − v, in the subcase 3c Kempe
interchanges coloring in two components. Moreover, he interchanges colors in com-
ponents of TBG and TBY that share a color (blue). Thus, there is no guarantee that
what he gets in the outset is an allowable coloring of T − v (i.e., everywhere in
the graph adjacent vertices are assigned different colors). Thus, Kempe’s attempted
proof has a hole.

20.3 The Counterexample

In fact, Percy John Heawood was not only first to find the above hole: he constructed
a map such that if one follows Kempe’s argument, two adjacent regions would get
the same color assigned to them. Tomas L. Saati did not just translate Heawood’s
example into the language of graph theory, but also added niceties of symmetries to
his graph [Saa2, p. 9]. My assistant Phillip Emerich and I added further niceties of
regular hexagons and pentagons to Saati’s graph—see Fig. 20.4 for our embedding.
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x

Fig. 20.4 Heawood’s counter example in graph form

Letters R, B, Y , and G, stand for colors red, blue, yellow and green, respectively.
As a result of Kempe’s re-coloring, the adjacent vertices, x and z end up with the
same color assigned to them.

Heawood’s counterexample is a graph of order 25. While reading Kempe’s
attempted proof, I found a counterexample of order just 9 that refutes Kempe’s proof
as written by him.

Problem 20.4 Construct a counterexample to Kempe’s attempted proof of order not
greater than 9.

Behold (Fig. 20.5).
In fact, I believe that this is the smallest such counterexample:

Conjecture 20.5 For any graph of order less than 9, Kempe’s argument works.
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Fig. 20.5 A small counter example

20.4 Kempe–Heawood’s Five-Color Theorem

In his 1890 paper P. J. Heawood [Hea1] pointed out that Kempe’s argument actually
proves that five colors suffice. When we use five colors, there is no need to simulta-
neously interchange colors in two Kempe chains, and thus Kempe’s chain argument
works. Do verify the proof of the Five-Color Theorem on your own.

I believe that the name often used today for this result, “The Heawood 5-Color
Theorem,” is unfair. While Heawood was first to formulate and prove the theorem,
he merely adjusted an ingenious argument created by Kempe. It therefore is only
fair to name the result after both inventors. I have little doubt Heawood would have
agreed!

Kempe–Heawood’s Five-Color Theorem 20.6 Five colors suffice to color any
map in the plane.

20.5 Tait’s Equivalence

Not only did Augustus De Morgan, but also Arthur Cayley contributed to spreading
the word about the 4CC. Peter Guthrie Tait is clear about it [Tai1, p. 501]:

Some years ago, while I was working at knots, Professor Cayley told me of De
Morgan’s [sic] statement that four colours had been found by experience [sic] to be
sufficient for the purpose of completely distinguishing from one another the various
districts on a map.

When in 1880 Alfred B. Kempe published yet another sketch of a proof similar to
his original attempt [Kem5], Tait was apparently inspired to enter the map-coloring
arena. In 1 year, 1880, he published a paper [Tai1], withdrew and replaced it with
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a one-page “abstract” [Tai2], which he expanded to an article [Tai3]. These papers
contain some amusing statements, for example [Tai3, p. 657]:

The difficulty in obtaining a simple proof of this theorem originates in the fact that it
is not true without limitation.

One can paraphrase it to say, “It is difficult to prove what is not true.” Indeed,
very much so! However, the Tait papers, also contain brilliant observations, such as
what we call Tait’s Equivalence (Problem 20.8 below). Let us start our Tait-Review
with his inductive attempt of proving 4CC.

The Four-Color Theorem 20.7 Every map in the plane is 4-colorable.

Tait’s Attempted Proof ([Tai3]): Proof by induction in the number of regions.
For a map with one region 4CC holds.
Assume it holds for any map with less than n regions, i.e., any map with less than

n regions is 4-colorable.
Given a map M with n regions, by Kempe’s Tool 20.3, M contains a region

R bounded by at most five edges. If R is bounded by two or three edges, erase
one of them, say e. The resulting map can be 4-colored by inductive assumption.
Now reinstate e. At most three colors are forbidden for coloring R (one per each
neighbor), and we, therefore, use the remaining color for R.

Let R be bounded by four edges, and adjacent regions clockwise are R1, R2, R3

and R4. [At least one of the two pairs of the opposite regions R1 and R3, R2 and
R4, is non-adjacent; let R2 and R4 be the non-adjacent regions.] We erase a pair of
opposite edges e2 and e4 that separate the regions R2, R and R4 (Fig. 20.6).22 The
resulting map can be 4-colored by the inductive assumption.

Now reinstate e2 and e4. At most three colors are forbidden for coloring R
(because R2 and R4 are assigned the same color!), and we, therefore, can use the

Fig. 20.6 Tait’s attempted proof of the Four-Color Theorem

22 Tait in [Tai3, p. 660] wrote: “either pair of opposite sides of a four-sided region may be erased, and
afterwards restored.” This choice can cause a problem if the opposite regions are adjacent, hence I had to
correct Tait’s attempt by adding the previous sentence in brackets.
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remaining color on R. Please, observe: no Kempe chain argument was used in this
case, and the proof is much shorter than in Kempe’s attempt.

Let finally R be bounded by five edges, erase a pair of non-adjacent edges, say
e1 and e2. Here Tait suddenly stops and writes:

But when we erase any two non-adjacent sides of a five-sided district, a condition is
thereby imposed on the nomenclature of the remaining lines, with which I do not yet
see how generally to deal.

Of course, Tait knew that he could continue his proof by 4-coloring the resulting
map, which can be done by inductive assumption; then reinstate e1 and e2, and use
Kempe chain argument, as in [Kem2] or [Kem5]. He did not! Why?

The only plausible explanation, in my opinion, is that Tait at the very least had
doubts about the validity of Kempe’s argument in the last case, if not realized the
existence of the hole—10 years prior to Heawood’s work [Hea1].

With mathematical Olympiad-like brilliance, Tait proves the following fabulous
equivalence. A fine statement meets as fine a proof. Enjoy!

The dual graph of a planar triangulation graph is a planar graph, whose all ver-
tices have degree 3. If all vertices of a graph have the same degree 3, we say that the
graph is regular of degree 3, or simply a 3-regular graph.

Tait’s Equivalence, Graph Version 20.8 (Tait, 1880). A planar 3-regular graph
can be (vertex) 4-colored if and only if it can be edge 3-colored.

Proof [Tai2], [Tai3]. Let vertices of a planar 3-regular graph G be 4-colored in
colors a, b, c and d. We then color edges in colors x, y, and z as follows: an edge
is colored x if it connects vertices colored a and b, or c and d; an edge is colored
y if it connects vertices colored a and c, or b and d; and an edge is colored z if it
connects vertices colored a and d, or b and c. We can easily verify that a proper
edge coloring is thus obtained, i.e., no adjacent edges are assigned the same colors.
In view of symmetry, it suffices to show it for the edges incident to a vertex colored
a, which is demonstrated in Fig. 20.7.

Fig. 20.7 Proof of Tait’s equivalence

For the proof of the converse statement, Tait adds points and edges to make
degrees of every vertex even. Instead, I will subtract (remove) edges, which makes
the argument more transparent.
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Let edges of a planar 3-regular graph G be 3-colored in colors x, y, and z. Look
at the subgraph Gxy of G induced by all edges colored x and y.23 Every cycle of
Gxy must be even, as it alternates edges colored x and y. Therefore, by Kempe’s
Two-Color Theorem (problem 19.7), the vertices of Gxy (which comprise precisely
all vertices of G) can be 2-colored in colors, say A and B. Similarly, we create the
subgraph G yz of G induced by all edges colored y and z, and color all its vertices
in 2 colors, say 1 and 2. We thus assigned every vertex of G one of the following
four pairs of colors: A1, A2, B1, or B2. It is easy to verify (do) that we have ended
up with the proper vertex 4-coloring of G!

The Tait equivalence can also be formulated in the dual language of maps:

Tait’s Equivalence, Map Version 20.9 (Tait, 1880, [Tai2], [Tai3]). A map whose
underlying graph is 3-regular, can be (face) 4-colored if and only if it can be edge
3-colored.

20.6 Frederick Guthrie’s Three-Dimensional Generalization

Have you– found your own solution of Frederick Guthrie’s Problems 18.1 and 18.2?
As you know, he generalized his brother’s 4CP to the three-dimensional Euclidean
space and proved that no finite number of colors suffices.

Problem 20.10 For any positive integer n, there is a three-dimensional map that
cannot be colored in n colors (so that regions having a common boundary – and not
merely finitely many points, are assigned different colors).

In fact, unlike Möbius–Weiske’s puzzle, for any positive integer n, there are n
solids such that every two have a common boundary surface.

Second Solution. This solution appears in the 1905 paper of the Austrian mathemati-
cian and puzzlist Heinrich Tietze [Tie1]. As Frederick Guthrie before him, Tietze
showed that in the three-dimensional space we can easily construct n + 1 mutually
adjacent solids. Just put n + 1 long enough parallelepipeds, numbered 1 through
n + 1 on a plane; then put n + 1 more parallelepipeds that are perpendicular to first
ones on top; and combine into one solid two parallelepipeds that are labeled with
the same number (Fig. 20.8).

Granted, this puzzle was easy to solve. However, according to Tietze, the German
mathematician Paul Stäckel, who also solved the above problem, posed the same
question for convex solids (something that I believe Frederick Guthrie posed first,
but not in very precise words – see the end of Chapter 18). Heinrich Tietze solved
this harder problem in the same 1905 paper [Tie1].

23 I substantially simplified here Tait’s language without changing his ideas. He talks about converting
every triangular face into a four-sided one by inserting one new vertex per face inside an edge. He then
throws the edges with inserted vertices away, which is equivalent to keeping precisely edges without
insertions. These kept edges are then 2-colored.
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Fig. 20.8 Tietze’s argument in the 3-space

Tietze’s Theorem 20.11 (H. Tietze, 1905) For any positive integer n, there are n
convex solids such that every two have a common boundary surface.

Thus, map coloring in three dimensions did not provide as lasting a fun as has
the two-dimensional variety of map coloring.
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The most famous conjecture of graph theory or
perhaps of the whole mathematics, the four colour
conjecture, became recently the theorem of Appel
and Haken.

– Paul Erdős, 1979 24

Four-colour problem, the as yet unsolved [sic]
problem of proving as a mathematical theorem that
on any plane map only four colours are needed to
give different colours to any regions that have a
common boundary.

– Oxford English Dictionary, June 2007 [sic] Edition25

The year was 1976. I read a notice about a meeting of the Moscow Mathematical
Society in disbelief: the topic was the proof of the Four-Color Conjecture (4CC) just
obtained by two Americans, whose names did not sound familiar to me, but certainly
were destined to enter the history of mathematics, perhaps, history of culture.

So it happened: Kenneth Appel and Wolfgand Haken of the University of Illinois,
with the aid of John Koch and some 1200 hours of fast main frame computing,
converted Francis Guthrie’s 4CC into 4CT, the Four-Color Theorem.

Four-Color Theorem 21.1 (K. Appel, W. Haken and J. Koch [AH1-4]) Every pla-
nar map is four-colorable.

However concisely, in this chapter we will look, at the roots of this result
and the ideas of Appel–Haken’s proof as presented by the authors in their mono-
graph [AH4].

24 [E81.16], published in 1981 in the premier issue of Combinatorica; received by the editors on Septem-
ber 15, 1979.
25 [OED]. The New Encyclopedia Britannica did better: “The four-colour problem was solved in 1976
by a group [sic] of mathematicians at the University of Illinois, directed by Kenneth Appel and Wolfgang
Haken.”

A. Soifer, The Mathematical Coloring Book, 187
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Appel and Haken’s work grew from the 1879 approach discovered by Alfred
B. Kempe (discussed in Chapter 20), improved in 1913 by George D. Birkhoff of
Harvard University, and brought into the realm of possibility by Heinrich Heesch
of the University of Hanover through his committed work over the long years
1936–1972.

Birkhoff found new reducible configurations [Bir], larger then those of Kempe.
Heesch built on the work of his predecessors and developed a theory of reducible
configurations [Hee1]:

An investigation of the concepts of reduction has been attempted in the author’s
“Untersuchungen zum Vierfarbenproblem” (Mannheim, 1969, Chapter I), where the
concepts of A-, B-, C-, or D-reducible configurations are developed from the work of
A. Errera, G. D. Birkhoff, and C. E. Winn.

Heesch was first to utilize computer in his pursuit [Hee2]:

The D- or the C-reducibility of a configuration can be recognized much better by com-
puting than by such direct calculations as have been given by the authors up to now.

Above all technical contributions, Heinrich Heesch envisioned and conjectured
the existence of a finite set of unavoidable reducible configurations. Appel and
Haken paid their tribute to Heesch on the very first lines of their major paper that
preceded their great announcement [AH0]:

This work has been inspired by the work of Heesch [Hee1], [Hee2] on the Four Color
Problem, especially his conjecture [Hee1, p. 11, paragraph 1, and p. 216] that there
exists a finite set S of 4-color reducible configurations such that every planar map
contains at least one element of S. (This conjecture implies the 4CC but is not implied
by it.) Furthermore, in 1970 Heesch communicated an unpublished result. . .which he
calls a finitization of the Four-Color Problem.

In 1969 Heesch also pioneered a brilliant idea of discharging in search for
unavoidable sets of configurations [Hee1]. This book paved the way to computer-
aided pursuits of reducibility.26

Heesch’s role is hard to overestimate. In addition to the credits I have enumerated
above, Heesch personally influenced Haken and shared with him much of unpub-
lished ideas. In Appel and Haken’s own words [AH2]:

Haken, who had been a student at Kiel when Heesch gave his talk, communicated
with Heesch in 1967inquiring about the technical difficulties of the project of proving
Heesch’s conjecture and the possible use of more powerful electronic computers.

In 1970 Heesch communicated to Haken an unpublished result which he later
referred to as a finitization of the Four-Color Problem, namely that the first discharg-

26Looking back, it seems surprising that in his 1972 42-page survey [Saa2] of various approaches to the
4CC, T. L. Saati did not even mention the name of Heinrich Heesch.
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ing step. . ., if applied to the general case, yields about 8900 z-positive configura-
tions (most of them not containing any reducible configurations) which he explicitly
exhibited. . .

Heesch asked Haken to cooperate on the project and, in 1971, communicated to
him several unpublished results on reducible configurations.

To understand how the discharging works, let us look at the following simple
example that I found in Douglas R. Woodall’s papers [Woo2], [Woo3] where he
gives credit to K. Appel and H. Haken for it.

Problem 21.2 (K. Appel and H. Haken) The set of five configurations in Fig. 21.1
is unavoidable, i.e., at least one of them appears in any plane triangulation.

(a) (b) (c)

(d) (e)

Fig. 21.1 An unavoidable set of configurations

Proof

1. Observations: We will argue by contradiction. Assume that there is a plane tri-
angulation G that contains none of the configurations from Fig. 21.1. We can
make the following observations:
Observation A; G has no vertices of degree less than 5, because G contains no
configurations (a), (b), and (c).
Observation B: Every vertex v of degree 5 in G has at least three neighbors of
degree 7 or greater; for otherwise v would have at least one neighbor of degree 5
and hence G would contain the forbidden configuration (d), or v would have at
least three neighbors v1, v2, v3 of degree 6. What is wrong with the latter, you
may ask? In the latter case at least 2 of the 6-valent neighbors of v, say v1 and
v2, must be neighbors of each other (in the triangulation G the neighbors of v

are connected to each other in a closed path, Fig. 21.2), and thus the forbidden
configuration (e) is contained in G.
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Fig. 21.2

Observation C; Every vertex v of degree 7 has at most three neighbors of degree
5, for otherwise two of its 5-valent neighbors would be neighbors of each other
(it is similar to the argument in observation B above: prove it on your own),
which would mean precisely that G contains a configuration (d).
Observation D; Every vertex v of degree i ≥ 8 has at most

[
i+1

2

]
neighbors

of degree 5, where for a real number r the symbol [r ] denotes the maximum
integer such that [r ] ≤ r . The proof of this observation is similar to the proof of
observation C above (try it on your own).

2. Charging: To each vertex of G of degree i we assign an electrical charge equal
to 6 − i . This means that vertices of degree 5 receive unit charge, vertices of
degree 6 get zero charge, vertices of degree 7 receive charge equal negative one,
etc. In his paper [Kem2], Kempe derives the following equality as a corollary of
his rediscovering the Euler’s formula (Problem 20.2):

Δ∑

i=2

(6 − i)Vi = 12,

where Vi stands for the number of vertices of degree i . In Heesch’s language of
electrical charges, this equality means precisely that the sum of charges of all
vertices in G, i.e., the total charge in G is equal to a positive 12 units.

3. Discharging: Let us now do discharging, i.e., redistribution of charge among the
vertices without changing the total charge of G. The crux of such a proof is to
find the discharging that “works” for the set of configurations in question, which
in our case is presented in Fig. 21.1, i.e., it brings us the desired contradiction. Let
us transfer 1

3 of the charge from each vertex of degree 5 to each of its neighbors
of degree 7 or greater.

As a result, every vertex of degree 5 ends up with zero or negative charge, because
such a vertex has at least three neighbors of degree 7 or greater (see observation B
above). Vertices of degree 6 will remain with zero charge, as they are unaffected
by discharging. A vertex v of degree 7 would not end up with a positive charge,
because v has at most three neighbors of degree 5, each contributing charge 1

3 to
v (observation C). And finally, a vertex of degree i ≥ 8 that started with a charge
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6 − i , in view of observation D, can end up with the charge at most

6 − i + 1

3

[
i + 1

2

]

< 0

Thus, we end up with no vertices of position charge, which contradicts the total
charge remaining the positive 12.

Did you like the mathematical Olympiad-like discharging argument? Then you
would enjoy proving on your own the following result first obtained without dis-
charging in 1904 by Paul August Ludwig Wernicke from Göttingen University, who
in the same year defended his doctorate under the great Hermann Minkowski.

Problem 21.3 (Wernicke, 1904, [Wer]) Prove that the set of five configurations in
Fig. 21.3 is unavoidable.

Fig. 21.3 An unavoidable set of configurations

Let us now look at the other critical aspect of Appel–Haken proof: reducibility.
Appel and Haken used so-called C- and D-reducibilities introduced by Heesch as
vast extensions of the technique used by Kempe. In fact, it suffices to restrict our-
selves to configurations with vertices of degree 5 and greater since Kempe showed
that vertices of lesser degree cannot occur in a minimal counterexample. The authors
give an example [AH4]:

Assume that the planar triangulation Δ is the minimal counterexample to the 4CC,
which contains, for example, a configuration C of Fig. 21.4(a). (Legend in Fig. 21.4(d)
shows how to read the degrees of the vertices of the configuration from the diagram in
Fig. 21.4.) Then the graph Δ−C obtained from Δ by removing C and edges connecting
C to the rest of Δ, must be four-chromatic. A contradiction would be obtained, if we
show that every 4-coloring of Δ − C can be extended to a 4-coloring of Δ.
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Fig. 21.4 Appel-Haken’s example of a fourteen-ring configuration

Appel and Haken repeatedly use good humor in praising the use of computer.
Here is one example (numbers 0, 1, 2, 3 on the ring in Fig. 21.4(c) indicate the four
colors we are using):

. . . if one were lucky, one might be able to show a fourteen-ring configuration D-
reducible with only a few years of careful work. There are obviously some slackers
who would not be fascinated by such a task. Such people, with an immorally low
tolerance for honest hard work, tend to program computers to do this task. In fact, they
find it ideally suited to computers, which are fast, meticulous, and not able to complain
about the boring aspects of the work.

Yet, of course, their solution required an enormous amount of both manual and
computer work. The crux of Appel–Haken proof was to find such a set of config-
urations that was both unavoidable and consisted of reducible configurations, the
so-called unavoidable set of reducible configurations. In one of the early, 1978
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analyses of the proof [Woo3], Douglas R. Woodall assessed this critical part as
follows:

Discharging procedure and the unavoidable set of configurations were modified every
time a configuration in the set turned out not to be C-reducible (or was not quickly
proved to be C-reducible) It is clear that these progressive modifications relied on
a large number of empirical rules, which enabled an unwanted configuration to be
excluded from the unavoidable set at the expense of possibly introducing one or more
further configurations. Appel and Haken carried out about 500 such modifications in
all. They continued until they had excluded

i. Every configuration that contained one of three “reduction obstacles”–features
that Heesch had discovered, by trial and error, to prevent configurations from
being C-reducible;

ii. Every configuration of ring size 15 or more; and
iii. Every configuration that was not proved to be reducible fairly quickly (in partic-

ular, within 90 minutes on an IBM 370–158 or 30 minutes on a 370–168).

By the time they had finished (iii), they had constructed an unavoidable set all of
whose configurations had been proved reducible; they had therefore proved the theo-
rem. Probably they had excluded from the unavoidable set many configurations that are
actually C-reducible but it turned out to be quicker to exclude any configuration that
was not quickly proved reducible, and to replace it by one or more other configurations,
than to carry the analysis of any one configuration to its limit.

The empirical rules, upon which these progressive modifications were based, were
discovered in the course of a lengthy process of trial and error with the aid of a
computer, lasting over a year. By the end of this time, however, Appel and Haken
had developed such a feeling for what was likely to work (even though they could
not always explain why) that they were able to construct the final unavoidable set
without using the computer at all. This is the crux of their achievement. Unavoidable
sets had been constructed before, and configurations had been proved reducible before,
but no-one before had been able to complete the monumental task of constructing an
unavoidable set of reducible configurations.

It was a great achievement of Appel and Haken, for they reduced the infinity of
various maps to the finite set of unavoidable reducible configurations, which needed
to be checked. The difficulty was, the set was very large, at first consisting of 1936
configurations. This reduction was a mathematical achievement, and it allowed the
use of computer (surely, with infinitely many cases, computer would have been use-
less!). The enormous computer verification used over 1200 hours of main frame
computing of the time (IBM-360 and IBM-370). By 1989, when Appel and Haken
produced the 741-page book [AH4] presenting their solution, they reduced the num-
ber of configurations to 1476. Such a surprising resolution of the famous problem,
both in its volume of work and in use of computing, was bound to cause controversy,
and it promptly has. The Appel–Haken–Koch proof of 4CT was a cultural event: it
prompted debates and reassessment in many fields of human endeavor, particularly
in mathematical and philosophical circles. In the next chapter we will look at the
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debate and some striking views it has inspired, as well as at the new proof of 4CT
and the old but still most promising Hadwiger’s Conjecture.

In a phone interview in the fall 1991 (before October 14, 1991), Wolfgang Haken
shared with me brief details of his life: born on June 21, 1928 in Berlin; obtained his
doctorate from the University of Kiel in 1953; came to the United States in 1962;
started to work on 4CC in 1968; came up with first ideas of his own in October
1970. Kenneth Ira Appel was born on October 8, 1932 in Brooklyn, New York; and
got his doctorate from the University of Michigan in 1959. During the interview,
Haken accepted my invitation to write his view of the Appel–Haken accomplish-
ment entitled, on my recommendation, in Alexandre Dumas’ style, “Fifteen Years
Later.” I offered to include here his complete unedited essay, but no text has ever
been received.

The second epigraph, from the Oxford English Dictionary [OED] shows how
very little attention is paid to mathematics: Oxford failed to notice even by
2007 the now 31-year-old solution of one of two most famous problems in the
multi-millennial history of mathematics (the other, of course, being Fermat’s Last
Theorem)!

In conclusion, I must quote from the March-2005 unpublished, but web-posted
paper by the Microsoft-Cambridge, UK researcher from the Programming Princi-
ples and Tools Group, Georges Gonthier [Gon]. With a deep insight of someone
who has verified a 4CT proof and came up with a “machine proof,” he assesses
contributions of the players to the first successful assault of 4CC:

Although Heesch had correctly devised the plan of the proof of the Four Colour The-
orem, he was unable to actually carry it out because he missed a crucial element:
computing power. The discharge rules he tried gave him a set R containing configura-
tions with a ring of size 18, for which checking reducibility was beyond the reach of
computers at the time. However, there was hope, since both the set of discharge rules
and the set R could be adjusted arbitrarily in order to make every step succeed.

Appel and Haken cracked the problem in 1976 by focusing their efforts on adjust-
ing the discharge rules rather than extending R, using a heuristic due to Heesch for
predicting whether a configuration would be reducible (with 90% accuracy), without
performing a full check. By trial and error they arrived at a set R, containing only
configurations of ring size at most 14, for which they barely had enough computing
resources to do the reducibility computation. Indeed the discharging formula had to be
complicated in many ways in order to work around computational limits. In particular
the formula had to transfer arity between non-adjacent faces, and to accommodate
this extension unavoidability had to be checked manually. It was only with the 1994
proof by Robertson et al. that the simple discharging formula that Heesch had sought
was found.

We will discuss the Robertson–Sanders–Seymour–Thomas proof and its
Gonthier’s verification in the next chapter.
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The Great Debate

Computers are useless.
They can only give you answers.

– Pablo Picasso

To reject the use of computers as what one may call
“computational amplifiers” would be akin to an
astronomer refusing to admit discoveries made by
telescope.

– Paul C. Kainen, 199327

I would be much happier with a computer-free proof
of the four color problem, but I am willing to accept
the Appel–Haken proof – beggars cannot be
choosers.

– Paul Erdős, 199128

Interest in the 4CC seems not to be high
in the math literature because it is now
thought to have been proven or something.

– Thomas L. Saaty, 199829

22.1 Thirty Plus Years of Debate

“Thirty years later,” as the Three Musketeers’s author Alexandre Dumas would have
said, the controversy surrounding the Appel and Haken solution is amazingly alive
and well. Even when the extraordinary in many respects Appel and Haken’s proof
was just announced, the President of the Mathematical Association of America Lynn
Arthur Steen was very careful [Ste]: he did not write that the conjecture had been

27 [Kai].
28Letter to A. Soifer [E91/8/14ltr].
29E-mail to A. Soifer of April 13, 1998.

A. Soifer, The Mathematical Coloring Book, 195
DOI 10.1007/978-0-387-74642-5 22, C© Alexander Soifer 2009
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proven, but instead used the word “verified” in describing the most important math-
ematical event of that summer.

The proof was met with a considerable amount of confusion in the mathemat-
ical community due to the authors’ extensive use of computer. This was the first
computer-aided solution of a major, celebrated mathematical problem. As such
it naturally raised mathematical, philosophical, and psychological questions. In
Table 22.1 I put together a “representative” collection of reactions – take a long
look at it, then join me for a discussion.

Table 22.1 Reflections on the 4CT

Steen 1976 [Stee] The four color conjecture. . .was verified [sic] this
summer. . .

Appel &
Haken

1977 [AH1] Our proof of the four-color theorem suggests that
there are limits to what can be achieved in
mathematics by theoretical methods alone.

Gardner 1980 [Gar3] The proof is an extraordinary achievement. . . . To
most mathematicians, however, the proof of the
four-color conjecture is deeply unsatisfactory.

Halmos 1990 [Hal] By an explosion I mean a loud noise, an
unexpected and exciting announcement, but
not necessarily a good thing. Some explosions
open new territories and promise great future
developments; others close a subject and seem
to lead nowhere. The Mordell conjecture . . . is
of the first kind; the four-color theorem of the
second.

Erdős 1991 [E91/8/14ltr] I would be much happier with a computer-free
proof of the four-color problem, but I am
willing to accept the Appel–Haken proof —
beggars cannot be choosers.

Graham 1993 [Hor] The things you can prove may be just tiny islands,
exceptions, compared to the vast sea of results
that cannot be proven by human thought alone.

Kainen 1993 [Kai] To reject the use of computers as what one may
call “computational amplifiers” would be akin
to an astronomer refusing to admit discoveries
made by telescope.

Hartsfield &
Ringel

1994 [HR] Appel and Haken proved it by means of computer
program. The program took a long time to run,
and no human can read the entire proof,
because it is too long.

Jensen &
Toft

1995 [JT] Does there exists a short proof of the four-color
theorem. . . in which all the details can be
checked by hand by a competent
mathematician in, say, two weeks?

Graham 2002 [Gra4] Computers are here to stay. There are problems
for which computer helps; there are problems
for which computer may help; and there are
problems for which computer will never help.
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The confusion of mathematicians is so clear when we read the words of Martin
Garner in his celebrated Scientific American column [Gar3]:

The proof is an extraordinary achievement. . . . To most mathematicians, however, the
proof of the four-color conjecture is deeply unsatisfactory.

Which is it, “an extraordinary achievement” or “deeply unsatisfactory?” Surely
these terms are mutually exclusive! Paul Halmos, who chose to sum up the twenti-
eth century contribution to mathematics a decade too early (and thus missed a lot,
Fermat’s Last Theorem, for example), wrote in 1990 [Hal]:

By an explosion I mean a loud noise, an unexpected and exciting announcement, but
not necessarily a good thing. Some explosions open new territories and promise great
future developments; others close a subject and seem to lead nowhere. The Mordell
conjecture. . . is of the first kind; the four-color theorem of the second.

A loud noise that leads nowhere? It suffices to observe that much of graph theory
had been invented through the 124 years of attempts to settle 4CC. Nora Hartsfield
and Gerhard Ringel [HR] paint this historic event as absolutely routine, unworthy
of a debate:

Appel and Haken proved it by means of computer program. The program took a long
time to run, and no human can read the entire proof, because it is too long.

However, there were, those who gave the event much thought. In 1978, the
philosopher Thomas Tymozcko of Smith College illustrated the arrival of computer
proofs with a brilliant allegory [Tym]:

Let us consider a hypothetical example which provides a much better analogy to the
appeal to computers. It is set in the mythical community of Martian mathematicians
and concerns their discovery of the new method of proof “Simon says.” Martian math-
ematics, we suppose, developed pretty much like Earth mathematics until the arrival
on Mars of the mathematical genius Simon. Simon proved many new results by more
or less traditional methods, but after a while began justifying new results with such
phrases as “Proof is too long to include here, but I have verified it myself.” At first
Simon used this appeal only for lemmas, which, although crucial, were basically com-
binatorial in character. In his later work, however, the appeal began to spread to more
abstract lemmas and even to theorems themselves. Oftentimes other Martian mathe-
maticians could reconstruct Simon’s results, in the sense of finding satisfactory proofs;
but sometimes they could not. So great was the prestige of Simon, however, that the
Martian mathematicians accepted his results; and they were incorporated into the body
of Martian mathematics under the rubric “Simon says.”

Is Martian mathematics, under Simon, a legitimate development of standard math-
ematics? I think not; I think it is something else masquerading under the name of
mathematics. If this point is not immediately obvious, it can be made so by expand-
ing on the Simon parable in any number of ways. For instance, imagine that Simon
is a religious mystic and that among his religious teachings is the doctrine that the
morally good Martian, when it frames the mathematical question justly, can always
see the correct answer. In this case we cannot possibly treat the appeal “Simon says”
in a purely mathematical context. What if Simon were a revered political leader like
Chairman Mao? Under these circumstances we might have a hard time deciding where
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Martian mathematics left off and Martian political theory began. Still other variations
on the Simon theme are possible. Suppose that other Martian mathematicians begin
to realize that Simonized proofs are possible where the attempts at more traditional
proofs fail, and they begin to use “Simon says” even when Simon didn’t say! The
appeal “Simon says” is an anomaly in mathematics; it is simply an appeal to authority
and not a demonstration.

The point of the Simon parable is this: that the logic of the appeals “Simon says”
and “by computer” are remarkably similar. There is no great formal difference between
these claims: computers are, in the context of mathematical proofs, another kind of
authority. If we choose to regard one appeal as bizarre and the other as legitimate,
it can only be because we have some strong evidence for the reliability of the latter
and none for the former. Computers are not simply authority, but warranted authority.
Since we are inclined to accept the appeal to computers in the case of the 4CT and to
reject the appeal to Simon in the hypothetical example, we must admit evidence for the
reliability of computers into a philosophical account of computer-assisted proofs. . .

The conclusion is that the appeal to computers does introduce a new method into
mathematics.

Tymoczko is right: Appel–Haken–Koch’s proof changed the meaning of the word
“proof” by letting in a reliable experiment as allowable means, by taking away
the absolute certainty we cherished so much in the mathematical proof. Thomas L.
Saaty and Paul C. Kainen, whose great timing allowed them to publish in 1977 the
first book ever on The Four-Color Problem that included a discussion of its solution,
were first to observe the substantial but inevitable trade-off of the acceptance of such
a proof [SK, end of part one]:

To use the computer as an essential tool in their proofs, mathematicians will be forced
to give up hope of verifying proofs by hand, just as scientific observations made with
a microscope or telescope do not admit direct tactile confirmation. By the same token,
however, computer-assisted mathematical proof can reach a much larger range of phe-
nomena. There is a price for this sort of knowledge. It cannot be absolute. But the loss
of innocence has always entailed a relativistic world view; there is no progress without
the risk of error.

In the essay [Kai] written in 1993 especially for Geombinatorics, Paul C. Kainen
elaborates further on the above allegory:

To reject the use of computers as what one may call “computational amplifiers” would
be akin to an astronomer refusing to admit discoveries made by telescope.

This is certainly an elegant metaphor. However, one cannot argue with
Tymoczko’s warning about keeping the order right – we have accepted the legit-
imacy of the use of computers first, and only based on this acceptance we have
claimed the existence of the formal proof [Tym]:

Some people might be tempted to accept the appeal to computers on the ground that
it involves a harmless extension of human powers. In their view the computer merely
traces out the steps of a complicated formal proof that is really out there. In fact,
our only evidence for the existence of that formal proof presupposes the reliability of
computers.
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As Tymoczko rightly observes, the timing of Appel–Haken–Koch work was
favorable for the acceptance of their proof [Tym]:

I suggest that if a “similar” proof had been developed twenty-five years earlier, it would
not have achieved the widespread acceptance that the 4CT has now. The hypothetical
early result would probably have been ignored, possibly even attacked (one thinks
of the early reaction to the work of Frege and of Cantor). A necessary condition for
the acceptance of a computer-assisted proof is wide familiarity on the part of mathe-
maticians with sophisticated computers. Now that every mathematician has a pocket
calculator and every mathematics department has a computer specialist that familiarity
obtains. The mathematical world was ready to recognize the Appel–Haken methodol-
ogy as legitimate mathematics.

In their 1978 essay [WW] Douglas R. Woodall and Robin Wilson state that “there
is no doubt that Appel and Haken’s proof is a magnificent achievement which will
cause many mathematicians to think afresh (or possibly for the first time) about the
role of the computer in mathematics.” Yet, they share concern with Paul Halmos and
many others:

The length of Appel and Haken’s proof is unfortunate, for two reasons. The first is that
it makes it difficult to verify. . .. The other big disadvantage of a long proof is that it
tends not to give very much understanding of why the result is true. This is particularly
true of a proof that involves looking at a large number of separate cases, whether or
not it uses the computer.

Paul Erdős put the state of 4CT most aptly in his 1991 letter to me [E91/8/14ltr]:

I would be much happier with a computer-free proof of the four color problem, but I
am willing to accept the Appel-Haken proof – beggars cannot be choosers.

So what are we mathematicians to do? The answer, in the form of a question,
came from the Danish graph theorists Tommy R. Jensen and Bjarne Toft in their
book of open coloring problems of graph theory [JT]:

Does there exists a short proof of the four-color theorem. . . in which all the details can
be checked by hand by a competent mathematician in, say, two weeks?

22.2 Twenty Years Later, or Another Time – Another Proof

Twenty years later, when the familiarity with and trust in computing have dramati-
cally improved, a new team of players came on 4CT stage: leading graph theorists
Neil Robertson and Paul Seymour and their young students and colleagues Daniel
Sanders and Robin Thomas. This reminded me the Hollywood film, Seven Brides
for Seven Brothers. Only here we had Four Mathematicians for Four Colors. Four
on four, they had to be able to handle 4CT, and handle they did.

In their work on graph theory, the authors thought that in a sense the validity
of H (6) (Hadwiger’s Conjecture for 6 – we will formulate it later in this chapter)
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depended upon the validity of 4CT. Thus, they felt compelled to either verify Appel–
Haken proof or find their own. They decided that the latter was an easier task.

The “four musketeers” undoubtedly realized that “20 years later,” as Alexandre
Dumas used to say (precisely the title of Alexandre Dumas’ sequel to the famed
Three Musketeers), they would have to get a much better proof than the original one
by Appel and Haken for otherwise they would be asked “why did you bother?” The
remarkable thing is that these athors have achieved just such a proof!

I first learned about it in February 1993 at Florida Atlantic University from
Ronald L. Graham, who also forwarded to me the e-mail announcement of the forth-
coming March 24, 1994 DIMACS talk by Paul Seymour, who at the time worked at
Bellcore. I asked Paul’s coauthor Neil Robertson for the details. His May 9, 1994
reply [Rob1] due to its medium, e-mail, concisely and instantly summarized what
he thought was most important about the new proof:

We have a new proof, along the same lines as the AHK30 proof, relying more on the
computer, and so more reliable. The unavoidable set is in the area of 600 configurations
(<= 638), and we get a quadratic algorithm. Dan wrote a nice article about this for
SIAM (I think). Seymour, Thomas, Sanders and I are involved. With a slightly larger
unavoidable set the overall proof becomes very simple (apart from the calculations) as
we avoid almost all degeneracies by using D-reduction and reducers for C-reduction
from the single edge contraction minors of the given configuration. Will forward to
you a copy of Dan’s article.

One important point to notice here is that the proof relies more (not less!) on
the computer than Appel–Haken–Koch’s proof, and it makes the proof more (not
less) reliable due to its clear separation of human and machine tasks. The size of the
unavoidable set of reducible configurations was substantially reduced from Appel
and Haken’s 1476 to 638, but even greater improvements were in the much simpler
discharging procedure. Later that same day, Neil forwarded to me Daniel Sander’s
summary, entitled, in a word,

NEWPROOFOFTHEFOURCOLORTHEOREM.

I have got to share with you parts of this announcement summary, as it includes the
authors’ assessment of the Appel–Haken proof and comparisons of the two proofs.
I will add my comments as footnotes:

. . . Before and after Appel and Haken, many claims have been made to prove 4CT with
the aid of a computer, none of which held up to the test of time. But Appel and Haken’s
proof has stood; for 18 years. Why? Some may say that the proof is inaccessible.
It is so long and complicated; has anyone actually read every little detail? At least
two attempts were made to independently verify major portions of Appel and Haken’s
proof [AH2, AH3], which yielded no significant problems. Appel and Haken [AH4]
published a more complete (741 pages) version of their proof 5 years ago, but many
remain hesitant.

30 Appel, Haken and Koch.
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The author of this paper, together with Neil Robertson, Paul Seymour, and Robin
Thomas, announces a new proof of 4CT. The proof uses the same techniques as that
of Appel and Haken: discharging and reducibility. The new proof, however, makes
improvements in the complexity of the arguments. Hopefully these improvements will
help people to better understand and appreciate Appel and Haken’s method.

To describe the improvements in more detail requires a discussion of the discharg-
ing method. Simple reductions show that one need[s] only [to] consider plane triangu-
lations of minimum degree 5.

An easy manipulation of Euler’s formula gives the following equality for these
graphs:

∑
v∈V (G) (6 − deg (v)) = 12.31 This value 6 − deg (v) has come to be known as

the charge of v. The vertices of degree 5 are the only vertices of positive charge. The
vertices of degree at least 7 have negative charge, and are known as major vertices.

The discharging method is to locally redistribute the positive charge from the ver-
tices of degree 5 into the major vertices. The sum of the new charges will equal the sum
of the old charges, and thus the[re] will be a vertex which has its new charge positive,
known as an overcharged vertex.

The structure of the graph close to an overcharged vertex is determined by the rules
that were used to discharge the vertices of degree 5. Each possible structure that can
yield an overcharged vertex must be examined [to] find within it some configuration
that is reducible (provably cannot exist in minimal counterexample to 4CT). Thus there
are the two steps of the proof of 4CT.

Discharging: defining a set of discharging rules which in turn gives a list of
configurations that a plane triangulation of minimum degree 5 must have.

Reducibility: showing that no minimal counterexample to 4CT can contain any of
these configurations.

The two forms of reducibility that Appel and Haken use are known as C-reducibility
and D-reducibility. The idea of D-reducibility is that no matter what coloring the ring
(border of the configuration) has, it can be changed by Kempe chains (swapping the
colors of an appropriate 2-colored subgraph) into a coloring that extends into a coloring
of the configuration. C-reducibility is the same idea, except with first replacing the
configuration [b]y a smaller configuration, thus restricting the possible colorings of
the ring. Bernhart (see [GS]) found a new form of reducibility which can show some
configurations reducible that D- and C-reducibility cannot.

Although we were able to produce six configurations which were reducible by the
block count method, these configurations turned out not to be needed.

The new proof still uses only D- and C-reducibility, which were clearly defined by
Heesch [Hee1] based upon ideas of Birkhoff [Bir].

The primary discharge rule that Appel and Haken use is the following:
A vertex x of degree 5 originally has a charge of 1. Send a charge of 1/2 from x

to each major neighbor of x . Unfortunately, this simple rule is not enough to prove
4CT. It yields a list of configurations, but not all of them are reducible. So, for each
non-reducible configuration, they define secondary discharge rules, which move the
charge around a bit more.

These new rules produce the need for even more rules, and so on, but eventually
the process stopped with a list of 1476 reducible configurations. The total number

31 This formula is due to A. B. Kempe, 1879 [Kem2].
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of secondary discharge rules that they used was 486. A better primary discharge rule
permits improvement in both of these areas.32

Here is the primary discharge rule used in the new proof. Imagine each vertex x
of degree 5 expelling its positive charge equally in each of the five directions around
it. Thus x will send 1/5 to each of its neighbors. The major vertices have a negative
charge that attracts this positive charge that was expelled. Thus if the neighbor y of x
is major, it absorbs this 1/5. If the neighbor y is not major, the charge just keeps going,
splitting half to the left and half to the right. Let p and r be the common neighbors of
x and y, to the left and right the edge xy.

The left 1/10 rotates counterclockwise through the neighbors of p, while the right
1/10 rotates clockwise through the neighbors of r . If deg (p) ≥ 8, its attraction is so
great that the 1/10 doesn’t make it to the next neighbor; this charge gets absorbed by p.
Otherwise, the 1/10 rotates until it reaches a major neighbor of p, unless deg p = 7,
and it has rotated through four neighbors; in this case p absorbs it. Similarly for r .
Using this primary rule, only 20 secondary discharge rules are necessary to produce a
list of 638 reducible configurations. . .

The largest size ring that Appel and Haken use is a 14-ring; their original list
had 660 14-rings. The list of 638 mentioned above contains 161 14-rings. It is not
known whether 14-rings can be avoided altogether, but at least 12-rings appear to be
necessary. . .

Totally automating the discharge analysis allowed us to try several heuristics on
how to make these choices. Having the discharge analysis automated also hinders
the possibility of errors creeping in; a human error was found in Appel and Haken’s
discharge analysis (its correction can be found in [AH4, p. 24]).

Recently, Appel and Haken [AH4] have proven a quartic algorithm to 4-color
planar graphs using their list of 1476 reducible configurations. . . we have found a
quadratic algorithm to 4-color planar graphs. . .

The reducibility and discharging programs that were used to complete the new
proof of 4CT will soon be available by anonymous ftp. The total amount of computer
time required to prove 4CT on a Sun Spark 10 is less than twenty-four hours.

About 2 years later, on February 19, 1996 I attended Paul Seymour’s plenary talk
at the International Southeastern Conference on Combinatorics, Graph Theory and
Computing at Florida Atlantic University. I knew that the new proof was superior to
the original one in a number of aspects. Yet, I was wondering what compelled the
authors to look for another computer-aided proof of 4CT. Paul Seymour addressed
it right in the beginning of his talk, as I was jotting down notes:

It was difficult to believe it [Appel–Haken’s proof]: you can’t check it. First you need a
computer. Second, non-computer part is awful: it contains hundreds of pages of notes.
You can’t understand. You are not quite sure that the theorem is true. Nobody checked
the proof. This is a bit scary.

We assumed 4CT is true in earlier work, so we had to have a sure proof. General
framework is the same, but details are better.

32 Better discharge rule prompted a reduction of secondary discharge rules from 486 in Appel and Haken
to just 20, which resulted is a much more accessible ideologically proof and a 43-page paper [RSST] vs.
the 741 book [AH4] of Appel and Haken.
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The talk ended with questions and Paul Seymour’s answers:

Erdős: Is there going to be a normal proof?
Seymour: I don’t have any reason to think it is impossible. I try it from time to time.
Soifer: What are approaches to “normal proof?”
Seymour: I am not going to tell you my wrong proofs. Start with a triangle, flip it

over, put a rubber band around, look for a smaller set of reducible configurations.
Soifer: Why did you use Sun Microsystems Workstation in your solution?
Seymour: This is what I have in my office.
Soifer: How long does it take to verify your proof?
Seymour: Computer can verify the proof in 5 minutes; 6 months by hand.

On May 25, 1995, when the paper [RSST] with the new proof was submitted, it
consisted of just 43 pages—a vast improvement over the 741 + 15-page monograph
[AH4]. However, with great advantages of the new proof (Table 22.2), let us not
forget, that Appel and Haken discovered a proof first. And let us remember that
“the most notorious paper in the history of graph theory: the 1879 work by A. B.
Kempe [Kem2] that contains the fallacious proof of the Four Color Theorem” [Ste],
“The Kempe Catastrophe” [Saa1] – paved the way!

Table 22.2 Comparison of the Two 4CT Proofs

Appel–Haken–Koch
Robertson–Sanders
Seymour–Thomas

Number of secondary
discharging rules

486 20

Number of unavoidable
configurations

1476 638

Computer time to prove 1200 hours 24 hours
Computer time to verify Not available 5 minutes
Speed of graph coloring

algorithm
Quartic Quadratic

Number of pages in the
final publication

741 43

March 2005 brought a new development in the 4CT saga, when Georges Gonthier
of Miscrosoft-Cambridge, UK, produced “a formal proof of the famous Four Color
Theorem that has been fully checked by the Coq proof assistant.” “It’s basically
a machine verification of our proof,” wrote Paul Seymour in his January 17, 2008
e-mail to me. Let us give the podium to Georges Gonthiers for the assessment of his
work in the unpublished but posted on the web paper [Gon]:33

We took the work of Robertson et al. as our starting point, reusing their optimized
catalog of 633 reducible configurations, their cleverly crafted set of 32 discharge rules,

33 The Economist (April 2–8, 2005) reported “Dr. Gonthier says he is going to submit his paper to a
scientific journal in the next few weeks.” This, however, has not happened.
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and their branch-and-bound enumeration of second neighborhoods [RSST]. However,
we had to devise new algorithms and data structures for performing reducibility checks
on configurations and for matching them in second neighborhoods, as the C inte-
ger programming coding tricks they used could not be efficiently replicated in the
context of a theorem prover, which only allows pure, side effect free data structures
(e.g., no arrays). And performance was an issue: the version of the Coq system we used
needed three days to check our proof, whereas Robertson et al. only needed a three
hours. . .ten years ago! (Future releases of Coq should cut our time back to a few hours,
however.)

We compensated this performance lag in part by using more sophisticated algo-
rithms, using multiway decision diagrams (MDDs) for the reducibility computation,
concrete construction programs for representing configurations, and tree walks over a
circular zipper to do configuration matching. This sophistication was in part possible
because it was backed by formal verification; we didn’t have to “dumb down” compu-
tations or recheck their outcome to facilitate reviewing the algorithms, as Robertson
et al. did for their C programs [RSST].

Even with the added sophistication, the program verification part was the easiest,
most straightforward part of this project. It turned out to be much more difficult to find
effective ways of stating and proving “obvious” geometrical properties of planar maps.
The approach that succeeded was to turn as many mathematical problems as possible
into program verification problems.

In the concluding section, “Looking ahead,” Gonthier sees his success as a confir-
mation that the “programming” approach to theorem proving may be more effective
than the traditional “mathematical” approach, at least for researchers with computer
science background:

As with most formal developments of classical mathematical results, the most interest-
ing aspect of our work is not the result we achieved, but how we achieved it. We believe
that our success was largely due to the fact that we approached the Four Colour Theo-
rem mainly as a programming problem, rather than a formalization problem. We were
not trying to replicate a precise, near-formal, mathematical text. Even though we did
use as much of the work of Robertson et al. as we could, especially their combinatorial
analysis, most of the proofs are largely our own.

Most of these arguments follow the generate-and-test pattern exposed in Chapter 4.
We formalized most properties as computable predicates, and consequently most of
our proof scripts consisted in verifying some particular combination of outcomes by a
controlled stepping of the execution of these predicates. In many respects, these proof
scripts are closer to debugger or testing scripts than to mathematical texts. Of course
this approach was heavily influenced by our starting point, the proof of correctness of
the graph colouring function. We found that this programs-as-proof style was effective
on this first problem, so we devised a modest set of tools (our tactic shell) to support
it, and carried on with it, generalizing its use to the rest of the proof. Perhaps sur-
prisingly, this worked, and allowed us to single-handedly make progress, even solving
subproblems that had stumped our colleagues using a more orthodox approach.

We believe it is quite significant that such a simple-minded strategy succeeded on
a “higher mathematics” problem of the scale of the Four Colour Theorem. Clearly,
this is the most important conclusion one should draw from this work. The tool we
used to support this strategy, namely our tactic shell, does not rely on sophisticated
technology of any kind, so it should be relatively easy to port to other proof assistants
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(including the newer Coq). However, while the tactic shell design might be the most
obvious byproduct of our work, we believe that it should have wider implications on
the interface design of proof assistants. If, as this work seems to indicate, the “program-
ming” approach to theorem proving is more effective than a traditional “mathematical”
approach, and given that most of the motivated users of poof assistants have a computer
science background and try to solve computer-related problems, would it not make
interface of a proof assistant more similar to an program development environment,
rather than strive to imitate the appearance of mathematical texts?

22.3 The Future that commenced 65 Years Ago: Hugo
Hadwiger’s Conjecture

There remained a number of conjectures that, if proved, would imply the 4CT. Hugo
Hadwiger posed the most prominent of these conjectures in 1943 [Had3].

An edge contraction of a graph G consists of deleting an edge and “gluing”
together (i.e., identifying) its incident vertices. We say that a graph G is contractible
to a graph H if H can be obtained from G by a sequence of edge contractions. In
this case H is called a contraction of G, and G is said to be contractible to H .

We can view the Hadwiger conjecture H (n) as a series of conjectures, one for
every positive integer n.

The Hadwiger’s Conjecture H(n) 22.1 [Had3] Every connected n-chromatic
graph G is contractible to Kn .

The truth of the conjecture H (n) for n < 5 has been proven in 1952 by G. A.
Dirac [Dir]. But it is the case H (5) that proved to be particularly important. Why?
Because the following equivalence takes place:

Theorem 22.2 H (5) is equivalent to the 4CT.

H (5) ⇒ 4CT . Proof in this direction is very simple. Given H (5), assume G is
a planar graph that is not 4-colorable. But then by H (5), G is contractible to K5,
which is absurd since any contraction of the planar G must be planar as well.

4CT ⇒ H (5). Proof is this direction is more involved: here is its sketch. Let
G be a 5-chromatic graph, not contractible to K5, of the minimum order with this
property. Then it can be shown that G is 4-connected. In 1937, before Hadwiger
formulated his conjecture, K. Wagner [Wag] showed that a 4-connected graph not
contractible to K5, is planar. Thus, G is a planar graph of chromatic number 5, which
contradicts 4CT.

The most surprising result was published in 1993 by Neil Robertson, Paul D.
Seymour and Robin Thomas. They proved that H (6) is also equivalent to 4CT!

Theorem 22.3 ( [RST], 1993) The following statements are equivalent:

(a) 4CT;
(b) H (5);
(c) H (6).
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The authors [RST] comment in the abstract:

We show (without assuming the 4CC) that every minimal counterexample to Had-
wiger’s conjecture [for 6] is “apex”, that is, it consists of a planar graph with one addi-
tional vertex. Consequently, the 4CC implies Hadwiger’s conjecture [for 6], because it
implies that apex graphs are 5-colourable.

Right after his plenary talk on February 19, 1996, at the Conference on Combina-
torics, Graph Theory and Computing in Boca Raton, Florida, I asked Paul Seymour
about his and Robertson result about the relationship between 4CT and Hadwiger’s
Conjecture. His reply was:

I believe that all of them (Hadwiger’s Conjectures for various n) are equivalent. We
have a result that if 4CC is true, then for every n there is f (n) such that for Hadwiger’s
Conjecture to be true, it suffices to check graphs of order not exceeding f (n).

Conjecture 22.4 (Paul D. Seymour) All Hadwiger’s conjectures for various n ≥ 5
are equivalent, and equivalent to 4CT.

It seems plausible that a computer-free proof of the 4CT (shouldn’t it exist!) will
come as a consequence of a (computer-free) proof of the Hadwiger’s conjecture
H (n) for some n > 4.

Another way of finding a short computer-free proof was suggested by Appel and
Haken [AH1]:

Of course, a short proof of the 4-color theorem may some day be found, perhaps, by
one of those bright high school students.

I would love that, amen!
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How Does One Color Infinite Maps? A Bagatelle

How does one measure fun in mathematics? Certainly not by the length of
exposition. This is a short chapter, a bagatelle. I hope nonetheless that you will
enjoy it.

We know (4CT) that every finite map on the plane is 4-colorable. What about
maps with infinitely many countries? This sounds like a natural question, which I
have heard from various people at various times. In particular, Peter Winkler, then
Director of Fundamental Mathematics Research at Bell Labs and now professor of
mathematics at Dartmouth, asked me this question on October 11, 2003 right after
my talk at Princeton-Math. The 4-colorability of infinite maps follows from 4CT
due to de Bruijn–Erdős’ Compactness Theorem 26.1. Let us record it formally.

Infinite Map-Coloring Theorem 23.1 Every map with infinitely many countries is
4-colorable.

Proof Given an infinite map M . As we know, we can translate the problem of
coloring M into the problem of coloring the planar graph G(M). Since by 4CT
every finite subgraph of G(M) is 4-colorable, G(M) is 4-colorable as well by De
Bruijn–Erdős’ Compactness Theorem 26.1.

In late December 2004 I was giving talks at the Mathematical Sciences Research
Institute in Berkeley, California. There my old friend Prof. Gregory Galperin
showed me his proof of Theorem 23.1. His proof was longer and worked only for
countable maps. Nevertheless, I have got to share it with you here because of its
striking beauty. Plus, of course, Galperin’s proof—unlike the proof above—does
not require the axiom of choice in its full force.

Countable Map-Coloring Theorem 23.2 Every map with countably many coun-
tries is 4-colorable.

Proof by G. Galperin [Gal] Given a countable map M . Enumerate the countries of
the map by positive integers: 1, 2, . . . , n, . . .. Let integers 1, 2, 3, and 4 be the
names of the colors to be used.

Let n be a positive integer. Take the first n countries. By 4CT there is a 4-coloring
of the submap consisting of these n countries. Let the colors assigned to these coun-
tries be a1, a2, . . . , an respectively (of course, each ai is equal 1, 2, 3, or 4). We
represent this coloring by a number xn in its decimal form: xn = 0.a1a2 . . . an .

A. Soifer, The Mathematical Coloring Book, 207
DOI 10.1007/978-0-387-74642-5 23, C© Alexander Soifer 2009
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As we do this for each positive integer n, we end up with the sequence
S = {x1, x2, . . . , xn, . . .} of real numbers. Since S in bounded, S ⊂ [0, 1], by
the Bolzano–Weierstrass theorem it contains a convergent subsequence S′:

S′ = {
xi1 , xi2 , . . . , xin , . . .

}
,

where i1 < i2 < . . . < in < . . . Let the limit point of S′ be y, which in decimal
form looks like

y = 0.y1 y2 . . . yn . . .

It is easy to prove that the sequence y1, y2, . . . , yn, . . . delivers a (proper)
4-coloring of the respective regions 1, 2, . . . , n, . . . Indeed, since all the decimal
digits of the xi were 1, 2, 3, or 4, the same must be true about the decimal dig-
its y1, y2, . . . , yn, . . . of the limit point y. Two neighboring regions could not be
assigned the same color by this rule, for otherwise they would have been assigned
the same color already in a coloring that we decoded by one of the xin !
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Chromatic Number of the Plane Meets
Map Coloring: Townsend–Woodall’s
5-Color Theorem

In Chapter 8, I described Douglas R. Woodall’s attempt to obtain a result on the
chromatic number of the plane under an additional condition that monochromatic
sets are closed or simultaneously divisible into regions [Woo1]. Six years after his
publication, Stephen P. Townsend found a logical mistake in Woodall’s proof, con-
structed a counterexample showing that Woodall’s proof cannot work, and went on
to discover his own proof of the following major result.

Townsend–Woodall’s 5-Color Theorem 24.1 [Tow2]. Every 5-colored planar
map contains two points of the same color until distance apart.

This implies result 8.1:

Townsend–Woodall’s Theorem 24.1’ The chromatic number of the plane under
map-type coloring is 6 or 7

In this chapter, I will give you the story of the proof and the proof itself.

24.1 On Stephen P. Townsend’s 1979 Proof

This story must remind the readers of the famed Victorian Affair, which we dis-
cussed in Chapters 19 and 20. To sum it up, in 1879 Alfred B. Kempe published a
proof of the 4-Color Map-Coloring Theorem, in which 11 years later Percy J. Hea-
wood found an error and constructed a counterexample to demonstrate the irrepara-
bility of the hole. Heawood salvaged Kempe’s proof as the 5-Color Theorem, but
the 4CC had to wait nearly another century for its proof.

Our present story started with Douglas R. Woodall’s 1973 publication, in which
6 years later Steven P. Townsend found an error and constructed a counterexample
to demonstrate the irreparability of the hole. So far the two stories are so close!
However, unlike its Victorian counterpart, Townsend went on to prove Woodall’s
statement, and so I thought the new story had a happy end—until February 11, 2007,
when I asked Stephen about “the story of the proof.” The surprising reply reached
me by e-mail on February 20, 2007:

A. Soifer, The Mathematical Coloring Book, 209
DOI 10.1007/978-0-387-74642-5 24, C© Alexander Soifer 2009
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Story of the proof
I first became interested in the plane-colouring problem in 1977 or 1978. At that

time I was a lecturer in the Department of Mathematics at the University of Aberdeen,
having just completed my doctoral thesis (in Numerical Analysis). I had read an article
that listed some of the unsolved problems in Combinatorics at that time, and this one
caught my attention.

I was totally unaware of Douglas’s 1973 proof, which was both my folly and my
good fortune. Folly, in that I should have conducted a more exhaustive literature search
before devoting time to the problem. Good fortune in that had I been aware of Dou-
glas’s paper I would not have spent any time on the problem; I certainly would not
have had the temerity to check Douglas’s proof for accuracy. It should be noted that
I was a numerical analyst, not a combinatorialist, so my awareness of the field of
combinatorics was somewhat limited, in spite of brushing shoulders at Aberdeen with
some eminent contributors to the field.

It was not until I had completed the proof, and was considering what references
to include, that I came upon Douglas’s paper. I was both devastated and puzzled. The
puzzlement came from my intimate knowledge of the difficulties of certain aspects of
the proof and the fact that Douglas seemed to have produced a proof that circumnavi-
gated these difficulties. So it was with an attitude of “how did he manage this?” that I
went through his proof and consequently spotted the error.

A colleague at Aberdeen, John Sheehan, whom I’m sure you will have come across,
encouraged me nonetheless to submit my proof for publication, but including a refer-
ence to Douglas’s work. The rest I think you know.

Yes, Stephen Townsend was lucky, for not only was he the first to produce a
proof—but he also rediscovered the statement of the result on his own, albeit after
Woodall’s publication—and this Townsend’s rediscovery was a necessary condition
for finding the proof.

However, Townsend’s good luck, ran into a wall, when the Journal of Combi-
natorial Theory’s Managing Editor and the distinguished Ramsey theorist Bruce L.
Rothschild wrote to Townsend on April 3, 1980:

The Journal of Combinatorial Theory – Series A is now trying very hard to reduce its
large backlog, and we ask all our referees to be especially attentive to the question of
the importance of the papers. In this case the referee thought that the result was not
of great importance. In view of our backlog situation then, we are reluctant to publish
the paper. However, since it does correct an error in a previously published paper, we
would like to have a very short note about it. Perhaps, you would be willing to do
the following: Write a note pointing out the error, stating the theorem (Theorem 1)
(without proof) used to get around the trouble, and that the theorem must be used with
care to get around the problem.

Stephen P. Townsend had satisfied the Editor (what choice did he have!), and
produced a 2-page proof-free note [Tow1], which was published the following year.
This is where the story was to end in 1981.

No blame should be directed at Douglas R. Woodall, we all make mistakes
(except those of us who do nothing). The mistake notwithstanding, Woodall’s 1973
paper has remained one of the fine works on the subject. Moreover, he was the first
to alert me of his mistake and Townsend’s 2-page note. “I am a fan of your 1973
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paper,” I wrote to Woodall in the October 10, 1993 e-mail, in which I called [Tow1]
“the Townsend’s addendum.” The following day Woodall replied as follows:

I will put a reprint in the post to you today, together with a photocopy of Townsend’s
“addendum,” as you so tactfully describe it. (The fact is, I boobed, and Townsend
corrected my mistake.)

However, regret is in order about the decision by the Journal of Combinatorial
Theory Series A (JCTA). While they apparently (and correctly) assessed Woodall’s
paper as being “of great importance” (an impossible test if one interprets it liter-
ally), they denied its readers—and the world—the pleasure and the profit of reading
Townsend’s proof of the major result.

I have corrected JCTA’s quarter-a-century old mistake, when I published
Townsend’s work in the April 2005 issue of Geombinatorics [Tow2]. Townsend’s
work was preceded by my historical introduction [Soi25], a version of which you
have just read. I ended that introduction with the words I would like to repeat here:
It gives me a great pleasure to introduce and publish Townsend’s proof. In my
opinion, it is of great importance—judge for yourselves!

It pains me to see that most researchers in the field are still unaware of Woodall’s
mistake and Townsend’s proof. It suffices to look at the major problem books to
notice that: not only the 1991 book by Croft–Falconer–Guy [CFG], but even the
recent 2005 book by Brass–Moser–Pach [BMP] give credit to Woodall and do not
mention Townsend! I hope this chapter will inform my colleagues of the correct
credit and of Townsend’s achievement.

Stephen Phillip Townsend was born on July 17, 1948 in Woolwich, London,
England. He received both graduate degrees, Master’s (1972) and doctorate (1977)
from the University of Oxford. Townsend has been a faculty first in the depart-
ment of mathematics (1974–1980) and then in the department of computer science
(1982–present) at the University of Aberdeen, Scotland. Since 1995 he has also been
Director of Studies (Admissions) in Sciences. In addition to publications in mathe-
matics, Steven’s list of publications includes “Women in the Church–Ordination or
Subordination?” (1997).

24.2 Proof of Townsend–Woodall’s 5-Color Theorem

In this chapter, I will present Stephen P. Townsend’s proof. As you now know, it first
appeared in 2005 in Geombinatorics [Tow2]. However, when I was preparing this
chapter, I asked Stephen to improve the exposition, make his important proof more
accessible to the reader not previously familiar with topology, and include plenty of
drawings to help the reader to visualize the proof. He did it, quite brilliantly. Thus,
presented below exposition of the proof has been written by Professor Townsend
especially for this book in 2007.

He starts with a few basic definitions from general (point set) topology.

Definitions A pair of points in E2 unit distance apart having the same color is called
a monochrome unit.
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Let S and T be subsets of E2. S is said to subtend T at unit distance if T is the
union of all unit circles centered on points in S.

Let A be any closed, bounded doubly connected set in E2 containing a circle of
unit radius. If the removal of any point in A renders it simply connected then such a
point is called a cut point of A. If A has no cut points, its interior A0 is said to be a
unit annulus. If A has a finite number of cut points (which must occur on a circle of
unit radius) then A0 is said to be a finitely disconnected unit annulus (Fig. 24.1).

A planar map (Fig. 24.2) is an ordered pair M(S,B) where S is a set of mutually
disjoint bounded finitely connected open sets (regions) in E2 and B is a set of simple
closed curves (frontiers) in E2 satisfying

i. the union of the members of S and B forms a covering of E2;
ii. there exists a one-to-one function F : S → B such that b = F(s), s ∈ S, is the

exterior boundary of s;
iii. the boundary of s ∈ S is the union of F(s) and at most a finite number of other

members of B, which are the interior boundaries of s.

circle of unit 
radius

cut point 

Fig. 24.1

region s 

exterior 
boundary
of s 

interior 
boundaries 
of s 

vertex of 
degree 5 

edge of s 

Fig. 24.2
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A point on the boundary of s is called a boundary point of s. A boundary point,
which lies on the boundary of k regions, k ≥ 3, is called a vertex of degree k. A
closed subset of a frontier b ∈ B, which is bounded by two vertices and contains no
other vertices, is called an edge of each region for which b is part of the boundary.
Two regions are adjacent if their boundaries contain a common edge or a common
frontier.

The above definition is more general than the usual definition of a planar map,
which requires each region s ∈ S to be simply connected, and requires each frontier
b ∈ B to contain at least two vertices.

An r-coloring of a planar map is a function of Cr : E2 → {c1, c2, . . . , cr} where
Cr is constant over each region in S and where a boundary point is given the color
of one of the regions in the closure of which it lies.

Initial Observations: To prove that an r-colored map must contain a monochrome
unit it is sufficient to examine only those r-colored maps satisfying

(i) each region has no interior boundaries, i.e., its closure does not contain the
closure of any other region;

(ii) different regions of the same color have no common boundary points.

This is best understood by observing that every r-colored map with no
monochrome units may be simplified to an r-colored map with no monochrome
units satisfying (i) and (ii) above as follows.

(a)For each region s with interior boundaries, remove these boundaries and assimi-
late into s all regions whose closures are contained in the closure of s.

(b)Remove any edges common to adjacent regions of the same color.

(c)For each vertex v which is a boundary point of two non-adjacent regions of the
same color, choose � > 0 sufficiently small and describe an �-neighborhood
whose closure contains v and whose intersection with each of the two regions
is non-null, coloring this �-neighborhood the same color as the two regions,
and thus forming one new region incorporating the original two and the
�-neighborhood. (Fig. 24.3.)

c1

c2 c3

c4c5

c1
c1

c2 c3

c4c5

c1

Fig. 24.3
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Note that a consequence of (ii) is that we do not need to consider vertices of
degree greater than r in an r-colored map. A sequence of theorems now follows,
concluding with the main result that every 5-colored planar map contains a
monochrome unit. Here is an outline of the proof:

1. we show that every 4-colored planar map contains a monochrome unit;
2. we show that every 5-colored planar map containing a vertex of degree 3 contains

a monochrome unit;
3. we show that every 5-colored planar map without a monochrome unit must con-

tain a vertex of degree 3;
4. for 2 and 3 both to be true, every 5-colored planar map must contain a

monochrome unit.

The Proof: Townsend presents the proof in stages through five theorems.

Theorem 24.2 Let A0 be a finitely disconnected unit annulus (Fig. 24.1) for which
a circle of unit radius contained in its closure, A, has at least one arc of length
greater than �/3 containing no cut points of A. Then any 2-coloring of A0 contains
a monochrome unit.

Outline of Proof The basic argument is as follows (Fig. 24.4).

1. We assume that A0 is 2-colored and contains no monochrome unit.
2. Points x and y can be selected from A0, so that they are differently colored and

as close together as we want.
3. The points x and y can also be chosen so that (a) x is unit distance from at most

one cut point of A, and (b) y is unit distance from no cut points of A.
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R = P’∩Q’

Fig. 24.4
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4. Point x subtends an arc � of finite length in A0, each point of which is unit
distance from x, and consequently the opposite color to x. Similarly y subtends
an arc � in A0 which is the opposite color to y.

5. Arc � subtends a two-dimensional region, each point of which is unit distance
from a point on �. This region intersects A0 in a band P’ of finite width, each
point of which must be the same color as x. A similar region subtended at unit
distance by arc � intersects A0 in a band Q’, each point of which is the same
color as y.

6. Points x and y can be chosen to lie sufficiently close together to make R = P’∩Q’

non-null.
7. But points in R must simultaneously have the color of x and the color of y, which

is impossible. Consequently, the initial two assumptions are incompatible.

The proof hinges on our ability to construct arcs � and � that each does not
intersect a cut point of A. This will be true if x is unit distance from at most one cut
point of A, and y is unit distance from no cut points of A.

Tool 24.3 Let � be any simple arc of length L in A0 with the following properties:

� � contains at least two points unit distance apart;
� � contains at most M points, each unit distance from exactly one cut point of A;
� all other points in � are unit distance from no cut points of A;
� � is 2-colored with no monochrome units.

Then given � > 0 there exists an �-neighbourhood in � containing a point of
each color, one of which is unit distance from no cut points of A and the other of
which is unit distance from at most one cut point of A.

Proof Let d(x,y) be the straight line distance between two points x and y on �, and
let � (x,y) be the distance along � between x and y.

By assumption there exist two points x1 and y1 in �, not both the same color,
with d(x1, y1) = 1. Let � > 0 be given. The following algorithm uses the method of
bisection to prove the lemma (Fig. 24.5).

1. If M > 1 then from the M points in � that are unit distance from exactly one cut
point of A, select the two that are closest together measuring along �. Let h be
the distance between them along �.

2. If h < � then set � = h.
3. Set i = 1.
4. Let wi be the point in � mid-way (by arc-length) between xi and yi.

xi 

yi 
wi 

xi+1

yi+1 

(xi+1,yi+1) 

Fig. 24.5
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5. If the colors of wi and xi are not the same then put xi+1 = xi and yi+1 = wi

otherwise put xi+1 = wi and yi+1 = yi.
6. If �(xi+1, yi+1) ≥ � increase i by 1 and re-cycle from 4.
7. Points xi+1 and yi+1 satisfy the requirements.

The algorithm terminates in not more than n cycles, where n is the smallest inte-
ger such that �2n > L.

Proof of Theorem 24.2 Let A0 be 2-colored with no monochrome units. Let N be
the number of cut points of A. Let C be a circle of unit radius contained in A. By
assumption, C has at least one arc of length greater than �/3 containing no cut
points of A; hence C has an arc containing no cut points of A, whose end points are
unit distance apart. There are at most 2N points on C in A0 that are unit distance
from a cut point of A. Some of these may be unit distance from two different cut
points of A, but none can be unit distance from more than two cut points of A. By
following a path sufficiently close to C it is possible to construct a simple closed
curve that, apart form the cut points of A, lies entirely within A0, which contains at
most 2N points in A0 that are unit distance from a cut point of A, and that contains
no points in A0 that are unit distance from more than one cut point of A. (This curve
can merely trace the path of C for the most part, deviating only to bypass any points
on C in A0 that are unit distance from two different cut points of A.) There exists an
infinite family Γ of such simple closed curves, for each of which there is an arc of
finite length containing two points unit distance apart not separated by a cut point
(Fig. 24.6). This must be so since C has two such points, and we can choose the
members of Γ to be as close to C as required. For any given � > 0, this arc contains
an �-neighborhood in which lies a point of each color, one of which is unit distance
from at most one cut point of A, and the other of which is unit distance from no cut
points of A (by Tool 24.3).

 > /3

points in
A0 unit
distance
from two
cut points
of A

1

2

A0

two points on 1 unit

distance apart

circle of
unit
radius

Fig. 24.6
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Let �1 and �2 be members of Γ . Let x and y be two differently colored points in
an �-neighborhood on �1 such that x is unit distance from at most one cut point of
A and y is unit distance from no cut points of A.

In A0 there exists an arc � of unit radius and centre x which intersects �1 at x ′

and �2 at x ′′ and no point of which is a cut point of A. (If x is unit distance from
one cut point of A then the arc � can be constructed on the other side of x from this
cut point.) Arc � cannot be the same color as x , so must be the same color as y.
Similarly there exists an arc � in A0 of unit radius and centre y which intersects �1

at y′ and �2 at y′′ and no point of which is a cut point of A. Arc � must be the same
color as x.

Let P and Q be sets subtended at unit distance by � and � respectively. P
and Q are finitely disconnected unit annuli, each having one cut point at x and
y respectively, and each intersecting A0 in a band of finite width between �1 and
�2 Let these bands be P′ and Q′ respectively. All points in P′ must be the same
color as x, and all points in Q′ the same color as y. Q′ may be considered to
be the image of P′ under a homeomorphism T which depends on |x-y|. Defining
d(P′, Q′) = sup {|p-T(p)| : p ∈ P′} we have d(P′, Q′) → 0 as |x-y| → 0; in this
sense we say P′ → Q′ as |x-y| → 0. There must then exist � > 0 such that for
|x-y| < �, P′ ∩ Q′ �= 0. But all points in P′ ∩ Q′ must simultaneously be colored
the same as x and y, which is impossible. Consequently the original assumptions are
incompatible, and so if A0 is 2-colored it must contain a monochrome unit.

Using this result it is possible to exclude two configurations from any 4-coloring
of E2 without monochrome units, and show as a natural consequence that any 4-
colored map in E2 contains a monochrome unit.

Theorem 24.4 Let E2 be 4-colored. If for some distinct points x and y there exist
two simple arcs with endpoints x and y, each, excepting the endpoints, being
monochrome but not both the same color, then E2 contains a monochrome unit.

Proof Let the two simple arcs be � and �. If |x − y| > 1 then both � and � contain
a monochrome unit.

Assume |x − y| ≤ 1. Then the intersection of the sets subtended at unit distance
by � and � (excluding the endpoints) is a finitely disconnected unit annulus with at
most two cut points (Fig. 24.7). This annulus is 2-colored at most, since it cannot
contain the colors of � and �, and a circle of unit radius contained in its closure has
an arc of length greater than �/3 containing no cut points, and so by Theorem 24.2
the annulus contains a monochrome unit.

Theorem 24.5 If a 4-coloring of E2 contains two differently colored, bounded, open
connected monochrome sets with a common boundary of finite length, then E2 con-
tains a monochrome unit.

Proof Let G and F be two such sets, and let x and y be two distinct points on
the common boundary. Because the closure of G is a simply connected Jordan
region, there is a simple arc � with endpoints x and y which, apart from its end-
points, lies in G. There exists a similar arc � in F. By theorem 24.4 E2 contains a
monochrome unit.
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Corollary Every 4-colored planar map contains a monochrome unit.

A similar result involving three sets can be proved for 5-colorings of E2, and
again the consequence is that every 5-colored planar map contains a monochrome
unit, but this requires a careful proof.

Theorem 24.6 If a 5-coloring of E2 contains three disjoint, differently colored,
bounded, open, connected, monochrome sets each having a common boundary with
each of the other two, and all three having one common boundary point, then E2

contains a monochrome unit.

Proof Let v be the boundary point common to all three sets and let a1, a2, and
a3 respectively be boundary points common to each pair of sets. We assume these
points are distinct and are chosen to be not more than one unit from each other.
There are simple closed curves �1 colored c1 containing v, a1, and a2; �2 colored
c2 containing v, a1, and a3; and �3 colored c3 containing v, a2, and a3, where in
each case the coloring refers to every point on the curve with the possible exception
of the points v, a1, a2, and a3 (Fig. 24.8). Let P be the intersection of the sets
subtended at unit distance by �1, �2, and �3 excepting the points v, a1, a2, and a3.
P is either a unit annulus or a finitely disconnected unit annulus with at most three
cut points. (A necessary condition for such a cut point to exist is that a set boundary
incident to v is an arc of a circle of unit radius; if the cut point exists then it lies at
the centre of this circle.) P satisfies the requirements of Theorem 24.2, and since it
is 2-colored (viz. not c1, c2 or c3) it must contain a monochrome unit.

Corollary Every 5-colored planar map containing a vertex of degree 3 contains a
monochrome unit.
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Theorem 24.7 Every 5-colored planar map contains a monochrome unit.

Proof We show (i) that every 5-colored planar map with no monochrome units con-
tains a vertex of degree 3 or 4 and (ii) that every such map containing a vertex of
degree 4 also contains a vertex of degree 3.

i. Let v be any vertex in a 5-colored planar map, and assume that this has degree
5. Assume that the map has no monochrome units.
Let � be the boundary of one of the regions which has v as a boundary point.
Let a be a point on � that lies on an edge connected to v. Let b be a point on
� that lies on the other edge connected to v (Fig. 24.9). Let c be a point on the
edge connected to v that is on the opposite side of va to b. Let d be a point on
the edge connected to v that is on the opposite side of vb to a.
There is a simple closed curve �1 passing through v, a, and b all the points of
which, except possibly v, a, and b, are colored c1. There is a simple closed curve
�2 passing through v, a, and c all the points of which, except possibly v, a, and
c, are colored c2. And there is a simple closed curve �3 passing through v, b,
and d all the points of which, except possibly v, b, and d, are colored c3. Let
T2 be the intersection of the sets subtended at unit distance by �1 and �2 and
let T3 be the intersection of the sets subtended at unit distance by �1 and �3 (In
Fig. 24.9 T2 is the hatched region and T3 is the grey region).
We consider two cases. The first is when the angle � subtended at v by a line
from a to b (through the region enclosed by �) is greater than �. The interiors
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of T2 and T3, T2
0 and T3

0 respectively, are unit annuli with no cut points, and
so by Theorem 1 cannot be 2-colored. T2

0 must contain regions colored c3, c4,
and c5, and T3

0 must contain regions colored c2, c4, and c5. The interior of
T1 = T2 ∪ T3 is a 4-colored unit annulus with no cut points.
There is a vertex in T1

0. To prove this, assume it is not so. Then there must be
edges in T1

0 that do not intersect each other in T1
0, each of which intersects both

the interior and the exterior boundary of T1. Any such edge, e, must cross both
T2

0 and T3
0. This means that the regions on either side of e must be colored c4

and c5. Consequently T1
0 is a 2-colored unit annulus, containing no cut points.

The second case is when the angle � is not greater than �. It is clear, since v is
a vertex of degree 5, that the region enclosed by � may be chosen such that �
is not less than 2�/5. Let a1 be a point between v and a on the edge on which
a lies. Similarly let b1 be a point between v and b on the edge on which b lies.
Choose curve �1 so that it passes through a1 and b1 as well as v, a, and b and
so that all of its points, except possibly v, a, a1, b1, and b, are colored c1.
Similarly choose �2 to pass through a1 as well as v, a, and c and �3 to pass
through b1 as well as v, b, and d.
Now each of T2

0 and T3
0 is a finitely disconnected unit annulus with at most

one cut point (Fig. 24.10). The single cut point in T2
0, say p, only occurs in the

event that v, a, and a1 lie on the circle of unit radius centre p. Similarly the single
cut point in T3

0, say q, only occurs in the event that v, b, and b1 lie on the circle
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of unit radius centre q. for T3
0. The interior of T1 = T2 ∪ T3 is a 4-colored

finitely disconnected unit annulus with at most one cut point. This cut point
only occurs in the event that p and q are coincident, and all of v, a, a1, b1,
and b, lie on the same circle of unit radius. If one of p and q lies on the exterior
boundary of T1 and the other lies on the interior boundary then the length of
the arc of the unit circle centre v passing through p and q is � radians, and this
means the distance between p and q is greater than one.
As before we assert there is a vertex in T1

0. To prove this, assume it is not
so. Then there must be edges in T1

0 that do not intersect each other in T1
0,

each of which intersects both the interior and the exterior boundary of T1. Any
such edge, e, must cross both T2

0 and T3
0 except in the case that e passes

through p and remains entirely within T3 until it reaches the opposite boundary
of T1, or e passes through q and remains entirely within T2 until it reaches the
opposite boundary of T1. Note that such an edge e cannot pass through both
p and q, since this would imply the existence of a monochrome unit in one of
the regions on either side of e. Apart from these exceptional edges every edge
in T1

0 must separate and regions colored c4 or c5. This means that T1
0 con-

tains a 2-colored finitely disconnected unit annulus, containing at most two cut
points.
Clearly there is a circle of unit radius in T1 which has an arc of length greater
than �/3 containing no cut points of T1

0. Therefore, by Theorem 24.2 T1
0

contains a monochrome unit. This is a contradiction of the initial assumption,
consequently there must be a vertex in T1

0, and since T1
0 is 4-colored this vertex

is of degree 4 at most.
ii. We show that every 5-colored planar map with no monochrome units containing

a vertex of degree 4 also contains a vertex of degree 3.
Suppose v is a vertex of degree 4 in a 5-colored planar map. Let c1, c2, c3, and
c4 be the colors of the four regions of which v is a boundary point. Let a, b,
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c, and d be points on the four edges incident to v. Let a1, b1, c1, and d1 be
points on the edges between a and v, b and v, c and v, and d and v respectively.
Assume that the map has no monochrome units.
There exists a simple closed curve �1, defined in the closure of the region
colored c1, that passes through v and four of the edge points defined above,
and such that every point in �1, except possibly v and the four edge points, is
colored c1. Similarly, there exist simple closed curves �2, �3, and �4, each of
which contains v and four of the edge points, the points on each curve being
colored c2, c3, and c4 respectively except possibly v and the edge points. Let the
order of the �i be chosen such that �2 and �4 have only the point v in common
(Fig. 24.11).
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T4

v
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b

c
d
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31
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T3

T2

T2

T1 T2 T3 T4
T1 T2 T3 T4

T1 T2 T3 T4T1 T2 T3 T4

a1

b1

c1
d1

Fig. 24.11

Let Ti , i = 1, 2, 3, 4, be the intersection of sets subtended at unit distance
by �j, j = 1..4, j �= i . Set Ti is 2-colored with colors ci and c5. Define
T = ∪Ti . The interior of T, T0, is a unit annulus with centre v, possibly finitely
disconnected with at most two cut points (Fig. 24.11).
Every point within T0 that is on a boundary of a region of the planar map is a
boundary point of at most three regions. Suppose none of these boundary points
is a vertex. Then there must exist edges that pass from the interior boundary to
the exterior boundary of T which pass through either both of T1 and T3 or both
of T2 and T4. It is possible for an edge to cut T and only cut one of T1 and T3

or one of T2 and T4, but such an edge must intersect the unit circle centre v at
one of four points, these points being cut points (if they exist) of the finitely
disconnected annuli which are the interiors of T1 ∪ T2, T3 ∪ T4, T1 ∪ T4, and
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T2 ∪T3. There must be edges crossing T which intersect the circle of unit radius
centered on v at points other than these four cut points. (If not then there is an
arc of the circle of unit radius centered on v, of length greater than or equal to
�/2 that lies in or on the boundary of a region of the map. But then this region
must contain a monochrome unit.) An edge crossing both T1 and T3 (or both T2

and T4) must separate regions with different colors. But the only color common
to both T1 and T3 (or both T2 and T4) is c5. We have arrived at a contradiction.
Hence, there must be vertices in T0, and these are of degree 3.

Now, by the corollary of Theorem 24.6 our 5-colored map contains a
monochrome unit!
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Paul Erdős

I hope several [of my] results will survive for
centuries, but we will see

– Paul Erdős1

Paul Erdős’ contributions to mathematics cannot be
measured through his papers alone. Over the years
he has traveled extensively among the mathematical
centers of the globe. Like the bumblebee, flying from
flower to flower transmitting pollen, Paul Erdős has
created an enormous cross-pollinization effect in
mathematics. An Erdős visit to a mathematical
center is marked by intense work. Mathematicians
gather round and discuss the current problems in
their various fields. The resulting interplay of ideas
is exhausting and highly productive.

– Joel H. Spencer [Sp1]

The early involvement of Paul Erdős in problem
solving at high school level had a strong influence on
his own life-work, and to this day he can make the
young feel close to him. This closeness to the young
is determined also by another factor: the human side
of Erdős, his warmth and compassion, his love of
youth, his strong sense of justice, unspoilt and at
times childishly naı̈ve.

–Martha Sved [Sve1]

1 Talk at the Keszthely 1993 Conference, dedicated to Paul Erdős’s 80th birthday.

A. Soifer, The Mathematical Coloring Book, 227
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25.1 The First Encounter2

Once upon a time I came to Budapest for a congress.
I called a Hungarian friend of my friend, who offered me his hospitality:

– Would you like me to show you something—he asked—a place to buy Hungarian
souvenirs, or perhaps, a disco to meet beautiful Hungarian girls?

The offer sounded attractive. But the many legends I have heard about Erdős
came to mind, and I replied:

– Is Erdős a real person? Is he in Budapest?
– Of course, he is a real person, but he can be anywhere in the world on any

given day.
– Well, said I, you offered to grant me one wish. My choice is to meet Erdős.

The following day he told me that I was lucky: Paul Erdős was in town and
willing to see us. We found Paul in his huge office with high ceilings at the Alfréd
Rényi Institute of Mathematics on Reáltanoda 13–15 speaking with two Russian
mathematicians, the father and the son Stechkins. I joined them. No language was
known to all, but every two had a language in common: Erdős and the Stechkins
spoke German, Erdős and I used English, and the Stechkins and I knew Russian.

The Russians soon left. Without looking at me, Paul said:

– Let x sub 1, . . . , x sub n be n points in the plane no three on a line. . .

Paul Erdős and Alexander Soifer, the first meeting, August 1988, Rényi Institute of Mathe-
matics, Budapest

2 This section is based on my essay published in Geombinatorics in 1993 [Soi28].
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The problem was beautiful. But did he ask himself or me? Did he want me to
solve it right there? Did he want me to offer him a problem in return? I gave him
the most difficult problem of that year’s Colorado Mathematical Olympiad, that I
created and none of some 1,000 participating students solved:

– Five points lie inside a triangle of area one. . .

To my disbelief, he solved it!

The next day I came back. I had an idea but still no solution for his problem. My
embarrassment disappeared when Paul said:

– This is an open problem, and I offer. . .dollars for its [first] solution.

The few meetings with Paul during the congress affected my life and started our
very special friendship. The idea for the book Problems of pgom Erdős occurred
to me right then, in August 1988, when for the first time I was listening to Paul
presenting “some of my favorite problems.” Erdős’s problems were legendary, and
as true legends, they were passed from person to person, and sometimes changed in
the process to become something else, not intended by the author. Right after the
talk, I asked Paul to write such a book, but he replied, “why don’t you write a book
of my problems?” I disagreed: “I envision it as a book of problems you have posed
with your commentaries for each of the problems.” Paul accepted the challenge, but
in a couple of years of limited progress, Ron Graham suggested to Paul and me to
unite our efforts. The book is not finished yet, but it would be my highest priority
upon the completion of this book.

In a few months we were already working together in Colorado Springs, accom-
panied by the gentle “noise” of Mozart (Beethoven was too much of a distraction),
and taking walks in the Garden of the Gods, an old Indian sacred ground full of
remarkable red vertical rocks.

A list of mathematicians inspired by Paul Erdős may go on for longer than the list
of his 1,600 publications. Trajectories of his travels probably added up to a set dense
at every point on our globe. Paul signed reprints for me with mysterious sequence
of letters after his name:

Erdős Pal, pgom, ld, ad, ld, cd.

Paul explained:

pgom = poor great old man
ld = living dead (i.e., over 60 years old)
ad = archaeological discovery (>65)
ld = legally dead (>70)
cd = counts dead (>75)
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“Two Thinkers”: Paul Erdős, Colorado Springs, December 28, 1991. Photograph by A. Soifer

In July 1993 in Keszthely I reminded Paul that “the emergency” of adding
another pair of initials has arrived. Paul thought for a moment, and then declared:
“nd, nearly dead.”

It is impossible to overestimate how much the field of this book owes to Paul
Erdős. With the intuition of a genius, Paul saw the beauties to be had in what became
known as Ramsey Theory, and lead our way to this Garden of Eden.

25.2 Old Snapshots of the Young3

Martha (Waksberg) Svéd, a member of the legendary Budapest circle of young
student-mathematicians that included Paul Erdős, Paul Turan, Tibor Gallai, Esther
Klein, George Szekeres, and others, had known Erdős as few did. For Paul’s 80th
birthday, she wrote her fabulous, lyrical reminiscences especially for Geombina-
torics [Sve2]. This subsection is all hers: Martha Svéd recollects:

Yes, E. P., this is the name: initials for Erdős Pal, Hungarian form of the name Paul
Erdős, name by which we, old Hungarian friends called him and still refer to him. This
is the year when he is 80 years YOUNG. At this point I recall his Cambridge lecture
attended by the two of us, G. [George] and M. Sved in 1959. Ahead of those formulae
about the secrets of primes, Hebrew words appeared on the blackboard:

3 First published in Geombinatorics [Sve2].
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(This lecture was held just after an extended stay in Israel.) The translation is:
“Old Age Is Not Pleasant,” referring to himself. His greeting words to us (having
last seen each other in Budapest in 1938) were: “SAM SURRENDERED.”.

It is now necessary to give an Erdős dictionary for those who are not initiated.
Since the set of those whose Erdős number is 1, has measure, there will be a large
subset not needing such a dictionary, hence they may skip it. I add here for the
uninitiated the definition of the “Erdős number.”4 It is the number of links in the
chain leading to the origin, E. P. himself. The aristocrats are those whose name has
appeared together with E. P. in at least one publication, hence can boast of number
1. My own number is 2, but without great claims of merit. The thanks for it must
go to George Szekeres for a single joint publication with him. G. Szekeres holds
number 1 with high multiplicity. Since G. Sved and I have lived in Australia for
more than 50 years and only for a few years in the same city as G.&E. Szekeres, my
mathematical contacts have been locals, so my Erdős number would have been hard
to trace. This is why I am proud and happy for being asked to add my lines to this
celebratory volume. I should add here that some conjecture is floating around: if you
have joint publications with at least three coauthors then your Erdős number is finite,
(though it could be distressingly large!). This is my reason to leave the mathematical
bits to others, restricting myself to reminiscences about our great and faithful friend
whose letters still begin: “G. and M. Sved”, followed by a paragraph about his own
personal jaunts across four continents, with the last paragraph beginning “Let n
points. . .” I try to translate (not adequately) his Hungarian self description of “not
being a university professor but a world professor of mathematics,” the traveling
missionary, to whom “Sam surrendered” in 1959.

Now to the Dictionary, apologizing for its incompleteness and haphazard
ordering:

� Epsilon: small, negligible in some respects, but the word has also another mean-
ing, an endearing one: child generally. When talking about the offsprings of his
friends, the Epsilon could be quite grown up, perhaps having Epsilons of his
own, i.e., epsilon squares.

� Omega: large, many.
� Trivial: of a person: mean, uncaring, unjust etc., hence Triviality.
� Victory: solution of a problem found. However, once during a hike he sang out:

“Victory! I lost my wallet” ???
� Fascism: the nastiest swearword Paul can think of, when he is clumsy and drops

or mislays something.
� Boss: wife or girlfriend.
� Slave: husband or boyfriend.
� Captured: snared into marriage or long-term relationship.
� Liberated slave: divorced man.
� Sam: United States of America.

4 Casper Goffman must have been first to define Erdős Numbers in print in 1969 [Gof]. Apparently the
concept was born in the 1960s and Paul Erdős himself did not know about it before 1968.
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Paul Erdős with the epsilon, Isabelle Soifer, Kalamazoo, Michigan, June 4, 1992. Photograph
by A. Soifer

� Joe: the late Soviet Union, abbreviated name of Joseph Stalin.
� Cured: passed away, “cured” of the illness of life.

I am now in the position of being able to explain that greeting in Cambridge in
1959. While E. P. is not “patriotic” in the nationalistic sense, he could never deny
his Hungarian identity. During the oppressive communist regime of Hungary in the
1950s he visited Budapest and was probably the only person who was allowed to
leave freely. While having lived in the States permanently after World War II, he
did not acquire US citizenship, moreover refused to sign the “loyalty oath” of the
McCarthy era during the “cold war.” He was not expelled for this, but was warned
that he would not get a return visa when leaving. Nevertheless when invited to an
international mathematical conference in Holland in 1954, he took it up. His return
visa was refused for years. A letter went then to President Eisenhower, signed by
the greatest names of American Mathematics. This letter pointed out what the loss
of Paul Erdős meant to their country. There was now a whole generation of young-
sters growing up, entirely missing his inspiring influence. This was a loss which US
mathematics could not afford. This worked. E. P. was given the visa, for a limited
period at that time, but by now he is welcome with open arms at any time when he
wishes to enter and spend a very short or a long period there. In fact, he has now
two main “bases.” One is in Budapest at the Mathematical Research Institute of the
Hungarian Academy, where all his publications are kept and which serves him as
a home when in Hungary, since he has not entered his own flat since the death of
his mother at an advanced age. She had been his faithful companion and secretary
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through all his travels. His flat is now used by visiting mathematician friends. The
other base is at Bell Laboratories, where his friend Ronald Graham looks after the
business matters of his life.

I go back now to the early days to write reminiscences. The name Erdős Pal
was well-known to us, Esther Szekeres (then Klein) and myself before we met him
at the university. All of us were frequent problem solvers of our loved Hungarian
magazine, the School Journal for Mathematics and Physics.

The beginnings of this journal date to the turn of the century, in a great period of
prosperity, liberalism, and culture. World War I and years in the era that followed
washed it all away. The mathematical school journal was revived in 1925, to go into
oblivion again late during World War II. Nazism, taking hold of Hungary killed not
only the journal, but also its editor, Andrew Farago together with his family. There
were also number of mathematicians, most of them young and of great promise
who became victims of fascism. A plaque at the Research Institute of Mathematics
commemorates their names. The school journal came to vigorous life again after this
second war, also new journals for secondary students were born around the world to
inspire the young, but the human victims could not be brought back to life.

Esther Klein (Szekeres) was my classmate and best friend in the final 4 years
of our secondary schooling. We had an exceptional mathematics teacher, R. Rieger.
That day in the beginning of year 1925 pictures still clearly in my mind, when our
teacher appeared in class with the first issue of the revived school journal in his
hand. He pointed out the two sets of problems, aimed at two levels, at the lower
and higher grades of schooling. Both Esther and I became problem solvers work-
ing completely independently of each other, continuing until the time when we left
school and became university students, a privilege meted to a very restricted number
of Jewish youngsters.

Esther to whom I shall refer from now on as Eps, (for, as coined by E. P. twisting
the petting name used by her mother) remained really faithful to mathematics during
our university years but I became somewhat wavering. My loss of dedication was
only partly due to the early “capture” of each other with G. Sved whose mathematics
was rich but not “pure,” being an engineer. The case with G. Szekeres was different.
He studied chemical engineering, to satisfy his father and in 1928 was still a leather
manufacturer. Yet the real love of this other George was always mathematics, with
some theoretical physics thrown in, as his later contributions to relativity theory
show. Nevertheless he completed his course successfully, and worked for some years
in the leather industry, in Hungary first, then during the early war years in Shanghai.
He found time during engineering studies to join our little circle. His name together
with those of T. P. (Paul Turán) and G. T.(Tibor Gallai) and of course, E. P. known to
us through that journal which published not only the names of successful problem
solvers, specially printing (with some editing) the best solutions, but supplied also at
the end of each school year the photos of the most frequent contributors of solutions.

T. P. (Paul Turán) was in the same year as ourselves, but E. P. and G. T. younger
than the three of us appeared on the scene 2 years later, E. P. as mover and shaker,
G. T. as sharp critic. E. P. seldom graced the lecture room with his presence. I am
not sure now whether he was even enrolled, like the rest of us for secondary teachers



234 V Colored Graphs

training, running in conjunction with our courses in mathematics and physics. He
certainly missed the fifth and final year required, consisting of teaching practice
in one of the schools officially prescribed and ending with the examination in
philosophy and theory of education. In that fifth year of academic education he was
already in Manchester with a scholarship, working as a post doctoral fellow with
Mordell, having gained his Ph. D. with L. Fejer being his supervisor. His doctoral
thesis was based on results obtained on the distribution of prime numbers. Still as an
undergraduate he obtained new results, (elementary proof of Csebisev’s theorem).
To this day primes are one of his prime concerns.

However, I must go back now to those earlier years, when E. P. was holding
court, in the students’ common room, or being one of our crowd in our City Park,
where we were tackling problems set in the then new and by now classic collection
of problems in analysis and number theory by G. Polya and G. Szego. In those years
with him at university, Esther and I had to take charge of him to ensure that required
enrolment and semester end formalities were satisfied. Our rewards were rich. Our
group held together strongly then and in some later years, with some of us already
graduates (though not holding teachers’ appointments, with our teaching work being
confined to private tutoring). We shared hikes at our charming hills, near our city
and continued our mathematical meetings at a site around the Anonymous Statue in
our city park.

Paul’s parents adopted all his young friends. The Erdős home became our second
home. The parents, Louis and Anne were both mathematics teachers, but in our
time only Louis was active as a school teacher. His mother was sacked in 1919,
in the days following the upheavals after the war. Louis, who had been on active
war service and had returned after long years in Russian camps for war prisoners,
could not be dismissed. Fascism (the word had not yet come into existence) in those
days was “mild” in comparison with what came at the end of World War II. Louis,
outstanding as a teacher, a man of wisdom, vision combined with a sense of humor,
was a delightful company for us. Taking breath in that warm and stimulating atmo-
sphere created by Anne and Louis nurturing Paul was a gift. During the years after
1939, E. P. was in the US and we in Australia, and were able to keep some contact.
I was shaken when I read the news in one of Paul’s letters that his father died a
natural death during those war years. Then I was comforted by the thought that he
was spared the dangers, degradations, and humiliations to be meted out at the end
of that war.

Since E. P. and his mathematics, (the two are being inseparable), form the pivot
of such large collection of mathematicians (with their bosses or slaves), the number
of stories surrounding him together with those histories of mathematical problems
solved or still in states of conjecture is also of an impressive multitude, I want to
add here my own story about a problem I witnessed at birth.

Paul calls it “the happy [end] problem.” My friend Eps, not much after her return
from Göttingen, in those days the world centre of mathematics, posed the following
question: given 5 points, no 3 collinear, in the plane, conjecture: it is always possible
to select 4 to form the vertices of a convex quadrilateral. It was a problem of unusual
flavor, but my own waverings did not point in that direction. All the more were E. P.
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and Gy. Szekeres aroused. As Gy. S. confessed later, his attraction to the problem
was sparked by the person proposing it. Actually Eps found the proof and efforts
to generalize began. They resulted in the first Erdős–Szekeres joint publication to
appear about 2 years later. The authors were not aware at the time that they solved
and extended an old theorem by Ramsey. The significance of this publication was
that it yielded lifetime results for the Trio involved: Eps and Gyu, (pronounce Dew,
and I am not giving here a linguistic lecture to explain this) became the couple of
mathematicians bearing the name, G. and E. Szekeres; P. Erdős and G. Szekeres
became lifetime cooperators, though in fields different from that first joint paper;
E. P. became the originator of a new field in mathematics: combinatorial geometry,
one of the new chapters created by him.

The youth of E. P. is of lifetime duration. His approach to problems is “elemen-
tary,” his best working pals are the young; his games, hobbies, and relaxations do
not belong to the world of old, and ignoring social conventions are those of a child.
He has remained the Peter Pan of mathematics.
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De Bruijn–Erdős’s Theorem and Its History

26.1 De Bruijn–Erdős’s Compactness Theorem5

They were both young. On August 4, 1947 the 34-year-old Paul Erdős, in a letter
to the 29-year-old Nicolaas Govert de Bruijn of Delft, The Netherlands, offered the
following conjecture [E47/8/4ltr]:

Let G be an infinite graph. Any finite subset of it is the sum of k independent sets
(two vertices are independent if they are not connected). Then G is the sum of k
independent sets.

Paul added in parentheses “I can only prove it if k = 2”. In his 5-page August 18,
1947 reply [Bru1], de Bruijn reformulated the Erdős conjecture in a way that is very
familiar to us today:

Theorem: Let G be an infinite graph, any finite subgraph of which can be k-colored
(that means that the nodes are coloured with k different colours, such that the two
connected nodes have different colours). Then G can be k-coloured.

Following a nearly three-page long transfinite induction proof of the “Theorem,”
de Bruijn observed [Bru1]:

I am sorry that this proof takes so much paper; its idea, however, is simple. Perhaps,
you do not call it a proof at all, because it contains “Well ordering”, but we can hardly
expect to get along without that.

This was an insightful observation, for de Bruijn and Erdős relied on the Axiom
of Choice or equivalent (like Well-Ordering Principle or Zorn’s Lemma) very heav-
ily. When in early 2004 Professor de Bruijn received from me a reprint of Shelah–
Soifer 2003 paper (to be discussed in Chapter 46) which analyzed what happens
with the de Bruijn–Erdős Theorem in the absence of the Axiom of Choice, de Bruijn
replied to me on January 27, 2004 as follows [Bru7]:

5 I am infinitely grateful to N.G. de Bruijn for providing me with copies of his correspondence with Paul
Erdös.
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About the axiom of choice, I remember a conversation with Erdős, during a walk
around 1954. I told him that I hated the axiom of choice, and that I wanted to do
analysis without it, maybe except for the countable case. He was surprised, and said:
but you were always so good at it. Indeed, I had loved transfinite induction, just because
it worked exactly the same way as ordinary induction.

This invaluable de Bruijn’s e-mail also contained the conclusion of the story of
the de Bruijn–Erdős Theorem [Bru5]:

Erdős and I did not take any steps to publish the k-coloring theorem. In 1951 I met
Erdős in London, and from there we went together by train to Aberdeen, which took a
full day. It was during that train ride that he told me about the topological proof of the
k-coloring theorem. Not long after that, he wrote it up and submitted it for publication.
I do not think I had substantial influence on that version.

Let us look at a proof of this celebrated theorem, which we have formulated
without proof and used in chapter 5.

De Bruijn–Erdős’s Compactness Theorem 26.1 ([BE2], 1951). An infinite graph
G is k-colorable if and only if every finite subgraph of G is k-colorable.6

In what follows, we will need a few definitions from set theory.

Given a set A; any subset R of the so-called Cartesian product A×A = {(a1, a2) :
a1, a2 ∈ A} is called a binary relation on A. We write a1 Ra2 to indicate that the
ordered pair (a1, a2) is an element of R.

Poset, or partially ordered set, is a set A together with a particularly “nice” binary
relation on it, i.e., a relation that satisfies the following three properties:

1. Reflexivity: a ≤ a for all a ∈ A;
2. Anti-symmetry: If a ≤ b and b ≤ a for any a, b ∈ A, then a = b;
3. Transitivity: If a ≤ b and b ≤ c for any a, b, c ∈ A, then a ≤ c.

A chain, or totally ordered set, is a poset that satisfies a fourth property:

4. Comparability: For any a, b ∈ A, either a ≤ b or b ≤ a.

Let A be a set with a partial ordering ≤ defined on it, and B a subset of A. An
upper bound of B is an element a ∈ A such that b ≤ a for every b ∈ B.

Let ≤ be a partial ordering on a set A, and B ⊆ A. Then, we say that b ∈ B is
a maximal element of B if there exists no x ∈ B such that b ≤ x and x �= b.

In 1935 Max Zorn (1906, Germany-1993, USA) introduced the following impor-
tant tool, which he called maximum principle. (It was shown by Paul J. Campbell
that, in fact, a number of famous mathematicians—Hausdorff, Kuratowski, and
Brouwer—preceded Zorn, but Zorn’s name got as attached to this tool as, say,
Amerigo Vespucci’s name to America.)

6 This theorem requires the Axiom of Choice or equivalent.
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Zorn’s Lemma 26.2 If S is any non-empty partially ordered set in which every
chain has an upper bound, then S has a maximal element.

During the summer of 2005, I supervised at the University of Colorado, a
research month of Dmytro (Mitya) Karabash, who had just completed his freshman
year at Columbia University, and asked to come and work with me. One of my
assignments for him was to prove the de Bruijn–Erdős Theorem 26.1, and then to
write the solution as well. After going through several revisions, Mitya produced a
fine proof, which follows here, slightly edited by me.7

Proof of Theorem 26.1 by D. Karabash: We say that G has the property P and
write P(G) if every finite subgraph of G is k-colorable. For a graph G we write
G = (V, E), where V is the vertex set and E is the edge set of G. Now let S be the
set of all graphs with the property Pwhich are obtained from G by an addition of
edges, i.e., S = {(V, F)|E ⊆ F and P(V, F)}.

Let S be partially ordered by the inclusion of edge sets. Observe that for every
chain Ai in S, its union A = (V,

⋃

i
E(Ai )) is also in S (here E(Ai ) stands for the

edge set of the graph Ai ). Indeed, every finite subgraph F of A must be contained in
some Ai (because F is finite) and therefore F is k-colorable. Since A has property
P, A is in S, as desired.

We have just proved that in S every chain has an upper bound. Therefore, by
Zorn’s Lemma, S contains a maximal element, call it M . Since M is in S, M has
property P; since M is maximal, no edges can be added to M without violating
property P .

We will now prove that non-adjacency (here to be denoted by the symbol ¬ad j)
is an equivalence relation on M , i.e., for every a, b, c ∈ V (M), if a ¬ad j b and
b ¬ad j c, then a ¬ad j c. Let us consider all finite subgraphs of M that contain a
and b, and all k-colorings on them. Since a ¬ad j b, there must be a subgraph Mab

for which the colors of a and b are the same for all k-colorings of this subgraph,
for otherwise we could add the edge ab to M with preservation of property P and
attain a contradiction to M being a maximal element of S. Construct a subgraph
Mbc similarly. The subgraph Mab ∪ Mbc is finite and thus k-colorable. Mab ∪ Mbc

contains subgraphs Mab and Mbc, therefore by construction of Mab and Mbc, any
coloring of Mab ∪ Mbc must have pairs (a, b) and (b, c) colored in the same color.
Thus, a and c have the same color for all k-colorings of the subgraph Mab ∪ Mbc

and therefore a is not adjacent to c.
From the fact that the non-adjacency is an equivalence relation on M , we con-

clude that the edge-complement M ′ of M is made of some number of disjoin
complete graphs Ki because in M ′ adjacency is an equivalence relation. Therefore
a ∈ Ki , b ∈ K j , i �= j implies a ¬ad j b in M ′ or equivalently a adj b in M .

7 You can also read the original proof in [BE2]; a nice proof by L. Pósa in the fine book [Lov2] by
László Lovász; and a clear insightful proof of the countable case in the best introductory book to Ramsey
Theory [Gra2] by Ronald L. Graham.
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Suppose there is more than k disjoint complete subgraphs Ki in M ′. Then pick
k +1 vertices, all from distinct V (Ki ). Since all of the vertices are located in distinct
V (Ki ), they must all be pairwise non-adjacent in M ′ and thus form a complete graph
Mk+1 on k +1 vertices in M . We obtained a finite subgraph Mk+1 of M which is not
k-colorable, in contradiction to M having property P . Therefore, M ′ consists of at
most k complete subgraphs V (Ki ), i = 1, . . . , k. Now we can color each subgraph
V (Ki ) in a different color. Since no two vertices of an V (Ki ) are adjacent in M , this
is a proper k-coloring. Since G is a subgraph of M, G is k-colorable, as desired.

Corollary 26.3 Compactness Theorem 5.1 is true.

The proof of Theorem 26.1 is much more powerful than you may think. It works
not only for graphs, but even for their important generalization—hypergraphs. Per-
mit me to burden you with a few definitions.

As you recall from chapter 12, a graph G = G(V, E) is a non-empty set V (of
vertices) together with a family E of 2-element subsets (edges) of V . If we relax the
latter condition, we will end up with a hypergraph.

A hypergraph H = H (V, E) is a non-empty set V (of vertices) together with a
family E of subsets (edges) of V each containing at least two elements. Thus, an
edge e of H is a subset of V ; its elements are naturally called vertices of the edge e
(or vertices incident with e).

Let n be a positive integer. We would say that a hypergraph H is n-colored, if
each vertex of H is assigned one of the given n colors. If all vertices of an edge e
are assigned the same color, we call e a monochromatic edge.

The chromatic number �(H ) of a hypergraph H is the smallest number of colors
n for which there is an n-coloring of H without monochromatic edges.

A hypergraph H1 = H1(V1, E1) is called a subhypergraph of a hypergraph H =
H (V, E), if V1 ⊆ V and E1 ⊆ E .

Compactness Theorem for Hypergraphs 26.4 The chromatic number �(H ) of a
hypergraph H is equal to the maximum chromatic number of its finite subhyper-
graphs.

Proof Repeat word-by-word the proof of Theorem 26.2 (just replace “graph” by
“hypergraph”).

26.2 Nicolaas Govert de Bruijn

Ever since 1995, I have exchanged numerous e-mail messages—and sometimes
letters—with the Dutch mathematician N. G. de Bruijn. His elegant humor, open-
ness in expressing views even on controversial issues, and his eyewitness accounts
of post W.W.II events in Holland made this correspondence most fascinating and
enjoyable for me. We also shared interest in finding out who created the conjec-
ture on monochromatic arithmetic progressions, which was proven by B. L. van der
Waerden (see chapter 34 for the answer). Yet, for years I have been asking Professor
de Bruijn to share with me his autobiography to no avail. For a long while, I did not
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even know what “N. G.” stood for. On October 29, 2005, I tried to be a bit more
specific in my e-mail. I wrote:

May I ask you to describe your life – and any participation in political affairs – during
the occupation, May 1940–1945, and during the first post war years, 1945 up to your
Sep-1952 appointment to replace Van der Waerden at Amsterdam?

De Bruijn understood my maneuver, but provided the desired reply on November
1, 2005 [Bru12]:

You are asking for an autobiography in a nutshell.
I was born in 1918 [on July 9th in Den Haag], so I just left elementary school

in 1930 when the great depression broke out. I managed to finish secondary school
education in 4 years (the standard was 5 or 6). After that, I could not get any job,
and could not get any financial support for university education. I used my next two
years (1934–1936) to study mathematics from books, without any teacher. I passed
the examinations that qualified me as a mathematics teacher in all secondary schools
in the Netherlands. But there weren’t any jobs. Yet I had some success: I could get
a small loan that enabled me to study mathematics and physics at Leiden University.
In the academic year 1936–1937 I attended courses in physics and astronomy, and
in 1937–1938 courses in mathematics on the master’s degree level. That was all the
university education I had. The most inspiring mathematician in those days at Leiden
was H. D. Kloosterman.

In 1939 I was so lucky to get an assistantship at Delft Technical University. It
didn’t pay very much, but it left me plenty of time to get involved in various kinds
of mathematical research. It was quite an inspiring environment, and actually it was
the only place in the Netherlands that employed mathematical assistants (Delft had
about 8 or 9 of them). In 1940 the country was occupied, and from then on the main
problem was to avoid being drawn into forced labour in Germany. In that respect my
assistantship was a good shelter for quite some time.

All the time I lived with my parents in The Hague, not so safe as it seemed. We
were hiding a Jewish refugee (a German boy, a few years younger than me), who
assisted my brother in producing and distributing forbidden radio material, like anten-
nas that made it possible to eliminate the heavy bleep-bleep-bleep that the Germans
used in the wavelengths of the British Radio. And later, when radios were forbidden
altogether, my brother built miniature radios, hidden in old encyclopedia volumes. All
this activity ended somewhere in the beginning of 1944 when our house was raided by
the Sicherheitspolizei. My brother and his Jewish assistant where taken into custody,
but by some strange coincidence they came back the next day. Nevertheless they had
to leave to a safer place, where both of them survived the war. A few months later,
I got my first real job. It was at the famous Philips Physical Labs at Eindhoven. The
factory worked more or less for German war production, just like most factories in the
country, but the laboratories could just do what they always did.

Four months later, Eindhoven was occupied by the allied armies, in their move
towards the battle of Arnhem. From then on we were cut off from the rest of the
country, where people had a very bad time.

So this was about my life during the war. Compared to others, I had been quite
lucky. I had even managed to get my doctorate at the [Calvinist] Free University,
Amsterdam [March 1943], just a few weeks before all universities in the country
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were definitely closed (Leiden University had already been closed in 1940, because
of demonstrations against the dismissal of Jewish professors).

In 1946 I got a professorship at Delft Technical University. I had to do quite ele-
mentary teaching, leaving me free to do quite some research, mainly in analytical num-
ber theory. It got me into correspondence with Erdős, and around 1948 he visited us
at Delft.

In 1951 I made a mathematical trip abroad for the first time in my life. There I had
contact with Erdős too. We had a long train ride together from London to Edinburgh.

In 1952 I got that [Van der Waerden’s] professorship at Amsterdam, at that time
the mathematical Mecca of the Netherlands. I stayed there until 1960, when I got my
professorship at Eindhoven Technological University, where I retired in 1984. After
that, I always kept a place to work there.

I think this is all you wanted to know.

In fact, on November 1, 2005 I asked for a few additional details:

I know you are one of the most modest men. Yet, I would think you were not just
an observer when your family hid a Jewish boy, and your brother did activities not
appreciated by the occupiers. Would you be so kind to share with me your role is these
activities during 1940–1945? What were the names of your brother and his Jewish-
German assistant? What was the difference in age between you and your brother?

Two days later, my questions were answered [Bru13]:

I hardly ever participated in my brother’s activities. At most three times I delivered an
antenna or a radio to some stranger. My brother was a year and a half older than I. His
name was Johan.

The Jewish boy’s name was Ernest (Ernst) Goldstern. He was born 24 December
1923 (in Muenchen, I believe). His family came to Holland in the late 1930’s, where
Ernst just completed his secondary school education in Amsterdam. He lived with us
in The Hague from 1940 to 1944. I helped him to study advanced mathematics, which
he could use after the war. He went into Electrical Engineering and got his degree in
Delft. He died 19 January 1993. Johan died in 1996.

On July 9, 2008 N. G. de Bruijn is turning 90—Happy Birthday, Nicolaas!
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Edge Colored Graphs: Ramsey and Folkman
Numbers

27.1 Ramsey Numbers

In this chapter we will see that no matter how edges of a complete graph Kn are
colored in two or, more generally, finitely many colors (each edge in one color), we
can guarantee the existence of the desired monochromatic subgraph as long as we
choose n to be large enough.

Naturally, when we talk about edge colored graphs, we call a subgraph
monochromatic if all its edges are assigned the same color.

Frank Harary told me that he was once asked to suggest problems for the
W. L. Putnam Mathematical Competition, and he suggested to use a problem that
had already existed in the mathematical folklore:

Problem 27.1 (W. L. Putnam Mathematical Competition, March 1953). Prove that
no matter how the edges of the complete graph K6 are colored in two colors, there
is always a monochromatic triangle K3.

Proof Let ν0 be a vertex of K6, whose edges are colored red and blue. Then ν0 is
incident with at least three edges of the same color, say, red (Fig. 27.1).

If any two of the vertices ν1, ν2, ν3, say, ν1 and ν2, are connected by a red edge,
then we are done: ν0, ν1, ν2 is a red monochromatic triangle. Otherwise all three
edges ν1ν2, ν2ν3, and ν3ν1 are blue, and we are done as well.

Fig. 27.1
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Problem 27.2 Show that in the statement of Problem 27.1, 6 is best possible num-
ber, i.e., there is a way to color the edges of K5 in two colors without creating any
monochromatic triangles.

Solution: Behold (Fig. 27.2):

Fig. 27.2 2-colored K5 without monochromatic triangles

For positive integers m and n, the Ramsey number R = R(m, n) is the smallest
positive integer such that any red and blue edge coloring of the complete graph K R

contains a red monochromatic Km or a blue monochromatic Kn .

Problems 27.1 and 27.2 together prove, for example, that

R(3, 3) = 6.

You do not need more than definitions to prove the following two equalities.

Problem 27.3 For any two positive integers m and n

R(m, n) = R(n, m).

Problem 27.4 For any positive integer n

R(2, n) = n.

When and who coined the term “Ramsey number”? The publication search read-
ily proves that it did not exist in print before 1966. “Ramsey number” makes its
first appearance in January 1966 in the remarkable Ph.D. thesis Chromatic Graphs
and Ramsey’s Theorem by James (Jim) G. Kalbfleisch [Ka2] at the University of
Waterloo, Ontario, Canada. He proved a good number of new upper and lower
bounds, uniqueness of certain colorings and the exact value R(3, 6) = 18 (which
was also proven independently by G. Kéry). Kalbfleisch may have been first to use
computer programs in aid of his Ramsey numbers research. Kalbfleisch was also
first to use “Ramsey number” term in print (his thesis, as was typical in mathe-
matics in North America, was not published), in his 1966 paper [Ka3], submitted
for publication on February 26, 1966. Nearly half a year later, on July 13, 1966,
Jack E. Graver and James Yackel’s paper [GY] was communicated by Victor Klee.
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Both papers, [Ka3] and [GY], proudly displayed the new term “Ramsey number” in
their titles. The term took hold, and since then was used in an enormous number of
publications.

As to Jim Kalbfleisch, following a number of fine Ramsey number related pub-
lications, he “defected” to statistics. Kalbfleisch served the University of Waterloo
for 37 years, 1963–2000, as a student, professor, dean of mathematics, academic
vice-president and provost. On December 31, 2000, he retired at 60 to enjoy his
artistic hobbies. Daily Bulletin reported on Thursday, October 5, 2000:

“There’s never a good time to go,” he [Kalbfleisch] said, but after 14 years, “I feel the
need for a break.” He said he is looking forward to a chance to get back to stained glass
work (his long-time hobby) and enjoy music, bridge, and some travel that isn’t just for
business.

The following year Kalbfleisch was awarded the title “Provost Emeritus,” a rare
distinction indeed.

I would like to compute a few Ramsey numbers with you. For this we will need
the following simple but quite useful tool.

Basic Tool 27.5 For any graph G with p vertices ν1, ν2, . . . , νp and q edges,
deg ν1 + deg ν2 + · · · + deg νp = 2q.

The following Ramsey numbers were first found in 1955 by Robert E.
Greenwood of the University of Texas and Andrew M. Gleason of Harvard.

Problem 27.6 (R. E. Greenwood and A. M. Gleason, [GG]) Prove that R(3, 4) = 9.

Proof Let the edges of a complete graph K9 be colored red and blue. We will con-
sider two cases.
Case 1: Assume there is a vertex, say ν0, of K9 that is incident with at least four red
edges (Fig. 27.3). Then should any two of the vertices ν1, ν2, ν3, ν4 be connected
by a red edge, we get a red triangle. Otherwise we get a blue monochromatic K4 on
the vertices ν1, ν2, ν3, ν4.

v0

v1 v2 v3 v4

Fig. 27.3

Case 2: Every vertex of K9 is incident with at least five blue edges. The nine vertices
of K9 with all blue edges form a graph G. The degree of each vertex of G may not
be equal to five because we would get an odd 5·9 = 45 in the left side of the equality
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Fig. 27.4

of Tool 27.5 with an even 2q in the right side. Therefore, at least one vertex, say ν0,
of K9 is incident with at least six blue edges (Fig. 27.4).

By Problem 27.1 applied to the complete graph K6 on the vertices ν1, ν2, . . . , ν6, K6

contains a monochromatic triangle K3. If K3 is red, we are done. If K3 is blue, then
the three vertices of K3 plus ν0 form a blue monochromatic graph K4, and we are
done again.

Thus, we proved the inequality R(3, 4) ≤ 9.
Figure 27.5 shows all red edges of K8. The edges that are not drawn are colored

blue. It is easy to verify (do) that this 2-coloring of the edges of K8 creates neither
a red monochromatic K3, nor a blue monochromatic K4.

Fig. 27.5

Problem 27.7 (R.E. Greenwood and A. M. Gleason, [GG]) Prove that
R(4, 4) = 18.

Proof First we will prove the inequality R(4, 4) ≤ 18.
Let the edges of a complete graph K18 be colored red and blue, and ν0 be a vertex

of K18. Since ν0 is incident with 17 edges, by the Pigeonhole Principle ν0 must be
incident with at least 9 edges of the same color.

If these 9 edges are red, we apply the equality R(3, 4) = 9 of Problem 27.6 to
the 9-element set S = {ν1, ν2, . . . , ν9}. If S contains a blue monochromatic K4,
we are done. If S contains a red monochromatic triangle T , then T together with ν0

and three red edges between them comprise a red monochromatic K4.
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Fig. 27.6

If the nine edges are blue, we apply the equality R(4, 3) = 9 to the 9-set S =
{ν1, ν2, · · · , ν9} and reason similarly to the above “red” case. Thus, the inequality
R(4, 4) ≤ 18 is proven.

Now we have to prove that R(4, 4) > 17. Figure 27.6 shows all red edges of the
red–blue edge coloring of K17 (all missing edges are blue). It is easy to verify (do,
and use symmetry) that our K17 contains no monochromatic K4.

You can now solve on your own the following couple of problems, of which the
first one gives a rare exact value of a Ramsey number, while the second problem is
just an exercise.

Problem 27.8 (R.E. Greenwood and A.W. Gleason, [GG]) Prove that R(3, 5) = 14.

Problem 27.9 Prove that R(4, 5) ≤ 32 and R(5, 5) ≤ 64.

In fact, the problem of calculating R(4, 5) has been settled completely
by Brendan D. McKay of the Australian National University and Stanisław
P. Radziszowski of the Rochester Institute of Technology, originally of Poland.

Result 27.10 (B. D. McKay and S. P. Radziszowski, [MR4]). R(4, 5) = 25.

This remarkable result took years of computing to achieve, with the happy end
taking place right in front of my eyes. I attended Stanisław Radziszowski’s talk in
early March of 1993 at the Florida Atlantic University conference. During the talk
he mysteriously remarked that the value of R(4, 5) may be established very soon.
Imagine, in a matter of days I received his e-mail, announcing the birth of the result
up to a hundredth of a second (this is what computer-aided communication delivers):
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From: MX%“spr@cs.rit.edu”
To: ASOIFER
Subj: R(4, 5) = 25
From: spr@cs.rit.edu (Stanisław P Radziszowski)
Message-ID: <9303191824.AA22893@rit.cs.rit.edu>

Subject: R(4, 5) = 25
To: jackkasz@utxvm.cc.utexas.edu, asoifer@happy.uccs.edu,

goldberg@turing.cs.rpi.edu
Date: Fri, 19 Mar 1993 19-MAR-1993 11:24:29.37 (EST)

R(4, 5) = 25
-----------

Brendan D. McKay, Australian National University
Stanisław P. Radziszowski, Rochester Institute of Technology
The Ramsey number R(4,5) is defined to be the smallest n such that every graph

on n vertices has either a clique of order 4 or an independent set of order 5. We have
proved that R(4, 5) = 25. Previously it was only known that R(4,5) is one of the four
numbers 25–28. Our proof is computational.

For integers s,t define an (s,t,n)-graph to be an n-vertex graph with no clique of
order s or independent set of order t. Suppose that G is a (4,5,25)-graph with 25 ver-
tices. If a vertex is removed from G, a (4,5,24)-graph H results; moreover, the structure
of H can be somewhat restricted by choosing which vertex of G to remove. Our proof
consists of constructing all such structure-restricted (4,5,24)-graphs and showing that
none of them extends to a (4,5,25)-graph. In order to reduce the chance of computa-
tional error, the entire computation was done in duplicate using independent programs
written by each author. The fastest of the two computations required about 3.2 years
of cpu time on Sun workstations.

A side result of this computation is a catalogue of 350866 (4,5,24)-graphs, which
is likely to be most but not all of them.

We wish to thank our institutions for their support. Of particular importance to this
work was a grant from the ANU Mathematical Sciences Research Visitors Program.

– bdm@cs.anu.edu.au and spr@cs.rit.edu; March 19, 1993.

Imagine how quickly the amount of computation increases in these “small” Ram-
sey numbers: “The fastest of the two computations required about 3.2 years of cpu
time on Sun workstations,” and “A side result of this computation is a catalogue of
350,8668 (4,5,24)-graphs”!

What about the value of the next Ramsey number, R(5, 5)? In the historical sum-
mary included in [MR5], we see that the lower bound of R(5, 5) increased slowly
from 38 (Harvey Leslie Abbott in his impressive 1965 Ph.D. thesis [Abb]) to 42
(Robert W. Irving, 1974 [Irv2]), to finally 43 (Geoffrey Exoo, 1989 [Ex4]): Exoo
produced a K5-free 2-coloring of the edges of K42.

I included an easy upper bound in Problem 27.10 just as an exercise—already in
1965 J. G. Kalbfleish [Ka1] knew better when he came up with 59. The first half of
the 1990s saw a rapid improvement due to the works by Brendan D. MacKay and

8 Later in 1993 this number grew to 350,904.
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Stanisław P. Radziszowski: 53 (1992), 52 (1994), 50 (1995, an implication of the
R(4, 5) result above), and finally 49 (1995, [MR5]).

Thus, today’s world records in lower and upper bound competitions for the value
of R(5, 5) are due to Geoffrey Exoo, Brendan McKay and Stanisław Radziszowski,
respectively:

Best Bounds 27.11 ([Ex4], [MR5]). 43 ≤ R(5, 5) ≤ 49.

And when the great expert of lower bounds Geoffrey Exoo and the great experts
of upper bounds Brendan McKay and Stanisław Radziszowski agree that there is
evidence for a “strong conjecture,” we’d better listen and record:

McKay–Radziszowski–Exoo’s Conjecture 27.12 [MR5]

R(5, 5) = 43.

It may take decades or even a century to settle this number—when done, we will
see whether the three authors of the conjecture are right. In fact, Paul Erds liked to
popularly explain the difficulties of this problem [E94.21]: “It must seem incredible
to the uninitiated that in the age of supercomputers R(5, 5) is unknown. This, of
course, is caused by the so-called combinatorial explosion: there are just too many
cases to be checked.” He even made up a joke about it, which I have heard during
his talks in a few different variants:

Suppose aliens invade the earth and threaten to destroy it in a year if human beings
do not find R(5, 5). It is, probably, possible to save the earth by putting together the
world’s best minds and computers. If, however, the invaders were to demand R(6, 6),
the human beings might as well attempt a preemptive strike without even trying to
ponder the problem.9

Ever since 1994 Stanisław Radziszowski has maintained and revised 11 times
a major 60-page compendium of “world records” in the sport of small Ramsey
numbers [Radz1]. This is an invaluable service to the profession. I will present
here only Table 27.1 of all known non-trivial classic 2-color small Ramsey num-
bers and their best lower and upper bounds. Where lower and upper bounds do
not coincide, they both are listed in the appropriate cell. The cells below the main
diagonal are left empty because filling them in would be redundant due to symmetry
of the Ramsey function R(m, n) = R(n, m), (Problem 27.3). As Table 27.2, I am
presenting only a part of Radziszowski’s Reference Table for Table 27.1—see the
rest in his compendium [Radz1] readily available on the Internet. You will find there
a wealth of other fascinating small Ramsey-related world records, Ramsey numbers
(understood broader than here), Ramsey numbers inequalities, and a bibliography
of 452 referenced items.

In the standard text on Ramsey Theory [GRS2, pp. 89–90], a tiny “Table 4.1”
of known values and bounds is presented, accompanied by quite a pessimistic
prediction:

9 Alternative versions appear in [E93.20] and [E94.21].
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Table 27.1 World records in classical 2-color small Ramsey numbers

l 3 4 5 6 7 8 9 10 11 12 13 14 15
k

3 6 9 14 18 23 28 36 40 46 52 59 66 73
43 51 59 69 78 88

4 18 25 35 49 56 73 92 97 128 133 141 153
41 61 84 115 149 191 238 291 349 417

5 43 58 80 101 125 143 159 185 209 235 265
49 87 143 216 316 442 848 1461

6 102 113 127 169 179 253 262 317 401
165 298 495 780 1171 2566 5033

7 205 216 233 289 405 416 511
540 1031 1713 2826 4553 6954 10581 15263 22116

8 282 317 817 861
1870 3583 6090 10630 16944 27490 41525 63620

9 565 580
6588 12677 22325 39025 64871 89203

10 798 1265
23556 81200

Table 27.2 References for a part of Table 1

l 4 5 6 7 8 9 10
k

3 GG GG Kéry Ka2 GR Ka2 Ex5
GY MZ GR RK2

4 GG Ka1 Ex9 Ex3 Ex15 Ex17 HaKr
MR4 MR5 Mac Mac Mac Mac

5 Ex4 Ex9 CET HaKr Ex17 Ex17
MR5 HZ1 Spe3 Spe3 Mac Mac

6 Ka1 Ex17 XXR XXER Ex17
Mac Mac Mac Mac Mac

Table 4.1 gives all known exact bounds [values] and some upper and lower bounds on
the function R. It is unlikely that substantial improvement will be made on this table.

Just compare their Table 4.1 to the Table 27.1 here, and you would agree with me
that the researchers in small Ramsey numbers have dramatically exceeded expecta-
tions of the authors of [GRS2] in a short span of 17 years. We have a race here:
combinatorial explosion vs. improvements in computers and computational meth-
ods. It seems that computers and mathematicians in this field have held their own
and gained some!

What would happen if we were to color edges of a complete graph Kn in more
than two colors? Can we then guarantee the existence of, say, a monochromatic
triangle K3? Yes, we can.
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Problem 27.13 (R.E. Greenwood and A. M. Gleason, 1955, [GG]) Prove that for
any positive integer r there is a positive integer n(r ) such that any r -coloring of
edges of a complete graph Kn(r ) contains a monochromatic triangle K3.

Proof We will prove this statement by induction. For r = 1 (i.e., one-color edge col-
oring), we can certainly choose n = 3: one-colored edges of K3 form a monochro-
matic triangle. The statement for r = 2 has been proven as Problem 27.1.

Assume that for a positive integer r there is n(r ) such that any r -coloring of
edges of the complete graph Kn(r ) contains a monochromatic triangle K3. We need
to find the value of the function n(r + 1) such that any (r + 1)-coloring of edges of
a complete graph Kn(r+1) contains a monochromatic triangle K3.

Let us define the value of the function n(r + 1) as

n(r + 1) = (r + 1) (n (r ) − 1) + 2.

Assume that the edges of Kn(r+1) are (r +1)-colored, and ν0 is a vertex of Kn(r+1).
Since ν0 is incident with (r + 1)(n(r ) − 1) + 1 edges, by the Pigeonhole Principle
there is a color, say color A, such that ν0 is incident with n(r ) edges of color A
(Fig. 27.7).

Fig. 27.7

If any two of the vertices ν1, ν2, . . . , νn(r ), are connected by an A-colored edge,
these two vertices plus ν0 form an A-colored monochromatic triangle. Otherwise,
we have a complete graph Kn(r ) on vertices ν1, ν2, . . . , νn(r ), whose edges are
r -colored. By the inductive assumption, Kn(r ) contains a monochromatic triangle.

Note that in fact it is easy to prove by induction that n (r ) ≤ �r !e� + 1, where e
is the base of the natural logarithms, e = 2.718281828459045 . . .

We computed some particular Ramsey numbers and looked at ideas of proofs.
Surprisingly, they are fairly recent. Even more surprising to me is that general exis-
tence results came first. The foundation for this beautiful direction in mathematics,
now called Ramsey Theory, was laid by the young British mathematician Frank P.
Ramsey. We will discuss his impressive work and short life in chapters 28 and 30
respectively. Here I will only formulate particular cases, graph-theoretic diagonal
versions of Ramsey’s Theorems.
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Ramsey Theorem, Infinite Diagonal Graph Version 27.14 Every complete infi-
nite graph with 2-colored edges contains a complete infinite monochromatic
subgraph.

Ramsey Theorem, Finite Diagonal Graph Version 27.15 For any positive inte-
gers n and k, there is an integer R(n; k) such that if m > R(n; k) and the edges of
a complete graph Km are k-colored, then Km contains a complete monochromatic
subgraph Kn .

These theorems should sound familiar to you. We have solved some particular
cases of Problem 27.15 earlier in this chapter, and even found the values of R(n; k),
which for k = 2 we will simply denote as R(n, n).10 For example, Problems 27.1
and 27.2 show that R(3, 3) = 6; Problem 27.6 gives us R(3, 4) = 9; Problem 27.13
demonstrates that R(3; k) exists for any positive integer k.

Instead of demonstrating 27.15, we will prove a stronger pair of results, 27.16
and 27.17, obtained in the early 1933 and published 2 years later by two young
unknown Hungarian university students, Pal (Paul) Erdős and Gjörgy (George)
Szekeres.

Problem 27.16 (P. Erdős and G. Szekeres, [ES1]) Assume that the Ramsey number
R(m, n) exists for every pair of positive integers m and n. Then for any integers
m ≥ 2 and n ≥ 2

R(m, n) ≤ R(m − 1, n) + R(m, n − 1).

Proof Let L = R(m − 1, n) + R(m, n − 1). We have to prove precisely that if the
edges of a complete graph KL with L vertices are colored red and blue, KL contains
a Km with all red edges or a Km with all blue edges. Indeed, let ν0 be a vertex of KL

whose edges are colored red and blue. We consider two cases and use an approach
that proved successful in Problems 27.7 and 27.8.
Case 1: Let ν0 be incident with at least R(m − 1, n) red edges. Then by defini-
tion of R(m − 1, n), the vertex set S = {ν1, ν2, . . . , νR(m−1,n)} contains a blue
monochromatic Kn (and we are done), or a red monochromatic Km−1. In the latter
case, Km−1 together with ν0 and m − 1 red edges connecting them, form a red
monochromatic Km .
Case 2: Let ν0 be incident with less than R(m − 1, n) red edges. Since ν0 is incident
with L − 1 = R(m − 1, n) + R(m, n − 1) − 1 edges, each colored red or blue, we
see that in this case ν0 is incident with at least R(m, n − 1) blue edges.

By the definition of R(m, n − 1), the vertex set S = {ν1, ν2, . . . νR(m,n−1)} con-
tains a red monochromatic Km (and we are done), or a blue monochromatic Kn−1.
In the latter case, Kn−1 together with ν0 and n −1 blue edges connecting them, form
a blue monochromatic Kn .

Problem 27.17 (P. Erdős and G. Szekeres, [ES]). For every two positive integers m
and n, the Ramsey number R(m, n) exists, moreover,

10 Please, do not overlook the significant difference between R(n, k) and R(n; k).
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R(m, n) ≤
(

m + n − 2
m − 1

)

.

Proof We will use induction on k = m + n. We have the equality when one of the
numbers m, n equals 1 or 2 and the other is arbitrary (see Problems 27.4 and 27.3,
and observe that R(1, n) = 1). Therefore the inequality is true for k ≤ 5, and we
can assume that m ≥ 3 and n ≥ 3.

Assume that R(m − 1, n) and R(m, n − 1) exist and that

R(m − 1, n) ≤
(

m + n − 3
m − 2

)

and

R(m, n − 1) ≤
(

m + n − 3
m − 1

)

.

Then by Problem 27.17 and Pascal binomial equality, we get

R(m, n) ≤ R(m − 1, n) + R(m, n − 1)

≤
(

m + n − 3
m − 2

)

+
(

m + n − 3
m − 1

)

=
(

m + n − 2
m − 1

)

,

as desired. We are done. R(m, n) exists and satisfies the required inequality.

In the same paper Paul Erdős and Gjörgy Szekeres also proved in similar spirit
the Monotone Subsequence Theorem, which we will discuss in Chapter 29.

What can we learn about large Ramsey numbers if we could only compute some
small Ramsey numbers? Nothing at all as far as the exact values are concerned.
We can, however, aspire to estimate their growth, strive for asymptotics. This is
precisely what interested Paul Erdős the most. Paul traces the developments in this
direction at the 1980 Graph Theory conference at Kalamazoo [E81.20]: “it is well-
known that

c1n2 n/2 < R (n, n) < c2

(
2n − 2
n − 1

)

, (c2 < 1) .”

He reports an improvement in the upper bound a few years later [E88.28]:

c1n2 n/2 < R (n, n) < c2

(
2n
n

)/

(log n)ε (∗)

Every time Erdős speaks on this subject, he offers the same important conjecture,
which still remains open today:
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Erdős’s $100 Conjecture 27.18

lim
n→∞ R (n, n) 1/n = c.

Paul adds [E88.28] “I offer 100 dollars for a proof [of this conjecture] and 10,000
dollars for a disproof. I am sure that [the conjecture] holds.” He continues with the
problem of determining the limit in Conjecture 27.18.

Erdős’s $250 Problem 27.19 Determine c in Conjecture 27.18.

Paul gives a hint too [E88.28]: “
√

2 ≤ c ≤ 4 follows from (∗), perhaps c = 2?”
Let us record it formally.

Erdős’s Open Problem 27.20 Prove or disprove that

lim
n→∞ R (n, n) 1/n = 2.

These problems matter a great deal to Paul Erdős, for he repeats these prob-
lem in his many problem talks and papers, for example [E81.20], [E88.28],
[E90.23], and [E93.20]. He even offers, rare for Erdős, unspecified compensation
[E90.23]:

Any improvement of these bounds [
√

2 ≤ c ≤ 4] would be of great interest and will
receive an “appropriate” financial reward. (“Appropriate” I am afraid is not the right
word, I do not have enough money to give a really appropriate award.)

He is pessimistic about finding the asymptotic formula any time soon [E93.20]:

An asymptotic formula for R(n, n) would of course be very desirable, but at the
moment this looks hopeless.

Yet, Erdős poses a number of other problems related to the Ramsey numbers’
asymptotic behavior. Let me mention here just two examples.

Erdős’s Open Problem 27.21 ( [E91.31]). Is it true that for every ε > 0 and n >

n0(ε)

R (4, n) > n3−ε?

In fact, probably

R (4, n) > cn3/ (log n)α.

Erdős’s Open Problem 27.22 ( [E91.31]). Is it true that

R (n + 1, n + 1) > (1 + c) R (n, n)?
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In fact it is not even known that

R (n + 1, n + 1) − R (n, n) > cn2.

In the mid 1990s, when I was looking for the author of the term Ramsey The-
ory (you will find out the answer in chapter 30), on February 19, 1996 in Baton
Rouge the famous graph theorist Frank Harary half-wrote, half-dictated to me a
letter [Har3], which is most relevant to this section on Ramsey numbers, and so I
will transcribe it here in its entirety (see facsimile of the opening lines in Fig. 27.8):

To A Soifer 19 Feb 96
In 1965, I looked into the Ramsey Nos. of C4 and 2K2 [two copies of K2] and found
(proved) their values are 6 and 5 resp.

Before then only ramsey nos. of complete graphs had been studied; e.g.

r (K3) = 6 (folklore)
r (K4) = 18 (A. Gleason + R. Greenwood)
r (K5) =? ($100 from FH for 1st exact solution)

I called r (C4) = 6 and r (2K2) = 5 generalized ramsey nos. for graphs.
In November 1970, V. Chvatal defended his Ph.D. thesis at U Waterloo on Ramsey

nos. of hypergraphs. Erdős was visiting professor at the same time at Waterloo. He saw
me drinking tea and grabbed my elbow saying “You must hear this doctorate defense,
as Chvatal is brilliant.” The next night Chvatal invited me to dinner at his house, and I
proposed a series of papers to him. He accepted gladly and we had a good time writing
them. I told Erdős that this was part of my big research project on Ramsey Theory.

Fig. 27.8 First lines of Frank Harary’s Letter
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I saw that he [Chvatal] and I would be able to carry out my research project of cal-
culating the Ramsey Numbers of all the small G [graphs]. We wrote a series of papers
“Generalized Ramsey theory for graphs” I, II, III, and maybe IV. I then continued the
series to XVII. I referred early to this as the study of Ramsey theory for graphs.

Thus, Frank Harary and Václav Chvátal introduced the term Generalized Ramsey
Theory for Graphs and started an impressive series of papers under this title. They
generalized the notion of Ramsey number by including in the study the existence
of subgraphs other than complete graphs. This is a flourishing field today, and I
refer you to Radziszowski’s compendium [Radz1] and Section 5.7 of the monograph
[GRS2] for a summary of many of the achievements of this promising direction of
research. The authors of [GRS2, p. 138] write:

A major impetus behind the early development of Graph Ramsey theory was the hope
that it would eventually lead to methods for determining larger values of the classical
Ramsey numbers R(m, n). However, as so often happens in mathematics, this hope has
not been realized; rather, the field has blossomed into a discipline of its own. In fact,
it is probably safe to say that the results arising from Graph Ramsey theory will prove
to be more valuable and interesting than knowing the exact value of R(5, 5) [or even
R(m, n)].

I do not know how one measures value. It seems that the relationship between
theoretical and numerical directions of inquiry has been, as so often happens in
mathematics, a marriage made in heaven. Numerical results provided a foundation
for theoretical generalizations and asymptotics, while theoretical results allowed
to dramatically reduce sprawling explosion of computation thus making numerical
results possible. Moreover, numerical results can contain beauties both in mathe-
matical arguments and in extreme graphs they uncover—just look at the graph in
Fig. 27.9 below! I hope the rest of this section will illustrate my point of view. We
will look at one related train of thought and the direction it has inspired, Folkman

Fig. 27.9 Unique 14-vertex bi-critical Fv(3, 3; 4) graph11
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numbers. We will see that Paul Erdős was very interested in small Folkman numbers,
and the authors of the above quotation have contributed their energies and results to
this cause as well.

27.2 Folkman Numbers

In 1967 Paul Erdős and András Hajnal took the first step in a typically subtle Erdős
style: they posed a particular problem.

Problem 27.23 (Erdős–Hajnal [EH2]) Construct a graph G which does not contain
K6 such that every 2-coloring of its edges contains a monochromatic K3.

This time Erdős and Hajnal added a more general conjecture:

Erdős–Hajnal’s Conjecture 27.24 [EH2]. For every positive integer r there is a
graph G which contains no K4 such that every r -coloring of its edges contains a
monochromatic K3.

In the same year of 1967, Jon H. Folkman [Fol] generalized Erdős–Hajnal con-
jecture for the case of two colors. Folkman, a winner of the 1960 William Lowell
Putnam Mathematical Competition and University of California Berkeley graduate
before joining Rand Corporation, tragically left this world in 1969. He was 31 years
old. Before I formulate Folkman’s theorem in the contemporary terminology, I need
to introduce a few terms that have recently become standard.

Given positive integers m,n,l, an edge Folkman graph G is a graph without a Kl

subgraph, such that if its edges are 2-colored, there will be a subgraph Km with all
edges of color 1 or a subgraph Kn with all edges of color 2.

The edge Folkman number Fe(m, n; l) is defined as the smallest positive integer
k such that there exists an k-vertex Folkman graph G.

More generally, given positive integers n, m1, m2, . . . , mn, l, an edge Folkman
graph G is a graph without a Kl subgraph, such that if its edges are n-colored, there
will be a subgraph Kmi with all edges of color i for at least one value of i, 1 ≤ i ≤ n.

The edge Folkman number Fn
e (m1, m2, . . . , mn; l) is defined as the smallest pos-

itive integer k such that there exists a k-vertex Folkman graph G.
In this recent terminology, Folkman’s result can be formulated as follows:

Folkman’s Theorem 27.25 [Fol] For all positive integers m, n, l; l > max(m, n),
edge Folkman numbers Fe(m, n; l) exist.12

Folkman ends [Fol] with a far reaching generalization of Erdős–Hajnal’s Con-
jecture 27.24:

11 This graph is so striking, that I chose it to decorate the cover of the April-2007 issue of Geombinatorics
XVI(4) that contained Stanisław P. Radziszowski’s paper.
12 Of course, Jon Folkman did not use the term “Folkman number,” which seems to have appeared first
in 1993, and since has become standard.
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Folkman’s Conjecture 27.26 [Fol] For all positive integers m1, m2, . . . , mn, l,
l > max(m1, m2, . . . , mn), edge Folkman numbers Fn

e (m1, m2, . . . , mn; l) exist.

Vertex Folkman graphs and vertex Folkman numbers Fn
v (m1, m2, . . . , mn; l), are

defined similarly for coloring of vertices instead of edges. When n = 2, we omit the
superscript n.

In his lyrical (a rare quality for mathematical writing) paper [Sp2], Joel Spencer
recalls that in 1973, during the Erdős 60th birthday conference in Keszthely,13

Hungary, the Erdős–Hajnal Conjecture 27.20 was given to the Czech mathematician
Jaroslav Nešetřil and his student Vojtěch Rödl, who proved it during the conference.
Moreover, they came up with pioneering results so general that they could be con-
sidered as principles, not unlike the Ramsey theorem!

A clique number ω(G) of a graph G is the order n of its largest complete sub-
graph Kn .

Edge Nešetřil–Rödl’s Theorem 27.27 [NR]. Given a positive integer n and a
graph G, there exists a graph H of the same clique number as G, such that if edges
of H are n-colored, H has an edge-monochromatic subgraph isomorphic to G.

Vertex Nešetřil–Rödl’s Theorem 27.28 [NR] Given a positive integer n and a
graph G, there exists a graph H of the same clique number as G, such that if vertices
of H are n-colored, H has a vertex-monochromatic subgraph isomorphic to G.

These remarkable theorems, in our terminology, imply the following:

Corollary 27.29 For any positive integers m, n, the edge Folkman numbers
Fn

e (m, m, . . . , m; m + 1) and vertex Folkman numbers Fn
v (m, m, . . . , m; m + 1)

exist, where m inside the parentheses repeats n times.

Erdős–Hajnal problems, Folkman’s paper, and Nešetřil–Rödl theorems inspired
a new direction in Ramsey theory as well as new exciting problems on Ramsey-like
numbers.

What should these new numbers be called? Several names were used at first:
restricted Ramsey, Erdős–Hajnal, Graham–Spencer [HN1], [Irv1]. Nešetřil and
Rödl [NR] mention such names as “Galvin–Ramsey” and “EFGH” (which, I guess,
stood for Erdős–Folkman–Graham–Hajnal). In 1993, some researchers in these
new numbers seem to have started, suddenly and simultaneously, to use the name
Folkman numbers: Jason I. Brown and Vojtěch Rödl [BR]; Martin Erickson [Eri].
Slowly, through the decade that followed, this name has won out and become
standard.

Obviously, if l>R(m, n), where R(m, n) is a Ramsey number, then Fe(m, n; l) =
R(m, n). The real challenge in calculating Folkman numbers occurs when l ≤
R(m, n), even in the simplest case Fe(3, 3; l). As could be expected, the lower the l
is, the harder is the problem (except for trivially small values of l).

13 Spencer misidentifies the town as Balatonfüred; both towns are on lake Balaton.
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In 1968 Ronald L. Graham [Gra0] published a solution of the first prob-
lem, 27.23. In fact, Graham found the smallest order graph that does the job
for Fe(3, 3; 6).

Graham’s Result 27.30 [Gra0] The graph G = K8 − C5 = K3 + C5 satisfies the
conditions of problem 27.23, i.e.,

Fe(3, 3; 6) = 8.

Graham was not alone working on this new kind of problem, as he wrote in the
conclusion of [Gra0]:

To the best of the author’s knowledge, the first example of a graph satisfying the con-
ditions [27.23] of Erdős and Hajnal was given by J. H. van Lint; subsequently L. Pósa
showed the existence of such a graph containing no complete pentagon [l = 5] and
Jon Folkman constructed such a graph containing no complete quadrilateral [l = 4]
(all unpublished).

Paul Erdős’s problem, reported in 1971 [GS1, p. 138] in the current terminology,
reads simply as:

Paul Erdős’s Open Problem 27.31 Compute edge Folkman numbers.

The simplest unknown edge Folkman number was at that time Fe(3, 3; 5). Its
first upper bound of 42 was established by M. Schäuble in 1969, which 2 years later
was reduced to 23 by Graham and Spencer [GS1], who conjectured that 23 was the
exact value. In 1973 Robert W. Irving [Irv1] reduced the upper bound to 18 and thus
disproved the Graham–Spencer conjecture. A year earlier the best lower bound of
10 was established by Shen Lin [Lin]. Joel Spencer, in a review of Irving’s paper,
wrote (MR0321778):14

It is now known that 10 ≤ Fe (3, 3, 5) ≤ 18. The determination of Fe (3, 3, 5) appears
to be extremely difficult.

Afterwards the Bulgarian mathematicians took over the problem. In 1979,
N. G. Hadziivanov and N. D. Nenov [HN1] reduced the upper bound to 16. A year
later Nenov [Nen1] improved the lower bound to 11, and in 1981 he reduced the
upper bound to 15 [Nen2]. In 1985 Hadziivanov and Nenov [HN2] increased the
lower bound to 12.

In 1999 Stanisław P. Radziszowski, Konrad Piwakowski and Sebastian Urbánski
[PRU] increased the lower bound to match the Nenov’s upper bound at 15, and thus
closed the problem: Fe(3, 3; 5) = 15. They also proved that Fv(3, 3; 4) = 14, and
found a unique bi-critical 14-vertex Folkman graph without a K4 subgraph, such
that any vertex 2-coloring contains a monochromatic triangle K3 (Fig. 27.9). They,
as well as some of their predecessors, observed that by adding a new vertex adjacent
to all 14 vertices of this graph, they get a 15-vertex Folkman graph without a K5

subgraph, and such that any edge 2-coloring contains a monochromatic triangle K3.

14 He used the greek α in place of not yet established Folkman symbol.
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In 1974 in Prague, Paul Erdős gave a talk of a special kind [E75.33]:

I discuss some of the problems which occupied my collaborators and myself for a very
long time. I tried to select those problems which are striking and which are not too
well known.

One of the striking problems addressed there dealt with the next Folkman’s num-
ber, Fe(3, 3; 4). In 1975 we knew very little about it, and Paul Erdős summarized
the state of the problem as follows:

Folkman’s upper bound for Fe(3, 3, 4) is enormous, it is much bigger than 10101010101010

,
the same holds for the bound of Nešetřil and Rödl.

Erdős then offered an unusual, mathematically defined price, max(100 dollars,
300 Swiss francs) for a specific bound.

Paul Erdős’s max ($100, 300 SF) Problem 27.32 [E75.33]. Prove or disprove the
inequality Fe(3, 3, 4) < 1010.

A dozen years later, in 1986 Frankl and Rödl [FR2] came close, within a factor
of 100 from Paul Erdős’s conjectured upper bound: they used a probabilistic proof
to show that Fe(3, 3; 4) ≤ 1012. Soon after, in 1988, Joel Spencer in a paper proudly
called Three Hundred Million Points Suffice [Sp3] squeezed out of the probabilistic
approach a better bound: Fe(3, 3; 4) < 3×108. A mistake found in Spencer’s proof
by Mark Hovey of MIT prompted Spencer in 1989 [Sp4] to increase his bound to
Fe(3, 3; 4) < 3 × 109 and change the title to Three Billion Points Suffice, which
miraculously was still within Paul Erdős’s limit for the cash prize.

Spencer’s Upper Bound 27.33 ([Sp3], [Sp4], 1988–1989)

Fe(3, 3, 4) < 3,000,000,000.

The first lower bound is a consequence of Lin’s 1972 results [Lin], 10 ≤
Fe(3, 3; 5) ≤ Fe(3, 3; 4). In the recently published Geombinatorics work [RX]
Stanisław P. Radziszowski and the Chinese mathematician Xiaodong Xu remark that
the analysis in the above cited 1999 result Fe(3, 3; 5) = 15 [PRU] allows to devise
a better lower bound: all 659 15-vertex graphs that have no K5 subgraph and in
every 2-coloring of edges contain a monochromatic K3, have a subgraph K4, hence
16 ≤ Fe(3, 3; 4). This new 2007 paper [RX] contains a computer-free proof that
18 ≤ Fe(3, 3; 4), and a further computer-aided improvement to 19 ≤ Fe(3, 3; 4),
which is currently the best-known lower bound.

Radziszowski–Xu’s Lower Bound 27.34 ([RX], 2007)

19 ≤ Fe(3, 3; 4).

So, the state of the problem today is this:

19 ≤ Fe(3, 3; 4) < 3,000,000,000.
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As you can see, the gap between the best known lower and upper bounds of
Fe(3, 3; 4) is enormous! The authors of [RX] report:

Geoffrey Exoo suggested to look at the well known Ramsey coloring of K127 defined
by Hill and Irving [HI] in 1982 in order to establish the bound 128 ≤ R(4, 4, 4).

During Staszek Radziszowski’s March 8, 2007 talk at the Florida Atlantic Uni-
versity conference, I hinted that a prize for a dramatic improvement in upper bound
would be in order, and the speaker obligated by offering $500. Better yet, in his
March 22, 2007 e-mail to me, Staszek offered two $500 prizes, for proof or disproof
of the lower bound 50, and the upper bound 127 of Fe(3, 3; 4). “I believe that both
of these bounds are true,” he added in the e-mail.

Radziszowski’s Double $500 Conjecture 27.35 .

50 ≤ Fe(3, 3; 4) ≤ 127.

In his talk Radziszowski mysteriously hinted that an upper bound around the con-
jectured 127 may be proved in the year 2013. I hope we will witness this great result!
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From Pigeonhole Principle to Ramsey Principle

28.1 Infinite Pigeonhole and Infinite Ramsey Principles

The Infinite Pigeonhole Principle states:

Infinite Pigeonhole Principle 28.1 Let k be a positive integer. If elements of an
infinite set S are colored in k colors, then S contains an infinite monochromatic
subset S1.

I am sure you will have no difficulties in proving it.
Do you see anything in common between this simple principle and Infinite Diag-

onal Graph Version of Ramsey Theorem, 27.14? Both say that if we have enough
objects, then we can guarantee the existence of something: in Pigeonhole Principle
it is an infinite subset; in Ramsey Theorem 27.14 we get an infinite subset of edges,
i.e., the subset of two-element sets of vertices of the graph (since an edge is a pair
of vertices). This connection is very close, both results are particular cases of the
so called Ramsey Theorem, one result for r = 1 and the other for r = 2. Let me
formulate it here under the new, more appropriate name in my opinion:

Infinite Ramsey Principle 28.2 For any positive integers k and r , if all r -element
subsets of an infinite set S are colored in k colors, then S contains an infinite subset
S1 such that all r -element subsets of S1 are assigned the same color.

I have always felt that something is wrong with the title “Ramsey Theorem.” To
see that it suffices to read the leader of the field Ronald L. Graham, who in 1983
wrote [Gra2]:

The generic [sic] result in Ramsey Theory is due (not surprisingly) to F. P. Ramsey.

Exactly: a “generic result,” compared to much more specific typical examples,
such as Schur’s Theorem (Chapter 32), Van der Waerden’s Theorem (Chapter 33),
etc. The Ramsey Theorem occupies a unique place in the Ramsey Theory. It is a
powerful tool. It is also a philosophical principle stating, as Theodore S. Motzkin
put it, that “complete disorder is an impossibility. Any structure will necessarily
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contain an orderly substructure”.1 It is, therefore, imperative to call the Ramsey
Theorem by a much better fitting name: The Ramsey Principle.

The original double-induction proof of the Infinite Ramsey Principle 28.2 by
F. P. Ramsey is crystal clear—read it in the original [Ram2]. I choose to present
here the proof by Ronald L. Graham from [Gra1]. This is not only a beautiful proof:
it demonstrates a method that has worked very productively in the Ramsey Theory.
Keep it in your mathematical tool box.

Proof by Ronald L. Graham [Gra1] For r = 1 we get the Infinite Pigeonhole
principle.

Without loss of generality, we can assume that our infinite set S coincides with
the set of positive integers N . (Every infinite set S contains a countable subset
equivalent to N , and N is sufficient for us to select the required in the problem
subset S1.)

We first treat the case r = 2 since it is easy to visualize. We can identify the
two-element subsets of N with edges of the infinite complete graph KN with the
vertex set N = {1, 2, . . . , n, . . . }. Let the edges of KN be colored in k colors. It is
convenient to denote the color of an edge {x, y} by �{x, y}.

(1) Consider the edges of the form {1, x}, i.e., the edges incident with the vertex
1. There are infinitely many of them and only k colors, therefore by the Infinite
Pigeonhole Principle infinitely many of these edges {1, x1}, {1, x2}, . . . , {1, xn}, . . .
are assigned the same color, say c1. Denote X = {x1, x2, . . . , xn, . . . }; and let x1

be the smallest number in X . Please note that �{1, x} = c1 for any x in X .
(2) Consider the edges of the form {x1, x} where x ∈ X ; i.e., the edges inci-

dent with the vertex x1 with the other endpoint x being an element of the set X .
Once again, by the Infinite Pigeonhole Principle infinitely many of these edges
{x1, y1}, {x1, y2}, . . . , {x1, yn}, . . . are assigned the same color, say c2. Denote
Y = {y1, y2, . . . , yn, . . . }; and let y1 be the smallest number in Y . Note that
�{x1, y} = c2 for any y in Y .

(3) Consider the edges {y1, y}, where y ∈ Y , i.e., edges incident with the vertex
y1 with the other endpoint y being an element of Y . Again, by the Infinite Pigeon-
hole Principle infinitely many of these edges {y1, z1}, {y1, z2}, . . . , {y1, zn}, . . .

are assigned the same color, say c3. Denote Z = {z1, z2, . . . , zn, . . . }; and let z1 be
the smallest number in Z . We have �{y1, z} = c3 for any z in Z , etc.

We can continue this construction indefinitely. As a result, we get the infinite set
T = {1, x1, y1, z1, . . . }. It has one key property: for any two elements t, t ′ from T
the color of the edge {t, t ′} depends only on the value of min{t, t ′}. Consequently,
our edge coloring χ on T uniquely determines vertex coloring χ∗ on T as follows

�∗(t) = �{t, t ′} for t ′ > t.

Thus, we get the set T colored in k colors. By the Infinite Pigeonhole Principle some
infinite subset S1 of T must be monochromatic under �∗, i.e., all colors �∗(s) for s

1 Quoted from [GRS2].
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from S1 are the same. However, by the definition of �∗ this means precisely that
all edges {s, s ′} of S1 have the same color under �. This proves the Infinite Ramsey
Principle for r = 2.

As an example of the method, we sketch the proof for r = 3. The given
k-coloring � of three-element subsets of N uniquely determines k-coloring �1 of
the two-element subsets of X ′ = X\ {1} by �1{x, x ′} = �{1, x, x ′}. By the Infinite
Ramsey Principle for k = 2, X contains an infinite subset X ′ monochromatic under
�1, (i.e., all values �1{x, x ′} are the same for x, x ′ ∈ Y ), say having color c1, and
the smallest element x1. Next, the original k-coloring � uniquely defines k-coloring
of two-element subsets of Y = X ′\ {x1} by �2{y, y′} = �{x1, y, y′}. Once again, by
the Infinite Ramsey Principle for r = 2, Y contains an infinite subset Y ′ monochro-
matic under �2, having color c2, and the smallest element y1. We next observe that
the original k-coloring � uniquely defines k-coloring �3 of two-element subsets of
Z = Y ′\ {y1} by �3{z, z′} = �{y1, z, z′}, etc.

Similarly to the case r = 2 above, we end up with the infinite set T =
{1, x1, y1, z1, . . . } which by construction has the property that the color of any
triple {t, t ′, t ′′} depends only on min {t, t ′, t ′′}. Thus, the original k-coloring � of
three-element subsets of T uniquely defines the k-coloring �∗ of the vertices of T
as follows

�∗(t) = �({t, t ′, t ′′} for t ′′ > t ′ > t.

By the Infinite Pigeonhole Principle some infinite subset S1 of T is monochromatic
under �∗. By the definition of �∗ this means that all three-element subsets of S1 have
the same color under �. We are done for r = 3.

The inductive step for the general r follows exactly the same lines.

Have you heard of the famous Helly Theorem? I noticed in 1990 that the Helly
Theorem and its variations are ready for the marriage to the Infinite Ramsey Prin-
ciple. This could be a new observation: not just I, but the leading expert Branko
Grübaum, a coauthor of the monograph Helly’s Theorem and its Relatives [DGK]
written jointly with Ludwig Danzer and Victor Klee has not heard of such a mar-
riage. Here is a plane version of the Helly Theorem for the case of infinitely many
figures.

Helly’s Theorem for Infinite Family of Convex Figures in the Plane 28.3 Given
an infinite family of closed convex figures in the plane, one of which is bounded. If
every three of them have a common point, then the intersection of all figures in the
family is non-empty.

We can obtain the following result, for example, by combining the Helly Theo-
rem and the Infinite Ramsey Principle.

Problem 28.4 Let F1, F2, . . . , Fn, . . . be a family of closed convex figures in the
plane, and F1 be bounded. If among any four figures there are three figures with a
point in common, then infinitely many figures of the family have a point in common.
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Proof Consider the set S = {F1, F2, . . . , Fn, . . . }. We color a three-element subset
{Fi , Fj , Fk} of S red if Fi ∩ Fj ∩ Fk �= ∅, and blue otherwise. By the Infinite
Ramsey Principle S contains an infinite subset S1 such that all three-element subsets
of S1 are assigned the same color. This color cannot be blue because every four-
element subset of S1 contains a three-element subset T = {Fi , Fj , Fk}, such that
Fi ∩ Fj ∩ Fk �= ∅, i.e., T is colored red. Thus, all three-element subsets of S1 are
red. By the Helly Theorem 28.3, all figures of the infinite subset S1 have a point in
common.

In 1990, Paul Erdős informed me in a letter that a stronger statement was conjec-
tured (he was not sure by whom).

Conjecture 28.5 Given an infinite family of closed convex figures in the plane, one
of which is bounded. If among any four figures there are three figures with a point
in common, then there is a finite set S (consisting of n points), such that every given
figure contains at least one point from S.

Moreover, n is an absolute constant (i.e., it is one and the same for all families
that satisfy the above conditions).

Vladimir Boltyanski and I first published this conjecture in 1991 [BS]. 18 years
later, on September 26, 2008 while reading the manuscript of the forthcoming new
expanded 2009 Springer edition of [BS], Branko Grünbaum, resolved this conjec-
ture in the negative: I am mailing to him the $25 prize. Grünbaum showed that
Conjecture 28.5 does not hold even for the line R.

Grünbaum’s Counterexample 28.6 (e-mail to A. Soifer, September 26, 2008).
Define the sets as follows:

F0 = {0};

Fn = {x ∈ R : x ≥ n}, for every positive integer n.

Of course, all conditions of Conjecture 28.5 are satisfied, while for any finite set
S of reals, there is an integer n that is greater than any number from S. By definition,
Fn does not contain any element from S.

On September 29, 2008, I asked Branko, Grünbaum whether he can “save” Con-
jecture 28.5, and the following day he sent me his saving recipe:

Yes, I conjecture that Erdos’s problem may be resuscitated by requiring two (instead
of just one) of the sets to be compact. But I do not see any easy proof.

Grünbaum’s Conjecture 28.7 (e-mail to A. Soifer, September 30, 2008). Given an
infinite family of closed convex figures in the plane, two of which are compact. If
among any four figures there are three figures with a point in common, then there is
a finite set S (consisting of N points) such that every given figure contains at least
one point from S.
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28.2 Pigeonhole and Finite Ramsey Principles

Let us take another look at Frank P. Ramsey’s pioneering 1930 paper [Ram2]. Hav-
ing disposed of the infinite case, Ramsey proves the finite one ( [Ram2], Theo-
rem B). As a methodology of the new theory, it ought to be elevated to the status of
a principle.

Finite Ramsey Principle 28.8 For any positive integers r, n, and k there is an inte-
ger m0 = R (r, n, k) such that if m > m0 and all r -element subsets of an m-element
set Sm are colored in k colors, then Sm contains an n-element subset Sn such that all
r -element subsets of Sn are assigned the same color.

Proof The Ramsey Principle follows from the Infinite Ramsey Principle 28.2 by de
Bruijn–Erdős’s Compactness Theorem 26.1.

A clearly written direct proof, without the use of the compactness argument, can
be found in the original 1930 paper by F. P. Ramsey [Ram2]; it is also reproduced
in full in [GRS2].

As you surely noticed, the Pigeonhole Principle is a particular case of the Fininte
Ramsey Principle for r = 1.

Pigeonhole Principle 28.9 Let n and k be positive integers. If elements of a set S
with at least m0 = (n − 1)k + 1 elements are colored in k colors, then S contains a
monochromatic n-element subset S1.

Since edges can be viewed as two-element subsets of the vertex set of a graph,
by plugging in r = 2 in the Finite Ramsey Principle, we get the result encountered
in the previous chapter: Finite Diagonal Graph Version Ramsey Theorem 27.15.

It is amazing to me how quickly the news of the Ramsey Principle traveled
in the times that can hardly be called the age of information. Ramsey’s paper
appeared in 1930. Already in 1933 the great Norvegian logician Thoralf Albert
Skolem (1887–1963) published his own proof [Sko] of the Ramsey Theorem (with
a reference to the Ramsey’s 1930 publication!). In 1935 yet another proof (for the
graph-theoretic setting) appeared in the paper [ES1] by the two young Hungarians,
Paul Erdős and Gjörgy (George) Szekeres. We will look at this remarkable paper in
the next chapter.
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The Happy End Problem

29.1 The Problem

During the winter of 1932–1933, two young friends, mathematics student Paul
Erdős, age 19, and chemistry student George (György) Szekeres, 21, solved the
problem posed by their youthful lady friend Esther Klein, 22, but did not send it to a
journal for a year and a half. When Erdős finally sent this joint paper for publication,
he chose J. E. L. Brouwer’s journal Compositio Mathematica, where it appeared in
1935 [ES1].

Erdős and Szekeres were first to demonstrate the power and striking beauty of the
Ramsey Principle when they solved this problem. Do not miss G. Szekeres’ story of
this momentous solution later in this chapter. In the process of working with Erdős
on the problem, Szekeres actually rediscovered the Finite Ramsey Principle before
the authors ran into the 1930 Ramsey publication [Ram2].

Erdős–Szekeres’s Theorem 29.1 [ES1] For any positive integer n ≥ 3 there is an
integer m0 such that any set of at least m0 points in the plane in general position2

contains n points that form a convex polygon.

To prove Erdős–Szekeres’s Theorem, we need two tools.

Tool 29.2 (Esther Klein, Winter 1932–1933) Any 5 points in the plane in general
position contain 4 points that form a convex quadrilateral.

In fact, in anticipation of the proof of Erdős–Szekeres’s Theorem, it makes sense
to introduce an appropriate notation E S(n) for the Erdős–Szekeres function. For a
positive integer n, E S(n) will stand for the minimal number such that any E S(n)
points in the plane in general position contain n points that form a convex n-gon.
Esther Klein’s result can be written as

Result 29.3 (Esther Klein). E S(4) = 5.

2 That is, no three points lie on a line.
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Condensed Proof (Use paper and pencil.) Surely, E S(4) > 4. Given 5 points in the
plane in general position, consider their convex hull H .3 If H is a quadrilateral or
a pentagon, we are done. If H is a triangle, the line determined by the two given
points a, b inside H does not intersect one of the triangle H ’s sides de. We get a
convex quadrilateral formed by the points a, b, d, and e.

Tool 29.4 (P. Erdős and G. Szekeres, [ES1]) Let n ≥ 3 be a positive integer. Then
n points in the plane form a convex polygon if and only if every 4 of them form a
convex quadrilateral.

According to Paul Erdős, two members of his circle E. Makai and Paul Turán
established (but never published) one more exact value of E S(n):

Result 29.5 (E. Makai and P. Turán). E S(5) = 9.

Erdős mentioned the authorship of this result numerous times in his problem
papers. However, I know of only one instance when he elaborated on it. During
the first of the two March 1989 lectures Paul gave at the University of Colorado at
Colorado Springs, I learned that Makai and Turán found proofs independently. Paul
said that Makai proof was lengthy, and shared with us Turán’s short Olympiad-like
proof. Turán starts along Esther Klein’s lines by looking at the convex hull of the
given 9 points. Let me stop right here and allow you the pleasure of finding a proof
on your own.

We are now ready to prove Erdős–Szekeres’s Theorem asserting the existence of
the function E S(n).

Proof of Theorem 29.1 (P. Erdős and G. Szekeres) Let n ≥ 3 be a positive integer.
By the Ramsey Principle 28.8 (we set r = 4 and k = 2) there is an integer m0 =
R(4, n, 2) such that if m > m0 and all four-element subsets of an m-element set
Sm are colored in two colors, then Sm contains a n-element subset Sn such that all
four-element subsets of Sn are assigned the same color.

Now let Sm be a set of m points in the plane in general position. We color
a four-element subset of Sm red if it forms a convex quadrilateral, and blue if
it forms a concave (i.e., non-convex) quadrilateral. Thus, all four-element sub-
sets of Sm are colored red and blue. Hence, Sm contains an n-element subset Sn

such that all four-element subsets of Sn are assigned the same color. This color
cannot be blue, because in view of Tool 29.2 any five or more element set con-
tains a red four-element subset! Therefore, all four-element subsets of Sn are col-
ored red, i.e., they form convex quadrilaterals. By Tool 29.4, Sn forms a convex
n-gon.

I must show you a beautiful alternative proof of Erdős–Szekeres’s Theorem 29.1,
especially since it was found by an undergraduate student, Michael Tarsi of Israel.
He missed the class when the Erdős–Szekeres solution was presented, and had to

3 Convex hull of a set S is the minimal convex polygon that contains S. If you pound a nail in every point
of S, then a tight rubber band around all nails would produce the convex hull.



270 VI The Ramsey Principle

come up with his own proof under the gun of the exam! Tarsi recalls (e-mail to me
of December 12, 2006):

Back in 1972, I took the written final exam of an undergraduate Combinatorics course
at the Technion – Israel Institute of Technology, Haifa, Israel. Due to personal circum-
stances, I had barely attended school during that year and missed most lectures of that
particular course. The so-called Erdős-Szekeres Theorem was presented and proved in
class, and we have been asked to repeat the proof as part of the exam. Having seen the
statement for the first time, I was forced to develop my own little proof.

Our teacher in that course, the late Professor Mordechai Levin, had published the
story as an article, I cannot recall the journal’s name, the word ‘Gazette’ was there and
it dealt with Mathematical Education.

I was born in Prague (Czechoslovakia at that time) in 1948, but was raised and grew
up in Israel since 1949. Currently I am a professor of Computer Science at Tel-Aviv
University, Israel.

Proof of Theorem 29.1 by Michael Tarsi. Let n ≥ 3 be a positive integer. By the
Ramsey Principle 28.8 (r = 3 and k = 2) there is an integer m0 = R(3, n, 2) such
that, if m > m0 and all three-element subsets of an m-element subset Sm are colored
in two colors, then Sm contains an n-element subset Sn such that all three-element
subsets of Sn are assigned the same color.

Let now Sm be a set of m points in the plane in general position labeled with
integers 1, 2, . . . , m.

We color a three-element set {i, j, k}, where i < j < k, red if we travel from
i to j to k in a clockwise direction, and blue if counterclockwise. By the above,
Sm contains an n-element subset Sn such that all three-element subsets of Sn are
assigned the same color, i.e., have the same orientation. But this means precisely
that Sn forms a convex n-gon!

In their celebrated paper [ES1], P. Erdős and G. Szekeres also discovered the
Monotone Subsequence Theorem.

A sequence a1, a2, . . . , ak of real numbers is called monotone if it is increasing,
i.e., a1 ≤ a2 ≤ . . . ≤ ak , or decreasing, i.e., a1 ≥ a2 ≥ . . . ≥ ak (we use weak
versions of these definitions that allow equalities of consecutive terms).

Erdős–Szekeres’s Monotone Subsequence Theorem 29.6 [ES1] Any sequence
of n2 + 1 real numbers contains a monotone subsequence of n + 1 numbers.

I would like to show here how the Ramsey Principle proves such a statement
with, of course, much worse upper bound than n2 + 1. I haven’t seen this argument
in literature before.

Problem 29.7 Any long enough sequence of real numbers contains a monotone sub-
sequence of n + 1 numbers.

Solution. Take a sequence S of m = R(2, n + 1, 2) numbers a1, a2, . . . , am . Color
a two-element subsequence {ai , a j }, i < j red if ai ≤ a j , and blue if ai > a j .
By the Ramsey Principle, there is an (n + 1)-element subsequence S1 with every
two-element subsequence of the same color. But this subsequence is monotone!
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In [ES1] P. Erdős and G. Szekeres generalize Theorem 29.6 as follows:

Erdős–Szekeres’s Monotone Subsequence Theorem 29.8 Any sequence S: a1, a2,

. . . , ar of r > mn real numbers contains a decreasing subsequence of more than m
terms or an increasing subsequence of more than n terms.

A quarter of a century later, in 1959, A. Seidenberg of the University of Califor-
nia, Berkeley, found a brilliant “one-line” proof of Theorem 29.8, thus giving it a
true Olympiad-like appeal.

Proof of Theorem 29.8 by A. Seidenberg [Sei] Assume that the sequence S :
a1, a2, . . . , ar of r > mn real numbers has no decreasing subsequence of
more than m terms. To each ai assign a pair of numbers (mi , ni ), where mi is
the largest number of terms of a decreasing subsequence beginning with ai and
ni the largest number of terms of an increasing subsequence beginning with ai .
This correspondence is an injection, i.e., distinct pairs correspond to distinct terms
ai , a j , i < j . Indeed, if ai ≤ a j then ni ≥ n j +1, and if ai > a j then mi ≥ m j +1.

We get r > mn distinct pairs (mi , ni ), they are our pigeons, and m possible
values (they are our pigeonholes) for mi , since 1 ≤ mi ≤ m. By the Pigeonhole
Principle, there are at least n + 1 pairs (m0, ni ) with the same first coordinate m0.
Terms ai corresponding to these pairs (m0, ni ) form an increasing subsequence!

Erdős and Szekeres note that the result of their Theorem 29.8 is best possible:

Problem 29.9 ( [ES1]) Construct a sequence of mn real numbers such that it has
no decreasing subsequence of more than m terms and no increasing subsequence of
more than n terms.

Proof Here is a sequence of mn terms that does the job:

m, m − 1, . . . 1; 2m, 2m − 1, . . . , m + 1; . . . ;

nm, nm − 1, . . . , (n − 1) m + 1.

H. Burkill and Leon Mirsky in their 1973 paper [BM] observe that the Monotone
Subsequence Theorem holds for countable sequences as well.

Countable Monotone Subsequence Theorem 29.10 [BM]. Any countable se-
quence S : a1, a2, . . . , ar , . . . of real numbers contains an infinite increasing
subsequence or an infinite strictly decreasing subsequence.

Hint: Color the two-element subsets of S in two colors.

The authors “note in passing that the same type of argument enables us to show”
the following cute result (without a proof):

Curvature Preserving Subsequence Theorem 29.11 [BM]. Every countable
sequence S possesses an infinite subsequence which is convex or concave.

Hint: Recall Michael Tarsi’s proof of Erdős–Szekeres Theorem above, and color
the three-element subsets of S in two colors!
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The results of this section reminded me of the celebrated Helly Theorem.

Helly’s Theorem 29.12 Let F1 . . . , Fm be convex figures in n-dimensional space
Rn . If each n + 1 of these figures have a common point, then the intersection
F1 ∩ . . . ∩ Fm is non-empty.

In particular, for n = 2 we get Helly’s Theorem for the plane.

Helly’s Theorem for the Plane 29.13 A finite family F1 . . . , Fm of convex figures
is given in the plane. If every three of them have a non-empty intersection, then the
intersection F1 ∩... ∩ Fm of all of these figures is non-empty as well.

The structure of the Helly Theorem appears to me similar to the one of Theo-
rem 29.1. This is why I believe that the Helly Theorem and its numerous beautiful
variations are a fertile ground for applications of the powerful tool, the Finite Ram-
sey Principle 28.8. To the best of my—and Branko Grünbaum’s—knowledge this
marriage of Helly and Ramsey has not been noticed before. To illustrate it, I have
created a sample problem. Its result is not important, but the method may lead you
to discovering new theorems.

Problem 29.14 Let m be a large enough positive integer (m ≥ R(3, 111, 2) to be
precise), and F1, . . . , Fm be convex figures in the plane. If among every 37 figures
there are 3 figures with a point in common, then there are 111 figures with a point
in common.

Hint: The fact that 37 × 3 = 111 has absolutely nothing to do with solution:
the statement of Problem 29.14 remains true if we replace 37 and 111 by arbitrary
positive integers l and n, respectively, as long as l ≤ n.

Solution: Let m ≥ R (3, 111, 2), and F1, F2, . . . , Fm be convex figures in the plane.
Consider the set S = {F1 F2, . . . , Fm}. We color a three-element subset {Fi , Fj , Fk}
of S red if Fi ∩ Fj ∩ Fk �= Ø, and blue otherwise. By the Finite Ramsey Principle
28.8, there is a 111-element subset S1 of S such that all its three-element subsets
are assigned the same color. Which color can it be? Surely not blue, for among
every 37 figures there are 3 figures with a point in common, thus forming a red
three-element subset. Thus, all three-element subsets of S1 are red. Therefore, by the
Helly Theorem 29.13 the intersection of all 111 figures of the set S1 is non-empty.

29.2 The Story Behind the Problem

On Paul Erdős’s 60th birthday, his lifelong friend George (György) Szekeres gave
Paul and us all a present of magnificent reminiscences, allowing us a glimpse into
Erdős and Szekeres’s first joint paper [ES1]and the emergence of a unique group
of unknown young Jewish Hungarian mathematicians in Budapest, many of whom
were destined to a great mathematical future. To my request to reproduce these
remarkable reminiscences, George Szekeres answered in the March 5, 1992 letter:
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Dear Alexander, . . . Of course, as far as I am concerned, you may quote anything you
like (or see fit) from my old reminiscences in “The Art of Counting”. . . But of course
it may be different with MIT Press, that you have to sort out with them.

György Szekeres and Esther Klein, Bükk Mountains, Northern Hungary, 1938 (shortly after
their 1937 marriage), provided by George Szekeres

I am grateful to George Szekeres and the MIT Press for their kind permission to
reproduce George’s memoirs here. His Reminiscences are sad and humorous at the
same time, and warm above all. György Szekeres recalls [Szek]:

It is not altogether easy to give a faithful account of events which took place forty
years ago, and I am quite aware of the pitfalls of such an undertaking. I shall attempt
to describe the genesis of this paper, and the part each of us played in it, as I saw it
then and as it lived on in my memory.

For me there is a bit more to it than merely reviving the nostalgic past. Paul Erdős,
when referring to the proof of Ramsey’s theorem and the bounds for Ramsey num-
bers given in the paper, often attributed it to me personally (e.g., in [E42.06]), and he
obviously attached some importance to this unusual step of pinpointing authorship
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in a joint paper. At the same time the authorship of the “second proof” was never
clearly identified.

I used to have a feeling of mild discomfort about this until an amusing incident
some years ago reassured me that perhaps I should not worry about it too much.
A distinguished British mathematician gave a lunch-hour talk to students at Imperial
College on Dirichlet’s box principle, and as I happened to be with Imperial, I went
along. One of his illustrations of the principle was a beautiful proof by Besicovitch
of Paul’s theorem (2nd proof in [ES1]), and he attributed the theorem itself to “Erdős
and someone whose name I cannot remember.” After the talk I revealed to him
the identity of Paul’s coauthor (incidentally also a former coauthor of the speaker)
but assured him that no historical injustice had been committed as my part in the
theorem was less than �.

Paul Erdős, early 1930s, Budapest

The origins of the paper go back to the early 1930s. We had a very close circle of
young mathematicians, foremost among them Erdős, Turán, and Gallai; friendships
were forged which became the most lasting that I have ever known and which out-
lived the upheavals of the 1930s, a vicious world war and our scattering to the four
corners of the world. I myself was an “outsider,” studying chemical engineering at
the Technical University, but often joined the mathematicians at weekend excursions
in the charming hill country around Budapest and (in summer) at open air meetings
on the benches of the city park.

Paul, then still a young student but already with a few victories in his bag, was
always full of problems and his sayings were already a legend. He used to address
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us in the same fashion as we would sign our names under an article and this habit
became universal among us; even today I often call old members of the circle by a
distortion of their initials.

“Szekeres Gy., open up your wise mind.” This was Paul’s customary invitation—
or was it an order?—to listen to a proof or a problem of his. Our discussions centered
around mathematics, personal gossip, and politics. It was the beginning of a desper-
ate era in Europe. Most of us in the circle belonged to that singular ethnic group of
European society which drew its cultural heritage from Heinrich Heine and Gustav
Mahler, Karl Marx and Cantor, Einstein and Freud, later to become the principal
target of Hitler’s fury. Budapest had an exceptionally large Jewish population, well
over 200,000, almost a quarter of the total. They were an easily identifiable group
speaking an inimitable jargon of their own and driven by a strong urge to congregate
under the pressures of society. Many of us had leftist tendencies, following the sim-
ple reasoning that our problems can only be solved on a global, international scale
and socialism was the only political philosophy that offered such a solution. Being
a leftist had its dangers and Paul was quick to spread the news when one of our
members got into trouble: “A. L. is studying the theorem of Jordan.” It meant that
following a political police action A. L. has just verified that the interior of a prison
cell is not in the same component as the exterior. I have a dim recollection that this
is how I first heard about the Jordan curve theorem.

Apart from political oppression, the Budapest Jews experienced cultural perse-
cution long before anyone had heard the name of Hitler. The notorious “numerus
clausu” was operating at the Hungarian Universities from 1920 onwards, allowing
only 5% of the total student intake to be Jewish. As a consequence, many of the
brightest and most purposeful students left the country to study elsewhere, mostly
in Germany, Czechoslovakia, Switzerland, and France. They formed the nucleus of
that remarkable influx of Hungarian mathematicians and physicists into the United
States, which later played such an important role in the fateful happenings towards
the conclusion of the second world war.

For those of us who succeeded in getting into one of the home universities, life
was troublesome and the outlook bleak. Jewish students were often beaten up and
humiliated by organized student gangs and it was inconceivable that any of us, be
he as gifted as Paul, would find employment in academic life. I myself was in a
slightly better position as I studied chemical engineering and therefore resigned
to go into industrial employment, but for the others even a high school teaching
position seemed to be out of reach.

Paul moved to Manchester soon after his Ph.D. at Professor Mordell’s invitation,
and began his wanderings which eventually took him to almost every mathematical
corner of the world. But in the winter of 1932/1933 he was still a student; I had
just received my chemical degree and, with no job in sight, I was able to attend the
mathematical meetings with greater regularity than during my student years. It was
at one of these meetings that a talented girl member of our circle, Esther Klein (later
to become Esther Szekeres), fresh from a one-semester stay in Göttingen, came up
with a curious problem: given 5 points in the plane, prove that there are 4 which form
a convex quadrilateral. In later years this problem frequently appeared in student’s
competitions, also in the American Mathematical Monthly (53(1946)462, Problem
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E740). Paul took up the problem eagerly and a generalization soon emerged: is it
true that out of 2n−2+1 points in the plane one can always select n points so that they
form a convex n-sided polygon? I have no clear recollection how the generalization
actually came about; in the paper we attributed it to Esther, but she assures me that
Paul had much more to do with it. We soon realized that a simple-minded argument
would not do and there was a feeling of excitement that a new type of geometrical
problem emerged from our circle which we were only too eager to solve. For me
the fact that it came from Epszi (Paul’s nickname for Esther, short for �) added a
strong incentive to be the first with a solution and after a few weeks I was able to
confront Paul with a triumphant “E. P., open up your wise mind.” What I really found
was Ramsey’s theorem from which it easily followed that there exists a number
N < ∞ such that out of N points in the plane it is possible to select n points which
form a convex n-gon. Of course at that time none of us knew about Ramsey. It
was a genuinely combinatorial argument and it gave for N an absurdly large value,
nowhere near the suspected 2n−2. Soon afterwards Paul produced his well-known
“second proof” which was independent of Ramsey and gave a much more realistic
value for N ; this is how a joint paper came into being.

I do not remember now why it took us so long (a year and a half) to submit the
paper to the Compositio. These were troubled times and we had a great many wor-
ries. I took up employment in a small industrial town, some 120 kms from Budapest,
and in the following year Paul moved to Manchester; it was from there that he
submitted the paper.

I am sure that this paper had a strong influence on both of us. Paul with his
deep insight recognized the possibilities of a vast unexplored territory and opened
up a new world of combinatorial set theory and combinatorial geometry. For me
it was the final proof (if I needed any) that my destiny lay with mathematics, but
I had to wait for another 15 years before I got my first mathematical appointment in
Adelaide. I never returned to Ramsey again.

Paul’s method contained implicitly that N > 2n−2, and this result appeared some
35 years later [ES2] in a joint paper, after Paul’s first visit to Australia. The problem
is still not completely settled and no one yet has improved on Paul’s value of

N =
(

2n − 4
n − 2

)

+ 1.

Of course we firmly believe that N = 2n−2 + 1 is the correct value.

These moving memories prompted me to ask for more. George Szekeres replied
on November 30, 1992:

Dear Sasha, . . . Marta Svéd rang me some time ago from Adelaide, reminding me of
an article that I was supposed to write about the old Budapest times. . . From a distance
of 60 years, as I approach 82, these events have long lost their “romantic” freshness. . .
My memories of those times are altogether fading away into the remote past, even if
they are occasionally refreshed on my visits to Budapest. (I will certainly be there to
celebrate Paul’s 80-th birthday.)
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The following year George did come to Hungary, and we met for dinner during
the conference dedicated to Paul Erdős’s 80th birthday, when George Szekeres and
Esther Klein shared with me unique memories of Tibor Gallai, a key Budapest group
member. See them in Chapter 42, dedicated to the Gallai Theorem.

29.3 Progress on the Happy End Problem

In May 1960, when Paul Erdős visited George Szekeres in Adelaide, they improved
the lower bound of the Happy End problem [ES2].

Lower Bound 29.15 (Erdős and Szekeres [ES2]). 2n−2 ≤ E S (n), where E S (n) is
the Erdős–Szekeres function, i.e., the smallest integer such that any E S (n) points
in general position contain a convex n-gon.4

It is fascinating how sure Erdős and Szekeres were of their conjecture. In one of
his last, posthumously published problem papers [E97.18], Erdős attached the prize
and modestly attributed the conjecture to Szekeres: “I would certainly pay $500 for
a proof of Szekeres’s conjecture.”

Erdős–Szekeres Happy End $500 Conjecture 29.16

E S (n) = 2n−2 + 1.

Their confidence is surprising5 because the foundation for the conjecture was
very thin, just results 29.2 and 29.5:

E S(4) = 5,

E S(5) = 9.

Computing exact values of the Erdős–Szekeres function E S(n) proved to be
a very difficult matter. It took over 70 years to make the next step. In 2006,
George Szekeres (posthumously) and Lindsay Peters, with the assistance of Bren-
dan McKay and heavy computing, have established one more exact value in the
paper [SP] written “In memory of Paul Erdős”:

Result 29.17 (G. Szekeres and L. Peters [SP]). E S(6) = 17.

In his latest surveys [Gra7], [Gra8],6 Ronald L. Graham is offering $1000 for the
first proof, or disproof, of the Erdős–Szekeres Happy End Conjecture 29.16.

4 Erdős and Szekeres actually proved a strict inequality.
5 In fact, Paul Erdős repeated $500 offer for the proof of the conjecture in [E97.21], but offered there
“only 100 dollars for a disproof.”
6 I thank Ron Graham for kindly providing the preprints.
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George Szekeres was, of course, correct when he wrote in his 1973 reminiscences
above that their 1935 upper bound

E S(n) ≤
(

2n − 4
n − 2

)

+ 1

had not been improved. In fact, it withstood all attempts of improvement until 1997
when Fan Chung and Ronald L. Graham [CG] willed it down by 1 point to

E S(n) ≤
(

2n − 4
n − 2

)

.

In the process, Chung and Graham offered a fresh approach which started an
explosion of improvements. First it was improved by Daniel J. Kleitman and Lior
Pachter [KP] to

E S(n) ≤
(

2n − 4
n − 2

)

+ 7 − 2n.

Then came Géza Tòth and Pavel Valtr [TV1] with

E S(n) ≤
(

2n − 5
n − 2

)

+ 2.

These developments happened so swiftly that all three above papers appeared in
the same 1998 issue of Discrete Computational Geometry! In 2005 Tòth and Valtr
came again [TV2] with the best known today upper bound

E S(n) ≤
(

2n − 5
n − 2

)

+ 1,

which is about half of the original Erdős–Szekeres upper bound.
Paul Erdős’s trains of thought are infinite—they never end, and each problem

gives birth to a new problem, or problems. The Happy End Problem is not an excep-
tion. Paul writes about the AfterMath of the Happy End Problem with his vintage
humor and warmth [E83.03]:

Now there is the following variant which I noticed when I was once visiting the Szek-
eres in 1976 in Sydney, the following variant which is of some interest I think. It
goes as follows. n(k) is derived as follows, if it exists. It is the smallest integer with the
following property. If you have n(k) points in the plane, no three on a line, then you can
always find a convex k-gon with the additional restriction that it doesn’t contain a point
in the interior. You know this goes beyond the theorem of Esther, I not only require that
the k points should form a convex k-gon, I also require that this convex k-gon should
contain none of the [given] points in its interior. And surprisingly enough this gives a
lot of new difficulties. For example it is trivial that n(4) is again 5, that is no problem.
Because if your have a convex quadrilateral, if no point is inside we are happy; if from
the five points one of them is inside you draw the diagonal (AC, Fig. 29.1):
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And you join these (AE, EC) and now this convex quadrilateral (AECD) contains
none of the points. And if you have four points and the fifth point is inside then you take
this quadrilateral. This is convex again and has no point in the inside. And Harborth
proved that n(5) = 10. f (5) was 9 in Esther Klein’s problem but here n(5) is 10. He
dedicated his paper to my memory when I became an archeological discovery. When
you are 65 you become an archeological discovery. Now, nobody has proved that n(6)
exists. That you can give, for every t, t points in the plane, no three on a line and
such that every convex hexagon contains at least one of the points in its interior. It’s
perfectly possible that can do that. Now Harborth suggested that maybe n(6) exists but
n(7) doesn’t. Now I don’t know the answer here.

Fig. 29. 1

Indeed, in 1978 Heiko Harborth [Harb] of Braunschweig Technical University,
Germany, proved that n(5) = 10. In 1983 J. D. Horton [Hort] of the University of
New Brunswick, Canada, proved Harborth’s conjecture that n(t) does not exist for
t ≥ 7. This left a mystifying gap that is alive and well today:

Open Problem 29.18 Does n(6) exist? If yes, find its value.

This new rich train of thought now includes many cars. I would like to share with
you my favorite, the beautiful 2005 result by Adrian Dumitrescu of the University
of Wisconsin-Milwaukee.

Dumitrescu’s Theorem 29.19 [Dum].7 For each finite sequence h0, h1, . . . , hk ,
with hi ≥ 3 (i = 0, . . . , k) there is an integer N = N (h0, h1, . . . , hk) such that
any set S of at least N points in general position in the plane contains either

an empty convex h0-gon (i.e., a convex h0-gon that contains no points of S in its
interior)

or

k convex polygons P1, P1, . . . , P1, where Pi is an hi -gon such that Pi strictly
contains Pi+1 in its interior for i = 1, . . . , k − 1.

7 Adrian mistakenly credits 1975 Erdős’s paper [E72.25] with the birth of the problem about empty
convex polygons. In the cited story Erdős clearly dates it to his 1976 visit of the Szekereses.
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29.4 The Happy End Players Leave the Stage as Shakespearian
Heroes

Paul Erdős named it The Happy End Problem. He explained the name often in his
talks. On June 4, 1992 in Kalamazoo I took notes of his talk:

I call it The Happy End Problem. Esther captured George, and they lived happily ever
after in Australia. The poor things are even older than me.

This paper also convinced George Szekeres to become a mathematician. For Paul
Erdős the paper had a happy end too: it became one of his early mathematical gems
and Paul’s first of the numerous contributions to and leadership of the Ramsey
Theory and, as Szekeres put it, of “a new world of combinatorial set theory and
combinatorial geometry.”

The personages of The Happy End Problem appear to me like heroes of Shake-
speare’s plays. Paul, very much like Tempest’s Prospero, gave up all his property,
including books, to be free. George and Esther were so close that they ended
their lives together, like Romeo and Juliet. In the late summer 2005 e-mail, Tony
Guttmann conveyed to the world the sad news from Adelaide:

George and Esther Szekeres both died on Sunday morning [August 28, 2005]. George,
94, had been quite ill for the last 2–3 days, barely conscious, and died first. Esther, 95,
died an hour later. George was one of the heroes of Australian mathematics, and, in
her own way, Esther was one of the heroines.

I always wanted to know the membership in this amazing Budapest group. On
May 28, 2000, during a dinner in the restaurant of the Rydges North Sydney Hotel at
54 McLaren Street,8 I asked George Szekeres and Esther Klein to name the members
of their group, so to speak the Choir of the Happy End Production. Esther produced,
signed and dated the following list of young participants, of which according to her
“half a dozen usually met”:

Paul Erdős, Tibor Grünwald (Gallai), Géza Grünwald (Gergör), Esther Klein
(Szekeres), Lily Székely (Sag), George (György) Szekeres, Paul Turán, Martha
Wachsberger (Svéd), and Endre Vázsonyi.9

George Szekeres also told me that night “my student and I proved Esther’s Con-
jecture for 17 with the use of computer.” “Which computer did you use?” asked I.
“I don’t care how a pencil is made,” answered George.

8 Esther wrote the list on the letterhead of the hotel.
9 Mikós Ság and László Molnár occasionally joined the group too.



30
The Man behind the Theory: Frank
Plumpton Ramsey

I verified harmony by algebra.
Only then, experienced in science,
I dared to surrender to the bliss of creative dream.

– Aleksandr Pushkin, Mozart and Salieri

Knowledge is a correspondence between idea and
fact.

– Frank Plumpton Ramsey

30.1 Frank Plumpton Ramsey and the Origin of the Term
“Ramsey Theory”

Who was “Ramsey,” the man behind the theory named for him by others?
Let us start with the introduction to Ramsey’s collected works [Ram3], assembled

and edited right after his passing in 1930 by Ramsey’s friend and disciple Richard
Bevan Braithwaite, then Fellow of King’s College and later the Knightbridge
Professor of Philosophy at the University of Cambridge, who opens as follows:

Frank Plumpton Ramsey was born on 22nd February, 1903, and died on 19th January
1930 [a jaundice attack prompted by an unsuccessful surgery]. The son of the President
of Magdalene, he spent nearly all his life in Cambridge, where he was successively
Scholar of Trinity, Fellow of King’s [at 21], and Lecturer in Mathematics in the Uni-
versity [at 23]. His death at the height of his powers deprives Cambridge of one of
its intellectual glories and contemporary philosophy of one of its profoundest thinkers.
Though mathematical teaching was Ramsey’s profession, philosophy was his vocation.

The celebrated British philosopher, Cambridge “Professor of Mental Philosophy
and Logic” and Fellow of Trinity College, George Edward Moore wrote the preface
for the book [Ram3]:

He [Ramsey] was an extraordinarily clear thinker: no-one could avoid more easily than
he the sort of confusions of thought to which even the best philosophers are liable,
and he was capable of apprehending clearly and observing consistently, the subtlest
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distinctions. He had, moreover, an exceptional power of drawing conclusions from a
complicated set of facts: he could see what followed from them all taken together, or at
least what might follow, in cases where others could draw no conclusions whatsoever.
And, with all this, he produced the impression of also possessing the soundest com-
mon sense: his subtlety and ingenuity did not lead him, as it seems to have led some
philosophers, to deny obvious facts. He had, moreover, so it seemed to me, an excellent
sense of proportion: he could see which problems were the most fundamental, and it
was these in which he was most interested and which he was most anxious to solve.
For all these reasons, and perhaps for others as well, I almost always felt, with regard to
any subject that we discussed, that he understood it much better than I did, and where
(as was often the case) he failed to convince me, I generally thought the probability
was that he was right and I was wrong, and that my failure to agree with him was due
to lack of mental power on my part.

Indeed, Ramsey’s philosophical essays impress me immensely by their depth,
clarity, and common sense—a combination that reminds me the great Michel de
Montaigne. Here is my favorite quotation from Ramsey [Ram5, p. 53]:

Knowledge is a correspondence between idea and fact.

Frank P. Ramsey’s parents were Arthur Stanley Ramsey and Agnes Mary Wilson.
In addition to Magdalene College’s presidency, Arthur S. Ramsey was a tutor in
mathematics. Frank was the oldest of four children, he had two sisters and a brother,
Arthur Michael Ramsey, who much later became The Most Reverend Michael
Ramsey, Archbishop of Canterbury (1961–1974). In 1925, Frank P. Ramsey married
Lettice C. Baker, and their marriage produced two daughters. It is surprising to find
in one family two brothers, Michael, the head of the Church of England and Frank,
“a militant atheist,” as Lettice described her husband.

The great economist John Maynard Keynes (1883–1946), who was then a Fellow
of King’s College and a close friend of Frank Ramsey, writes in March 1930 about
Ramsey’s contribution to economics [Key]:

He [Ramsey] has left behind him in print (apart from his philosophical papers) only
two witnesses of his powers – his papers published in the Economic Journal on “A
Contribution to the Theory of Taxation” in March 1927, and on “A Mathematical
Theory of Saving” in December 1928. The latter of these is, I think, one of the most
remarkable contributions to mathematical economics ever made, both in respect of the
intrinsic importance and difficulty of its subject, the power and elegance of the tech-
nical methods employed, and the clear purity of illumination with which the writer’s
mind is felt by the reader to play about its subject.

Keynes also draws for us a portrait of Ramsey the man (ibid.):

His bulky Johnsonian frame, his spontaneous gurgling laugh, the simplicity of feelings
and reactions, half-alarming sometimes and occasionally almost cruel in their direct-
ness and literalness, his honesty of mind and heart, his modesty, and the amazing, easy
efficiency of the intellectual machine which ground away behind his wide temples
and broad, smiling face, have been taken from us at the height of their excellence and
before their harvest of work and life could be gathered in.
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This portrait reminds me of Frank Ramsey’s joking about his size while favoring
human emotion over all issues of the universe (February 28, 1925):

Where I seem to differ from some of my friends is in attaching little importance to
physical size. I do not feel the least humble before the vastness of the heavens. The
stars may be large, but they cannot think of love; and those are qualities which impress
me far more than the size does. I take no credit for weighing nearly seventeen stone.

Frank Plumpton Ramsey, aged 18. Reproduced by kind permission of the Provost and Schol-
ars of King’s College, Cambridge

By kind permission of the Provost and Scholars of King’s College, Cambridge,
I can share with you two photographs of the gentle giant, Frank Plumpton Ramsey.
As Jacqueline Cox, Modern Archivist of King’s College Library advises in her
November 21, 1991 letter, “Both photographs come from the J. M. Keynes Papers
(ref. JMK B/4). The first is a portrait of him at age the 18 in 1921 [page 283]. The
second [page 284] shows him sitting on the ground in the open air reading a book at
the age 25 in 1928. The photographers are not indicated, but in the case of the second
photograph a note records that it was taken in the Austrian Tyrol in August 1928.”

Considering his short life, Ramsey produced an enormous amount of work
in logic, foundations of mathematics, mathematics, probability, economics, deci-
sion theory, cognitive psychology, semantics, and of course philosophy. Ramsey
manuscripts, held in the Hillman Library of the University of Pittsburg, fill seven
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boxes and number about 1500 pages10 [Ram5]. Probability fare is worthy of our
attention. In his February 27, 1978 BBC radio broadcast (reprinted as an arti-
cle [Mel] in 1995), Emeritus Professor of Philosophy at Cambridge D. H. Mellor
explains:

The economist John Maynard Keynes, to whom Braithwaite introduced Ramsey in
1921, published his Treatise on Probability in August of that year. . .It did not satisfy
Ramsey, whose objections to it – some of them published before he was nineteen –
were so cogent and comprehensible that Keynes himself abandoned it.

Frank Plumpton Ramsey, aged 25, Austrian Tyrol, August, 1928. Reproduced by kind per-
mission of the Provost and Scholars of King’s College, Cambridge

In fact, the Princeton Professor Emeritus of both Mathematics and Economics
Harold W. Kuhn tells me that Keynes decided against continuing with mathematics
because Ramsey was so much superior in it. Mellor continues:

In this paper [Ram4], after criticizing Keynes, Ramsey went on to produce his own
theory. This starts from the fact that people’s actions are largely determined by what
they believe and what they desire – and by strength of those beliefs and desires. The
strength of people’s beliefs is measured by the so-called ‘subjective probability’ they

10 In A Tribute to Frank P. Ramsey [Har2], Frank Harary writes: “At her home, she [Mrs. Lettice Ramsey,
the widow] showed me box upon box of notes and papers of Frank Ramsey and invited me to pore through
them. As they dealt mostly with philosophy, I had to decline.” As “a tribute,” could Prof. Harary have
shown more interest and curiosity?
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attach to events. . .Subjective utility measures the strength of people’s desires just as
subjective probability measures the strength of their beliefs.

The problem is how to separate these two components of people’s actions. . . One
of the things Ramsey’s paper did was to show how to extract people’s subjective util-
ities and probabilities from the choices they make between different gambles; and by
doing so it laid the foundations for the serious use of these concepts in economics and
statistics as well as in philosophy.

It took a long time, however, from this 1926 paper of Ramsey’s to bear fruit. Only
after the publication in 1944 of a now classic book [NM] by John von Neumann and
Oskar Morgenstern, The Theory of Games and Economic Behavior, did utility theory
begin to catch on and be applied in modern decision theory and games theory. And
for many years no one realized how much of it had been anticipated in Ramsey’s
1926 paper.

I am looking at the classic 1944 book [NM] Mellor mentions above, writ-
ten by the two celebrated Institute for Advanced Study and Princeton University
members, John von Neumann (1903–1957) and Oskar Morgenstern (1902–1977)
respectively, and at its later editions (Fine Library of Princeton-Math is very good).
The authors cite many colleagues in the book: Daniel Bernoulli, Dedekind, Kro-
necker, D. Hilbert, F. Hausdorff, E. Zermelo, G. Birkhoff, E. Borel, W. Burnside,
C. Carathéodory, W. Heisenberg, A. Speiser – and even Euclid. One missing name
that merits credit the most is that of Frank P. Ramsey. Harold W. Kuhn tells me that
in a 1953 letter he asked von Neumann why the latter gave no credit to Ramsey for
inventing subjective probability. Indeed, this question and von Neumann’s answer
are reflected in H. W. Kuhn and A. W. Tucker’s 1958 memorial article about von
Neumann [KT, pp. 107–108]:

Interest in this problem as posed [measuring “moral worth” of money] was first shown
by F. P. Ramsey [Ram4] who went beyond Bernoulli in that he defined utility oper-
ationally in terms of individual behavior. (Once von Neumann was asked [by H. W.
Kuhn] why he did not refer to the work of Ramsey, which might have been known
to someone conversant with the field of logic. He replied that after Gödel published
his papers on undecidability and the incompleteness of logic, he did not read another
paper in symbolic logic.11

Ramsey’s priority was discovered and acknowledged in print by others. In
already mentioned D. H. Mellor’s broadcast, the philosopher of probability
Richard Carl Jeffrey (1926–2002; Ph.D. Princeton 1957; Professor of Philosophy at
Princeton 1974–1999) says:

It was when Leonard Savage, statistician, was working on his book on subjective prob-
ability theory, and he wished to find out what if anything the philosophers had to say
on the subject, he went to Ramsey article [Ram4] and read it, and he found that what

11 Indeed, von Neumann and Morgenstern probably did not expect Ramsey to publish on a topic far away
from the foundations, such as economics, and thus might not have known about Ramsey’s pioneering
work by the time of the first 1944 edition of their celebrated book. However, new editions, which came
out in 1947, 1953, 1961, etc., did not give Ramsey a credit either.
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he [Ramsey] had done was to a great extend fairly describable as rediscovering another
aspect of Ramsey’s work in that article – the foundations of the theory of subjective
probability. It was Savage’s book, The Foundations of Statistics, that was published
in 1954, that made subjectivism a respectable sort of doctrine for serious statistician
to maintain; and the remarkable thing is that Ramsey in this little paper to the Moral
Sciences Club in 1926 has done all of that already.

Indeed, Leonard Jimmie Savage (1917–1971) writes in 1954 [Sav, pp. 96–97]:

Ramsey improves on Bernoulli in that he defines utility operationally in terms of the
behavior of a person constrained by certain postulates. . .

Why should not the range, the variance, and the skewness, not to mention countless
other features, of the distribution of some function join with the expected value in
determining preference? The question was answered by the construction of Ramsey
and again by that of von Neumann and Morgenstern.

Richard C. Jeffrey writes [Jef, p. 35]:

This method of measurement [of desirability] was discovered by F. P. Ramsey and
rediscovered by von Neumann and Morgenstern, through whose work it came to play
its current role in economics and statistics.

More importantly, most of his 1965 book The Logic of Decision [Jef] is based on
Ramsey’s ideas, while one Chapter is simply called Ramsey’s Theory.

Ramsey’s first mathematical paper, Mathematical Logic [Ram1] appeared in
1926 in the midst of the Grundlagenstreit (Crisis in the Foundations), the con-
frontation between the two giants, David Hilbert and L. E. J. Brouwer, over the
foundations of mathematics. Ramsey, who always addressed the most important
issues of his day did not shy away from this one either. However, he did not, take
either side. Ramsey did not agree with the intuitionist approach:

Weyl has changed his view and become a follower of Brouwer, the leader of what is
called the intuitionist school, whose chief doctrine is the denial of the Law of Excluded
Middle, that every proposition is either true or false. This is denied apparently because
it is thought impossible to know such a thing a priori, and equally impossible to know
it by experience. . . Brouwer would refuse to agree that either it was raining or it was
not raining, unless he had looked to see.

Ramsey did not support Hilbert either:

I must say something of the system of Hilbert and his followers, which is designed
to put an end to such skepticism once and for all. This is to be done by regarding
higher mathematics as the manipulation of meaningless symbols according to fixed
rules. We start with certain symbols called axioms: from these we can derive others
by substituting certain symbols called constants for others called variables, and by
proceeding from the pair of formulae p, if p then q to the formula q .

Mathematics proper is thus regarded as a sort of game, played with meaningless
marks on paper rather like noughts and crosses; but besides this there will be another
subject called metamathematics, which is not meaningless, but consists of real asser-
tions about mathematics, telling us what this or that formula can or cannot be obtained
from the axioms according to the rules of deduction. . .
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Now, whatever else a mathematician is doing, he is certainly making marks on
paper, and so this point of view consists of nothing but the truth; but it is hard to sup-
pose it is the whole truth. There must be some reason for the choice of axioms. . .Again,
it may be asked whether it is really possible to prove that the axioms do not lead to
contradiction, since nothing can be proved unless some principles are taken for granted
and assumed to lead to contradiction.

Summing up both Hilbert and Brouwer–Weyl approaches, Ramsey concluded:

We see then that these authorities, great as they are the differences between them, are
agreed that mathematical analysis as originally taught cannot be regarded as a body of
truth, but is either false or at best a meaningless game with marks on paper.

What was a mathematician to do? Ramsey was in favor of using the Axiom of
Infinity. “As to how to carry the matter further, I have no suggestion to make; all I
hope is to have made it clear that the subject is very difficult,” wrote Ramsey in the
end. (4 years later Ramsey would take a finitist view of rejecting the existence of
any actual infinity.)

Ramsey came back with a specific approach in his second mathematical paper
On a Problem of Formal Logic [Ram2], submitted on November 28, 1928, and
published posthumously in 1930. This paper gives a clear and unambiguous start to
what was later named the Ramsey Theory. What is the aim of this work? Fortunately,
Ramsey answers this question right in the beginning of this paper:

This paper is primarily concerned with a special case of one of the leading problems
of mathematical logic, the problem of finding a regular procedure to determine the
truth or falsity of any given logical formula. But in the course of this investigation it is
necessary to use certain theorems on combinations which have an independent interest
and are most conveniently set out by themselves beforehand.

Indeed, Ramsey solves the problem in the special case, as he promises. However,
little does he—or for that matter anyone else—expect that the next year, in 1931
another young genius, the 25-year-old Kurt Gödel will shock the mathematical
world by publishing the (Second) Incompleteness Theorem [Göd1] that shows that
Hilbert–Ackermann’s Entscheidungsproblem, “the leading problem of mathemati-
cal logic” as Ramsey calls it, cannot have a solution in general case. Ramsey con-
tinues:

The theorems which we actually require concern finite classes only, but we shall begin
with a similar theorem about infinite classes which is easier to prove and gives a simple
example of the method of argument.

Yes, the infinite case here—as often happens—is easier than the finite, but is very
well worth of the presentation (in fact, the finite case follows from the infinite by the
de Bruijn–Erdős Compactness Theorem, as we have seen in Chapter 28). Later in
the paper, Ramsey also observes that his infinite case requires the use of the Axiom
of Choice:

Whenever universe is infinite we shall have to assume the axiom of selection.



288 VI The Ramsey Principle

In fact, some 40 years later, in 1969 Eugene M. Kleinberg [Kle] will prove
that Ramsey’s Theorem is independent from ZF, the Zermelo–Fraenkel set theory.
(More precisely, if ZF is consistent, then Ramsey’s theorem is not provable in ZF.)

As we have seen in Chapter 28, Frank P. Ramsey realizes— and clearly states—
that his new pioneering method and his “theorems on combinations have an indepen-
dent interest.” Indeed, Ramsey’s theorems deliver the principles and the foundation
to a new field of mathematics, the Ramsey Theory. Now, this requires a certain
clarification.

Three Ramsey Theory results appeared before Frank P. Ramsey erected its foun-
dation, and is the reason why I combine these three early results under the name
Ramsey Theory before Ramsey. They are Hilbert’s Theorem of 1892, Schur’s Theo-
rem of 1916, and Baudet–Schur–Van der Waerden’s Theorem of 1927. These classic
results, which we will discuss in great detail in the next part, discovered particular
properties of colored integers or colored spaces in particular circumstances. These
theorems contributed real “meat” to the Ramsey Theory, real applications of the
Ramsey Principle to particular contexts before Ramsey even formulated it!

Ramsey’s amazing logical and philosophical gifts allowed him to abstract the
idea from any particular context, to formulate his theorems as a method, a principle
of the new theory—a great achievement indeed. Surely, Ramsey fully deserves his
name to be placed on the new theory, whose principle he so clearly formulated
and proved, but could anyone point out to who and when coined the term Ramsey
Theory?

We have already seen Ramsey’s Theory of Decision in Richard C. Jeffrey’s 1965
book [Jef]. But we are after The Ramsey Theory, a new and flourishing branch of
combinatorial mathematics. On July 21, 1995, I posed the question to the leader of
the Ramsey Theory, Ronald L. Graham. Here is our brief exchange of the day:

Dear Ron:
Who and when coined the name “Ramsey Theory”?
Yours, Sasha

Sasha,
Beats me! Who first used the term Galois theory?
Ron

On January 22, 1996, I asked Ron again, and received another concise reply the
same day:

Dear Sasha,
I would imagine that Motzkin may have used the term Ramsey Theory in the 60’s. You
might check with Bruce Rothschild at UCLA who should know.

Still the same day I received a reply from Bruce Rothschild:

Dear Alexander,
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This is a good question, to which I have no real answer. I do not recall Motzkin using
the phrase,12 though he might have. I also don’t recall hearing Rota use it when I was
at MIT in the late 60’s. My best recollection is that I began using the term informally
along with Ron sometime in the very early ‘70’s. . . But I could be way off here.

Frank Harary was less concise. On February 19, 1996, during a conference in
Baton Rouge, Louisiana, he gave me a multi-page statement (you saw it in its
entirety in Chapter 27), showing that Frank Harary and Václav Chvátal were the
first to introduce the term Generalized Ramsey Theory for Graphs in their series of
papers that started in 1972. I am looking at the first paper [CH] of the series: Chvátal,
Václav, and Harary, Frank, Generalized Ramsey theory for graphs. The authors gen-
eralize the notion of the Ramsey number by including in the study graphs other
than complete graphs. By doing so Harary and Chvatal open a new, now flourishing
chapter, Graph Ramsey Theory. However, The Ramsey Theory as we understand it
today stands for so much broader a body of knowledge, including Schur’s, Van der
Waerden’s, and Hales-Jewett’s Theorems that it does not completely fit inside Graph
Theory. Thus, my search for the true birth of the name continued.

One 1971 survey [GR2], by Ronald L. Graham and Bruce L. Rothschild show
a clear realization that a new theory has been born and needs an appropriate new
name. Following a recitation of Ramsey’s Theorem and Schur’s Theorem, the
authors write:

These two theorems are typical of what we shall call a Ramsey theorem and a Schur
theorem, respectively. In this paper we will survey a number of more general Ramsey
and Schur theorems which have appeared in the past 40 years. It will be seen that
quite a few of these results are rather closely related, e.g., van der Waerden’s theorem
on arithmetic progressions [Wae2], [Khi4], Rado’s work on regularity and systems of
linear equations [Rad1], [Rad2], the results of Hales and Jewett [HJ] and others [Gar-
sia, personal communication] on arrays of points and Rota’s conjectured analogue of
Ramsey’s Theorem for finite vector spaces, as well as the original theorems of Ramsey
and Schur.

Yes, I agree that the new theory was created by 1971, and the choice of its name
was between two deserving candidates: The Schur Theory, in honor of the main
early contributor Issai Schur and his School (Schur’s work was continued by his
students Alfred Brauer and Richard Rado); and The Ramsey Theory, in honor of
Frank P. Ramsey who formulated the principles of the new theory. Soon Graham and
Rothschild arrived at the decision, and in their 1974 survey made the first published
announcement of their choice [GR3]:

Recently a number of striking new results have been proved in an area becoming
known as RAMSEY THEORY. It is our purpose here to describe some of these.
Ramsey Theory is a part of combinatorial mathematics dealing with assertions of a
certain type, which we will indicate below. Among the earliest theorem of thus type

12 Motzkin did not use “Ramsey Theory” in his 1960s articles, as I have verified shortly after.
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are RAMSEY’s theorem, of course, VAN DER WAERDEN’s theorem on arithmetic
progressions and SCHUR’s theorem on solutions of x + y = z.

It seems that The Ramsey Theory has been shaping throughout the 1970s, and
the central engine of this process was new results and the above mentioned surveys.
In 1980 the long life of the name was assured when it appeared as the title of the
book Ramsey Theory [GRS1] by three of the leading researchers of the field, Ronald
L. Graham, Bruce L. Rothschild, and Joel H. Spencer. A decade later, the authors
produced the second, updated edition [GRS2]. This book has not only assured the
acceptance of the name—it has become the standard text in the new field of mathe-
matics. It still remains the standard bearer today.13

Now is the time to share a bit of information about the co-creators of the term
Ramsey Theory, who of course contributed much more than just the name.

Bruce Lee Rothschild was born on August 26, 1941 in Los Angeles. Follow-
ing his B.S. degree from the California Institute of Technology in 1963, he earned
a Ph.D. degree from Yale in 1967 with the thesis A Generalization of Ramsey’s
Theorem and a Conjecture of Rota, supervised by the legendary Norwegian graph
theorist Øystein Ore (1899–1968). After 2 years 1967–1969 at MIT, Bruce became a
professor at the University of California, Los Angeles, where he continues his work
today. In 1972 Graham, Rothschild, and Leeb shared the Polya Prize of SIAM with
Hales and Jewett.

Ronald Lewis Graham was born on October 31, 1935 in Taft, California. In 1962, he
earned his Ph. D. degree from the University if California, Berkeley with the thesis On
Finite Sums of Rational Numbers, supervised by Derrick Lehmer. Following decades
as Director of Mathematical Sciences at Bell Laboratories, Ron moved South and
West, and is now Irwin and Joan Jacobs Professor in the Department of Computer
Science and Engineering at the University of California, San Diego. There is much
to be said about this unique individual, who besides publishing well over 300 papers
and several books, served as President of the American Mathematical Society (AMS),
President of the Mathematical Association of America, and since 1996 is the Treasurer
of the National Academy of Sciences. In 2003, AMS awarded Graham Steele Prize
for lifetime achievement. I can attest to Ron’s supreme elegance and depth as author
and lecturer, and limitless energy in promoting the Ramsey Theory.

This certainly does not cover Ron’s excellence in juggling (“juggling is a
metaphor,” he likes to say), fluency in Mandarin, friendship with Paul Erdős, etc. See
all those on “Ronald Graham’s special page” created by Ron’s wife and well-known
mathematician in her own rights Fan Chung at http://math.ucsd.edu/∼fan/ron/.

Ron maintained a room for Paul Erdős in his New Jersey house, and took care of
Erdős’s finances. In the whole world, Ron knew best where Paul Erdős was on any
given day, although as Ron’s December 20, 1993 e-mail shows, even his knowledge
was imperfect:

13 I have only one problem with this beautiful book: today it sells for a whopping $199 at Wiley, its
publisher, and on Amazon.com.
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Sasha,
Erdős is staying with me for a while. During the night he is at (908)322–4111. During
the day it’s anyone’s guess where he will be!
Ron

Now that Paul passed on, Ron has graciously taken upon himself to keep the
tradition going by paying Erdős’s prizes for first solutions of Erdős’s problems,
but not all of them. So, all those interested in making a living by solving Erdős’s
problems, pay attention to the small print in Ron’s e-mail of February 12, 2007:

Hi Sasha,
I am willing to pay all the prizes offered by Paul that are listed in the book that Fan and
I wrote: Erdos on Graphs: His Legacy of Unsolved Problems. These we have checked.
The others (e.g., in number theory or set theory) are not (automatically) part of the
offer. I did have to pay $100 last year (the first time for a problem in this book that was
solved) to Jacques Verstraete in Canada!

Best regards,
Ron Graham

30.2 Reflections on Ramsey and Economics, by Harold W. Kuhn

Why is it that sometimes people work together for decades and still remain
strangers, while in other instances friendship arrives at the first sight? This is a
question for psychologists to ponder. I should only observe that Harold W. Kuhn
and I instantly became friends in early 2003, when I arrived in Princeton-Math., just
as in 1988 when an instant friendship linked Paul Erdős and I. It has always been
intellectually stimulating to discuss any subject with Harold, from mathematics to
the cinema of Michelangelo Antonioni, and from African Art to Pierre Bonnard’s
drawings.

Harold William Kuhn was born in Santa Monica, California on July 29, 1925.
Following his B.S. degree in 1947 from the California Institute of Technology, he
earned a Ph.D. degree from Princeton University in 1950, while also serving as
Henry B. Fine Instructor in the Mathematics Department, 1949–1950. Following
a professorship at Bryn Mawr, 1952–1958, Harold has been a Professor of Math-
ematical Economics at Princeton’s two departments, Mathematics and Economics,
becoming Emeritus in 1995. His honors include presidency of the Society for Indus-
trial and Applied Mathematics (1954–55), service as Executive Secretary of the
Division of Mathematics of the National Research Council (1957–1960), John von
Neumann Theory Prize of the Operation Research Society of America (1982; jointly
with David Gale and A. W. Tucker), and Guggenheim Fellowship (1982). It was
Harold Kuhn who nominated John F. Nash Jr. for Nobel Prize (awarded in 1994).

In the fall of 2006, upon my return to Princeton University, I asked myself, who
could best evaluate Frank P. Ramsey’s works on economics? It would take an expert
on mathematics and economics. Harold was the only choice, and he most generously
agreed. Best of all, Harold wrote a triptych about F. P. Ramsey, John von Neumann
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and John F. Nash Jr., especially for this book. In all that follows in this section, the
podium—shall I say, the pages—belong to Harold W. Kuhn.

Although mathematics became the lingua franca of 20th century economics,
only a handful of mathematicians have exerted a direct and lasting influence on
the subject. They surely include Frank Plumpton Ramsey, John von Neumann, and
John Forbes Nash Jr. The similarities and differences in their life trajectories are
striking. Ramsey died at 26 years of age after an exploratory liver operation fol-
lowing a bout of jaundice, while Nash’s most productive period ended when he
fell prey to schizophrenia at the age of 30. Von Neumann’s original work on game
theory and growth models was done before he was 30 years old. For all three, the
work in economics appears as a sideline. Ramsey’s friend and biographer, Richard
Braithwaite has written: “Though mathematical teaching was Ramsey’s profession,
philosophy was his vocation,” without mentioning his contributions to economics
at all or including the three papers on economics in the posthumous “complete”
works that Braithwaite edited. The contributions of von Neumann to mathematical
economics is but one chapter in the seven chapters comprising the memorial issue
devoted to von Neumann’s research and published as a special issue of the Bulletin
of the American Mathematical Society. Regarding Nash, John Milnor considered
“. . .Nash’s [Nobel Economics] prize work [to be] an ingenious but not surprising
application of well-known methods, while his subsequent mathematical work was
much more rich and important.”

Ramsey, von Neumann, and Nash came from very different backgrounds and
had very different relationships to the economics and the economists of their day.
Ramsey, an intimate friend of Bertrand Russell and Wittgenstein, was a Cambridge
man by birth. He appears to have been interested in economics from the age of
16 and wrote his first published piece on economics at 18. He had close per-
sonal and professional contacts with such well-known economists as John Maynard
Keynes, Arthur Pigou, Piero Sraffa, and Roy Harrod. He served as an advisor to
the Economic Journal, where Keynes took his counsel most seriously. He was well
acquainted with the trends in economic theory of his day.

Von Neumann, the scion of a Jewish banking family in Budapest, had a wide
circle of intellectual friends from Budapest, Berlin, and Vienna that included
economists such as William Fellner (who was a friend from gymnasium days) and
Lord Nicholas Kaldor, who gave von Neumann a reading list in contemporary
economics in the 1920s, and who arranged for an English translation of von
Neumann’s growth model to be published in the Review of Economic Studies
in 1945. Thus there is ample evidence that von Neumann was well-informed of the
state of economics throughout his life.

The case of John Nash, who grew up in the coal mining and railroad town of
Bluefield, West Virginia, is very different. When he came to Princeton to do graduate
work in mathematics at the age of 20, he had taken one undergraduate course in eco-
nomics (on International trade) at Carnegie Tech, taught by an Austrian émigré, Bert
Hoselitz. His major contribution on bargaining, which appears to have had its origin
in this course, has two boys (Bill and Jack) trading objects such as a whip, a bat, a
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ball, and a knife. This was the work of a teenager. There is no evidence that Nash had
read any contemporary economist outside the required readings of his one undergrad-
uate course. Of course, later in his life, in the period when he was on the faculty at
the Massachusetts Institute of Technology, he had contact with Paul Samuelson and
Robert Solow, Nobel Prize winners in Economics, who knew of his work in game
theory. Nash’s only later excursion into economics is a theory of “ideal money,” an
idea that appears to have been anticipated in part by Friederich Hayek.

Now that game theory has become part of the economist’s tool kit, anyone who
takes an introductory economics course learns about the contributions of von Neu-
mann and Nash. Ramsey’s work, however, is less well-known and the principal
reason for this note is to give the reader an appreciation for the contributions of
Ramsey to economics. Between the ages of 18 and 29, Ramsey wrote four papers,
which we shall discuss in detail below.

(A) “The Douglas Proposals,” The Cambridge Magazine, Vol. XI, No. 1, January
1922, pp. 74–76.

Ramsey’s first work related to economics (A) was published when he was 18.
He was no common 18-year-old; here is how Keynes described him: “From a very
early age, about 16 I think, his precocious mind was intensely interested in eco-
nomic problems.” The Cambridge Magazine was edited by C. K. Ogden, a Fellow
of Magdalene College where Ramsey’s father was President, from 1912 to 1922.
Ramsey and Ogden met while Ramsey was still a student in his public school,
Winchester, and Ogden persuaded him to study the then much-discussed social
credit proposals of a certain Major Douglas. I. A. Richards recalled the upshot:
“Soon after he’d done the Douglas credit thing, you know, A. S. Ramsey, his father,
called up Ogden and said ‘What have you been doing to Frank?’, and Ogden said
‘What’s he been doing?’. ‘Oh he’s written a paper on Douglas Credit which would
have won him a Fellowship in any University anywhere in the world instantly. It’s a
new branch of mathematics’.”

Who was this Major Douglas? Briefly, he was one of those crackpots who exist
on the fringe of academic economics and whose theories promise a redistribution
of wealth that appealed to a large part of the public (including, in Douglas’s case,
Ezra Pound and T. S. Eliot). Like many of those offering a panacea for the Great
Depression, he was also an anti-Semite who invoked the theses expounded in the
Protocols of the Elders of Zion in defense of his economic theories.

What was Major Douglas’s heresy that Ramsey demolished? It is centered on the
so-called A + B “theorem” (called by Keynes “mere mystification”). In producing
a good, price is made up of two parts of the cost paid out by the producer: A equals
the amount paid out for raw materials and overhead and B equals the sums paid out
in wages, salaries, and dividends. According to Douglas, the amount B, paid to the
consumers, is never sufficient to buy all of the good, whose cost (and price) is A+B.
Therefore, the state should make up the difference through “social credit.”

Ramsey first provides a verbal argument that shows that, in a stationary state,
the total rate of distribution of purchasing power (taking into account payments
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originating in intermediate goods) equals the rate of flow of costs of consumable
goods. He then writes:

“. . .it is possible, using some complicated mathematics to show that the ratio
is unity under much wider conditions which allow for changes in the quantity of
production, in the rate of wages, in the productivity of labor, and in the national
wealth.” The “complicated mathematics,” other than Ramsey’s curiously rigid set
of modeling assumptions, consists of the use of “integration by parts,” a technique
taught to every beginning student of the calculus.

(B) “A Contribution to the Theory of Taxation,” The Economic Journal,
Vol. XXXVII, March 1927, pp. 47–61.

The young Ramsey assisted A. C. Pigou, who was the successor to Alfred
Marshall in the chair of Political Economy at Cambridge, on a number of occasions
beginning before 1926. After providing Pigou with a mathematical proposition and
examples for two articles, one on credit and one on unemployment, Ramsey assisted
Pigou with changes in the third edition of The Economics of Welfare, published
in 1929. However, it appears that Ramsey’s work on taxation (B) was inspired by
questions raised in Pigou’s A Study in Public Finance.

The problem posed by Ramsey in (B) was to find an optimal system of taxation of
n commodities so as to raise a given quantity of revenue. For Ramsey in (B), “opti-
mal” means minimizing aggregate sacrifice. Using this objective function, he shows
that the production of each commodity should be reduced in the same proportion,
thus a system of differential taxation. The mathematics employed is rather stan-
dard, namely, optimization under equality constraints using Lagrange multipliers
which was taught to mathematicians of this period by treatises such as de la Vallee
Poussin’s Cours d’Analyse. The treatment is careful for the period and Ramsey
includes a number of examples of potential applications of his results. Of particular
interest is a discussion of the application of income tax to savings, a subject that I
believe was part of a larger research agenda that Ramsey had formulated.

(C) “A Mathematical Theory of Saving,” The Economic Journal, Vol. XXXVIII,
December 1928, pp. 543–549.

Papers (B) and (C) were published in the Economic Journal which Keynes con-
trolled with an iron hand. Keynes wrote of (C) that it “is, I think, one of the most
remarkable contributions to mathematical economics ever made, both in respect of
the intrinsic importance and difficulty of its subject, the power and elegance of the
technical methods employed, and the clear purity of illumination with which the
writer’s mind is felt by the reader to play about its subject.” The article (C) is con-
cerned with the derivation of optimal saving programs under a variety of conditions.
Samuelson captures the spirit of the paper in the society in which it was created
when he wrote: “Frank Ramsey, living in a happier age and being a Cambridge
philosopher assumed society would last forever and seek to maximize the utility
of its consumption over all infinite time.” A major stumbling block immediately
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presents itself in that the “utility of its consumption over all infinite time” is an
improper integral which, in general, will not have a finite maximum value. Ramsey
proposed an elegant device to get around this problem. He assumed that there was
a maximum amount of attainable utility (called “bliss”) and, instead of maximiz-
ing the improper integral he minimized the deviation from bliss over the infinite
horizon.

Ramsey then derives a result that is easy to express in common English, namely:
“The optimal rate of saving multiplied by the marginal utility of consumption should
always equal the difference between bliss and the actual rate of utility enjoyed.”
The paper contains a derivation of this result by simple verbal reasoning provided
by Keynes (which does not apply to the most general cases considered by Ramsey
but which does give the non-mathematically adept, the feeling of “understanding
the result”). Contemporary mathematical economists will instantly recognize the
problem as one to which the calculus of variations applies and, indeed, over 30
years after Ramsey wrote (C) such techniques took over the theoretical models of
growth. We can say with real justice that Ramsey was “ahead of his time.”

Recently, three economic historians (D. A. Collard, M. Gaspard, and P. C. Duarte)
have put forth a very persuasive theory (based largely on unpublished notes of
Ramsey that are archived at the University of Pittsburg) that Ramsey’s two papers
on taxation and savings were not isolated works of a mathematician answering
questions put to him by economists but were rather part of an over-arching research
program that Ramsey had clearly in mind. If this plausible theory is true, it makes
his early death even more tragic.

(D) “Truth and Probability,” in R. B. Braithwaite (ed.), The Foundations of Math-
ematics and Other Logical Essays, London: Routledge and Kegan Paul, 1931,
pp. 156–198. Reprinted in H. E. Kyburg and H. E. Smokler (eds.) Studies in
Subjective Probability, New York: Wiley 1964, pp. 61–92.

In modeling the decisions of an individual who chooses an alternative from a
set of uncertain outcomes, it has long been the tradition to introduce a numerical
function to measure the objective of the individual involved. When von Neumann
first formulated “the most favorable result” for a player in a strategic game, he
identified “the most favorable result” with “the greatest expected monetary value,”
remarking that this or some similar assumption was necessary in order to apply the
methods of probability theory. While doing so, he was well aware of the objections
to the principal of maximizing expected winnings as a prescription for behavior, but
wished to concentrate on other problems. The St. Petersburg paradox illustrates in
clear terms the fact that the principle of maximizing expected winnings does not
reflect the actual preferences of many people.

To resolve this paradox, Daniel Bernoulli suggested that people do not follow
monetary value as an index for preferences but rather the “moral worth” of the
money. He then proposed a quite serviceable function to measure the moral worth
of an amount of money, namely, its logarithm. Whatever the defects of this function
as a universal measure of preferences, and they are many, it raises the question of
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the existence of a numerical index which will reflect accurately the choices of an
individual in situations of risk. Interest in this problem was first shown by Ramsey
in (D) in which he defined utility operationally in terms of individual behavior.
As Mellor has written: “In this paper (D), after criticizing Keynes, Ramsey went
on to produce his own theory. This starts from the fact that people’s actions are
largely determined by what they believe and what they desire, and by strength of
those beliefs and desires. The strength of people’s beliefs is measured by the so-
called subjective probability’ they attach to events. . .Subjective utility measures the
strength of people’s desires just as subjective probability measures the strength of
their beliefs. The problem is how to separate these two components of people’s
actions. One of the things Ramsey’s paper did was to show how to extract people’s
subjective utilities and probabilities from the choices they make between different
gambles; and by doing so it laid the foundations for the serious use of these concepts
in economics and statistics as well as in philosophy.”

The bible of game theory, The Theory of Games and Economic Behavior by von
Neumann and Morgenstern which confronts similar problems contains no reference
to the work of Ramsey. When von Neumann was queried about this omission, he
explained it by saying that, after Goedel published his papers on undecidability
and the incompleteness of logic, he did not read another paper in symbolic logic.
Although his excuse is strengthened by the fact that (D) first appeared in the volume
that Braithwaite edited after Ramsey’s death, no such excuse exists for Morgenstern,
when he wrote “Some Reflections on Utility” in 1979 and cites two articles by
J. Pfanzagl while overlooking Ramsey’s paper (D) and Savage’s The Foundations of
Statistics.

Aside from Ramsey’s paper on Major Douglas, which was an exemplary math-
ematical model refuting errant nonsense, he has clear precedence in four major
themes of 20th century economics. The paper on taxation (B) was a source for
both public finance theorists and for monetary economists who have characterized
inflation as a tax on money holdings and have formulated optimal inflation policies
as optimal taxation schemes. The paper on savings (C) has become the touchstone
for economists working on growth. The fourth area is the theory of expected utility
and decisions under risk which has used in an essential way Ramsey’s insights on
subjective probability in (D).

I have been a friend of John Nash since he arrived in Princeton in 1948. I knew
John von Neumann from 1948 until his death in 1957. I very much regret not having
known Frank Ramsey. Given the modernity of his work, it is hard to grasp the fact
that he died over 77 years ago.



VII
Colored Integers: Ramsey Theory Before

Ramsey and Its AfterMath

History will be written many different ways. Look out,
the Chinese are coming, the Chinese are coming and they
will write history from their perspective and many things
we believe are important facts will not matter to them.

– Thomas L. Saaty1

1 E-mail to A. Soifer, April 13, 1998.



31
Ramsey Theory Before Ramsey:
Hilbert’s Theorem

A new theory is an attempt to answer new questions, or to shed a new light on
old problems. It is not usually born overnight. Before its birth, a new mathematical
theory usually grows unnoticed within old and well-established branches of mathe-
matics. Ramsey Theory was not an exception. Its roots go back decades before the
1930 pioneering paper of Frank Plumpton Ramsey saw the light of day after his
untimely passing at the age of 26. As far as we know today, the first Ramseyan-type
result appeared in 1892 as a little noticed assertion in [Hil]. Its author was the great
David Hilbert. In this work Hilbert proved the theorem of our interest merely as a
tool for his study of irreducibility of rational functions with integral coefficients.

A set Qn (a, x1, x2, . . . , xn) of integers is called an n-dimensional affine cube if
there exist n + 1 positive integers a, x1, . . . , xn such that

Qn (a, x1, x2, . . . , xn) =
{

a +
∑

i∈F
xi : ∅ �= F ⊆ {1, 2, . . . , n}

}
.

In this chapter and the rest of the book it is convenient to use the symbol [n] for
the starting segment of positive integers:

[m] = {1, 2, . . . , m} .

This theorem, which preceded the Schur (Chapter 32) and the Baudet–Schur–Van
der Waerden (Chapter 33) Theorems, reads as follows.

Hilbert’s Theorem 31.1 For every pair of positive integers r, n, there exists a least
positive integer m = H (r, n) such that in every r -coloring of [m] there exists a
monochromatic n-dimensional affine cube.

Proof easily follows from the Baudet–Schur–Van der Waerden Theorem
(Chapter 33): the arithmetic progression (AP) {a, a + x, a + 2x, . . . , a + nx}
is precisely the cube Qn (a, x1, x2, . . . , xn) with x1 = x2 = . . . = xn = x . Of
course, this is not Hilbert’s proof, for his paper preceded Van der Waerden’s paper
by 35 years.
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This is a Ramseyan theorem, as it asserts a property invariant under all
r -colorings of a certain set, in this case the initial segment [m] of the set of positive
integers.

Nearly 100 years later, in 1989, Paul Erdős, András Sárkösy, and Vera T. Sós pub-
lished [ESS] a generalization of Hilbert’s Theorem. They called it aptly “a density
version” of Hilbert’s Theorem.

Density Version of Hilbert’s Theorem 31.2 [ESS] For every positive integer n
there is a number m0 = H (n) such that for any m > m0, B ⊆ [m] with
|B| > 3m1–2−n

, there exist distinct positive integers a, x1, x2, . . . , xn such that all
2n sums forming the n-dimensional affine cube Qn (a, x1, x2, . . . , xn) belong to B.

Hilbert’s place as one of the world’s leading mathematicians at the turn of the
twentieth century had certainly not been won by this result. He did not come back to
Ramseyan style mathematics (unlike Issai Schur, as we will see in the following few
chapters). Still, in the style of this book I would like to briefly describe Hilbert’s life.
I refer the reader to Hilbert’s celebrated biography by Constance Reid [Reid] and
Herman Weil’s paper David Hilbert and his mathematical work, contained therein
for a much worthier narration.

Hilbert was born near Königsberg (currently Kaliningrad, Russia) in Wehlau
(currently Znamensk). In 1885 he obtained his Ph.D. degree at the University of
Königsberg under Ferdinand von Lindemann. Following 10 years at Königsberg, he
moved to the University of Göttingen where he remained for the rest of his life.

Hilbert made major contributions to numerous areas of mathematics and physics.
In 1900, at the International Congress of Mathematicians in Paris, he presented a set
of problems, known as The 23 Hilbert’s Problems (during the talk he was able to
articulate 10 of them) that profoundly influenced the development of mathematics in
the twentieth century. The problems included questions related to Cantor’s Contin-
uum Hypothesis and Zermelo’s Axiom of Choice (Problem 1), the provability of the
consistency of axioms for logic (Problem 2), the possibility of the axiomatization of
physics (Problem 6), and The Riemann Hypothesis (Problem 8).

Following Felix Klein, Hilbert made Göttingen the world’s premier center of
mathematics. However, he lived to see Göttingen’s fall, when almost immediately
following Hitler’s early 1933 rise to power: many leaders of mathematics and
physics had to leave the University and the country.

Constance Reid [Reid] conveys how Hilbert must have felt:

Sitting next to the Nazi’s newly appointed minister of education [Bernard Rust]
at a banquet, he [Hilbert] was asked, “And how is mathematics at Göttingen now
that it has been freed of the Jewish influence?”

“Mathematics in Göttingen?” Hilbert replied. “There is really none any more.”

Hilbert passed away in Göttingen on February 14, 1943.
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Ramsey Theory Before Ramsey: Schur’s
Coloring Solution of a Colored Problem
and Its Generalizations

32.1 Schur’s Masterpiece

Probably no one remembered—if anyone ever noticed—Hilbert’s 1892 lemma by
the time the second Ramseyan type result appeared in 1916 as a little noticed asser-
tion in number theory. Its author was Issai Schur.

Our interest here lies in the result he obtained during 1913–1916 when he worked
at the University of Bonn as the successor to Felix Hausdorff.2 There he wrote his
pioneering paper [Sch]: Über die Kongruenz xm + ym ≡ zm (mod.p). In it Schur
offered another proof of a theorem by Leonard Eugene Dickson from [Dic1], who
was trying to prove Fermat’s Last Theorem. For use in his proof, Schur created,
as he put it, “a very simple lemma, which belongs more to combinatorics than to
number theory.”

Nobody then asked questions of the kind Issai Schur posed and solved in his
1916 paper [Sch]. Consequently, nobody appreciated this result much when it was
published. Now it shines as one of the most beautiful, classic theorems of mathe-
matics. Its setting is positive integers colored in finitely many colors. The beautiful
solution I am going to present utilizes coloring as well. I have got to tell you how I
received this solution (see [Soi9] for more details).

In August 1989 I taught at the International Summer Institute in Long Island,
New York. A fine international contingent of gifted high school students for the
first time included a group from the Soviet Union. Some members of this group
turned out to be Mathematics Olympiads “professionals,” winners of the Soviet
Union National Mathematical Olympiads in Mathematics and in Physics. There was
nothing in the Olympiad genre that they did not know or could not solve. I offered
them and everyone else an introduction to certain areas of combinatorial geometry.

2 Both Alfred Brauer [Bra2] and Walter Ledermann [Led] reported 1911 as the time when Schur became
an Extraordinarius in Bonn, while Schur’s daughter Mrs. Hilde Abelin-Schur [Abe1] gave me 1913 as the
time her family moved to Bonn. The Humboldt University’s Archive contains personnel forms (Archive
of Humboldt University at Berlin, document UK Sch 342, Bd.I, Bl.25) filled up by Issai Schur himself,
from which we learn that he worked at the University of Bonn from April 21, 1913 until April 1, 1916,
when he returned to Berlin.
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We quickly reached the forefront of mathematics, full of open problems. Students
shared with me their favorite problems and solutions as well. Boris Dubrov from
Minsk, Belarus, told me about a visit to Moscow by the American mathematician
Ronald L. Graham. During his interview with the Russian mathematics magazine
Kvant, Graham mentioned a beautiful problem that dealt with 2-colored positive
integers. Boris generalized the problem to n-coloring, strengthened the result and
proved it all! He gave me this generalized problem for the Colorado Mathematical
Olympiad.

This problem was the celebrated Schur Theorem of 1916, rediscovered by Boris,
with his own proof that was more beautiful than Schur’s original proof, but which
was already known. Paul Erdős received this proof from Vera T. Sós, and included
it in his talk at the 1970 International Congress of Mathematicians in Nice, France
[E71.13]. Chances of receiving a solution of such a problem during the Olympiad
were very slim. Yet, the symbolism of a Soviet kid offering an astonishingly beau-
tiful problem (and solution!) to his American peers was so great that I decided to
include this problem as an additional Problem 6 (Colorado Mathematical Olympiad
usually offers 5 problems).

Schur’s Theorem 32.1 ( [Sch]) For any positive integer n there is an integer S(n)
such that any n-coloring of the initial positive integers array [S(n)] contains integers
a, b, c of the same color such that a + b = c.

In this case we call a, b, c a monochromatic solution of the equation x + y = z. In
fact, Schur proved by induction that S(n) = n!e would work.3

Proof of Schur’s Theorem Let all positive integers be colored in n colors c1, c2, . . . , cn .
Due to Problem 27.13, there is S(n) such that any n-coloring of edges of the
complete graph KS(n) contains a monochromatic triangle K3.

Construct a complete graph KS(n) with its vertices labeled with integers from the
initial integers array [S(n)] = {1, 2, . . . , S(n)}. Now color the edges of KS(n) in n
colors as follows: let i and j, (i > j), be two vertices of KS(n), color the edge ij in
precisely the color of the integer i − j (remember, all positive integers were colored
in n colors!). We get a complete graph KS(n) whose edges are colored in n colors.
By Problem 27.13, KS(n) contains a triangle ijk, i > j > k, whose all three edges ij,
jk, and ik are colored in the same color (Fig. 32.1).

Fig. 32.1

3 Here e stands for the base of natural logarithms.
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Denote a = i − j ; b = j − k; c = i − k. Since all three edges of the triangle ijk
are colored in the same color, the integers a, b, and c are colored in the same color
in the original coloring of the integers (this is how we colored the edges of Ks(n)).
In addition, we have the following equality:

a + b = (i − j) + ( j − k) = i − k = c

We are done!

The result of the Schur Theorem can be strengthened by an additional clever trick
in the proof.

Strong Version of Schur’s Theorem 32.2 For any positive integer n there is an
integer S∗(n) such that any n-coloring of the initial positive integers array [S∗(n)]
contains distinct integers a, b, c of the same color such that a + b = c.

Proof Let all positive integers be colored in n colors c1, c2, . . . , cn . We add n more
colors c′

1, c′
2, . . . , c′

n different from the original n colors and construct a complete
graph KS(2n) with the set of positive integers {1, 2, . . . , S(2n)} labeling its vertices
(See the definition of S(2n) in the proof of Theorem 32.1). Now we are going to
color the edges of KS(2n) in 2n colors.

Let i and j, (i > j), be two vertices of KS(2n), and cp be the color in which the
integer i − j is colored, 1 ≤ p ≤ n (remember, all positive integers are colored in

n colors c1, c2, . . . , cn). Then we color the edge ij in color cp if the number
⌊

i
i− j

⌋

is even, and in color c′
p if the number

⌊
i

i− j

⌋
is odd (for a real number r , the symbol

�r�, as usual, denotes the largest integer not exceeding r ).
We get a complete graph KS(2n) whose edges are colored in 2n colors. By Prob-

lem 27.13, KS(2n) contains a triangle ijk, i > j > k, whose all three edges ij, jk, and
ik are colored in the same color (Fig. 32.1).

Denote a = i − j ; b = j − k; c = i − k. Since all three edges of the triangle
ijk are colored in the same color, from the definition of coloring of edges of KS(2n)

it follows that in the original coloring of positive integers, the integers a, b, and c
were colored in the same color. In addition we have

a + b = (i − j) + ( j − k) = i − k = c.

We are almost done. We only need to show (our additional pledge!) that the
numbers a, b, c are all distinct. In fact, it suffices to show that a 	= b. Assume the
opposite: a = b and cp is the color in which the number a = b = i − j = j − k is
colored. But then

⌊
i

i − j

⌋

=
⌊

1 + j

i − j

⌋

= 1 +
⌊

j

i − j

⌋

= 1 +
⌊

j

j − k

⌋

,

i.e., the numbers
⌊

i
i− j

⌋
and

⌊
j

j−k

⌋
have different parity, thus the edges ij and jk

of the triangle ijk must have been colored in different colors. This contradiction to
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the fact that all three edges of the triangle ijk have the same color proves that a 	= b.
Theorem 32.2 is proven.

32.2 Generalized Schur

It is fitting that the Schur Theorem was generalized by one of Schur’s best
students—Richard Rado. Rado calls a linear equation

a1x1 + a2x2 + . . . + an xn = b (∗)

regular, if for any positive integer r , no matter how all positive integers are col-
ored in r colors, there is a monochromatic solution of the equation (∗). As before, we
say that a solution x1, x2, . . . , xn is monochromatic, if all numbers x1, x2, . . . , xn

are colored in the same color.
For example, the Schur Theorem 32.1 proves precisely that the equation x + y −

z = 0 is regular. In 1933 Richard Rado, among other results, found the following
criterion:

Rado’s Theorem 32.3 (A particular case of [Rad1]) Let E be a linear equation
a1x1 + a2x2 + . . . + an xn = 0, where all a1, a2, . . . , an are integers. Then E is
regular if and only if some non-empty subset of the coefficients ai sums up to zero.

For example the equation x1 + 3x2 − 2x3 + x4 + 10x5 = 0 is regular because
1 + 3 − 2 = 0.

Problem 32.4 (trivial) Schur Theorem 32.1 follows from Rado’s Theorem.

Richard Rado found regularity criteria for systems of homogeneous equations as
well. His fundamental contributions to and influence on Ramsey Theory is hard to
overestimate. I have just given you a taste of his theorems here. For more of Rado’s
results read his papers [Rad1], [Rad2], and others, and the monograph [GRS2].
Instead of a formal biographical data, I prefer to include here a few passages about
Richard Rado (1906, Berlin—1989, Henley-on-Thames, Oxfordshire) written by
someone who knew Rado very well—Paul Erdős—from the latter’s paper My joint
work with Richard Rado [E87.12]:

I first became aware of Richard Rado’s existence in 1933 when his important paper
Studien zur Kombinatorik [Rado’s Ph.D. thesis under Issai Schur] [Rad1] 4 appeared. I
thought a great deal about the many fascinating and deep unsolved problems stated in
this paper but I never succeeded to obtain any significant results here and since I have
to report here about our joint work I will mostly ignore these questions. Our joint work
extends to more than 50 years; we wrote 18 joint papers, several of them jointly with
A. Hajnal, three with E. Milner, one with F. Galvin, one with Chao Ko, and we have
a book on partition calculus with A. Hajnal and A. Mate. Our most important work is

4 Two years later, Rado obtained his second Ph.D. degree at Cambridge under G. H. Hardy.
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undoubtedly in set theory and, in particular, the creation of the partition calculus. The
term partition calculus is, of course, due to Rado. Without him, I often would have been
content in stating only special cases. We started this work in earnest in 1950 when I was
at University College and Richard in King’s College. We completed a fairly systematic
study of this subject in 1956, but soon after this we started to collaborate with A.
Hajnal, and by 1965 we published our GTP (Giant Triple Paper - this terminology was
invented by Hajnal) which, I hope, will outlive the authors by a long time. I would like
to write by centuries if the reader does not consider this as too immodest. . .

I started to correspond with Richard in late 1933 or early 1934 when he was a
German [Jewish] refugee in Cambridge. We first met on October 1, 1934 when I first
arrived in Cambridge from Budapest. Davenport and Richard met me at the railroad
station in Cambridge and we immediately went to Trinity College and had our first
long mathematical discussion. . .

Actually our first joint paper was done with Chao Ko and was essentially finished
in 1938. Curiously enough it was published only in 1961. One of the reasons for the
delay was that at that time there was relatively little interest in combinatorics. Also, in
1938, Ko returned to China, I went to Princeton and Rado stayed in England. I think
we should have published the paper in 1938. This paper “Intersection theorems for
systems of finite sets” became perhaps our most quoted result.

It is noteworthy to notice how differently people see the same fact. For Richard
Rado, Schur’s Theorem was about monochromatic solutions of a homogeneous lin-
ear equation x + y − z = 0, and so Rado generalized the Schur Theorem to a
vast class of homogeneous linear equations (Rado’s Theorem 32.3) and systems
of homogeneous linear equations [Rad1]. Three other mathematicians saw Schur’s
Theorem quite differently. This group consisted of Jon Folkman, a young Rand
Corporation scientist; Jon Henry Sanders, the last Ph.D. student of the legendary
Norwegian graph theorist Øystein Ore at Yale (B.A. 1964 Princeton University;
Ph.D. 1968, Yale University); and Vladimir I. Arnautov, a 30-year-old Moldavian
topological ring theorist. For the three, the Schur Theorem spoke about monochro-
matic sets of symmetric sums

{a1, a2, a1 + a2} =
⎧
⎨

⎩

∑

i=1,2

εi ai : εi = 0, 1; ε1ε2 	= 0

⎫
⎬

⎭
.

Consequently, the three proved a different —from Rado’s kind —Schur’s
Theorem generalization and paved the way for further important developments.
I see therefore no choice at all but to name the following fine theorem by its three
inventors. This may surprise those of you accustomed to different attributions. I will
address these concerns later in this chapter.

Arnautov–Folkman–Sander’s Theorem 32.5 ([San], [Arn]) For any positive inte-
gers m and n there exists an integer AFS(m, n) such that any m-coloring of the initial
integers array [AFS(m, n)] contains an n-element subset S ⊂ [AF S(m, n)] such that

the set

{
∑

x∈F
x : ∅ 	= F ⊆ S

}

is monochromatic.
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Problem 32.6 (trivial) Show that both Hilbert’s Theorem 31.1 and Schur’s
Theorem 32.1 follow from Arnautov–Folkman–Sander’s Theorem 32.5.

In their important 1971 paper [GR1] Ron Graham and Bruce Rothschild, having
vastly generalized some theorems of the Ramsey Theory (beyond the scope of this
book), conjectured that the word “finite” in reference to the subset S in Arnautov–
Folkman–Sander’s Theorem 32.5 can be omitted. Paul Erdős gave a high praise
to their conjecture at his 1971 talk in Fort Collins, Colorado, published in 1973
[E73.21]:

Graham and Rothschild ask the following beautiful question: split the integers into two
classes. Is there always an infinite sequence so that all the finite sums

∑
εi ai , εi = 0

or 1 (not all εi = 0) all belong to the same class? . . . This problem seems very difficult.

Surprisingly, the proof in the positive came in soon. In the paper submitted in
1972 and published in 1974 [Hin], Neil Hindman proved Graham–Rothschild’s
conjecture. While Graham–Rothschild’s conjecture asked for an initial generaliza-
tion for two colors (probably to test waters before diving into the general case),
Hindman proved the result for any finite number of colors, thus fully generalizing
Arnautov–Folkman–Sander’s Theorem.

Hindman’s Theorem 32.7 (Hindman [Hin]) For any positive integer n any n-
coloring of the set of positive integers N contains an infinite subset S ⊆ N such

that the set

{
∑

x∈F
x : ∅ 	= F ⊂ S; |F | < ℵ0

}

is monochromatic.

Let us now go back and establish the most appropriate credit for Theorem 32.5.
It is called Folkman–Rado–Sanders’ Theorem in [GRS1], [Gra2] and [EG]; and
Folkman’s Theorem in [Gra1] and [GRS2]. Most of other authors have sim-
ply copied attribution from these works. Which credit is most justified? In one
publication only [Gra2], Ronald L. Graham gives the date of Jon Folkman’s personal
communication to Graham: 1965. In one publication only [Gra1], in 1981 Graham
publishes Folkman’s proof that uses Schur–Baudet–Van der Waerden’s Theorem
(see Chapters 33 and 35). Thus, Folkman merits credit. In the standard text on
Ramsey Theory [GRS2], I find an argument for giving credit to Folkman alone,
disagreeing with the first edition [GRS1] of the same book:

Although the result was proved independently by several mathematicians, we choose
to honor the memory of our friend Jon Folkman by associating his name with the
result.

Jon H. Folkman left this world tragically in 1969 at the age of 31. He was full
of great promise. Sympathy and grief of his friends is understandable and noble.
Yet, do we, mathematicians, have the liberty to award credits? In this case, how
can we deny Jon Henry Sanders credit, when Sanders’ independent authorship is
absolutely clear and undisputed (he could not have been privy to the mentioned
above personal communication)? Sanders formulates and proves Theorem 32.5 in
his 1968 Ph.D. dissertation [San]. Moreover, Sanders proves it in a different way
from Folkman: he does not use Schur–Baudet–Van der Waerden’s Theorem, but



32 Schur’s Coloring Solution of a Colored Problem and Its Generalizations 307

instead generalizes Ramsey’s Theorem to what he calls in his dissertation “Iterated
Ramsey Theorem” [San, pp. 3–4].

Vladimir I. Arnautov’s discovery is even more striking. His paper is much closer
in style to that of Schur’s classic 1916 paper, where Schur’s Theorem appears as a
useful tool, “a very simple lemma,” and is immediately used for obtaining a number-
theoretic result, related to Fermat’s Last Theorem. Arnautov formulates and proves
Theorem 32.5, but treats it as a useful tool and calls it simply “lemma 2” (in the
proof of lemma 2, he uses Schur–Baudet–Van der Warden’s Theorem). He then uses
lemma 2 and other Ramseyan tools to prove that every (not necessarily associative)
countable ring allows a non-discrete topology. This brilliant paper was submitted to
Doklady Akademii Nauk USSR on August 22, 1969, and on September 2, 1969 was
recommended for publication by the celebrated topologist Pavel S. Aleksandrov.5

We have no choice but to savor the pleasure of associating Aknautov’s name with
Theorem 32.5.

What about Rado, one may ask? As Graham–Rothschild–Spencer [GRS2]
observe, Theorem 32.5 “may be derived as a corollary of Rado’s theorem [Rad1]
by elementary, albeit non-trivial, methods.”6 In my opinion, this is an insufficient
reason to attach Rado’s name to Theorem 32.5. Arnautov, Folkman, and Sanders
envisioned a generalization in the direction different from that of Rado, and paved
the way for Graham–Rothschild’s conjecture proved by Hindman. In fact, Erdős
came to the same conclusion in 1973 [E73.21] when he put Rado’s name in paren-
theses (Erdős did not know about Arnautov’s paper, or he would have definitely
added him to the authors of Theorem 32.5):

Sanders and Folkman proved the following result (which also follows from earlier
results of Rado [Rad1]).

32.3 Non-linear Regular Equations

A number of mathematicians studied regularity of non-linear equations. The follow-
ing problem was posed by Ronald L. Graham and Paul Erdős circa 1975 (Graham
estimates it as “has been opened for over 30 years” in his 2005 talk published
as [Gra7]), and still remains open today, as Graham reports in [Gra7], [Gra8], where
he offers $250 for the first solution:

Open $250 Problem 32.8 (R. L. Graham and P. Erdős, 1975) Determine whether
the Pythagorean equation x2 + y2 = z2 is partition regular, i.e., whether for any
positive integer k, any k-coloring of the set of positive integers contains a non-trivial
monochromatic solution x, y, z of the equation.

“There is actually very little data (in either direction) to know which way to
guess,” Graham remarks [Gra7], [Gra8]. However, I recall the following story.

5 Doklady published only papers by full and corresponding members of the Academy. A non-member’s
paper had to be recommended for publication by a full member of the Academy.
6 Theorem 32.5 also follows from Graham and Rothschild’s results published in 1971 [GR1].
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In May of 1993 in a Budapest hotel, right after Paul Erdős’s 80th-Birthday
Conference in Keszthely, Hungary, Hanno Lefmann from Bielefeld University,
Germany, told me that he and Arie Bialostocki from the University of Idaho,
Moscow, generated by computer, with an assistance of a student, a coloring of
positive integers from 1 to over 60,000 in two colors that forbade monochromatic
solutions x, y, z of the equation x2 + y2 = z2. This could be a basis for conjecturing
a negative answer to Problem 32.8, but of course the problem remains open and is
still awaiting new approaches.

Let us roll back a few years. Inspired by the old K. F. Roth’s conjecture (pub-
lished by Erdős already in 1961 [E61.22], Problem 16, p. 230), Paul Erdős, András
Sárkösy, and Vera T. Sós proved in 1989 a number of results and posed a number of
conjectures [ESS]. I would like to present here one of each.

Erdős–Sárkösy–Sós’s Theorem 32.9 [ESS, Theorem 3] Any k-coloring of the
positive integers, k ≤ 3, contains a monochromatic pair x, y such that x + y = z2,
for infinitely many integers z.

The authors then posed a conjecture:

Erdős–Sárkösy–Sós’s Conjecture 32.10 [ESS, Problem 2] Let f (x) be a polyno-
mial of integer coefficients, such that f (a) is even for some integer a. Is it true that
for any k-coloring of positive integers for some b (for infinitely many b) the equation
x + y = f (b) has a monochromatic solution with x 	= y?

On the first reading you may be surprised by the condition on f (a) to be even
for some integer a. However, you could, easily construct a counterexample to the
Erdős–Sárkösy–Sós’s Conjecture 32.10 if this condition were not satisfied. Indeed,
let f (x) = 2x2 + 1, and color the integers in two colors, one for even integers and
another for the odd.

In 2006 Ayman Khalfalah, professor of engineering in Alexandria, Egypt, and
Endre Szemerédi [KSz] generalized Theorem 32.9 to all k.

Khalfalah–Szemerédi’s Theorem 32.11 [KSz] For any positive integer k there
exists N (k), such that any k-coloring of the initial segment of positive integers
[N (k)] contain a monochromatic pair x, y such that x + y = z2, for an integer z.

Khalfalah and Szemerédi also proved Conjecture 32.10.

Khalfalah–Szemerédi’s Generalized Theorem 32.12 [KSz] Given a positive
integer k and a polynomial with integer coefficients f (x) such that f (a) is even
for some a, there exists N (k), such that any k-coloring of the initial segment of
positive integers [N (k)] contains a monochromatic pair x, y, x 	= y, such that
x + y = f (z), for some integer z.

Endre Szemerédi is a witty speaker, with humor reminiscent to that of Paul Erdős,
which he displayed on April 4, 2007 when he presented these results at the Discrete
Mathematics Seminar at Princeton-Math.

While these results were a step forward, non-linear regular equations remain a
little studied vast area of Ramsey Theory. It deserves its own Richard Rado!
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Ramsey Theory before Ramsey: Van der
Waerden Tells the Story of Creation

It is like picking apples from a tree. If one has got an
apple and another is hanging a little higher, it may
happen that one knows: with a little more effort one
can get that one too.

– B. L. van der Waerden [Wae18]

A thing of beauty is a joy for ever.
– John Keats, Endymion

The third result in Ramsey Theory before Ramsey was proven by Bartel Leendert
van der Waerden in 1926 and published a year later.

Arithmetic Progressions Theorem 33.1 (Van der Waerden, 1927, [Wae2]). For
any k, l, there is W = W (k, l) such any k-coloring of the initial segment of positive
integers [W ] contains a monochromatic arithmetic progression of length l.

B. L. van der Waerden proved this pioneering result while at Hamburg University
and presented it the following year at the meeting of D.M.V., Deutsche Mathematiker
Vereinigung (German Mathematical Society) in Berlin. The result became popu-
lar in Göttingen, as the 1928 Russian visitor of Göttingen A. Y. Khinchin noticed
and later reported [Khi1], but its publication [Wae2] in an obscure Dutch journal
hardly helped its popularity. Only Issai Schur and his two students Alfred Brauer
and Richard Rado learned about and improved upon Van der Waerden’s result
almost immediately (details in Chapter 35); and somewhat later, in 1936, Paul Erdős
and Paul Turán commenced density considerations related to Van der Waerden’s
result [ET] (more in Chapter 35). Only after the World War II, when Khinchin’s
book Three Pearls of Number Theory came out in Russian in 1947 [Khi1] and again
in 1948 [Khi2], in German in 1951 [Khi3], and in English in 1952 [Khi4], the result
became a classic, and has remained one of the most striking “pearls” of mathemat-
ics. In his April 5, 1977 reply to N. G. de Bruijn’s compliment, Van der Waerden
wrote: “Your praise ‘A thing of beauty is a joy forever’ pleases me.” Let me second
de Bruijn: the praise (coined by John Keats, by the way) is well deserved!

A. Soifer, The Mathematical Coloring Book, 309
DOI 10.1007/978-0-387-74642-5 33, C© Alexander Soifer 2009
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Now that the success of Khinchin’s booklet had made the result classic, the latter
merited a special attention and commentary by its solver. Van der Waerden obli-
gated, and in 1954 published an essay Der Beweis der Vermutung von Baudet with a
more expressive English title How the Proof of the Baudet’s Conjecture Was Found
in a later published translation. This essay has appeared four times in German: twice
in 1954 [Wae13], [Wae14], in 1965 [Wae16], posthumously in 1998 [Wae26]; and
once in English in 1971 [Wae18]. It is not just invaluable as a historical document.
The essay delivers a vibrant portrait of mathematical invention in the making. Van
der Waerden presents all critical ideas of the proof in the most clear and engaging
way. Thanks to the permission granted to me by Professor B. L. van der Waerden
in his letter [Wae24] and the permission by Academic Press, London, I am able
to bring this delightful essay [Wae18] to you here instead of presenting a formal
“dehydrated” proof of the result.

Enjoy, as Bartel Leendert van der Waerden recalls:

Once in 1926, while lunching with Emil Artin and Otto Schreier, I told them
about a conjecture of the Dutch mathematician Baudet:

If the sequence of integers 1, 2, 3, . . . is divided into two classes, at least one
of the classes contains an arithmetic progression of l terms:

a, a + b, . . . a + (l − 1)b,

no matter how large the length l is.
After lunch we went into Artin’s office in the Mathematics Department of the

University of Hamburg, and tried to find a proof. We drew some diagrams on the
blackboard. We had what the Germans call “Einfälle”: sudden ideas that flash into
one’s mind. Several times such new ideas gave the discussion a new turn, and one
of the ideas finally led to the solution.

One of the main difficulties in the psychology of invention is that most mathe-
maticians publish their results with condensed proofs, but do not tell us how they
found them. In many cases they do not even remember their original ideas. More-
over, it is difficult to explain our vague ideas and tentative attempts in such a way
others can understand them.7 To myself I am accustomed to talk in short hints which
I alone can understand. Explaining these hints to others requires making them more
precise and thus changing their nature.

In the case of our discussion of Baudet’s conjecture the situation was much more
favorable for a psychological analysis. All ideas we formed in our minds were at
once put into words and explained by little drawings on the blackboard. We rep-
resented the integers 1, 2, 3 . . . in the two classes by means of vertical strokes
on two parallel lines. Whatever one makes explicit and draws is much easier to
remember and to reproduce than mere thoughts. Hence, this discussion between

7 And when mathematicians attempt to be subjective, and better express themselves and include the
emergence of their results, most of journal editors, these priests of gloom and doom, would mercilessly
cut manuscripts to bring them to an ‘objective’ and relentless theorem–proof style. –A.S.
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Artin, Schreier, and myself offers a unique opportunity for analyzing the process of
mathematical thinking.

It was clear to us from the very beginning that the case l = 2 is trivial. One need
not even consider the infinite sequence of integers; it is sufficient to consider the
three integers 1, 2, 3. If they are divided into two classes, one of the classes contains
a pair of numbers (in arithmetic progression).

The next case we considered was l = 3. In this case, too, it is not necessary
to consider all integers: it suffices to take the integers from 1 to 9. The numbers 1
to 8 can be divided, in several ways, into classes without obtaining an arithmetic
progression of 3 terms in one class, e.g. like this:

12 56 in the first class

34 78 in the second class.

However, in any one of these cases, the number 9 cannot escape. If we put it into
the first class, we have the progression 1 5 9, and if we put it into the second class,
we get the progression 7 8 9, and so on in all other possible cases. I had observed
this already the day before.

Next, Schreier asked if at all Baudet’s conjecture is true for a certain value of l,
is it always possible to find an integer N (l) such that the conjecture holds already
for the segment

1 2 3 . . . N (l),

in the sense that every division of this segment into 2 classes yields an arithmetic
progression of length l in 1 class?

Schreier himself found the answer: it was Yes. If Baudet’s conjecture holds for a
fixed value of l, it is possible to find an N such that the conjecture holds already for
the segment 1 2 . . . N . This was proved by a well-known procedure from set theory,
the “diagonal procedure”. The argument is as follows.

If no such N existed, then for every N there would be a division DN of the num-
bers from 1 to N into 2 classes such that no class contains an arithmetic progression
of length l. Thus one could obtain an infinite sequence

D1 D2 . . .

of such divisions. The number 1 lies, in every one of these divisions, in one of the 2
classes. Hence it happens an infinity of times that 1 is in the same (first or second)
class, and an infinite sequence D′

1, D′
2, . . . exists such that in all these divisions 1

is in the same class, say in class number i1 (i1 = 1 or 2).
In the divisions D′

2, D′
3, . . . the number 2 belongs to one of the two classes.

Hence, by the same argument, an infinite subsequence D′′
2 , D′′

3 , . . . exists such that
2 is always in the same, i2th class.
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And so on. For every n one obtains a subsequence of divisions

D(n)
n , D(n)

n+1, . . .

such that in all these divisions the integers 1, 2, . . . , n are always in the same
classes:

1 in class i1

2 in class i2

. . .

n in class in.

Next, one can form a “diagonal division” D D of all integers 1, 2, 3, . . . in
which 1 lies in class i1, 2 in class i2, and so on. In this division, the number n lies in
the same class as in the division D(n)

n , hence the name “diagonal procedure.”
In this division D D no arithmetic progression of length l could exist in which

all terms belong to the same class. For if it existed, it would exist already in D(n)
n ,

i.e., in one of the original divisions. But we have assumed Baudet’s conjecture to be
true for the sequence of integers 1 2 3 . . . and for this particular value of l. Thus we
obtain a contradiction.

From this point onward, we tried to prove the “strong conjecture”, as we called
it, for a finite segment from 1 to N (l), i.e., we tried to find a number N (l) having the
desired property. For l = 2 and l = 3 such numbers had been found already:

N (2) = 3, N (3) = 9.

So we tried to go from l − 1 to l. For this induction proof, the replacement of
the original conjecture by a stronger one is a definite advantage, as Artin rightly
remarked. If one can assume for l − 1 the existence of a finite bound N (l − 1), one
has a chance to find a proof for the next number l.

Next, Artin observed: If the strong conjecture is true for 2 classes and for all
values of l, it must be true for an arbitrary number of classes, say for k classes.
To prove this assertion, he first proposed k to be 4. The 4 classes can be grouped
into 2 and 2. This gives us a rough division of the integers into 2 big classes, every
big class consisting of 2 smaller classes. In one of the big classes an arithmetic
progression of N (l) terms exists. The terms of this progression can be numbered
from 1 to N (l). These numbers are now divided into two smaller classes, and hence
in one of the smaller classes an arithmetic progression of length l exists. Thus, if
the strong conjecture is true for 2 classes, it is also true for 4 classes. By the same
argument one finds that it also holds for 8 classes, etc., hence, for any number of
classes k = 2n . But if it holds for k = 2n , it also holds for every k ≤ 2n , because
we may always add a few empty classes. Hence, if Baudet’s conjecture holds for 2
classes it also holds, even in the strong form, for an arbitrary number of classes.
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We now tried to prove the “strong conjecture” for arbitrary k and l by induction
form l − 1 to l. This means: we tried to find a bound N = N (l, k) such that, if
the integers from 1 to N are divided into k classes, one of the classes contains an
arithmetic progression of length l.

Artin expected—and he proved right—that the generalization from 2 to k classes
would be an advantage in the induction proof. For, he argued, we might now try to
prove the strong conjecture for an arbitrary fixed value of k and for length l under
the induction hypothesis that it holds for all k and for length l − 1. This means: we
have a very strong induction hypothesis to start with, which is a definite advantage.

Following the line indicated by Artin, we now tried to prove Baudet’s conjecture
for 2 classes and for progressions of length l, assuming the strong conjecture to hold
for all k for progressions of length (l − 1).

Next, Artin had another very good idea. If the integers 1, 2, . . . are divided into
2 classes, blocks of (say) 3 successive integers are automatically partitioned into
23 = 8 classes. For each of the 3 numbers within the block can lie in the first or
second class, and this gives us 8 possibilities for the whole block. Now the blocks
of 3 successive integers can be numbered: block number n consists of the integers
n, n + 1, n + 2. If the blocks are partitioned into 8 classes, their initial numbers n
are also partitioned into 8 classes, and to this partition we can apply the induction
hypothesis. Thus we obtain the following result: among sufficiently many successive
blocks we can find an arithmetic progression of (l − 1) blocks all in the same class.
The pattern of the distribution of integers over the 2 classes in the first block will be
repeated, exactly as it is, in the other (l − 2) blocks.

The same holds for blocks of arbitrary length m, each consisting of m successive
numbers

n, n + 1, . . . , n + m − 1.

The number of classes for those blocks is 2m . Again one can obtain arithmetic
progressions of (l−1) blocks in the same class, with exact repetition of the pattern in
the first block. Moreover, if the blocks are long enough, we can also find arithmetic
progressions of (l − 1) integers within each block.

In the simplest case l = 2 the conjecture is certainly true for all k, for if the
integers from 1 to k + 1 are divided into k classes, there must be two integers in one
of the classes. This is Dirichlet’s “box principle.”8 if k + 1 objects are in k boxes,
one of the boxes contains two of them. A very useful principle in Number Theory.

Thus, starting with the obvious case l = 2, we tried to treat the case of 2 classes
and l = 3 (although this case had been dealt already by an enumeration of all
possible cases). We represented the integers in the 2 classes by small vertical strokes
on two parallel lines, as in Fig. 33.1.

Among 3 successive integers there are always 2 in the same class, by the induc-
tion hypothesis, i.e., in this case by the “box principle.” Now consider a block of 5

8 In the USA, it is usually called the Pigeonhole Principle.
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Fig. 33.1

successive integers. Among the first three there are two in the same class; this gives
us an arithmetic progression of length 2. The third term of this progression still lies
within the block of 5. If it is in the same class as the first two terms, we have in this
class a progression of length 3, as desired. Therefore we may suppose that the third
term lies in the other class, and we have, within every block of 5, a pattern like the
one of Fig. 33.1.

I was drawing such blocks on the blackboard, and thought: There are 25 = 32
classes of blocks of 5, hence among 33 successive blocks of 5 there must be 2 blocks
in the same class. In the first of these blocks a pattern like the one in Fig. 33.1 exists,
and in the second block of 5 this pattern is exactly repeated (Fig. 33.2).

Fig. 33.2

What we wanted to construct were progressions of length 3. Hence I drew one
more block at the same distance from the second block as the second from the first,
and I drew three strokes in the third block in the same position as the strokes in the
first and second block (Fig. 33.3).

Fig. 33.3

The third of these strokes represents an integer, which may be in the first or
second class. If it is in the first, we have in this class an arithmetic progression a a
a (Fig. 33.3). If it is in the second class, we have in this class a progression b b b.
Hence we have in any case within the block of integers from 1 to 5 + 32 + 32 = 69,
an arithmetic progression of 3 terms in one class.

After having found this proof in the special case k = 2 and l = 3, I explained it
to Artin and Schreier. I felt sure that the same proof would work in the general case.
They did not believe it, and so I proceeded to present the proof in the next higher
case k = 3, l = 3.

Instead of considering blocks of 3+2 = 5, I now considered blocks of 4+3 = 7
successive integers. Since the first four numbers of such a block are distributed
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among 3 classes, two of them must belong to the same class. The third term of the
arithmetic progression starting with these two terms still belongs to same block of
7. If the third term lies in the same class, we have a progression of length 3 in this
class. Hence we may suppose the third term to lie in another class. Thus we obtain,
in every block of seven, a pattern like the one in the first small block of Fig. 33.4.

Fig. 33.4

The blocks of 7 are partitioned into 37 classes. Hence among 37 + 1 successive
blocks of 7 there are two belonging to the same class. In the first block we have three
integers in arithmetic progression, two of which belong to the same class, and this
pattern repeats itself in the second block. If the second block is shifted once more
over the same distance, one contains 3 blocks forming an arithmetic progression of
blocks, as shown in Fig. 33.4.

In the third block, I drew 3 strokes in positions corresponding to the 3 strokes
in the first or second block, and I considered the possibilities for the third of these
strokes. If it falls into the first or second class, we have an arithmetic progression of
length 3 in the same class, by the same argument as before; but now the third stroke
can escape into the third class. Thus we obtain the pattern drawn in Fig. 33.4.

We have such a pattern in every large block of 37 + 37 + 7 = h successive
integers. Now the large blocks of h are divided into 3h classes. Hence among 3h + 1
successive large blocks there are two belonging to the same class. Drawing the small
blocks within the large ones, I obtained the picture of Fig. 33.5.

Fig. 33.5

Now shifting the second large block over the same distance, and considering the
third stroke in the third small block in the third large block, I showed that it cannot
escape anymore. If it lies in the first class, there is a progression a a a in the first
class. If it lies in the second class, there is a progression b b b in that class, and if in
the third class, a progression c c c in that class (Fig. 33.6).

After this, all of us agreed that the same kind of proof could be given for arbitrary
k. However, Artin and Schreier still wanted to see the case l = 4.

As before, I first considered the case of 2 classes. For this case I had already
proved that among sufficiently many, say n, successive integers there is a progression
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Fig. 33.6

of 3 terms in the same class. We may suppose n to be odd. The distance between the
first and the last term of the progression (n − 1) at most, hence the difference between
two successive terms is 1

2 (n − 1) at most. Now consider the fourth term of the same
progression. All four terms lie within a block of

g = n + 1
2 (n − 1)

successive integers. If the fourth term belongs to the same class as the other three, we
are satisfied. Suppose it lies in the other class; then we have the pattern of Fig. 33.7.

Fig. 33.7

In every block of g successive integers, such a pattern must occur. Now the blocks
of g are divided into 2g classes. Hence among sufficiently many, say N (3, 2g) blocks
of length g, there are three blocks in arithmetic progression belonging to the same
class. The pattern in the first block is exactly repeated in the second and third block
(Fig. 33.8).

Fig. 33.8

Adding a fourth block to this progression, I easily obtained a progression a a a a
in the first or b b b b in the second class.

Now it was clear to every one of us that the induction proof from (l−1) to l works
for arbitrary l and for any fixed value of k. Hence if Baudet’s strong conjecture is
true for length (l − 1) and all k, it is also true for l and any k. Since it is true for
l = 2, its truth follows quite generally.

Analyzing this record, one can clearly distinguish a succession of sudden ideas,
which gave the discussion a new turn every time.

1. The first was Schreier’s idea of restricting oneself to a finite segment from 1 to
N . This idea was fundamental to the whole proof.



33 Van der Waerden Tells the Story of Creation 317

2. The second idea was: to try an induction from l − 1 to l. This was quite a natural
idea, because the case l = 2 was obvious and the case l = 3 could be solved by
enumerating all possible cases.

3. Artin proved: if the strong conjecture is true for 2 classes, it is also true for 4
classes. In his proof another idea was implicit, viz.: if the conjecture is true for a
segment of all integers from 1 to N it is also true for any arithmetic progression
of length N

a, a + b, . . . ,a + (N − 1)b

because the terms of this progression can be numbered by the integers 1 to N .
This is also a central idea in the proof.

4. Next, Artin said: in an induction it is always an advantage to have a strong induc-
tion hypothesis to start with. Therefore let us start with the assumption that the
conjecture holds for progressions of length (l − 1) and for all k, and try to prove
the conjecture for progressions of length l and for one value of k, say k = 2.
Thus the plan for the proof was devised.

5. The next idea, which also came from Artin, was of decisive importance. He said:
we can apply the induction hypothesis not only to single integers, but also to
blocks, for they too are divided into classes. Thus we are sure that whole blocks
are repeated (l − 1) times.

6. After this, it was only natural to consider progressions of (l − 1) integers within
the blocks, and to try to extend these progressions of length (l−1) to progressions
of length l. The simplest non-trivial case is l = 3, and thus I was led, quite
naturally, to consider patterns like the one of Fig. 33.2.

7. This pattern still does not contain a progression of length 3 in one class. Therefore,
it was necessary to extend the progression of length 2 occurring in the second class
in Fig. 33.2 to a progression of length 3. Hence I extended the pattern of Fig. 33.2
by drawing the third block of Fig. 33.3, and I considered the third term of the
progression b b b. As soon as attention was focused upon this term, it was clear that
it cannot escape from forming an arithmetic progression of length 3 in the first or
second class.

This final idea was accompanied by a feeling of complete certainty. I felt quite
sure that this method of proof would work for arbitrary k and l. I cannot explain
this feeling; I can only say that the mathematicians often have such a conviction.
When a decisive idea comes to our mind, we feel that we have the whole proof we
are looking for: we have only to work it out in detail.

However, I can explain, to a certain extent, why Artin and Schreier did not feel so
sure. They saw only the result: the presence of the progression a a a in the first class or
b b b in the second one, but I had discovered a method for finding such progressions,
and I was convinced that this method would work in higher cases as well.

It is like picking apples from a tree. If one has got an apple and another is hanging
a little higher, it may happen that one knows: with a little more effort one can get
that one too. The man standing next to me only sees that I have just got the first
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apple, and he is in doubt whether I can get the other too, but I myself have not only
got the apple, but I also have a feeling of the movement that enabled me to pick it.

The feeling that a method of proof can be carried over to the other cases is still
sometimes deceptive. Often the higher cases offer additional difficulties. Still, feel-
ings of this kind are extremely useful in mathematical research.

Finding the proof of Baudet’s conjecture was a good example of teamwork. Each
of the three of us contributed essential ideas. After the discussion with Artin and
Schreier I worked out the details of the proof and published it in Nieuw Archief
voor Wiskunde 15, p. 212 (1927). (Interesting applications and generalizations of
the theorem proved in my paper were given by Richard Rado9).

A. J. Khinchin included the theorem among his “Three Pearls of the Theory of
Numbers” (1952) and published a proof due to M. A. Lukomskaja, which is in all
essentials the same as mine, the only difference being that in her proof the blocks
are required to be non-overlapping.

Van der Waerden, assisted by Emil Artin and Otto Schreier, actually proved a
“strong conjecture” as they called the result:

Van der Waerden’s Theorem Strong Version 33.2 For all positive integers n and
r there exists an integer W = W (n, r ) such that if the initial set of integers
[W ] = {1, 2, . . . , W } is colored in r colors, then there exists a monochromatic
n-term arithmetic progression.

It is natural to inquire whether the finality of n and of r is essential. Prove first
that the finality of the length n of the guaranteed arithmetic progression is essential:

Problem 33.3 Color the set of all positive integers in two colors in a way that forbids
infinite monochromatic arithmetic progressions.

Of course, the finality of the number of colors is essential, for otherwise we can
color each integer in its own color and thus exclude even length two arithmetic pro-
gressions. However, Paul Erdős and Ronald L. Graham proved a nice “consolation”
result [EG]. We will say that a sequence is representative if each term is colored in
different color.

Theorem 33.4 (Erdős–Graham, [EG]) Any coloring of the positive integers in
infinitely many colors contains arbitrarily long monochromatic or representa-
tive arithmetic progressions.

Hint: Peek at Szemerédi’s Theorem in Chapter 35—and use it.

I have been unable to explain why the leader of the new field, Ramsey Theory,
Paul Erdős almost universally quoted Van der Waerden’s result as addressing only
the case of two colors (see, for example, [E57.13], [E61.22], [E71.13], [E73.21],
[E76.35], [E81.16], [E80.03], [E83.03], [E85.33], [E89.27], etc.,). Is it because Van

9 R. Rado: Studien zur Kombinatorik, Ph.D-Thesis Berlin 1931, Math. Zeitschr. 36, p. 424. Verallge-
meinerung eines Satzes von van der Waerden, Sitzungsber. preuss. Akad., Berlin 1933, p. 589. Note on
Combinatorial Analysis, Proc. London Math. Soc. (2) 48, p. 122.
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der Waerden’s paper opens with the Baudet’s Conjecture for two colors or because
Erdős wanted, as he often did, to gain insight into the simplest case first (and then
forgot about the general case)?

Besides Issai Schur and his former Ph. D. students Alfred Brauer and Richard
Rado, and Erdős and Turán, nobody seemed to have appreciated and furthered Van
der Waerden’s proof soon after Van der Waerden’s publication. There was, however,
one exception—a pair of mathematicians, who published on Van der Waerden’s
proof very shortly after its publication. Their result was cited in Erdős and Gra-
ham’s fine 1980 problem book [EG] as “an easy consequence of Van der Waerden’s
Theorem”:

Problem 33.5 [KM] If A = {a1, a2, . . .} is an increasing infinite sequence of inte-
gers with ak+1 − ak bounded, then A contains arbitrarily long arithmetic progres-
sions.

The great surprise is: [KM] was published by the two Japanese mathematicians
Sôichi Kakeya and Seigo Morimoto in 1930, much earlier than even Erdős and
Turán’s paper! How did they get a hold of the little-read Dutch journal where Van
der Waerden published his result just 3 years earlier? The authors misspelled the
name of Baudet everywhere, even in the title: On a Theorem of MM. Bandet [sic]
and van der Waerden. But they were first to recognize that credit is due to both,
Baudet for creating the conjecture, and Van der Waerden for proving it. Without the
conjecture, Van der Waerden would have had nothing to prove!

In the next chapter I will present my research on the authorship of the conjec-
ture that Van der Waerden proved, and my take on attributing credit for the result.
Meanwhile, I invite you to prove Kakeya–Morimoto’s statement 33.5. You will find
my proof appended to the end of Chapter 35.
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Whose Conjecture Did Van der Waerden Prove?
Two Lives Between Two Wars: Issai Schur
and Pierre Joseph Henry Baudet

As far as your advice to leave priority
matter . . . alone, it is my opinion that the tiniest
moral matter is more important than all of science,
and that one can only maintain the moral quality of
the world by standing up to any immoral project

– L. E. J. Brouwer10

What amazes us today is, of course, that no one in
Hamburg (including Schreier and Artin) had known
about Schur’s work. In that connection we must
realize that the kind of mathematics involved in the
[Baudet-Schur] conjecture was not mainstream, and
that combinatorics was not a recognized field of
mathematics at all.

– Nicolaas G. de Bruijn11

34.1 Prologue

Bartel L. van der Waerden credited “Baudet” [sic] with conjecturing the result
about monochromatic arithmetic progression. Decades later, Van der Waerden gave
a most insightful story of the birth of his proof, which I have reproduced for you
in Chapter 33. As I enumerated there, the “Story of Creation” appeared four times
in German: twice in 1954 [Wae13], [Wae14], in 1965 [Wae16], posthumously in
1998 [Wae26]; and once in English in 1971 [Wae18]. In these publications Van
der Waerden extended the credit for the conjecture to “the Dutch mathematician
Baudet” (still without first name or initials). Biographers of Van der Waerden faith-
fully followed him with crediting Baudet for the conjecture (see [Frel], [FTW], [Per]
and [Bru1]).

10 February 24, 1929 letter to H. Hahn, quoted from [Dal2], p. 651.
11 E-mail to A. Soifer, January 5, 2004.
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On the other hand, Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer
in their definitive monograph [GRS1], [GRS2] cited Alfred Brauer [Bra2], [Bra3] in
taking credit for the conjecture away from Baudet and giving it to Issai Schur. Schur
was also credited by Hillel Furstenberg in his pioneering paper [Furl]. Consequently,
many mathematicians uncritically quoted or simply copied credit from [GRS1],
[GRS2] or [Furl].

False attributions are never pleasant. One may wonder, however, why the author-
ship of this conjecture is so extremely important that I most thoroughly researched
it, and am dedicating this whole chapter to my findings. This is so because we have
here, for the third time in the history of mathematics,12 a totally new Ramseyan type
of question, quite uncommon in mathematics of the time: “if a system is partitioned
arbitrarily into a finite number of subsystems, then at least one subsystem pos-
sesses a certain specified property.”13 It was a major achievement indeed to envision
and conjecture such a result. But whose achievement was it, Baudet’s or Schur’s?
And who was “Baudet” anyway? My early investigative reports appeared in mid
1990s [Soi10], [Soi11], and [Soi12]. Let us look at the more complete evidence that
I have been able to assemble to date.

34.2 Issai Schur

Germany has surely been one of the best countries in preserving documents through
all the cataclysms that have befallen on this land. Issai Schur’s personnel file, and
personnel forms it contains are preserved in the Archive of the University Library
of the Humboldt University at Berlin.14 Let us make good use of them.

Issai Schur was born on January 10, 1875, in the Russian city of Mogilyov
(presently in Belorussia) in the family of the merchant Moses Schur and Golde
Landau. Being a Jew, Issai could not enroll in any Russian university. At 13 he went
to live with his older sister in Libau, Russia (now Latvia), in order to attend the
German language Nicolai-Gymnasium (1888–1894). That prepared him for enter-
ing a German university in 1894. In Berlin, on September 2, 1906, Issai Schur
married Regina Malka Frumkin, born on January 8, 1881 in Kowno (Kaunas).
She was a medical doctor, also Jewish, and apparently an émigré from Russia.
Issai Schur, who originally filled the personnel form in his hand, likely in 1916 (it
was later updated, probably by clerks), on the line “Arian” promptly put “nicht”
for himself and “nicht” for his wife. The happy and lasting marriage produced
two children, Georg (named in honor of Schur’s mentor, the celebrated algebraist
F. Georg Frobenius), born on July 25, 1907, and Hilde, born on March 15, 1911.

12 First two being Hilbert’s Theorem of 1892 [Hil] and Schur’s Theorem of 1916 [Sch1] – see
Chapters 31 and 32.
13 Leon Mirsky in [Mir], in reference of Schur’s Theorem.
14 Archive of Humboldt University at Berlin, documents UK-Sch 342, Bd. I, Bl. 1, 1R, and 2R, 3.
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Young Issai Schur, Courtesy of Hilde Abelin-Schur

Issai Schur gave most of his life to the University of Berlin, first as a stu-
dent (1894–1901; Ph.D. in Mathematics and Physics summa cum laude, Novem-
ber 27, 1901), then as a Privatdozent (1903–1909), ausserordentlischer Profes-
sor (equivalent to an associate professor, December 23, 1909–April 21, 1913 and
again April 1, 1916–April 1, 1919) and Ordinarius (equivalent to a full professor,
April 1, 1919–September 30, 1935).15 On April 1, 1921, Schur was appointed to the
Ordinarius chair of Prof. Dr. Schottky with a very respectable compensation: 16200
marks base salary; plus local, adjustment and family allowances; plus 5000 marks
for lecturing the minimum of 8 hours a week. Schur spent 3 years at the University
of Bonn, 1913–1916, the only period he spent away from Berlin. These years are
important to our story, and we will look at them in the next section.

Issai Schur was elected to a good number of academies of sciences. He was a
legendary lecturer. Schur’s student and friend Alfred Theodor Brauer (Ph. D. under
Schur 1928) recalls [Bra2] that the number of students in Schur’s elementary num-

15 Archive of Humboldt University at Berlin, documents UK-Sch 342, Bd. I, Bl. 4.
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Issai Schur, the collection of his daughter, Hilde Abelin-Schur

ber theory courses often exceeded 400, and during the winter semester of 1930 even
exceeded 500. Brauer would know, for as Schur’s Assistant, he had to grade home
works of all those students! Walter Ledermann, who estimates to have taken about
500 lectures from Schur, writes [Led1] that “Schur’s lectures were exceedingly pop-
ular. I remember attending his algebra course which was held in a lecture theatre
filled with about 400 students.” Ledermann adds in his 2000 interview [Led2]:

I was absolutely captivated by Schur. I wrote about 300 lectures in fair copy in cloth
bound book which I had until quite recently, running to something like 2000 pages of
Schur’s lectures.

Hitler’s appointment as Reichskanzler by President Paul von Hindenburg on Jan-
uary 30, 1933 changed this idyllic life. Schur’s former student Menahem Max Schif-
fer recalls in his talk at the 4th Schur conference in May 1986 at Tel Aviv University,
which was consequently published [Schi]:

Now, the year 1933 was a decisive cut in the life of every German Jew. In April of that year
[April 7, 1933 to be precise] all Jewish government officials were dismissed, a boycott
of Jewish businesses was decreed and anti-Semitic legislation was begun. When Schur’s
lectures were cancelled there was an outcry among the students and professors, for Schur
was respected and very well liked. The next day Erhard Schmidt started his lecture with
a protest against this dismissal and even Bieberbach, who later made himself a shameful
reputation as a Nazi, came out in Schur’s defense. Schur went on quietly with his work
on algebra at home.
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Issai Schur (left) and Edmund Landau, the collection of his daughter, Hilde Abelin-Schur

Ledermann gives vivid details [Led2]:

When Hitler finally came to power, all the Jewish faculty were dismissed instantly,
including Schur who was not allowed to come even to the library any more.

However Erhardt Schmidt, who was the decent sort of German, found that in the
regulations of the Nazis there was a clause to say that these dismissals would not apply
to two types of non-Aryan:

1. those who had fought in the First World War in the German army on the front, and
2. those who had during the First World War held a position making them

German/Prussian civil servants.

The first of these applied to Alfred Brauer who had been a soldier, and yes, he was
badly wounded, and the second applied to Schur because in 1916 he was an extraordi-
nary professor at Bonn, so had effectively become a Prussian civil servant.

So, Schmidt applied this clause. He went to Goebbels and said, “You must abide
by your own law and reinstate Schur for this reason”, and he was reinstated. He could
then come to the University but he was not allowed to lecture. For supervision of
my dissertation, I had to go to his house. It was nice to meet with him, he lived in
a suburb of Berlin, to see him and his wife and talk not only about mathematics but
also about the Jews. He said, “I can read the English Times which is still allowed”,
all the other papers were taken over by the Nazis. I cannot bear this. And then the
time came for me to have my exam, the oral, and he was allowed to come to take this
examination in mathematics for one hour. Also, a co-examiner was expected to come.
They did not normally ask questions but would take a record, more like a secretary.
This co-examiner was, unfortunately, none other than Bieberbach, who appeared in
Nazi uniform, brown shirt and swastika. He came and sat down to take notes about
what Schur was asking me. But I must say he was quite fair. He didn’t interfere and I
got a very good result.
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Hindenburg negotiated with Hitler exemptions from the April 7, 1933 Restora-
tion of Professional Civil Service Law for those Jews who fought for Germany in
World I, those who lost a father or a son in the war and those who entered their
civil service jobs (university professors included) before the start of the war. Schur
held a civil service (university) appointment before the war, and thus fell under
the exemption. Nevertheless, by the order UI No. 6362 of the Prussian Minister
for Science, Art and Public Education of on April 29, 1933, Schur and 18 other
faculty were “relieved of their duties effective immediately” – yes, immediately, as
was customary for the Nazi orders.16 At that time a representative of the English
Jewish Emergency Council visited Schur. We are lucky to have had a witness at the
meeting—Schiffer reports [Schi]:

The lady asked Schur whether and where he wanted to go, because for a man of his
reputation all doors would be open. But Schur responded that he did not intend to go;
for he did not want to enable the Nazis to say, that many Jewish professors just left
for better jobs. Besides, there were many younger colleagues which needed help much
more urgently, and he would not take away their chances. He would stick it out in
Berlin, for the craze of the Hitlerites could not last long.

I believe in Schur’s generosity and genuine care for younger colleagues. Yet,
there had to be more to his refusal to leave Germany earlier, as early as the Nazis had
come to power in the early 1933. In 1995 Schur’s former student Walter Ledermann,
Professor at the University of Sussex, UK, sent me his 1983 reprint [Led1], where
he introduced additional reasons for the unfortunate Schur’s decision to stay in
Germany:

When the storm broke in 1933, Schur was 58 years of age and, like many German
Jews of his generation, he did not grasp the brutal character of the Nazi leaders and
their followers. It is an ironic twist of fate that, until it was too late, many middle-aged
Jews clung to the belief that Germany was the land of Beethoven, Goethe and Gauss
rather than the country that was now being governed by Hitler, Himmler, and Goebbels.
Thus Schur declined the cordial invitations to continue his life and work in America
or Britain. There was another reason for his reluctance to emigrate: he had already
once before changed his language, and he could not see his way to undergoing this
transformation a second time.

So he endured 6 years of persecution and humiliation under the Nazis.

On October 7, 1933 the Prussian Minister for Science, Art and Public Education,
by the order UI No. 8831, “canceled the suspension for Dr. Mittwoch and Dr. Schur,
Ordinarius professors on the Philosophical Faculty,” imposed by the previous order,
effective – of course – immediately.17 The legal exemption had worked; Walter
Ledermann, whom we quoted above, and Alfred Brauer [Bra2] credited Erhard
Schmidt’s efforts for the success. Consequently, Schur was able to carry out some
of his duties but not all (no lecturing, for example) and not for long. Issai Schur

16 Archive of Humboldt University at Berlin, documents UK-Sch 342, Bd. I, Bl. 23 and Bl. 23R.
17 Archive of Humboldt University at Berlin, document UK-Sch 342, Bd.I, Bl.24.
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was a famous professor, the pride of his University and of his profession. Yet no
achievement was high enough for a Jew in the Nazi Germany. Following 2 years
of pressure and humiliation, Schur, faced with imminent expulsion, “voluntarily”
asked for resignation on August 29, 1935. On September 28, 1935, Reichs- and
Prussian Minister of Science, Instruction and Public Education, replied on behalf of
Der Fürer und Reichskanzler, i.e., Adolf Hitler himself (see facsimile on p. 327):18

Fürer and Reichskanzler has relieved you from your official duties in the Philosoph-
ical Facultät of the University of Berlin effective at the end of September 1935, in
accordance with your August 29 of this year request.

As Henrik Hofer of the Humboldt University Library reports [Hof], Schur was
the last Jewish professor to lose his job at the University of Berlin. Only a few of
his closest friends had the courage to visit him, recalls Schiffer, and retells one such
visit, about which he learned from Schur himself [Schi, p. 180]:

When he complained to [Erhard] Schmidt about the Nazi actions and Hitler, Schmidt
defended the latter. He said, “Suppose we had to fight a war to rearm Germany,
unite with Austria, liberate Saar and the German part of Czechoslovakia. Such a war
would have cost us half a million young men. But everybody would have admired our
victorious leader. Now, Hitler has sacrificed half a million of Jews and has achieved
great things for Germany. I hope some day you will be recompensed but I am still
grateful to Hitler.” So spoke a great scientist, a decent man, and a loyal friend. Imagine
the feelings of a German Jew at that time.

Clearly, Erhard Schmidt, who, as we have seen, helped Schur after the lat-
ter’s initial dismissal, held extreme nationalistic aspirations for Great Germany,
Deutschland über Alles. Schmidt acknowledged the brutal sacrifice of half a million
of Jews, including his friend Schur, and Schmidt was willing to sacrifice half a
million young German men for “great things for Germany.” How low had morality
fallen in the Third Reich, if these were the views of “a decent man” (Schiffer’s
words), Erhardt Schmidt!

One very special 1936 visitor of Issai Schur, Paul Erdős recalls on the pages
Geombinatorics [E95.32]:

Schur was of the Russian Jewish origin. He always viewed himself as a German, and
he was greatly attracted by the German culture. The horrible degeneration of Nazism
was a great disappointment and a personal tragedy to him.

Menahem Schiffer lists Schur’s numerous honors that were stripped away:

He [Schur] was a member of many distinguished academies and learned societies; for
example, the Prussian, Bavarian, Saxonian Academies of Science and many more. He
had been ejected from each of them.

A document published in 1998 by the authors of [BFS] sheds light on one of
these expulsions. Schur had been a member of the Prussian Academy of Sciences

18 Archive of Humboldt University at Berlin, document UK-Sch 342, Bd.I, Bl.25.
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Letter relieving Issai Schur from his duties at the University of Berlin. Courtesy of the Archive
of the Humboldt University at Berlin

ever since his election in 1921. The Academy was going to publish works of
Weierstrass – what can be political about it? The editorial board was to routinely
sign off on the publication on a “Zirkular”. Let us look together at this document
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[BFS, p. 26]. The first two lines seem routine and are written by Erhard Schmidt
and Issai Schur respectively (I am translating the lines from German here):

Seen – 11.3.38 Erhard Schmidt
Seen 12/3/38 Schur

Here comes Bieberbach, the founder of the racist doctrine of German Mathe-
matics (that he opposed to Jewish Mathematics) and writes right below Schur and
clearly hinting at Schur’s presence:

Bieberbach 29.3.38
I am surprised that Jews still belong to the Academic Commissions. B.

In his turn Theodore Vahlen, a long-term Nazi and anti-Semite, a mathematician
and official in the Ministry of Education for University Affairs, who was in charge
of hiring professors, agrees with Bieberbach:

Seen Vahlen 30.3.38
I request change. V.

The great Max Plank, a near 80-year-old icon of science, comes last and writes:

Planck 3.4.38
I will settle the affair. Planck

And settle Planck did. Just 4 days later, on April 7, 1938, Schur resigned from all
Commissions of the Prussian Academy of Sciences. How does one assess Planck’s
role? Nazi collaboration, a pedantic fulfillment of his duties as Secretary of the
Academy, or a desire to dismiss Schur gentler than someone else, like Vahlen or
Bieberbach would have done? We will never know for sure which one(s) of these
motivations prompted Planck’s actions. I for one deeply regret that whatever the
motive, Planck carried out the Nazi’s dirty business. There were – had to be – other
options. For example, Planck could have resigned from his Secretary’s position, or
from the Academy itself. Meanwhile the pressure on Issai Schur continued, and later
that year he resigned from the Academy itself.

On November 15, 1938, Issai Schur applied for a foreign passport, which was
needed for leaving Germany. On January 14, 1939, the Reichsminister for Science,
Instruction and Public Education stated19 that he “no longer objected to the issuance
of a foreign passport for Dr. Schur” in view of “vulnerable health of Dr. Schur.” He
even approved paying Schur his emeritus remuneration through the date of Schur’s
departure.

On February 2, 1939, in the midst of the Gestapo’s “personal interest” in him,20

depressed and sick, Schur had to leave, better said, run away from Germany to
Switzerland. Incredibly, the Reichsminister for Science, Instruction and Public Edu-
cation believed that he could order Issai Schur where to live after Schur left Germany

19 Archive of Humboldt University at Berlin, document UK-Sch 342, Bd.I, Bl. 47 and Bl. 47R.
20 [Bra2]
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and apparently when to come back to the Third Reich, for on February 24, 1939, he
issued the following order number W T Schur 4:21

I hereby authorize the change of permanent address for the Emeritus Prof. Dr. Issai
Schur of the University of Berlin, residing in Berlin-Schmargendorf, Ruhlaer Str. 4,
first to Switzerland and thereafter to Palestine starting February 1st 1939 until the end
of March 1941.22

Schur’s wife of 33 years, Med. Dr. Regina Frumkin-Schur, joined him there in
March. They stayed in Bern for a few weeks with their daughter Hilde Abelin-Schur
and her family. Broken mentally, physically, and financially, the Schurs moved on
to Palestine.

While in Palestine, without means, Schur had to sell his only valuables, scientific
books and journals, to the Institute for Advanced Study, Princeton, where his former
student and friend Alfred Brauer was Herman Weyl’s assistant, charged with library
acquisitions. This book transfer must have been painful for both Schur and Brauer.
Schiffer recalls one 1939 episode that shows how infinitely professional Schur was:

[Schur] agreed to give a lecture at the Hebrew University and this I will never forget.
He spoke about an interesting inequality in polynomial theory with the customary
clarity and elegance. Suddenly, in the middle of his talk he sat down, bent his head
and was silent. We, in the audience, did not understand what was going on; we sat
quietly and respectfully. After a few minutes he got up and finished his talk in his
usual manner.

I was sitting next to a physician from the Hadassa Hospital who had come to see this
famous man. He was quite upset; after the lecture he told me that Schur had obviously
had a heart attack and he could not understand the self-discipline which had enabled
Schur to finish his talk. That was the man Schur, for you!

Schiffer informs that Schur eventually got better, wrote several research papers,
supervised a number theoretic work of Theodore S. Motzkin, and “started inter-
acting with younger men at the Mathematics Institute.” Issai Schur died from yet
another heart attack in Tel Aviv right on his 66th birthday on January 10, 1941.23

The list of Issai Schur’s Ph. D. students, who became world-class mathemati-
cians, is amazing. It includes Heinz Prüfer (1921), Richard Brauer (1925), Eberhard
Hopf (1926), Alfred Brauer (1928), Bernhard Neumann (1932), Hans Rohrbach
(1932), Wilhelm Specht (1932), Richard Rado (1933), and Helmut Wielandt (1935).
The list of successful mathematicians, who were Schur’s undergraduates or were
influenced by him in other significant ways, is too numerous to be included here.
Schur with his teacher and a student produced one of the most remarkable suc-
cession lines in the history of modern algebra: Ferdinand Georg Frobenius–Issai
Schur–Richard Dagobert Brauer.

21 Archive of Humboldt University at Berlin, document UK-Sch 342, Bd.I, Bl. 53 and Bl. 53R.
22 Of all people, I should not be surprised, for when I was leaving another bastion of tyranny, the Soviet
Union, in 1978, I too was told where to go and where to live.
23 For more details see [Bra2], [Schi], [Led1] and [Soi10].
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34.3 Argument for Schur’s Authorship of the Conjecture

Issai Schur made major contributions to various areas of mathematics.24 Our inter-
est here lies in the result he obtained during 1913–1916 when he worked at the
University of Bonn as the successor to the celebrated topologist Felix Hausdorff.25

There he wrote his pioneering paper [Sch] containing, as he put it, “a very simple
lemma, which belongs more to combinatorics than to number theory.” We proved
Schur’s Theorem in Chapter 32. Here I would like to formulate it again for your
convenience:

Schur’s Theorem 34.1 (Schur, [Sch]) Let m be a positive integer and N > m!e. If
integers 1, 2, . . . , N are m-colored then there are integers a, b, and c of the same
color such that a + b = c.

Schur’s Theorem gave a new birth to this novel way of thinking (likely nobody
remembered Hilbert’s 1892 lemma by 1916), a new direction in mathematics, now
called the Ramsey Theory.

Leon Mirsky writes [Mir] on the occasion of the centenary of the birth of
Issai Schur,

We have here a statement of the type: ‘if a system is partitioned arbitrarily into a
finite number of subsystems, then at least one subsystem possesses a certain specified
property.’ To the best of my knowledge, there is no earlier result which bears even a
remote resemblance to Schur’s theorem. It is this element of novelty that impresses
itself so forcibly on the mind of the reader.

Mirsky continues:

After writing his paper, Schur never again touched on the problem discussed there;
and this is in itself something of a mystery. For the strongest impression one receives
on scanning his publications is the almost compulsive striving for comprehensiveness.
There are few isolated investigations; in algebra, in analysis, in the theory of numbers,
Schur reverts again and again to his original questions and pursues them to the point
of where one feels that the last word has been spoken. . . Why, then, did he not inves-
tigate any of the numerous questions to which his Theorem points so compellingly?
There is no evidence to enable us to solve the riddle. (Footnote: As will emerge from
the discussion below, Professor Rado, if anyone, should be able to throw light on the
mystery – and he tells me that he cannot.)

24 For details see [Bra2] and [Led1].
25 Both Alfred Brauer [Bra3] and Walter Ledermann [Led] reported 1911 as the time when Schur became
an Extraordinarius in Bonn, while Schur’s daughter Mrs. Hilde Abelin-Schur [Abe1] gave 1913 as the
time her family moved to Bonn. The Humboldt University’s Archive contains personnel forms (Archive
of Humboldt University at Berlin, document UK Sch 342, Bd.I, Bl. 1–3) filled up by Issai Schur himself,
from which we learn that he worked at the University of Bonn from April 21, 1913 until April 1, 1916,
when he returned to Berlin.
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The latter Mirsky’s statement, apparently backed by Richard Rado was echoed in
the standard text on Ramsey Theory [GRS2, p. 70], thus becoming a universal view
on this matter: “Schur never again touched on this problem.”

I have solved the Mirsky’s “mystery,” and my findings contradict Mirsky’s and
Graham–Rothschild–Spencer’s conclusion. I will show in this section that the new
Ramseyan mathematics, discovered by Issai Schur in his 1916 paper, remained dear
to his heart for years to come. He thought about this new mathematics himself, and
he passed his interest on to a number of his students: Hildegard Ille, Alfred Brauer,
and Richard Rado.

As we have seen in Chapter 33, the third classic result of Ramsey Theory was
published by B. L. van der Waerden in 1927, in which he presented “Proof of a
Baudet’s Conjecture” [Wae2]. The credit to Baudet for the conjecture remained
unchallenged (and unsubstantiated), until 1960 when Alfred Brauer (1894–1985)
made his sensational revelations.

“I remember Alfred [Brauer],” told me Mrs. Abelin-Schur, the daughter of Issai
Schur [Abe2], “he was Assistant of my father, and I was then a little girl.” An Assis-
tant, a doctoral student (Ph.D. in 1928), a colleague (Privatdozent at the University
of Berlin), coauthor and a friend through the difficult years of the Nazi rule, Alfred
Brauer had unique knowledge of Issai Schur. Away from Germany for over 20 years,
he returned to Berlin in 1960 to pay tribute to his teacher. His moving talk about Issai
Schur given at the Humboldt University of Berlin on November 8, 1960, appeared
in print in 1973 as an introduction [Bra3] to the three-volume set of Schur’s col-
lected works that Brauer edited jointly with another former Schur’s Ph. D. student
Hans Rohrbach. This talk offered a wealth of information about Schur. In particu-
lar, it revealed that Issai Schur, inspired by E. Jacobsthal’s results about quadratic
residues,26 came up with the following two conjectures:

Conjecture 34.2 For any positive integer k and any large enough prime p, there is
a sequence of k consecutive quadratic residues modulo p.

Conjecture 34.3 For any positive integer k and any large enough prime p, there is
a sequence of k consecutive quadratic non-residues modulo p.

As was the case with Schur’s Theorem of 1916 [Sch] (Chapter 32), a search for
a proof of number-theoretic Conjectures 34.2 and 34.3 led Schur to conjecture a
“helpful lemma”:

Conjecture 34.4 For any positive integer k there is N = N (k) such that the set
of whole rational numbers 1, 2, . . . , N , partitioned into two classes, contains an
arithemetic progression of length k in one of the classes.

Alfred Brauer described circumstances of Schur’s discovery that his Conjecture
34.4 had been proven:

26 If the congruence xn ≡ a(mod m) has a solution for x , then a is called an n-th power residue modulo
m. In particular, 2nd power residues are called quadratic.
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Many years passed, but neither Schur nor other mathematicians, who were familiar
with this conjecture, were able to prove it. One day in September of 1927 my brother
[i.e., Richard Brauer, Ph.D. in 1925 under Schur] and I were visiting Schur, when
[John] von Neumann came unexpectedly. He was participating in the meeting of the
D.M.V.27 and came to tell Schur that at the meeting Van der Waerden, using a sugges-
tion by Artin, gave a proof of the combinatorial conjecture and was going to publish
it under the title ‘Beweis einer Baudetschen Vermutung.’ Schur was very pleased with
the news, but a few minutes later he became disappointed when he learned that his
conjecture about sequences [i.e., Conjectures 34.2 and 34.3 above] was not proven
yet. . . It would have made sense if Schur were to propose a change in the title of van
der Waerden’s publication or an addition of a footnote in order to indicate that this was
an old conjecture of Schur. However, Schur was too modest for that.

Paul Erdős, a man of an incredible memory for events, told me that in everything
concerned with Schur, Alfred Brauer was by far the most reliable source of infor-
mation. Paul also provided an additional confirmation of Schur’s authorship of the
conjecture. In the course of our long conversation,28 that commenced at 7:30 PM on
Tuesday March 7, 1995 in Boca Raton, Florida, during the traditional combinatorics
conference’s “jungle party,” Paul told me that he heard about Schur’s authorship of
the conjecture from Alfred Brauer. Independently he heard about it from Richard
Brauer. Finally, Schur’s authorship was confirmed to Erdős by Erich Rothe, who
obtained the information from his wife and Schur’s former student Hildegard Rothe
(born Hildegard Ille; Ph.D. in 1924 under Schur). As I am writing these lines, I am
looking at a yellow lined sheet that Paul tore out of his notebook and next to his
mathematical texts wrote for me “Hildegard Ille,” so that I would remember her
name when I get to write about it. Thank you, Paul!

I believe you will agree with me that we have produced as rigorous a proof
as a historical endeavor allows that Issai Schur had the conjecture and created it
independently from anyone else.

The historical research of this section shows for the first time that Issai Schur had
been the most instrumental leader in the development of “Ramsey Theory before
Ramsey” (I did not know that myself until the completion of this research). Started
with his 1916 theorem (Chapter 32), Schur’s interest in not-yet-born Ramsey Theory
continued with the conjecture on arbitrarily long monochromatic arithmetic progres-
sions in finitely colored integers. Right after Van der Waerden’s publication, Issai
Schur produced, as we will see in Chapter 35, Generalized Schur’s Theorem, which
generalized at the same time both Schur’s and Baudet–Schur–Van der Waerden’s
theorems. With Schur’s guidance, Schur’s former student Alfred Brauer proved a
Ramseyan result of his own (Chapter 35). Schur offered Ramseyan type problems
to his doctoral student Hildegard Ille. Under Schur’s guidance, Richard Rado gen-
eralized Schur’s and Baudet–Schur–Van der Waerden’s theorems in his doctoral

27 Deutsche Mathematiker-Vereinigung, German Mathematical Society – the Annual September
18–24,1927 meeting took place in Bad Kissingen in Bavaria.
28 Audio recorded by me.
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dissertation and important consequent publications. In fact, Rado contributed to
Ramsey Theory, perhaps, more than anyone.

As proof on the Schur’s pudding, we will observe in Chapter 35 that Schur
appears to have been the first to raise the problem of arbitrarily long arithmetic
progressions of primes in 1920–1930, before Paul Erdős took charge of leading
the development of Ramsey Theory. Erdős recalls on the pages of Geombinatorics
[E95.32] on the occasion of Schur’s 120th birthday in 1995:

I first heard about Schur when I was a student from an old Hungarian algebraist
Michael Bauer, who advised me to write to Schur about my results on prime numbers
in arithmetic progressions. Schur was the first foreign mathematician with whom I
corresponded. I wrote him my elementary proofs on some of my results on prime
numbers in arithmetic progressions, which Schur liked very much, the results were
published in Math. Zeitschrift in 1935.

In fact, the Ramseyan baton from Schur to Erdős may have been passed at
their 1936 meeting in Berlin. “I was told that Schur sometimes referred to me
as the sorcerer from Budapest,” Paul recalled fondly in our conversations and in
print [E95.32].29 Amazingly, I found the eyewitness’s reminiscences of this Erdős’s
visit to Berlin when Hilde Brauer, the widow of Schur’s Assistant and friend Alfred
Brauer, gave me a copy of her wonderful unpublished memoirs [BraH]. She married
Alfred on August 19, 1934, and as a new “mathematical wife” from the Schur’s
circle, met Erdős during his Berlin visit:

The latter [Paul Erdős], who was a child prodigy, surprised me at his first visit when he
was barely twenty with curious interest for all details in bringing up a baby. He called
all children epsilons, but knew all the names of his friends’ babies.

I have got to mention one more of Schur’s activities, in which he in a sense
pre-dates Erdős. Schur’s former student Richard Brauer (February 10, 1901–April
17, 1977) writes in his February 1977 introduction to his 3-volume collected papers
[BraR] that appeared posthumously in 1980:

He [Schur] conducted weekly problem hours, and almost every time he proposed a dif-
ficult problem. Some of the problems had already been used by his teacher Frobenius,
and others originated with Schur. Occasionally he mentioned a problem he could not
solve himself. One of the difficult problems was solved by Heinz Hopf and also by my
brother Alfred and myself. We saw immediately that by combining our methods, we
could go a step further than Schur. Our joint paper [BBH] in the list below originated
this way.

Issai Schur had a great interest in creating problems and conjectures, and dissem-
inating them on a regular basis, weekly, starting at least in 1920. Ramseyan-style
problems and conjectures must have been part of this Schur’s oeuvre. Paul Erdős,
who took over the leadership of the Ramsey Theory, also had, as we all know, a

29 Erdős was not only mathematically, but also personally attached to Issai Schur and his wife. “I several
times visited his widow. In 1965 I visited her in Tel-Aviv with my mother,” writes Paul [E95.32].
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great interest in problem posing. He created his first open problem in 1931. In 1957,
Paul commenced his celebrated “some of my favorite unsolved problems” papers.

This inquiry into the life of Issai Schur was possible due to most valuable help
from Issai Schur’s daughter Hilde Abelin-Schur; the widow of Alfred Brauer, Hilde
Brauer; Schur’s former student, Walter Ledermann; Paul Erdős; and Henrik Hofer
and the Archive of Humboldt University of Berlin.

34.4 Enters Henry Baudet II

In 1995 when I presented the above argument for Issai Schur’s credit in an essay
[Soi10] written on the occasion of his 120th birthday, I specifically included a his-
torically significant disclaimer:

Nothing presented here excludes the possibility that Baudet created the conjecture
independently from Schur. N. G. de Bruijn [Bru3], clearly understanding the rarity
of Ramseyan ideas at the time, hypothesizes that Baudet was inspired by the 1916
paper [Sch] of Schur to independently create the conjecture. Perhaps, in the future
historians would shed light on the question whether Baudet was an independent from
Schur author of the second [counting Hilbert-1892, third] conjecture in the history of
Ramsey Theory. Until then the conjecture ought to be rightfully called Schur’s.

When my essay [Soi10] appeared, I learned from N. G. de Bruijn about the exis-
tence of P. J. H. Baudet’s son, Henry Baudet, or as he sometimes called himself
Henry Baudet II, and sent him a copy of my paper. I sowed an essay and harvested
a fury. Henry Baudet the son (his full name Ernest Henri Philippe Baudet) was born
on January 29, 1919 in Scheveningen: He was 76 at the time) when he replied to me
in style all of his own:

I write to you in my own English, which is far from good but it might be better than
your own French or Dutch.

He then offered a counterexample30 to Schur’s 1916 theorem, and questioned
Brauer’s assessment of Schur as follows: “too modest seems hardly possible and
hardly believable, considering the revolutionary essence of the theorem or the con-
jecture.” Henry was clearly upset with my putting in doubt his father’s credit. In
my August 30, 1995 letter, I admitted that indeed “my French and Dutch are far
inferior” to his fine English and offered Henry to publish in Geombinatorics his
essay challenging my proof of Schur’s authorship of the conjecture, if he so desired.
I also offered Henry Baudet II to join me in the investigation of whether his father
Henry Baudet I had created the conjecture independently from Schur.

Henry offered to help with documents upon his return to Holland from his sum-
mer home in Bourgogne, France. In addition to being a history professor, Henry
was The Historian of the Delft Technical University, and the last Ph. D. student

30 Schur’s Theorem survived; Henry simply misunderstood it.
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of the legendary Johan Huizinga of The Waning of the Middle Ages fame. From
letter to letter I was promoted from “Professor Soifer” to “Alexander,” to “Sasha.”
Our correspondence for the ensuing year was very intense: we exchanged some 30
letters. My family and me then paid a 5-day visit to Henry and his wife Senta Gov-
ers Baudet in their centuries-old stone house in the medieval village Corpoyer-la
Chapelle (population 26) in Bourgogne, France.31 As I am writing these lines, I am
holding in front me a copy of Henry’s book Mon Village en France warmly inscribed
to my (then) wife Maya and I by the author on August 1, 1995. Later that year we
also visited the Baudet family in their Oegstgeest house in the outskirts of Delft.

I learned about Henry and Senta helping Jews in the Netherlands occupied by
Germany during the long 5 years 1940–1945. Henry recalls [Bau5]:

I myself, finally, started studying history at Leiden University but this was interrupted
when the Germans, during the war, closed the University. Somehow, nevertheless, I
could remain in touch with my professors, at least in the beginning. Of course the
German occupation made life extremely difficult, and this every year more and more.
Resistance was a new activity we had to learn; hiding Jews was a daily concern and
hiding ourselves was another. We lost many friends but somehow or other I got through
myself (though my wife, then my girlfriend, then 17 years [old], got temporarily into
jail for helping Jewish classmate to escape – she (I mean: her Jewish girlfriend) lives
in Dallas now and we see each other and call each other by telephone).

In fact, Senta’s name is inscribed in Yad Vashem, Israel, as she was awarded the
title of a Righteous Among the Nations, granted to non-Jews who risked their lives
to save Jews during the Holocaust. Senta helped her Jewish friend Liny L. Yollick
escape from the Netherlands by lending her identification card. The escape was
successful, but silly Liny sent the card back with a boy who ended up being caught
by the Germans. On June 27, 1942 Senta was imprisoned by the Germans and spent
a week in jail, interrogated day and night. Only her consistent denial of loaning the
card to Liny, had finally convinced the jailers.32 This was but one episode of the
young family’s participation in the resistance. Henry and Senta risked their lives,
on numerous occasions by helping Jews hide or escape. They had to hide from the
Germans, who occasionally came to look for them.

With Henry’s help, I was able to successfully investigate the question whether
Baudet I had earned the credit that Van der Waerden so nonchalantly had given him.

My dear friend Henry Baudet II was one of the most charming people I have ever
met in my life. He passed away on December 16, 1998. In 2003, Delft Technical
University created the Henry Baudet Institute, dedicated to the history of design,
one of his many interests.

31 Both Henry Baudet II and his son Remy Baudet, a wonderful violinist (music, even more than math-
ematics and chess, was a family tradition for generations), looked so Gascogne that they could play
Alexandre Dumas père’s D’Artagnan without any make-up.
32 I thank Yad Vashem, The Holocaust Martyrs’ and Heroes’ Remembrance Authority, for providing me
copies of the relevant documents.
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34.5 Pierre Joseph Henry Baudet

B. L. van der Waerden gave Baudet credit in his 1927 paper [Wae2], which in fact
was called Beweis einer Baudetschen Vermutung (i.e., Proof of a Baudet Conjec-
ture). We do not find Baudet’s initials in Van der Waerden’s paper. Indeed, Van der
Waerden did not even know that at the time of his publication Baudet had been dead
for 6 years. As is often the case with young and brilliant mathematicians, Van der
Waerden was probably not interested in the history of the problem he solved, nor
in the identity of the author of the conjecture. In reply to my questions, Van der
Waerden wrote on April 24, 1995 [Wae25]:33

1. I heard of “Baudet’s Conjecture” in 1926.
2. I never met Baudet.
4. I never met Schur.
5. I never heard about Schur’s [1916] result.

However, when, Van der Waerden published a detailed story of the emergence of
his proof in German in 1954 and in English in 1971 (presented in Chapter 33), he
became not only a celebrated mathematician, but also a famous historian of science,
author of the well-known book Science Awakening [Wae15] and numerous historical
articles. Sometimes he was deservedly harsh towards other historians [Wae15]:

How frequently it happens that books on the history of mathematics copy their asser-
tions uncritically from other books, without consulting the sources! How many fairy
tales circulate as “universally known truths”!

Yet as a historian Van der Waerden did not investigate the authorship of the con-
jecture that became his classic theorem. Biographers of Van der Waerden faithfully
followed the master and credited Baudet with the conjecture, ignoring (or being
ignorant of) Brauer’s reminiscences [Bra3], and provided no independent historical
analysis (see [Frel], [FTW], [Per], etc.,).

I thought that in all likelihood someone, sometime during the long years between
1927 and 1971, must have mentioned to Van der Waerden Brauer’s assertion that in
his celebrated paper Van der Waerden had proved Schur’s conjecture. Apparently,
no one did before me, as you can see from Van der Waerden’s March 9, and April
4, 1995, replies [Wae23,24] to my inquiry:34

Dear Professor Soifer: Thank you for informing me that ‘Baudet’s conjecture’ is in
reality a conjecture of Schur. I did not know this.

While Van der Waerden’s acceptance of my argument for Schur’s credit was
important, it contributed nothing to the question whether Baudet created the conjec-
ture independently of Schur. As I wrote [Soi10], “Perhaps, in the future, historians
will shed light on the question whether Baudet was an author, independent of Schur.”
This future has come: let us take a look at Baudet’s role in our saga.

33 See the facsimile of this letter in chapter 38 on page 429.
34 See the facsimile of [Wae23] in this chapter on page 337.
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Van der Waerden, March 9, 1995 letter to Alexander Soifer

It appears that Alfred Brauer was first to speak about Baudet on November 8,
1960 [Bra3] (see also recent English translation [LN]) ever since Baudet’s obituar-
ies appeared in 1921 ([Schuh] and 1922 [Arr]). Since Brauer knew first hand that
Schur created the conjecture (and, I gather, assumed it to be unlikely that two people
could independently come up with it), he attempted to “prove” that Baudet did not
create the conjecture independently by showing how the conjecture got from Schur
to Baudet: 35

Baudet at that time was an unknown student at Göttingen, who has later made no
mathematical discoveries. On the other hand, at this time Schur’s friend Landau was a
professor at Göttingen, who obviously knew the conjecture, and used to offer unsolved
conjectures as exercises to every mathematician he met. It was therefore highly prob-
able that Baudet learned the conjecture directly or indirectly [from Landau].

Brauer repeated his assertions in English in print in 1969 [Bra2]:

It seems that the title of van der Waerden’s paper “Beweis einer Baudetschen Vermu-
tung” [Wae2] is not justified. Certainly [sic] van der Waerden heard about the conjec-
ture from Baudet, a student at Goettingen.

When Alfred Brauer spoke about Baudet (I wish he did not!), he entered the area
not personally known to him. Consequently, Brauer presented his hypotheses as if
they were truths. Moreover, I found Brauer’s hypotheses to be dramatically false:
Baudet “at that time” was not “an unknown student at Göttingen,” but instead a
brilliant young Ph.D. from Groningen. Brauer’s suggestion that Baudet “later made
no mathematical discoveries” was as gratuitous as it was incorrect. In addition to
publishing his doctoral thesis [Bau1] and the inaugural speech [Bau2], Baudet wrote
three papers [Bau3], [Bau4] and [Bau5] that appeared in Christiaan Huygens—not
bad for someone who left this world at the untimely age of 30. Baudet was a Full
Professor at Delft University at 27—can this be said of many mathematicians?

35 Translated from the German original.
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Alfred Brauer’s valuable testimony about Schur’s creation of the conjecture, as
well as his regrettable misrepresentations about Baudet, were repeated in the stan-
dard text of the field [GRS1], [GRS2] and from there were copied by a good number
of publications. It is time, therefore, to set the record straight, and convey how great
a man the world lost in Pierre Joseph Henry Baudet.

The following account of Baudet’s life was made possible only due to the indis-
pensable assistance of Henry Baudet II, the son of the mathematician Pierre Joseph
Henry Baudet. Unless otherwise credited, the following information, slightly edited,
comes from Henry Baudet II’s letters to me [ [BII1] – [BII13]] and my personal
interviews with him:

My father was born on January 22, 1891 in Baarn (province of Utrecht, The Nether-
lands) in nothing less than a psychiatric clinic, where my grandfather—a neurologist—
was medical superintendent. A few years later my grandparents moved to The Hague,
where my grandfather started a private practice. So it was in The Hague that my father
grew up, attended the elementary school and then the Gymnasium from which he grad-
uated in 1908. He was a dedicated chess player and cellist. (In this, he followed the
family tradition: we all are musicians and chess players, though not on his level).

In September 1908 my father enroled as a student of mathematics at Leiden
University, where he studied under Kluyver. I know next to nothing about his study
in Leiden, except the fact of his early fame as a chess player, a musician and a future
mathematician. He obtained his master’s degree in 1914, as far as I know just on the
eve of the World War I, and became a mathematician at the same Gymnasium in The
Hague where my father had been a pupil. He stayed there until his 1919 appointment
as a Professor at the University of Technology at Delft (then still named the Technical
High School).

As a student at Leiden he met my mother [Ernestine van Heemskerck] who studied
in the Faculty of Arts, and my parents got married on April 7th of 1914. . . My sister
(also a mathematician) was born in 1915 on the 31st of January. I myself arrived 4
years later on January 29th, 1919. So all of us are Aquarius.

How my father and Schuh36 met, I don’t know; probably in the Society of Math-
ematicians. They were, however, close friends since 1914 or 1915. . . With Schuh as
supervisor, my father began to work on his thesis, but he could not take his doctor’s
degree with him, as Delft had no doctorate in mathematics. And [Johan A.] Barrau [a
professor of mathematics at Groningen University (1874–1953)] ultimately took over
Schuh’s job.

In Memoriam Prof. P. J. H. Baudet” [Arr] by Dr. E. Arrias appeared on January
28, 1922. The author, who had known Baudet for 15 years, reported the astonish-
ing talents of Pierre Joseph Henry. At 15, Baudet was “known for virtually never
losing a game [in chess] and playing several simultaneous games blindfold. . . But
all these achievements were outshone by the miraculous things he has done with
the Laskagame, invented by Dr. E. Lasker [a mathematician and the world chess

36 Frederick Schuh, 1875–1966, Ph. D. under Diederik Korteweg, as was L. E. J. Brouwer after him, a
very versatile mathematician, with numerous publications in analysis, geometry, number theory, statis-
tics, recreational mathematics, teaching of mathematics, etc.
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champion during the incredibly long period 1894–1921]. Before Lasker had his
new game published, he submitted it to Baudet for evaluation. With his characteristic
tempestuous application Baudet mastered this game; it was as if he finally had found
something that could fully satisfy his wits. This exceptionally intricate game with
its discs in four different colours, its capricious, almost incalculable combinations,
suited his mathematical brain exactly. It is, therefore, not surprising that having
studied the game for half a year, he could scarcely be beaten by Lasker himself. . .
Thanks to his enthusiasm a Lasca society was founded in The Hague, and even a
first national tournament organized, but after everything had taken shape, he died
one day before the tournament, to which he had been looking forward like an eager
child (for in spite of his scientific greatness he was a child in joy). . .37

Pierre Joseph Henry Baudet (1891–1921). Courtesy of Henry Baudet II

37 As I learned from Professor N. G. de Bruijn [Bru1], “in his Brettspiele der Völker (Berlin 1931) Lasker
describes a game of ‘Laska’ he lost to Baudet at a tournament in The Hague 1920. (‘Laska’ was Lasker’s
own invention, which he tried to promote at a time he thought that eventually all serious chess games
would lead to a draw.)”
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As proficient as he was at board games, as high was his reputation as a
musician. . . Being an extraordinarily sensitive cellist, he completely mastered
the technique of this instrument. Many were the times that he contributed to the
success of concerts by his impassioned playing. And all this without score; a feat
only very few people are so privileged. With him it was not a matter of learning
notes, but he absorbed the complete picture of the composition, and even when he
had not seen the composition for 10 years, he was able to conjure it up clearly and
to play it from memory, when only hearing the piano part. . . He was excellent at
reading scores and he conducted already during his grammar school period. He was
fully familiar with theory and counterpoint. Only recently, he could prove this when
the vice-chancellor of Delft University asked him to orchestrate the Don Juan for
the students’ string orchestra. Next to all his excessively many occupations, this
task could be added without any problem. He finished it just before death overtook
him. . .

It was pure scientific curiosity that had made him master this as well as every-
thing he did: learning Hebrew and the four Slavic languages simultaneously was
no trouble at all, since he was learning anyway—and in fact this was far more
interesting—that comparative linguistics. . . Stacks of work are lying in his study;
constantly new ideas suggested themselves to him which he noted down only in
lapidary form. He did not get around publishing much, but his confrere friends will
need years of hard work to sort out and work up his sketchy notes.

On the birthday of Jesus this highly gifted man with his magnificent Christ like
features parted from this earthly life, at the same age, as his greatest master. But in
our thoughts he will rise again and stay alive for us as long as we keep breathing!”

Baudet defended his doctoral thesis cum laude in 1918 at Groningen University,
and became a professor in Pure and Applied Mathematics and Mechanics at Delft
Technical University in 1919. He was 28. Pneumonia brought his life to an untimely
end on the Christmas Day of 1921. His first obituary [Schu] was written by his friend
and teacher Frederik Schuh.

Pierre Joseph Henry Baudet was an extraordinary man indeed. But did he create
the conjecture?

34.6 Argument for Baudet’s Authorship of the Conjecture38

What evidence do we have to assign the credit for the conjecture to Baudet? The
credit given to Baudet by Van der Waerden [Wae2] appears to be insufficient, espe-
cially since Van der Waerden wrote to me [Wae25]: “I never met Baudet” and also “I
heard of ‘Baudet’s Conjecture in 1926” (i.e., 5 years after Baudet’s death). However,
by back-tracking the link from Van der Waerden to Baudet, we reach firmer grounds.

38 This is an expanded version of my tribute [Soi11] to P. J. H. Baudet that was published on the occasion
of his 105th birthday.
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The search, in fact, was started by Henry Baudet II. Born on January 29, 1919,
Henry lost his father at the age of 2, and always wanted to find out more about him.
In 1962–1963, Professor of tax law and an amateur mathematician Tj. S. Visser gave
a talk Attack on Sequences of Natural Numbers attended by Henry Baudet and his
15–16-year-old son Rémy. Surprisingly, the four-page brochure (in Dutch) of this
talk survives, and thus we are granted an attendance to Visser’s talk:

My story is about the most beautiful statement of number theory, The Theorem of
Baudet. The pearl of Baudet. . .

Baudet is the early departed in the beginning of this century Delft’s Professor of
mathematics, born in Nenegouw. . .

His pearl of the theory of numbers is: If one divides the natural numbers 1, 2, 3,
4. . . ad infinitum into a random number of boxes, then there is nevertheless always at
least one box which contains an AP of arbitrary length. . .

This proposition was formulated by Prof. Dr. P. J. H. Baudet in 1921. He died
shortly after, leaving a wife and a baby. Many celebrities tried to find a proof of this
theorem. The young, also Dutch mathematician succeeded. His name was B. L. van der
Waerden. He published his proof in 1927 in Het Nieuw Archief under the title Beweis
einer Baudetschen Vermutung.

It takes five pages, uses no higher mathematics but is very heavy. He seems to have
found it during a holiday session at Göttingen where his astuteness rightly won large
admiration. Bartel van der Waerden is a son of the engineer-teacher Theo, doctor in
technical sciences, a very prominent person elected to Parliament from the S.D.A.P.,
known as ‘rooie Theo’ [Red Theo]. The young Bartel became professor at Groningen,
was later oil-mathematician, is now at Zurich director of the mathematical institute,
and is world-renown.

After 1927, the statement and its proof fell asleep.

Tj. Visser then conveyed how the Russian mathematician Aleksandr Yakovlevich
Khinchin brought the theorem back to life by publishing it, with a slightly different
proof found by his student M. A. Lukomskaja, as one of the pearls in his book
Three Pearls of Number Theory, which appeared in Russian, German, and English
([Khi1], [Khi2], [Khi3], [Khi4]).

As an amateur mathematician, Henry was fascinated by the conjecture. “Could
I write to him [i.e., Van der Waerden]?” he asked the family friend and his father’s
mentor Frederick Schuh (February 7, 1875–January 6, 1966). “Of course,” Schuh
replied. Henry recalls:

In the context and the fact that I proposed to Schuh to give me the address of Van
der Waerden, it was clear that Schuh considered it [the conjecture] to be an important
affair. He agreed that I should write.

I asked Henry (we had long interviews in his centuries-old Bourgogne stone
house):

Does it appear indirectly that Schuh was in total agreement that it was Baudet’s con-
jecture that Van der Waerden proved?
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“Absolutely, absolutely yes, absolutely,” replied Henry. And so, on September 1,
1965 Henry Baudet II wrote to Van der Waerden in a style already known to the
reader from Henry’s first letter to me:39

I am the son of my father. It is always the case, but you understand what meaning this
introduction has in this case. Somehow from afar I was following your publications,
and thus I was able to get into my hands your work in the Abhandlungen aus dem
Mathematischen Seminar Hamburg [Wae16]. For me this is not a completely closed
book. Having at one point started in mathematics, I have become a historian in the end,
and it is something entirely different.

In this letter to you, a fairly remarkable fact is taking place. It is a fact that I cannot
say anything special, but nevertheless I wanted very much to establish a contact with
you. Of course, I would like to ask you whether you have a reprint of your publication
of 1926, in which you present a well known proof; possibly also other publications, if
such exist related to my father, especially to the abovementioned work in Hamburgsche
Abhandlungen.

Last year in Zürich I tried to find your name in the telephone book. Unfortunately
I was unable to find there your name. I also tried to contact you at the University of
Zürich, but also without result.

As far as I can follow number theory, I find it exciting. If I were to become a
mathematician, my inclinations would have certainly led me in this direction – in the
direction of numerical mathematics and number theory. In my free time I continue to
deal with Fermat and Mersenne; although “in general” with the history of mathematics.
I would appreciate it very much if I could hear something from you and possibly you
could send me one or several copies of your works of those where you have written
about my father.

On October 20, 1965 Van der Waerden replied:

It was very nice to receive a letter from you. I have not known your father and have
never written anything about him. I heard about his conjecture which he had posed at
Het Wiskundig Genootschap (Mathematical Society) in Amsterdam.

I am sending you a overdrukje (reprint) of my work from Hamburger Abh. and
on loan a photocopy of my work in Het Archief from 1926.40 I will further ask the
publisher Birkhäuser to send you a copy of my psychological research “Einfall und
Überlegung” in which the history of the solution of this problem is also considered.

Thus, Van der Waerden stated that P. J. H. Baudet posed his conjecture at the
Mathematical Society in Amsterdam. Van der Waerden attached to his letter copies
of his original proof [Wae2] and his just published reminiscences [Wae16]. Henry
Baudet II discussed this correspondence with Frederick Schuh, who was a major fig-
ure in the Amsterdam mathematical circles in the 1920s. This is why the following
Henry Baudet’s May 27, 1996 reply to my inquiry is the crux of the matter [BII12]:

39 Henry Baudet II provided me with copies of his correspondence with Vander Waerden — thank you,
Henry!
40 Actually, 1927.
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When I told Schuh about my correspondence with Van der Waerden, he would have
definitely told me that the conjecture was not my father’s, if it had been not his.

Schuh did not correct Henry Baudet, because for him P. J. H. Baudet’s authorship
of the conjecture was a long known fact.

After Henry Baudet the son, the next person, who showed an active interest
in the authorship of the conjecture, was N. G. de Bruijn. Wiskundig Genootschap
(Mathematical Society) decided to publish a 2-vol. edition entitled Two Decades
of Mathematics in the Netherlands: 1920–1940: A retrospection on the occasion of
the bicentennial of the Wiskundig Genootschap. The book was to reproduce short
works of the leading mathematicians of the period, such as Van der Corput, Van der
Waerden, Van Danzig, each followed by a commentary. Van der Waerden was to be
represented by Beweis einer Baudetschen Vermutung [Wae2], with a commentary by
de Bruijn, who in his March 29, 1977 letter posed Van der Waerden several questions
about the history of the conjecture. The latter replied on April 5, 1977 [Wae19]. I
thank N. G. de Bruijn for sharing with me this important letter of Van der Waerden:

I will happily answer your questions.

1. I am quite sure that I heard about the conjecture for the first time in 1926, around
the time I got my Ph.D. in Amsterdam. I probably picked it up at one of the monthly
meetings of the Wiskundig Genootschap, where Schuh appeared regularly. I do not
know if it was Schuh himself or someone else who made me aware of this.

2. Yes, the entire affair happened on a single afternoon. Only the cases k = 2, k = 3
I had already figured out before.

3. I think I only later heard of I. Schur’s proposition.
4. No, I do not know anything about Baudet. I have a vague memory that he was a

friend or pupil of Schuh.
5. My biography: I have studied mathematics, physics, astronomy and chemistry.

Mathematics mostly with Mannoury, Hendrik de Vries and Brouwer. Astronomy
with the excellent Pannekoek. In 1972 I retired in Zürich. Not “emeritus” because
that does not exist in Switzerland.

Included is the Bibliography with a few corrections. Furthermore, I have nothing to
add to your piece. Your praise “A thing of beauty is a joy forever,”41 pleases me.

Thus, Van der Waerden got the conjecture directly or indirectly from Frederick
Schuh, Baudet’s mentor and close friend, and the authorship of Baudet came to Van
der Waerden with the conjecture. Van der Waerden has even “a vague” but correct
memory that Baudet was Schuh’s “friend and/or pupil.” Thus, we have traced the
way the conjecture traveled from Baudet to Van der Waerden via Schuh. However,
one question remains open: Did Baudet independently create the conjecture or
received it indirectly from Schur (try not to mix up here Schur and Schuh)? This is
the question I was unable to resolve until December 18, 1995, when Henry Baudet
II, the son and historian, came up with what he humorously named “A Second Con-
jecture of Baudet” [BII4]:

41 The text in quotation marks is in English in Van der Waerden’s otherwise Dutch letter.
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It seems reasonable to suppose that neither Professor F. Schuh nor my father were
informed of Schur’s work. Though Germany was ‘next door,’ the World War broke
nearly all contacts, which were only slowly restored in the course of the ‘20s.

Henry Baudet II found convincing evidence for his conjecture. The first major
mathematical event after World War I was unquestionably Congrés Interna-
tional des Mathématiciens, which took place during September 22–30, 1920, in
Strasbourg, France. The whole world was represented there, with the notable
exception of the German mathematicians, even though Strasbourg was located right
by the French border with Germany. The wounds of the World War I were still
very painful. On the French initiative, the Germans were banned from 1920 and the
consequent 1924 International Congresses of Mathematicians. It was not until the
congress of 1928 that they were allowed to rejoin the world of mathematics.

Both J. A. Barrau and P. J. H. Baudet were in attendance at the Strasbourg’s 1920
Congress. Baudet mailed to his wife daily accounts of his meetings at the Congress,
and these letters have survived the long years, including another war that followed.
The letters report the meetings with a most impressive group of mathematicians:
Denjoy, Fréchet, Valiron, Châtelet, Dickson, Eisenhart, Le Roux, Typpa, Lebesgue,
Larmon, Young, De Vallée Poussin, Deruyts, Jordan, Montel, Volterra [Bau3]. The
letters also captured impressions and emotions of days long gone by [Bau5]:

I am in nearly permanent contact with the Americans here. They are after all the nicest
people here. And this is not only my opinion but also Barrau’s. The nicest of all is
Eisenhart. [Letter of September 29, 1920]

At 11 P.M. all the cafés here are closed. You understand that this is not our cup of
tea. It will be much better at our next Congress. That will be in the U.S. in 1924. The
Americans here are really very nice people. Dickson and Eisenhart are their principle
representatives, Eisenhart brought his wife who is quite a nice person. We talked a lot
in these days and she definitely expects you [Ernestine Baudet] too in the U.S. next
time. You see: nothing can change it, you must join me next time. Barrau told Dickson
about the critical review he [Barrau] had written and has modified after my severe
critical comments. The consequence of the discussion was that Dickson asked me to
write him about the matter, as Barrau and I had here no copy of our controversial texts.
[Letter of September 23, 1920]

Thus, Baudet and Barrau met Princeton’s dean and mathematics chair Luther
Pfahler Eisenhart. Do not forget his name: we will meet Eisenhart again in
Chapter 37, when he will invite Van der Waerden to come to Princeton.

They also met and had discussions with the famous American number theorist
Leonard Dickson. The meeting with Dickson attracted my attention in particular,
because Dickson’s result inspired Issai Schur to come up with Schur’s Theorem of
1916. However, this route only confirmed Baudet II’s conjecture. Right before the
Congress, in April of 1920, Dickson had completed volume 2 of his monumental
History of the Theory of Numbers [Dic2]. He did cite (p. 774) Schur’s 1916 paper
[Sch]: “∗ J. Schur gave a simpler proof of Dickson’s theorem.” But in the Preface
Dickson explained that “the symbol ∗ before the authors’ names” signified “that the
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papers were not available for review,” i.e., even Leonard Dickson, the most informed
number theorist of his time, had not himself seen the Schur’s 1916 paper before the
Congress.

Geographically speaking, Baudet and Schur had one chance to meet in August
of 1921, when Henry and Ernestine Baudet with their daughter Puck visited their
friend Emanuel Lasker and had a short stay in his Berlin house. Puck “still has clear
recollection of their stay at the Laskers, particularly when their rowing boat on the
Wannsee42 was wrecked,”43 because neither Lasker nor Baudet could not swim and
had to be rescued. We are fortunate to have a photograph from this visit (page 345).
However, Puck, does not remember visiting the University.

Seated Ernestine, Puck and P. J. H. Baudet; standing (from the left) Emanuel Lasker and a
Gymnasium Rektor, Lasker’s house, August 1921, Berlin, Courtesy of Henry Baudet II

The family correspondence has survived, and it does not indicate that any new
acquaintances were made during this trip, which took place just a few months before
the untimely passing of P. J. H. Baudet.

42 The reader would recognize the name of this lake. Lasker–Baudet humorous episode took place at
the place where on January 20, 1942 fifteen high-ranking civil servants and SS-officers decided on “The
Final Solution” of the Jewish question in Europe. They agreed to deport European Jews to the East and
murder them all.
43 [BII7]
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Thus, it is plausible to conclude that Baudet and Schur never met and that
P. J. H. Baudet discovered the conjecture independently of Issai Schur.

My investigation into the life of Pierre Joseph Henry Baudet was possible due to
help from Henry Baudet II and Nicolaas G. de Bruijn, to whom I extend my deepest
gratitude.

34.7 Epilogue

The evidence presented here clearly shows that two brilliant men, Issai Schur and
Pierre Joseph Henry Baudet, independently created the third conjecture of Ramsey
Theory before Ramsey. From now on, let it be known as The Baudet–Schur Conjec-
ture. What can be a happier conclusion to a historical research!

Obviously, without the conjecture no proof would have been possible. To con-
jecture such a pioneering result was surely as great a contribution as its proof by
B. L. van der Waerden; it is therefore fitting to call the monochromatic arithmetic
progressions theorem after all three contributors: The Baudet–Schur–Van der Waer-
den Theorem.

At the time when Alfred Brauer’s work [Bra1] proving two original Schur’s
conjectures appeared in 1928, Frank Plumpton Ramsey was working on his pio-
neering work [Ram2] that he submitted for publication later that year. A few years
later, in 1932, Issai Schur’s student Richard Rado defended his doctorate disserta-
tion [Rad1], which was Rado’s first fundamental contribution to Ramsey Theory.
During the winter of 1932–1933 Paul Erdős and George Szekeres wrote their first
Ramseyan paper [ES1]. Since then Paul Erdős had inspired many mathematicians
to enter the field. A new era of maturing Ramsey Theory has began.

I ought to point out amazing ways in which the lives of the players of this story
are interwoven. Mentor and friend of Baudet, Frederik Schuh was instrumental in
Van der Waerden getting to know the Baudet–Schur conjecture. Baudet’s Ph. D.
thesis Promotor (supervisor) was the very same Johan Antony Barrau, who in 1928,
while moving to Utrecht, would offer Van der Waerden his chair at Groningen,
and again in 1942 propose Van der Waerden for his chair at Utrecht. Read much
more about it all in the following chapters, dedicated to vast generalizations of the
Baudet–Schur–Van der Waerden Theorem (Chapter 35) and to my search for Van
der Waerden (Chapters 36–39).

The brutal war separated the authors of the Baudet–Schur–Van der Waerden
Theorem and their families. As we have seen here, Baudet’s son Henry Baudet II
and his girlfriend Senta worked in the Dutch underground saving lives of Jews. Issai
Schur was thrown out of the University of Berlin, and following years of humiliation
escaped to Palestine; his tired heart soon gave up. Being Dutch, Van der Waerden
served as a Professor in Germany throughout the entire Nazi time.
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Monochromatic Arithmetic Progressions:
Life After Van der Waerden

35.1 Generalized Schur

And God said, “Let there be light”
– Genesis

And there was light: Issai Schur—who else—produced the first spark, a
generalization of Baudet–Schur–Van der Waerden’s Theorem. In fact, his result
generalized both Schur’s and Baudet–Schur–Van der Waerden’s Theorems. With all
of the search engines of today’s Internet, one would be hard pressed to find it, for
it did not appear in a Schur’s paper: this modest man gave it to his former student
Alfred Brauer to publish!

Alfred Brauer writes [Bra2] that a few days after his and Richard Brauer’s 1927
visit of Schur (we peeked at this meeting in Section 34.3), he proved Schur’s conjec-
ture about quadratic residues (Conjecture 34.2) with the use of Baudet–Schur–Van
der Waerden’s Theorem. Schur then noticed that Brauer’s method of proof can be
used for obtaining a result about sequences of n-th power residues. Soon Issai Schur
found a short, Olympiad-like, brilliant way to prove the following result that gener-
alized both Schur’s Theorem and Baudet–Schur–Van der Waerden’s Theorem.

Generalized Schur’s Theorem 35.1 (Schur, [Bra1], [Bra2]) For any k and l there is
S(k, l) such that any k-coloring of the initial set of positive integers [S(k, l)] contains
a monochromatic arithmetic progression of length l together with its difference.

Proof For 1 color we define S(1, l) = l, and the statement is true.

Assume the theorem is true for k colors. We define

S (k + 1, l) = W
(

k + 1, (l − 1) S (k, l) + 1
)
,

where W (k, l) is as defined in Theorem 33.1. Let the set of integers [S (k + 1, l)] be
colored in k + 1 colors. Then by Theorem 33.1 (see the right side of the equality
above), there is a (l − 1) S (k, l) + 1 term monochromatic arithmetic progression

a, a + d, . . . , a + (l − 1) S (k, l) d.

A. Soifer, The Mathematical Coloring Book, 347
DOI 10.1007/978-0-387-74642-5 35, C© Alexander Soifer 2009
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For every x = 1, 2, . . . , S(k, l), this long monochromatic arithmetic progression
contains the following l-term arithmetic progression:

a, a + xd, . . . , a + (l − 1) xd.

If for one of the values of x , the difference xd is colored the same color as the
progression above, we have concluded the proof of the inductive step. Otherwise,
the sequence

d, 2d . . . , S (k, l) d

is colored in only k colors, and we can apply to it the inductive assumption to draw
the required conclusion.

A great proof, don’t you think! It is interesting to note here that unlike Baudet–
Schur–Van der Waerden’s Theorem, Generalized Schur’s Theorem does not have a
Szemerédi-style density generalization (see more about it later in this chapter).

Schur wanted Alfred Brauer to include this theorem (as well as the one about
n-th power residues) in Brauer’s paper because Schur believed to have used Brauer’s
method in these proofs. Schur did not want to take away any credit from his student.
The student had to oblige but he “always called it Schur’s result”44 and gave Schur
credit everywhere it was due in his paper [Bra1], which appeared in 1928. A few weeks
later Brauer also proved Schur’s conjecture about quadratic non-residues (Conjecture
34.3), which appeared in the same wonderful, yet mostly overlooked paper [Bra1].45

Schur’s ingenious contributions to Ramsey Theory before Ramsey apparently do
not end here. We will come back to them later in this chapter, for I wish to speak
about density results now.

35.2 Density and Arithmetic Progressions

Let us look how this flourishing field has evolved. We will start with the key defini-
tion from the Erdős–Turán 1936 paper [ET]. Denote by rl (N ) the maximum number
of integers less than or equal to N such that no l of them form an arithmetic pro-
gression. Paul Erdős and Paul Turán proved a number of results about r3 (N ) and
conjectured that

r3 (N ) = o (N ) .

This conjecture was proven in the 1953 by Klaus F. Roth [Rot]. The only conjec-
ture about the general function rl (N ) in Erdős–Turán paper was attributed to their

44 [Bra2]
45 I say ‘overlooked’ because the leading Ramsey Theory book [GRS2] contains almost identical result
(Theorem 2, p. 70) without reference or credit to Schur.
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friend George Szekeres, and was later proven false. Sixteen years had passed before
in 1969 Endre Szemerédi proved [Sz1] that

r4 (N ) = o (N ) .

In a 1973 paper Paul Erdős [E73.21, pp. 118–119] remarked: “[this] very com-
plicated proof is a masterpiece of combinatorial reasoning.” A very surprising para-
graph followed [ibid.]:

Recently, Roth [1970] obtained a more analytical proof of r4 (n) = o (n). r5 (n) = o (n)
remains undecided. Very recently, Szemerédi proved r5 (n) = o (n).

Clearly, Erdős added the last sentence at the last moment, and should have
removed the next to last sentence. The latter result has never been published, prob-
ably because Endre Szemerédi was already busy trying to finish the proof of the
general case. On April 4, 2007, right after his talk at the Princeton’s Discrete Math-
ematics Seminar I asked Szemerédi whether he had that proof for 5-term APs, and
what came of it. Endre replied:

Hmm, it was so close to finding the proof of the general case, maybe two months
before, that I did not check all the details for 5. It was more difficult than the gen-
eral case.

Indeed, in 1974 he submitted, and in 1975 published [Sz2] a proof of the general
case, i.e., for any positive integer l

rl (N ) = o (N ) .

This work in one stroke earned Szemerédi a reputation of a wizard of combina-
torics. By then the terminology has changed, and I wish to present here the more
contemporary formulation that is used in Szemerédi [Sz2]. We will make use of
the notion of “proportional length,” known as density, in the sequence of positive
integers N = {1, 2, . . . , n, . . . }. The density is one way of measuring how large a
subset of N is. Its role is analogous to the one played by length, in the case of the
line R of reals.

Let A be a subset of N ; define A (n) = A ∩ {1, 2, . . . , n}. Then density d(A) of
A is naturally defined as the following limit if one exists:

d (A) = lim
n→∞

|A (n)|
n

.

The upper density d (A) of A is analogously defined as

d (A) = lim
n→∞ sup

|A (n)|
n

.

Now we are ready to look at a classically simple formulation of the Szemerédi’s
result.
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Szemerédi’s Theorem 35.2 Any subset of N of positive upper density contains
arbitrarily long arithmetic progressions.

In various problem papers, Erdős gives the date of Szemerédi’s accomplishment
and Erdős’s payment as 1972 (sometimes 1973, and once even 1974). The following
statement appears most precise as Erdős made it very shortly after the discovery at
the September 3–15, 1973 International Colloquium in Rome [E76.35] and places
Szemerédi’s proof around September 1972:

About a year ago Szemerédi proved rk (n) = o (n), his paper will appear in “Acta
Arithmetica”. . .

Erdős was delighted with Szemerédi’s result, and awarded him $1000 in the late
1972–1973 [E85.33]:

In fact denote by rk(n) the smallest integer for which every sequence 1 ≤ a1 < a2 <

. . . < al ≤ n, l = rk(n) contains an arithmetic progressions of k terms. We conjectured

(15) lim rk(n)/n = 0.

I offered $1000 for (15) and late in 1972 Szemerédi found a brilliant but very diffi-
cult proof of (15). I feel that never was a 1000 dollars more deserved. In fact several
colleagues remarked that my offer violated the minimum wage act.

On April 4, 2007, Szemerédi confirmed my historical deductions:

I proved [the] general case in fall 1972, and received Erdős’s prize in 1973.

I refer you to the original paper for the proof which is brilliant and hard. Partial
results are proven in [GRS2] (it is remarkable that even this standard text in the field
did not include Szemerédi’s complete proof!).

While Szemerédi’s Theorem is a very strong generalization of Baudet–Schur–
Van der Waerden’s Theorem, Paul Erdős and Ronald L. Graham observe in their
1980 problem book [EG, p. 19] that the analog of Szemerédi’s theorem does not
hold for Generalized Schur’s Theorem 35.1. Can you think of a counterexample
before reading one below?

Observation 35.3 (Erdős–Graham, 1980) Szemerédi-like generalization does not
hold for Generalized Schur’s Theorem.

Proof The set of odd integers of density 1/2 cannot contain even a 2-term arithmetic
progressions and its difference!

35.3 Who and When Conjectured What Szemerédi Proved?

Throughout this book (and my life) I have given credit for a result to both the creator
of the conjecture and the author of the first proof. Truly, without good conjectures
we would not have many results. Moreover, pioneering conjectures, such as Baudet–
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Schur, played a major role in paving the way for new mathematics. Our question
here naturally is: Who and when conjectured what Szemerédi proved?

No one would expect a mystery here—just look in Szemerédi’s 1975 paper, where
he presents the history of advances in good detail. He starts with giving credit for
conjecturing his theorem to Paul Erdős and Paul Turán in their 1936 paper [ET]. And
so I am looking at this short important paper—without finding the conjecture, except
for the case of 3-term arithmetic progressions. This incorrect credit is then repeated in
the standard Ramsey Theory texts [GRS1] and [GRS2] in 1980 and 1990 respectively,
and from there on everywhere else, until in 2002 leaders of the field Ronald L. Graham
and Jaroslav Nešetřil notice the discrepancy, and explain it in the following way in two
important memorial publications [GN1, p. 204]: and [GN2, p. 356]:

Although they [Erdős and Turán] do not ask explicitly whether rl (N ) = o (N ) (as
Erdős did many times since), this is clearly on their mind as they list consequences of
a good upper bound for rl (N ): long arithmetic progressions formed by primes and a
better bound for the van der Waerden numbers.

Clearly, my friends Ron and Jarek, and I agree that the conjecture does not appear
in the 1936 [ET]. Their argument was that the young Erdős and Turán had the con-
jecture “clearly on their mind” could be viewed more as an eloquent homage to the
two great mathematicians rather than an historical truth. We therefore must research
further.

In his 1957 first-ever open-problem paper [E57.13], Paul Erdős indicates that
before him and Turán, Issai Schur (!) called on studying the longest arithmetic
progressions-free opening segments of positive integers. Erdős writes:

The problem itself seems to be much older (it seems likely that Schur gave it to Hilde-
gard Ille, in the 1920’s).

Erdős returns to Issai Schur’s contribution in his 1961 second open-problem
paper [E61.22], which in 1963 also appears in Russian [E63.21]:46

The problem may be older but I can not definitely trace it. Schur gave it to Hildegard
Ille around 1930.

Paul told me that he “met Issai Schur once in mid 1930s,” more precisely in
1936 in Berlin. They shared a mutual admiration (as we have seen in Section 34.3).
Undoubtedly, they discussed prime numbers, but likely not arithmetic progressions.
Erdős learned about Schur’s interest in arithmetic progressions and early Ramsey-
like conjectures and results from Hildegard Ille (1899–1942). Now, this requires a
bit of explanation, because they probably had never met!

Erich Rothe (1895–1988), Dr. phil. Universität Berlin 1926 under the eminent
Erhard Schmidt and Richard Mises, married a fellow student Hildegard Ille, Dr. phil.
Universität Berlin 1924 under Issai Schur. They taught at Universität Breslau,
Germany (later and earlier Wrocław, Poland) until, as Jews, they were forced to
flee the Nazi Germany in 1937, and came to the United States. Hildegard passed

46 This Russian publication does not appear in any of Paul Erdős’s bibliographies.
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away at a young age in 1942. The accomplished mathematician Erich Rothe held a
professorship at the University of Michigan, from 1941 until his retirement in 1964.
His eulogy (Notices of Amer. Math. Soc., 1988, 544) quotes Chair of the University
of Michigan D. J. Lewis saying that “Rothe was a scholar of the old school. He
was very broadly educated. He was a wise and judicious man of much wit. His
companionship was very much in demand.”

Erich Rothe was Paul Erdős’ source of reliable information on problems and
conjectures in number theory that Issai Schur had shared with Rothe’s wife Hilde-
gard (Ille) Rothe. From Rothe, Erdős learned about Schur’s authorship of the arith-
metic progressions conjecture, proven later by Van der Waerden (Chapter 34). Erdős
learned from Rothe that Issai Schur yet again contributed to number theory and
Ramsey theory when he asked his graduate student Hildegard to investigate arith-
metic progressions-free arrays of positive integers. To my surprise, no one acknowl-
edged the credit Erdős gave to Schur in his first open-problem papers [E57.13],
[E61.22] and [E63.21].

However, I believe, that Erdős learned about Schur being first to investigate this
subject after Erdős and Turán independently rediscovered it: their paper [ET] was
published in 1936, while Erich and Hildegard Rothe came to the Unites States in
1937. Moreover, Erdős–Rothe conversations took place after Hildegard’s passing
in 1942. Paul was certainly correct when in both his 1957 and again 1961 open-
problem papers he wrote, “The first publication on the function rk (n) is due to Turán
and myself.” This was an important paper, and Paul knew that. Yet, it contained the
“density” conjecture for only 3-term arithmetic progressions. Graham and Nesetril
are correct when they write in [GN1] and [GN2] that “Erdős did [pose the gen-
eral case conjecture] many times,” but the real question is: when did he pose the
conjecture for the first time?

I am reading again Erdős’s first 1957 open-problem paper, where Paul writes:

In [ET] we stated our conjecture that lim r3 (n)
/

n = 0 . . . Roth [Rot] proved that
r3 (n) = o (n) . . . The true order of magnitude of r3 (n) and, more generally, of rk (n),
remains unknown.

Paul discusses the general function rk (n), but the conjecture of the general case
is not here. If the conjecture were to exist consciously in his mind, he would have
included it in this open-problem article, I am almost certain of it. Paul had not, and
this, in my opinion, is a reliable indicator that the general conjecture did not yet
exist in 1957.

In the second 1961 open-problem paper, Paul publishes the general conjecture
explicitly for the first time:

For k > 3 the plausible conjecture rk (n) = o (n) is still open.

This “still open” indicates that Erdős created the problem well before he submit-
ted this paper, which was “Received October 5, 1960.” This suggests the birth of the
general conjecture in 1957–1959.

During his December 23, 1991 “favorite problems” lecture at the University of
Colorado at Colorado Springs, Paul indicated when he offered first the high prize of
$1000 for this conjecture:
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Twenty-five years ago I offered $1000 for it.

This places the $1000 offer in 1966 or so. In early January 1992, in Colorado
Springs Paul confirmed that this was the highest prize he has ever paid:

The maximum amount of money I paid was $1000 to Szemerédi in 1972. This was
a conjecture of Turán and myself. If you have a sequence of positive density, then it
contains arbitrary long arithmetic progressions.

Paul also told me then, “Turán and I posed this problem in the early 1930s.”
However, I hope, that my argument, presented here, indicates that it took time for
the plot to thicken that it was a long pregnancy, and from the early seeds in the 1930s
the great conjecture had grown inside Paul Erdős’ head and was born in 1957–1959.

Even after Szemerédi, Erdős was not quite happy with the state of knowledge in
this field. In 1979 he offered an extravagant prize for the discovery of the asymptotic
behavior (published in 1981 [E81.16]):

It would be desirable to improve [lower and upper bounds] and if possible to obtain an
asymptotic formula for r3 (n) and more generally for rk (n). This problem is probably
enormously difficult and I offer $10,000 for such an asymptotic formula.

Erdős’s $10,000 Open Problem 35.4 Find an asymptotic formula for r3 (n) and
more generally for rk (n).

We have already witnessed Erdős directing research on the chromatic number of
the plane and creating a good number of related problems. Here too Erdős was in
the driver’s seat (well, actually, Paul did not drive), following a prophetic start by
Issai Schur.

Endre Szemerédi (born August 21, 1941 in Budapest; Ph.D. 1970, Moscow State
University under Israel M. Gelfand) is a professor of computer science at Rutgers
University and is a researcher in combinatorics and discrete mathematics division
of Alfréd Rényi Institute of Mathematics in Budapest. In 1989, he was elected to
the membership in the Hungarian Academy of Sciences.

35.4 Paul Erdős’s Favorite Conjecture

During our joint work on the (not yet finished) book Problems of pgom Erdős,
between December 24, 1991 and January 9. 1992, I asked Paul which of his open
problems were his favorites. Paul gave me a list of a few. He started with this prob-
lem [Soi13]:

. . . one of the most interesting problems is this: If you have a sequence [of positive
integers] the sum of whose reciprocals diverges, then for every r , there are r terms that
form an arithmetic progression.

On another occasion during these two working weeks, Paul told me that he
offered, not surprisingly, the highest prize for the same problem:
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The largest amount of money, which I offered really is: if you have a sequence of
[positive] integers the sum of whose reciprocals diverges, then it contains arbitrarily
long arithmetic progressions. This would imply in particular that the primes contain
arbitrary long arithmetic progressions. That is $3000.

The Erdős $3000 Conjecture 35.5 A set A = {a1, a2, . . . , an, . . .} of positive inte-
gers, where ai < ai+1 for all i , with the divergent sum

∑

n∈N

1
an

, contains arbitrarily

long arithmetic progressions.

What brought Paul Erdős to this conjecture? On September 15, 1979, in the prob-
lem paper [E81.16] submitted to the premier issue of Combinatorica, Paul writes:

In this connection I conjecture that if
∞∑

r=1

1
ar

= ∞ then for every k there are k ar ’s

in arithmetic progression. Since Euler proved that the sum of the reciprocals of the
primes diverges, our conjecture would settle the conjecture of primes. . . I offer 3000
dollars for the proof or disproof of the conjecture.

It appears that Paul Erdős first offered his (then) largest prize, $3000 in his 1976 talk
“To the memory of my lifelong friend and collaborator Paul Turán” at the University
of Manitoba, Canada Conference [E77.28]. (In the paper [E77.26] submitted the
previous year, 1975, the prize was $2500). The highest prize and high frequency
of including this conjecture in talks and papers indicate that this was one of Erdős’s
favorite conjectures. During his second talk at the University of Colorado at Colorado
Springs on March 17, 1989, referring to this conjecture, Paul said [E89.61]:

I should leave some money for it in case I leave. “Leave” means, of course, get cured
of the incurable decease of life.47

The prize stood at $3000 for nearly two decades, when in one of his last problem
papers [E97.18], written in 1996 and posthumously published in 1997, Paul raised
the prize to $5000:

I offer $5000 for a proof (or disproof) of this [problem]. Neither Szemerédi nor
Furstenberg’s methods are able to settle this but perhaps the next century will see its
resolution.

Since, as Paul believed, it may be a while before this conjecture is proven, we
ought to record it with the new, highest ever Erdős (serious) prize:

The Erdős $5000 Conjecture 35.6’ A set A = {a1, a2, . . . , an, . . .} of positive
integers, where ai < ai+1 for all i , with the divergent sum

∑

n∈N

1
an

, contains arbitrarily

long arithmetic progressions.

One question remains: when did Erdős first pose this problem? I searched for evi-
dence in the ocean of his writings, and found three indicators. First, in a paper sub-
mitted on September 7, 1982 to Mathematical Chronicle (now called New Zealand
Journal of Mathematics) that appeared the following year [E83.03], Paul writes:

47 Quoted first in [Soi14]. Earlier Paul mentioned leaving some money for this conjecture in some of his
papers, e.g., [E77.28].
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This I conjectured more than forty years ago.

In the same year, 1982, Paul spoke at the Conference on Topics in Analytic Num-
ber Theory in Austin, Texas. I read in the proceedings (published in 1985 [E85.34],
p. 60):

I conjectured more than 40 years ago that if a1 < a2 < . . . is a sequence of integers for

which
∞∑

i=1

1
ai

= ∞ then the ai’s contain arbitrarily long arithmetic progressions.

Thus, both of these publications indicate that the conjecture was posed before
1942. On the other hand, in the 1986 Jinan, China, Conference proceedings (pub-
lished in 1989 [E89.35]), Paul writes (p. 142):

About 30 years ago I conjectured that if
∑∞

n=1 1
/

an = ∞, then the a’s contain arbi-
trarily long arithmetic progressions.

This would date the birth of the conjecture to about 1956. This information only
allows us to conclude that this important conjecture is old, and was born somewhere
between the very early 1940s and mid 1950s. The conjecture is obviously hard, for
in spite of all assaults, it remains open. Moreover, even its weakest $250 version has
not been conquered:

Paul Erdős’s $250 Conjecture 35.7 A set A = {a1, a2, . . . , an, . . .} of positive
integers, where ai < ai+1 for all i , with the divergent sum

∑

n∈N

1
an

, contains a

3-term arithmetic progression.

In his 1983 survey, Ronald L. Graham proposed a “related perhaps easier con-
jecture.” This beautiful conjecture is still open today, which is a good indicator that
it is not so easy as it may seem. Z2 will denote the set of points in the plane (i, j)
with integral coordinates i, j .

Graham’s Conjecture 35.8 [Gra3]. If A is a subset of Z2 and
∑

(i, j)∈A

1
i2+ j2 = ∞,

then A contains a monochromatic square.48

The Erdős $5000 Conjecture 35.6’ is still open. However, the existence of arbi-
trarily long progressions of primes has been proven by two brilliant young mathe-
maticians, Ben Green and Terence Tao [GT] (they first submitted their proof on Aril
8, 2004; the 6th revision is dated September 23, 2007). Quite expectedly, their result
is an existence proof, and does not help to construct long arithmetic progressions of
primes. The longest actually constructed example consists of 24 terms. On January
18, 2007 at 3:06 AM, Jarosław Wróblewski, a mathematician from Wroclaw Uni-
versity, Poland informed the world of his new world record:49

468395662504823 + 205619 × 23# × n,

48 In our convention, a square is a set of its 4 vertices.
49 http://tech.groups.yahoo.com/group/primeform/message/8240
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where n = 0, . . . , 23, and p#, called “p primordial,” stands for the product of all
primes not exceeding p (in particular, 23# = 2×3×5×7×11×13×17×19×23 =
223092870).

35.5 Hillel Furstenberg

Two years after Szemerédi’s combinatorial proof was published, which incidentally
used Baudet–Schur–Van der Waerden’s Theorem, in 1977 Harry Furstenberg pub-
lished a totally different proof [Fur1], using tools of Ergodic Theory. In fact, in
doing so Furstenberg created a new field, Ergodic Ramsey Theory. “Both results are
beyond the scope of this book,” write the authors of the standard text of the field
[GRS2] about Szemerédi’s and Furstenberg’s proofs—the more they are beyond the
scope of this book, whose goal is to introduce ideas and the excitement of mathe-
matics of coloring, and “meet” the people behind these results.

I wish to share with you here an autobiography of Hillel Furstenberg, ever
slightly edited by me. I first met this remarkable mathematician in Keszthely on
Lake Balaton in the July of 1993, where we celebrated Paul Erdős’s 80th birthday
with a fitting conference. Hillel (Harry) looked like Moses. In my opinion, he looked
infinitely more like the Prophet than Charleston Heston ever has, Hollywood make-
up trickery notwithstanding. Hillel was born exactly when Adolf Hitler fired Issai
Schur from his professorship, in the same city of Berlin:

I was born in Berlin on 29/9/35. I have few recollections of Berlin of the time. I remem-
ber my sister (older than myself by 3 years) pointing out a boarded up bakery, saying
this was Hitler’s bakery. Apparently she (over)heard that because of Hitler this Jewish
establishment had been closed off, I remember some visits to a synagogue. We actually
lived next to one (33 Brunnenstrasse) which today is a perfume factory, with only a
lintel giving evidence of the one time use as synagogue, because the words “This is the
gate to the Lord, the righteous shall pass through” appear on it.

Already before Krystallnacht (8/11/38) some of my parents’ Jewish friends had
received expulsion orders from the Nazis. Our own expulsion order came soon after
Krystallnacht and my parents frantically searched for shelter. One of my early rec-
ollections is that of the morning after Krystallnacht when the four members of my
family lined up underneath the broken windows of our basement apartment viewing
the damage. I was old enough to realize the seriousness of the occasion.

From letters I later found I discovered that my parents had sent a request to the
Australian government for asylum, and were refused. I have no idea to how many
other places we applied. Fortunately an aunt of mine was able to deposit 1,000 pounds
sterling with the bank of England, thereby obtaining for us temporary asylum. We
arrived in England sometime in 1939, shortly before the Blitzkrieg over London. I
remember the shelters in London, the women knitting, I remember the skies at night
criss-crossed with searchlights, and I remember my mother, sister and myself being
sent to Norfolk, out of the London danger. My father hoped very much at that time to
come to America and join my mother’s brother who had recently bought a poultry farm
in East Brunswick, NJ. He had a health problem (a thyroid condition), and knowing the
Americans were strict, he underwent what was at that time risky surgery to rectify the
problem. He did not survive the surgery and my widowed mother took her two children
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to the U.S. where we arrived shortly before the outbreak of WW II. We stayed at my
uncle’s poultry farm for over a year, and I attended McGinnis Elementary School.
Kindergarten, first and second grades were in one room. Two years in the room were
enough for me, so that when after two years we moved to Manhattan, I found myself
in third grade in PS 169, near 168th street where we lived. The Rabbi of the nearby
synagogue that we attended convinced my mother that I should go to a Jewish Day
School, and that she needn’t worry that I’d become a Rabbi myself. I attended Yeshiva
Rabbi Moses Soloveitchik through eighth grade, and got the rudiments of a traditional
orthodox education. I graduated that institution in 1948 and, again, with some persua-
sion by the Rabbi, continued at a Jewish High School called Talmudical Academy, now
know as Yeshiva University High School. Spending some summers in summer-school
I finished high School in 1951 and continued at Yeshiva University, Since the college
and highschool were located in the same building I had already in High School come
under the influence of Professor Jekuthiel Ginsburg, editor of Scripta Mathematica, a
journal devoted to historical and recreational aspects of Mathematics, and from whom
I first heard of Paul Erdős, and believed even then that he must be very old. (Shlomo
Sternberg was also a student at the high school at the time and we both had found
our own proofs of the famous problem of showing that if two angle bisectors of a
triangle are equal then the triangle is isosceles, and we went to share our discoveries
with Professor Ginsburg. Thenceforth he would regularly give us problems to solve.)
Prof. Ginsburg realized that for me to devote myself to mathematics, I would need an
income, which he obtained for me by having me do editorial work for Scripta. I learned
to draw diagrams that were used in the magazine, and i sharpened my mathematical
German and French by translating papers sent to the journal in those languages. I don’t
recall now if any of those translations were ever actually used. In the early fifties,
Ginsburg took advantage of his friendship with various prominent mathematicians and
set up a graduate school in mathematics at Yeshiva University. The first staff members
traveled to Y. U. from their home institutions: Eilenberg and Kolchin from Columbia,
Jesse Douglas from City College, Gelbart from Syracuse. I graduated in 1955 receiving
both a B.A. and an M.Sc. degrees.

I continued at Princeton, having made the decision not to pursue a rabbinic career at
Y. U. and quickly came under the influence of Salomon Bochner who took an interest
in me because of his own religious background, and I imagine he found in me someone
with whom he could share ideas in a long abandoned area of his past experience. (His
father was an accomplished Jewish scholar, and Bochner kept in his office a portion
of his father’s library which with its annotated volumes attested to his father’s scholar-
ship.)

I received my Ph.D. in 1958 and two weeks later was married to Rochelle Cohen
from Chicago, whose grandparents had immigrated to the U.S. from Poland. I spent
one year as instructor at Princeton, followed by two years at M.I.T. as C.E. Moore
Instructor. Following a path taken by Eugenio Calabi (Bochner student - MIT and
University of Minnesota) we moved to Minneapolis where we lived from ′61 to ′65
except for one year I spent as a visitor to Princeton [′63–′64]. During this time I was
negotiating taking a position in Israel at the Hebrew University and in the summer of
1965 we made our move, spending first several months in Paris with a Sloan fellow-
ship which provided our income during the year of our move. I also took a half-time
position at Bar-Ilan University, and I’m proud particularly of Alex Lubotzky who was
my Ph.D. student at Bar-Ilan, and is now my colleague at the Hebrew University.
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Furstenberg both created a new field of mathematics, the Ergodic Ramsey
Theory, and founded a school in this new field. This manifested itself in 1996,
when Furstenberg’s scientific son and grandson joined together in generalizing the
Furstenberg’s result. Vitali Bergelson (Ph.D. under Furstenberg 1984 at the Hebrew
University, born in Kiev in 1950) and Alexander Leibman (Ph.D. under Bergelson
in 1995 at the Technion, born in Moscow in 1960), both presently at Ohio State
University obtained [BL] what is often called the Polynomial Szemerédi Theorem.
I prefer to give credit to the authors, who in their paper give several versions of
their result. Here is one, most relevant to our theme (it is the authors’ Theorem B0

for l = 1):

Bergelson–Leibman’s Theorem 35.9 [BL] Let pi (x) , i = 1, . . . k, be polynomi-
als with rational coefficients taking on integer values on integers and with the zero
last coefficients, i.e., pi (0) = 0. Then any subset of N of positive upper density
contains for any array of integers v1, v2, . . . , vn a set of the form

{a + p1 (x) v1, a + p2 (x) v2, . . . , a + pn (x) vn}
for some a, x ∈ N .

in particular,

Bergelson–Leibman’s Theorem, Version II, 35.10 Let pi (x) be polynomials with
integer coefficients with the zero last coefficients, i. e., pi (0) = 0. Then any subset
of N of positive upper density contains a set of the form

{a + p1 (x) , a + p2 (x) , . . . , a + pn (x)}

for some x ∈ N .

You can easily observe the validity of the following corollary that we will use in
Chapter 44:

BLT’s Corollary 35.11 For any positive integers m, r , any r -coloring of the set N
of positive integers contains arbitrarily long monochromatic arithmetic progressions
whose common difference is an m-th power of a positive integer.

Presently, new exciting developments came from the pen of Vitali Bergelson. I
will share those with you briefly.

35.6 Bergelson’s AG Arrays

In 2005, Vitaly Bergelson [Ber] extended the Ramseyan hunt for arithmetic progres-
sions to geoarithmetic progressions. The following two easy exercises highlight the
setting better than any words can.

Proposition 35.12 Any coloring of positive integers N in finitely many colors con-
tains arbitrarily long monochromatic geometric progressions.
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Proof Given m-coloring C of the set N , and a positive integer k. Pick an integer
t, t > 1. The coloring C of the whole set N , of course, assigns colors to all elements
of the set {tn : n ∈ N }. Now we get the new coloring C’ of the set N by assigning
the color of tn to n. For the coloring C’, Baudet–Schur–Van der Waerden’s theo-
rem guarantees the existence of an n-term monochromatic arithmetic progression
a, a + d, . . . , a + (k − 1) d. The numbers ta, ta+d , . . . ta+(k−1)d form a geometric
progression, and under the original coloring C they are assigned the same color.

This proposition shows that we need to look for the existence of something more
sophisticated than geometric progressions. Bergelson looked for an appropriate new
term: he used AG set, then geoarithmetic progression. I propose a term array as
more descriptive, as we really have here a square array of numbers.
Geoarithmetic array—or for short AG array—of rank k is a set of the form

{
r j (a + id) ; i, j ∈ {0, 1, . . . , k}} .

Observe: an AG array contains lots of arithmetic and geometric progressions,
and more.

Proposition 35.13 There is a set of positive (additive) density that contains no
3-term geometric progressions.

Proof Just pick the set of square-free positive integers.

This proposition shows that we need a different notion of density, a sort of
geometric density here. In his introduction, Bergelson offers an example of what
this means.

A set A ⊆ N is multiplicatively large if for some sequence of positive integers
a1, a2, . . . , an, . . .

lim
n→∞ sup

|A ∩ an Fn|
|an F | > 0,

where Fn =
{

pi1
1 pi2

2 . . . pin
n : 0 ≤ i j ≤ n, 1 ≤ j ≤ n

}
and where {pi } is the

sequence of primes in some arbitrarily preassigned order.

We are ready now to look at a special case of Bergelson’s result.

Bergelson’s Theorem 35.14 Let A ⊆ N be a multiplicatively large set. Then A
contains AG arrays of arbitrarily large rank.

Observe: for any coloring of N in r colors, at least one of the monochromatic
sets is multiplicatively large, and thus contains AG arrays of arbitrarily large rank.
It is clear that Vitaly Bergelson and his coauthors are up to vast generalizations of
the celebrated results of Ramsey Theory. I wish them much success.
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35.7 Van der Waerden’s Numbers

Through Issai Schur, Richard Rado became aware of Baudet–Schur–Van der Waer-
den’s theorem from the beginning, and generalized it. However, in his early years he
did not seem to be much interested in numerical bounds. On the other hand, already
in his 1935 celebrated joint paper with George Szekeres, Paul Erdős showed interest
in numerical bounds of combinatorial functions. So, when the leaders of Ramsey
Theory Erdős and Rado got together in 1951, the result was the paper ([ER] (read
November 15, 1951; published 1952) that poineered quantitative evaluation of Van
der Waerden’s numbers. Having addressed the Ramsey Theorem, Erdős and Rado
created Van der Waerden’s function, and therefore Van der Waerden’s numbers (they
do not use the word “numbers” per se, but what are Van der Waerden’s numbers
if not values of Van der Waerden’s function?), and introduced a natural notation
W (k, l) for both:

The last example of the paper is not concerned with Ramsey’s theorem but with the
following theorem due to van der Waerden [Wae2]. Given positive integers k and l,
there is a positive integer m such that, if the set {1, 2, . . . , m} is divided into k classes,
at least one class contains l + 1 numbers which form an arithmetic progression. The
least number m possessing this property is denoted by W (k, l) (van der Waerden’s
function). Our final example yields what seems to be the first non-trivial, no doubt,
extremely weak, lower estimate of W , namely W (k, l) > ck

1
2 l

1
2 . An upper estimate of

W , at any rate one which is easily expressible explicitly in terms of the fundamental
algebraic operations, seems to be beyond the reach of methods available at present.

Erdős–Rado notation W (k, l), in today’s conventions, would stand for
W (k, l + 1). The second variable, as used today (Theorem 33.1), stands for the
number of terms in the arithmetic progression. When the number of colors is k = 2,
we simply omit the first variable: W (l) = W (2, l).

Observe, the Erdős–Rado’s interpretation of the notation simplifies statements
of some results. For example, best lower estimate, due to Elvyn R. Berlekamp, is
simpler in the Erdős–Rado notation, which he used in his paper [Berl]:

Lower Bound 35.15 (Berlekamp, 1969) W(k) > k2k if k is a prime (Erdős–Rado’s
understanding of the notation is used).

In today’s standard notation (where the variable stands for the number of terms
in arithmetic progression), the result reads as W(k + 1) > k2k .

Surprisingly, Berlekamp’s result remains the best known for primes after nearly
four decades. In 1990 Zoltán Szabó, using Lovász’ Local Lemma, found the best
known lower bound for all n [Sza].

Lower Bound 35.16 (Szabó, 1990) For any ε > 0, W(k) ≥ 2n

nε
for large enough n.

The problem of finding a “reasonable” upper bound has withstood all attempts
for decades. Erdős writes in 1957 (I have just changed the notation to the one used
today), [E57.13]:

All known functions W(k) increase so rapidly that they do not even satisfy the condition
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W (k) = kk ..
.k

(k exponents).

The problem was that all of the known proofs of Baudet–Schur–Van der Waer-
den’s Theorem used double induction. This prompted doubts even of such mathe-
matical optimists as Erdős, who wrote in 1979 [E81.16]:

Until recently nearly everybody was sure that W(k) increases much slower than Ack-
ermann’s function. I first heard doubt expressed by Solovay which I more or less
dismissed as a regrettable aberration of an otherwise great mind. After the surprising
results of Paris and Harrington [PH] Solovay’s opinion seems much more reasonable,
and certainly should be investigated as much and as soon as possible.

Yet, Ronald L. Graham persisted with optimism and bet $1000 on it in his 1983
survey [Gra2]:

There is currently no known upper bound for W (k) which is primitive recursive.50

This is because all available proofs leading to upper bounds involve at some point a
(perhaps intrinsic) double induction, with k as one of the variables. This leads naturally
to rapidly growing functions like the Ackermann function which may help to explain
the enormous gap in our knowledge here. The possibility that W (k) might in fact actu-
ally have this Ackermann-like growth has been strengthened by the work of Paris and
Harrington [PH], Ketonen and Solovay [KS], and more recently Friedman [Fri], who
show that some natural combinatorial questions do indeed have lower bounds which
grow this rapidly (and even much more rapidly. . .). In spite of this potential evidence
to the contrary, I am willing to make the following [conjecture].

Graham then formulated the conjecture for first proof (or disproof) of which he
had been offering $1000 since the late 1970s:

Graham’s $1000 Van der Waerden’s Numbers Conjecture 35.17 [Gra2].

W (k) < 22..
.2

for k ≥ 1, where the number of 2’s is k.

Paul Erdős asked for less, just for a primitive recursive upper bound, in the 1984
conference talk in Japan, published the following year [E85.33, p. 75]:

I give 100 dollars for a proof that f(n) is primitive recursive and 500 dollars for a proof
that it is not.

Ron’s and Paul’s expectations were soon rewarded. Saharon Shelah proved
exactly what the doctor ordered (I mean Doctor Erdős): Shelah’s Primitive recur-
sive bounds for van der Waerden numbers [She1] was published in 1988 “with a
beautifully transparent proof,” as Gowers commented later [Gow, p. 466].

50 See [Soa] for definitions and comparison of rapidly growing functions.
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Shelah’s Theorem 35.18 [She1] Van der Waerden’s numbers are primitive
recursive.

Graham described this event in the December 29, 2006 e-mail to me:

I gave Shelah the check [a consolation $500 prize for Conjecture 35.16] when he was
lecturing at Rutgers (as you know, he visits there for 2 months each year). It was shortly
after he proved his bound, which was somewhat before it was published. Incidentally,
the original title of his paper was quite different from what appeared!

Erdős too gave Shelah the highest praise in many talks. Here, for example, is
a quotation from Erdős’s 1988 talk at the 7th Fischland Colloquium in Wustrow,
Germany [E89.27]:

This was certainly a sensational triumph.

Shelah’s result inspired Paul Erdős to pose a new, most challenging conjecture.
In [E94.21], first submitted on January 25, 1993 and published a year later, Paul
Erdős wrote:

It was a great achievement when a few years ago Shelah gave a primitive recursive
bound for W (k). Probably, this bound was still much too large perhaps W (k) < 22k

.

We thus get Paul Erdős’s conjecture, which he repeated in 1996 (posthumously
published in 1997 [E97.18]):

Paul Erdős’s 1993 Van der Waerden’s Number Conjecture 35.19 [E97.18].

W (k) < 22k
.

In 1998 Timothy Gowers announced, and in 2001 published his incredible
124-page A New Proof of Szemerédi’s Theorem. His upper bound for the Van der
Waerden numbers appears on the next to last page as “Corollary 18.7”:

Gowers’ Upper Bound 35.20 [Gow] Let k be a positive integer and let N ≥
22222k+9

. Then however set {1, 2, . . . , N } is colored with two colors, there will be
a monochromatic arithmetic progression of length k.

In other words,

W (k) ≤ 22222k+9

.

In answering my inquiry, Ronald L. Graham wrote in the December 28, 2006
e-mail:

Regarding the payment to Gowers, I gave him the check during a talk I gave in Hungary
(again in connection with celebrating Erdos’ mathematics but I’m not sure of the exact
year). I attach a photograph showing the actual presentation. I interrupted my talk and
came down into the audience to give him the check!
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Ronald L. Graham presenting the check to Timothy Gowers

Tim Gowers [Gow, p. 586] seemed to question whether he had completely earned
the $1000 reward:

Ron Graham has conjectured in several places (see e.g. [GRS2]) that the function W (k)
is bounded above by a tower of twos of height k. Corollary 18.7 [i.e., result 35.19
above] proves this conjecture for k ≥ 9, and indeed gives a much stronger bound. It
looks as though more would be needed to prove it for k = 7 (for example) than merely
tidying up our proof. For k ≤ 5, the exact values of W (k) are known and satisfy the
conjecture.

Gowers should not worry. Graham’s $1500 ($500 to Shelah and $1000 to
Gowers) is clearly the money best ever spent in encouragement and support of
mathematical research.

As for Ronald Graham, as soon as he paid Tim Gowers, he offered another
$1000 conjecture [Gra7], [Gra8]. Prefacing the New $1000 Conjecture, Graham
wrote [Gra7], [Gra8]:

In particular, this [Gow] settled a long-standing conjecture I had made on the size of
W (n) . . ., and as a result, left me $1000 poorer (but much happier). Undaunted, I now
propose the following:

Graham’s 2007 $1000 Van der Waerden’s Numbers Conjecture 35.21 [Gra6],
[Gra7] For all k,

W (k) < 2k2
.
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Observe that for k > 3, we have 2k2
< 22k

, thus, Graham’s new conjecture is
harder—if true—than Paul Erdős’s 1993 Conjecture 35.19. Which one is “better”
(i.e., true and stronger)? Only time will tell—a very long time, I believe.

We have discussed here asymptotic behavior of the function W (k). So little is
known about its exact values for small k that in their 1980 monograph [EG] Erdős
and Graham exclaimed “It would be very desirable to know the truth here.” A few
values were found in 1969 by Vašek Chvátal [Chv] (first three) and in 1978 by
R. S. Stevens and R. Shanturam [StSh] (the last one):

W (2) = 3

W (3) = 9

W (4) = 35

W (5) = 178

With all of the dramatic improvements of computers, no further values have been
computed in the past three decades. For other Van der Waerden’s numbers known
today (cases when more than two colors used, or non-symmetric setting), please,
refer to Section 2.3 of the impressive 2004 monograph [LRo] by Bruce M. Landman
and Aaron Robertson.

It is time to say a few words about our genius record holders.

The time was the late 1974; the place was Moscow. I went to Anna Petrovna
Mishina’s Abelian Group Seminar at the Moscow State University. She told us that
the young Israeli mathematician Saharon Shelah had just published a solution of the
Whitehead problem.51 This was a sensational news, for everyone, who was some-
body in Abelian Group Theory, tried to solve this problem—and failed. Better yet,
the answer was not a yes or a no, as we all expected, but “it depends”—depends
upon the system of axioms for set theory!

Nine years later: Roll forward to the Orwellian year 1984. As an American,52

attending the Abelian Groups and Modules conference in Udine, Italy, dedicated
to László Fuchs’s 60th birthday, I was introduced to Saharon Shelah at dinner the
night before the opening. I shared with him my problems and conjectures. The fol-
lowing day Saharon invited me to his hotel room and, to my surprise and delight,
offered to collaborate on my problems. Right there he handed in to me a page with
a finite lemma, which was the only element I was missing for settling one of my
conjectures dealing with uncountable groups! His question “Why do people attend
conferences?”— I answered, “To show their latest results, to learn about achieve-
ments of others, and to socialize.” “None of this makes any sense,” Saharon replied,
and added “People should attend conferences in order to solve together problems
they could not solve on their own.” And so, I missed many talks, was not allowed

51 Must an Abelian group G with Ext(G, Z ) = 0 be free?
52 I received my American citizenship days before leaving for Italy.



35 Monochromatic Arithmetic Progressions 365

by my new coauthor to drink wine (and that is in Italy!), but in the end we solved
all of the problems and proved all the conjectures—this was the subject of two fine
papers in the Journal of Algebra. It was a special, inspirational experience to work
with Saharon; it also required full concentration, for he was such a quick learner and
thinker. On the conference’s excursion day, I was sharing a bench on the bus with
László Fuchs. “I am working with Saharon, and he is a genius,” I told László. “But
of course,” he replied, as if it was something obvious.

Nine years later: The day before the opening of Paul Erdős’s 80th birthday con-
ference in 1993, Saharon arrived very late to Keszthely on Lake Balaton, Hungary,
and invited me to join him right away for an 11 PM supper. During the meal, I told
Sharon all I knew about the chromatic number of the plane problem. He was excited,
and after the supper left to sleep on it. The next morning Saharon said, “I have not
seen the light.” He has a philosophical view on choosing his battles, which he shared
once with me: “Nobody cares how many problems I cannot solve—people care only
how many I can.”

Nine years later: In the fall 2002, for the first time we met in the United States.
Saharon invited me to his Rutgers University in New Jersey for a week of fun of the
mathematical kind. This was a productive week. To our own surprise, we showed
that the chromatic number of the plane may depend upon the system of axioms
we choose for set theory. We also constructed a distance graph on the line whose
chromatic number was 2 in the standard ZFC system of axioms for set theory,
and uncountable in ZFS. I will tell you more about this meeting and its results
in Chapter 46. Saharon worked in such a complete concentration that I found him
wearing one blue and one brown sock. The next day the color coordination remained
unchanged. On the third day (like in fairytales) it ended with the matching pair of
socks—this is how I was able to conjecture that his wife Yael arrived from Israel
and joined Saharon in New Jersey. We met again in the fall 2003 and extended our
construction from the line to the plane.

Saharon Shelah was born in Jerusalem, Israel on July 3, 1945. He is the Abraham
Robinson Professor of Mathematical Logic at the Einstein Institute of Mathematics of
the Hebrew University, Jerusalem, and the Distinguished Visiting Professor at Rutgers
University, Piscataway, New Jersey, where he spends every September and October.
He is one of the great problem solvers of all time, who has won numerous awards,
including the George Pólya Prize (1992), János Bolyai Prize (2000), and Wolf Prize
(2001). The count of his papers now approaches 1000. Saharon has also authored
some seven major books with two more in his pipeline. As Saharon has had some 200
coauthors, we can initiate the Shelah number not unlike the Erdős number!

William Timothy Gowers, born on November 20, 1963 in Wiltshire, received his
doctorate at the University of Cambridge under the famed Hungarian combinato-
rialist Béla Bollobás. Following the productive years 1991–1995 at the University
College London, he has been a Fellow of Trinity College and the Rouse Ball Profes-
sor of Mathematics at the University of Cambridge. In 1998 Gowers won the Fields
Medal and a year later elected Fellow of the Royal Society. Having attended his talks
at Princeton-Math, I can attest to the elegance and lucidity of Tim’s presentations
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of his great combinatorial results. He is an expositor of mathematics as well, with
Mathematics: A Very Short Introduction to his credit, and a longer introduction, The
Princeton Companion to Mathematics in the works (to appear in 2008).

35.8 A Japanese Bagatelle

Having done the heavy lifting, I invite you to take a breather by reading a sim-
ple cute proof by the Japanese mathematicians Kakeya and Morimoto, who were
among the earliest fans of Baudet–Schur–Van der Waerden’s Theorem. At the end
of Chapter 33, I promised the proof of their result 33.5—it is time to keep my word.

Problem 35.22 (Kakeya–Morimoto, 1930, [KM]) If A = {a1, a2, . . .} is an increas-
ing infinite sequence of integers with ak+1 −ak bounded, then A contains arbitrarily
long arithmetic progressions.

Proof The differences ak+1 − ak are bounded by, say, the constant c. This sug-
gests (c + 1)-coloring of the set of positive integers in colors 0, 1, . . . , c as follows:
given a positive integer n, find the smallest term a in the sequence A such that
0 ≤ a − n. Obviously a − n < c. We then color n in color a − n. By Baudet–
Schur–Van der Waerden’s Theorem, for any length l there is a monochromatic
arithmetic progression b1, b2, . . . , bl of color, say, i . But then by the progression
b1 + i, b2 + i, . . . , bl + i is both arithmetic and is entirely contained in A!
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In Search of Van der Waerden: The Early Years

To Dorith & Theo van der Waerden whose help made
this part of my search possible this Chapter is
gratefully dedicated.

The past is never dead. It’s not even past.
– William Faulkner Requiem for a Nun, 1951

I did read your articles. Very interesting, amazing,
new for me. . .It is strange to get new information
about your family and ancestors, and realize so
many things were never talked about, and one can
never ask straight about it anymore.

– Dorith van der Waerden [WaD4]

Thank you for sending me your triptych, which I read
with great interest! This history is so complex, but
you got so much information, I was astounded.
Reading was very compelling – my greatest
compliment for the study you made.

– Theo van der Waerden [WaT3]

36.1 Prologue: Why I Had to Undertake the Search
for Van der Waerden

Bartel Leendert van der Waerden was a distinguished algebraist, physicist,
statistician, historian, author, and above all one of the leading algebraic geometers
of his time. He published the classic 1927 theorem on monochromatic arithmetic
progressions in finitely colored integers, which we have discussed in Chapter 33.
The proof of this magnificent theorem by Van der Waerden was made possible by the
pioneering conjecture by Pierre Joseph Henry Baudet and Issai Schur (Chapter 34),
hence I named this classic result the Baudet–Schur–Van der Waerden Theorem.

A. Soifer, The Mathematical Coloring Book, 367
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Professor Van der Waerden made major contributions to algebraic geometry,
abstract algebra, quantum mechanics, and other fields. He liberally published on
the history of mathematics. Among the many books, Van der Waerden wrote the
two-volume Moderne Algebra [Wae3], one of the most influential and popular math-
ematical books ever written. It is therefore surprising that no monograph has been
dedicated to his life and work. Why is that, I once asked Professor N. G. de Bruijn,
who shared with me his theory of matters biographical [Bru8]:

My advice to scientists who would like to have books about them after their death is
(apart from obvious things like doing important work and having lots of students):

1. Stay in your country.
2. Stay in a single subject.
3. Don’t get old.

And, if you do happen to get old: try to write an autobiography.
Van der Waerden missed the points 1, 2, 3, and was too modest to write an

autobiography.

Yes, there are no books on the life of Van der Waerden: none of his homelands—
the Netherlands, Germany, and Switzerland—produced any. However, there are
numerous biographical articles on Van der Waerden. Some would argue that Van
der Waerden’s life in general and the turbulent years 1931–1951 in particular have
been addressed in [Eis], [Fre1], [FTW], [Dol1], [Dol2], [Fre2], etc. While this is
true, understanding his life during these years in a satisfactory way requires two
indispensable components: a thorough search for the numerous key documents and
a great deal of impartiality and desire to understand. So far no one has demon-
strated either of these qualities. These authors apparently believed that a personal
acquaintance with Professor Van der Waerden automatically made them experts on
his life. Their repeating Van der Waerden’s words and explanations did contribute to
mathematical folklore. However, these repetitions, mixed with “cheerleading” and
lacking in archival research and critical examination of facts, hardly added up to
history.53

53 My search was largely finished and my three essays waiting in Geombinatorics’ queue when I received
from a German colleague a new long Centenary article with the title nearly identical to my Chapter 37
here: “Van der Waerdens Leipziger Jahre 1931–1945” by the Leipzig University’s Professor of the His-
tory of Mathematics Rüdiger Thiele (Mitteilungen der DMV 12-1/2004, 8–20). It has turned out that the
title was about the only thing in common between our works. It would require a long article for me to
correct Thiele’s errors and challenge his prejudices. For example, Thiele alleges “It is natural that in
particular Jewish emigrants have attacked van der Waerden for his stay in Nazi Germany.” It appears
as if Thiele blames the Jews for their “attacks” on Van der Waerden. Everyone—and particularly the
German historian—should have exercised a better judgment and respect for the Jews who were harassed,
thrown from their jobs, forced into exile, sent to death camps, killed, committed suicide. Moreover, there
is no truth to Thiele’s allegation: Van der Waerden’s critics Otto E. Neugebauer and Oswald Veblen,
for example, were not Jewish. Thiele quotes Veblen writing in December 1933 about “signs of growing
anti-Semitism,” as if establishing moral equivalence between the Nazi Germany and the United States.
Yes, there was anti-Semitism in America, as in all places where Jews lived — but the Nazis gave a
particularly bad name to anti-Semitism. There is no moral equivalence, Professor Thiele: the difference is
6,000,000 dead bodies. Thiele promotes a pre-ordained advocacy at the expense of an impartial analysis
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Prof. Miles Reid’s approach in his 1988 Cambridge University Press’s book [Rei]
did not contribute to history either:

Rigorous foundations of algebraic geometry were laid in the 1920s and 1930s by van
der Waerden, Zariski and Weil (van der Waerden’s contribution is often suppressed
because a number of mathematicians of the immediate postwar period, including some
of the leading algebraic geometers, considered him a Nazi collaborator).

Even if “leading algebraic geometers” (presumably Zariski and Weil) had such
an opinion, their fine mathematical achievements did not automatically make them
custodians of the truth. It was very unfortunate that such a heavy accusation was
leveled by Prof. Reid without any substantiation at all.

I will grant my predecessors one thing: it is hard to understand B. L. van der
Waerden. During the 12+ years of my research, I have assembled a great wealth of
material related to his life, especially the life during the trying years, 1931–1951. In
some instances Prof. Van der Waerden is worthy of high praise. Other cases illustrate
ever so clearly that one’s response to living under tyranny can only be to leave, to
die, or to compromise.

I wanted to learn about the man behind the classic 1927 result of “Ramsey Theory
before Ramsey” (Chapter 33), as I named relevant results that appeared before the
F. P. Ramsey’s 1930 paper. The triptych of my findings, In Search of Van der Waer-
den, parts I, II, and III, first appeared on the pages of Geombinatorics [Soi20, 21,
24]. Part Zero [Soi26] of the series, The Early Years, came out later. During the time
that has passed since part I appeared in 2004, I have been able to find additional
important documents, and further analyze the record I have assembled. Here you
will find the most complete to date version of these series of four essays.

It is important to examine Van der Waerden’s early years and elucidate his rela-
tionship with his distinguished family, which included two members of the Dutch
Parliament and an Amsterdam judge.

36.2 The Family

According to Theo van der Waerden, Bartel’s nephew [WaT1], [WaT2],

The Van der Waerden family originates (from what we know in the 15th century)
from the Zuidelijke Nederlanden (the South of the country) later called Noord-Brabant
(after the secession of Belgium in 1830), around (what is now) Eindhoven, in small
villages, Catholics, agriculturists.

This family tree is difficult to construct and is not central to our purposes. Let
us fly over half a millennium, to the hero of our investigation, Bartel (Bart) van der
Waerden, who was born in Amsterdam on February 2, 1903 in the family house

of even his University’s archival documents available to both of us. As a result, in my opinion Prof.
Thiele’s article contributes little to history in general, and to our understanding of Van der Waerden in
particular.
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at Hondecoeterstraat 5. He was the first child of Dr. Theodorus (Theo) van der
Waerden (August 21, 1876 Eindhoven – June 12, 1940 Laren) and Dorothea van der
Waerden, born Dorothea Adriana Endt ((late 1876 or 1877 Wageningen—November
14, 1942 Laren), who got married in Amsterdam on August 28, 1901. Two more
sons, Coenraad (Coen) and Benno (Ben), followed on December 29, 1904 and
October 2, 1909, respectively.

Bart’s father, Theo van der Waerden, was third of the eight children, three
girls and five boys, of Hendricus Johannes van der Waerden,54 the owner of a
large blacksmithing business, and Johanna Huberta Cornelia Goossens. Theo’s
granddaughter and Ben’s daughter, Dorith van der Waerden provided lively
details [WaD2]:

In sequence of ages [the 8 children were] Pauline, Justine, Theo, Jan, Herman, Harry,
Tjeu, and Anna. The 3 girls didn’t marry. The oldest, Pauline, became a nun, the sec-
ond, Justine, took care of the family and later of her parents and her brother Tjeu who
was a bit retarded. The 5 boys were all sent to the Technical University of Delft where
one could become an engineer or architect. They had to study quickly in order to make
room (financially) for the next to study. Anna, the youngest of the family, was very
intelligent and wanted to study like her brothers but was not allowed. While working,
she went on studying and later became a math teacher in secondary school.

Theo and his younger brother Jan studied civil engineering at the Delft Technical
University, where they both became socialists among the first student-socialists in
the Netherlands [WaT1]. Upon graduation Theo taught mathematics and mechanics
in Leeuwarden, Dordrecht and finally for 20 years, 1902–922, in Amsterdam. In
1911, he earned the degree of Doctor of Technical Sciences by defending the thesis
Education and Technology (Geschooldheid en Techniek).

A year earlier, on June 28, 1910 he was elected as a representative of SDAP
(Sociaal-Democratische Arbeiderspartij), to the Provincial government of North
Holland, where he remained until 1919. Theo was also the editor of The Social-
ist Guide (De Socialistische Gids), where after 1916 he started publishing articles
on economic issues. From September 17, 1918, up until his passing on June 12,
1940, he was a SDAP’s universally admired member of the House of Representa-
tives (Tweede Kamer) of the Dutch Parliament. Published on the day of his passing,
Dr. Theo’s moving eulogy55 was entitled “A worker with a warm heart and a sober
mind” (“Een werker met een warm hart en een nuchtere geest”):

The working class loses in him one of the pioneers of the socialism in the Netherlands,
who has not saved himself, a man, who always gave the best he can offer to the people.

We remember him in gratitude and respect.

Bart’s mother, Dorothea van der Waerden, a daughter of Coenraad Endt and
Maria Anna Kleij, came from a Dutch Protestant family. She was very much loved
by her three sons.

54 You can see his portrait hanging on the wall in the family pictures on page 371.
55 Het Volk, June 12, 1940.
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Dr. Theo, Bart, Dorothea, Ben and Coen van der Waerden, 1916, the collection of Dorith van
der Waerden

Dr. Theo, Bart, Dorothea, Ben and Coen van der Waerden, 1925, the collection of Dorith van
der Waerden
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When the sons left the family’s Amsterdam house at Hondecoeterstraat 5 in
the late 1920s, Dr. Theo and Dorothea van der Waerden moved 30 kilometers out
of Amsterdam to the town of Laren, well-known as the home to many famous
Dutch artists and intellectuals, including the Netherland’s leading mathematician
Luitzen Egbertus Jan Brouwer. Theo built there a magnificent house at Verlengde
Engweg 10.

The Netherlands was overtaken by the German invaders over the course of five
short days of 1940: May 10–15. The Socialist-Democrat Dr. Theo van der Waerden
would have likely been on an early list of the Dutch arrested and sent to a concen-
tration camp. Records show that he denied the German invaders that pleasure by
succumbing to cancer at 8 in the morning on June 12, 1940. He was 63-years-old.
After Dr. Theo’s passing, his wife Dorothea lived in the Laren house together with
her sister. Unable to cope with depression caused by the German occupation of the
Netherlands, Dorothea drowned herself in a nearby lake on November 14, 1942.
Laren record books show that she was found at 10 in the morning. The granddaugh-
ter Dorith van der Waerden, named in honor of Dorothea, informs [WaD1]: “My
father [Ben, Bart’s brother] was called by her sister who lived with her after Theo
died. She said Do (as she was called) was missing. My father went there and found
her in a small lake.” She was 60 years old.

Bart’s middle brother, Coen (December 29, 1904–December 24, 1982), who
must have been named after his maternal grandfather, studied at the Delft Tech-
nical University as his father and uncle Jan before him. Coen’s son Theo, named
in honor of his grandfather, provided me with much of the information about his
father [WaT1], [WaT2]:

After the war, in 1947 he [Coen]. . . became Secretary of the Board of the Arbeider-
spers [The Workers Press], a few years later C.E.O. of this company. The company
was the biggest publishing company in the Netherlands, editing the biggest newspaper
Het Vrye Volk and editing an enormous quantity of books. He left as C.E.O. in 1966
because his wife (my mother) was very ill. She died in 1968 at the age of 65.

During two periods Coen was a member of the Senate (Eerste Kamer) of
the Dutch Parliament for PvdA (Partij van de Arbeid)56 for a total of 10 years
(1957–1966 and 1970–1971)57 and was one of the leaders of his party. Coen was
also a spokesman on economic issues and a member of the union wing of PvdA.

CoenandJohannaCorneliaTeensma,whomhemarried in1931,had threechildren,
Carla, Theo, and Dorien, born in 1935, 1937, and 1941 respectively. Carla, a TV
producer, married the well-known journalist Johannes Christiaan Jan (Han) Lammers,
who was an active member of PvdA just like his father-in-law Coen. He served as an
Alderman of the City of Amsterdam and later, in 1985, became Queen Beatrix’ High

56 PvdA was founded in 1946 as a continuation of SDAP, the party of Coen’s father Theo, which
was joined by the Liberal-Democratic Association (Vrijzinnig-Democratische Bond, or VDB) and the
Christian-Democratic Union (Christelijk-Democratische Unie, or CDU).
57 First time he left the Senate due to his wife’s poor health; the second time due to his own health
problems.



36 In Search of Van der Waerden: The Early Years 373

Commissioner (1986–1996) of the large new province Flevoland recovered from the
sea. Theo studied Law at the University of Amsterdam and became Director of the
Dutch Cocoa and Chocolate Association. Dorien became a painter.

I learned much about Bart’s youngest brother Benno (Ben) and his heroic conduct
during the Nazi time in Germany and the German occupation of the Netherlands
from his daughter Dorith [WaD1]:

My father, Benno, born 2 October 1909, died 9 of May 1987. My mother’s name
was Rosa Eva Louise Weijl – here comes the Jewish root – born 26 July 1909. She
died 4 years ago. They met in 1939 and married 4 month later in the same year. He
attended what we call a gymnasium – contrary to his father and 2 brothers he had no
inclination towards mathematics. He was the youngest. He studied law [University of
Amsterdam, 1927–1932] and became a lawyer. He had his own office, one room, in
a canal house with other lawyers, and lived in the attic, 2 rooms. There my mother
also came to live and the three children were all born there during the war. This is
somewhat amazing, but I think they were too old to wait with children and hoped the
war would be over soon. During the occupation, there was no work for a lawyer but
after that he started again but applied for the job of judge. This was always his dream,
and he became appointed in 1949 [to a judge of the City of Amsterdam]. As a judge,
he was very much interested in the rehabilitation of criminals after their punishment
was over. He started an organization in Holland for help to prisoners and especially
help to re-socialize them afterwards and help them to find jobs and so on. He was
very well-known for being a humane judge interested in personal circumstances of
the people in front of him and always being polite and respectful. Politically he was a
socialist like his father and brother Coen, but as a judge, he found it not right to be a
member of any particular political party, so he was no longer active here. My mother
was a [medical] dr. but most of her life she was a housewife.

The fact that my father married a Jewish woman was no coincidence I believe. In
the thirties my father was active in helping German Jews to escape from Germany to
Holland. During the occupation, he made false identity cards for Jews and helped them
to change identity. I do not know much more about it as this period was never spoken
about in our family as in most families.

My parents had 3 children: myself: Dorothee Louise, born 13 May 1941; brother
Han, 14 April 1943; and sister Anneke, 8 February 1945. My brother has a shop in old
vintage posters. My sister is a well-known artist, ceramics. I am a psychologist. I am
the only one who is again politically active in local politics for a green leftish party
GroenLinks.

Bartel Leendert van der Waerden was understandably proud of belonging to this
distinguished family of public servants. In the difficult postwar times, he will invoke
his father and brothers as high arbiters of his character and integrity.

36.3 Young Bartel

The family’s collective memory preserves a funny, but telling story about the young
Bartel. It was shared with me by his aunt, Ms. Annemarie van der Waerden:
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When Bart was a youngster his father told him not to hang onto cars with his bicycle.
Next time he was spotted hanging to a tramway. His father was angry of course. But
Bart said totally innocently: but father, you said not to hang onto cars!?

In 1919, Bartel entered the University of Amsterdam at a very early age—he
was only 16 (as was L. E. J. Brouwer before him when the latter entered the same
University). Dirk van Dalen in his remarkable two-volume monograph [Dal1,2]58

on the Netherlands’ greatest mathematician L. E. J. Brouwer, provides very lively
and telling remarks on the student life and personality of young Bartel van der
Waerden:59

The study of mathematics was for him the proverbial ‘piece of cake’. Reminiscing
about his studies, he said: ‘I heard Brouwer’s lectures, together with Max Euwe and
Lucas Smid.60 The three of us listened to the lectures, which were very difficult, he
treated the integration theory of Lebesgue along intuitionistic lines, and that works.
It was very curious, Brouwer never paid any attention to the audience. All the time
he gazed at a point on the opposite wall. He lived in Laren, rather isolated. . . He
immediately departed after the lecture, so that it was very difficult to make contact
with Brouwer.’ Van der Waerden meticulously took notes in class, and usually that
was enough to master all of the material. Brouwer’s class was an exception. Van der
Waerden recalled that ‘at night he actually had to think over the material for half an
hour and then he had in the end understood it.’

Van der Waerden was an extremely bright student, and he was well aware of this
fact. He made his presence in class known through bright and sometimes irreverent
remarks. Being quick and sharp (much more so than most of his professors) he could
make life miserable for the poor teachers in front of the blackboard. During the, rather
mediocre, lectures of Van der Waals jr. he could suddenly, with his characteristic stut-
ter, call out: ‘Professor, what kind of nonsense are you writing down now?’ He did not
pull such tricks during Brouwer’s lectures, but he was one of the few who dared to ask
questions.

As we will see, such sarcasm towards fellow mathematicians would become quite
characteristic for Van der Waerden.

When the time came for the final examination and the doctoral thesis, Van
der Waerden’s supervisor was not Brouwer as one could expect. Van Dalen
explains [Dal2]:

One would think that such a bright student was a man after Brouwer’s heart. The truth
is that Brouwer had no affinity with Van der Waerden’s mathematics; furthermore,
Brouwer wanted to be left alone to do his own mathematics. A clever young man
who would interrupt his own contemplation with bright remarks and questions, was
the last thing in the world he wished for. He certainly appreciated Van der Waerden’s
mathematical gifts.

58 See my review of it in Geombinatorics XVI(2) and in Zentralblatt für Mathematik.
59 [Dal2], pp. 516–519.
60 Max Euwe, the 1935 world chess champion; Lucas Smid, an insurance mathematician.



36 In Search of Van der Waerden: The Early Years 375

Indeed, on October 21, 1924, Brouwer wrote a letter of introduction for Van der
Waerden, addressed to Göttingen’s Privatdozent topologist Helmut Kneser:61

In some days my student (or actually Weitzenböck’s) will come to Göttingen for the
winter semester. His name is Van der Waerden, he is very clever and is already pub-
lished (namely, on Invariants Theory). I do not know whether for a foreigner, who
wants to register there are difficult formalities to fulfill; nevertheless, it would be of
high importance for Van der Waerden, if he were to find some assistance and guidance.
May he call perhaps once on you? Thank you in advance.

This letter of introduction must have been very important to Van der Waerden:
in his ETH archive, I found both Brouwer’s original and a few copies in Van der
Waerden’s handwriting. Brouwer, who appeared so self-centered to many of his
colleagues, actually showed almost motherly care about the young Van der Waerden
when he tried to get him the Rockefeller (International Education Board, or IEB for
short) fellowship. On April 8, 1925, in handwritten English, Brouwer sent a letter
to Dr. Augustus Trowbridge (1870–1934), Head of IEB Office in Paris (formerly
Physics Professor at Princeton):62

I am somewhat anxious that the blank forms filled up for Van der Waerden may not
reach you before the date of April 15. I sent them to Miss Professor Noether (Van der
Waerden’s proper teacher in Göttingen) who has to sign them as seconder next to me
as proposer, but they do not come back, so I suppose Miss Noether to be absent from
Göttingen, and out of regular postal communication with her home (March and April
are vacation months in Germany).

On the blank forms Van der Waerden requests a stipendium for seven months (a
summer semester of three and a winter semester of four months) to the amount of
$100 a month.

Van der Waerden was awarded this Rockefeller fellowship at Göttingen Univer-
sity for 7 months (1925–1926) for studying abstract algebra under Emmy Noether.
Van Dalen observes:

Given Van der Waerden’s algebraic interests, the person to take care of him was Emmy
Noether. Once in Göttingen, under Emmy’s wings, Van der Waerden became a leading
algebraist. Emmy was very pleased with the young Dutchman, ‘That Van der Waerden
would give us much pleasure was correctly foreseen by you. The paper he submitted
in August to the Annalen is most excellent (Zeros of polynomial ideals). . .,’ she wrote
to Brouwer [on November 14, 1925].

Van der Waerden was indeed well received at Göttingen. He impressed not
only the officially under-appreciated Jewish liberal woman Emmy Noether, but also
Göttingen’s official leaders David Hilbert and Richard Courant. Both would write
letters of recommendation for the young Dutchman in the near future.

61 ETH, Hs 652 10563, 10563a, and 10563b.
62 Rockefeller Archive Center (RAC). I thank Reinhard Siegmund-Schultze for providing me with this
and a few other 1925, 1927, and 1933 documents from RAC related to Van der Waerden.
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Curiously, Van der Waerden wrote his thesis in 1925 in the Netherlands, while
fulfilling his military duty at the marine base in Den Helder. Van Dalen brings up
an episode, which is typical of impressions Van der Waerden would leave on people
throughout his life [Dal2]:

In mathematics Van der Waerden was easily recognized as an outstanding scholar, but
in the ‘real world’ he apparently did not make such a strong impression. When Van der
Waerden spent his period of military service at the naval base in Den Helder, a town
at the northern tip of North-Holland, his Ph. D. adviser [Hendrik de Vries] visited him
one day. He said later that the commander was not impressed by the young man, ‘he is
a nice guy but not very bright.’

One question remains a mystery to me: why did Van der Waerden not defend his
doctorate at his beloved Göttingen? Van Dalen seems to be equally puzzled [Dal2]:

Notwithstanding his popularity in Göttingen, Van der Waerden came back to Amster-
dam for his doctor’s degree. Perhaps, he would have liked Brouwer as a Ph. D. adviser,
but Brouwer systematically discouraged students from writing a dissertation under his
supervision. Brouwer was not interested in the honour, pleasure and toil of the Ph. D.
adviser role. . . It was de Vries who took the role of Ph. D. adviser of the young Bartel
upon himself. The topic of Van der Waerden’s dissertation was enumerative geometry,
a subject that was later treated in a monograph by de Vries himself [1936]. Van der
Waerden’s dissertation [‘De algebraiese grondslagen der meetkunde van het aantal’
(‘The algebraic foundations of the geometry of numbers’), 1926] earned him instant
fame in the world of algebraic geometers for its importance as a solid basis of the
subject.

Van Dalen’s assessment, “Instant fame in the world of algebraic geometers,” is a
high bar. To verify it, I went to the Princeton University’s Fine library and became
the first person ever to check out this 1926 dissertation [Wae1]. This obscure 37-
page brochure (plus a few-page foreword), in Dutch, without any proofs printed, I
conjecture, in a tiny number of copies (who would buy it?) could not have possibly
made the author famous. Van der Waerden’s algebraic geometry fame was earned,
of course, but later, by his long series of articles on the subject published in the most
prestigious journal Mathematische Annalen.

In the foreword to his dissertation, Van der Waerden, of course, thanked his Pro-
motor (thesis advisor) Hendrik de Vries,63 and his professors Weitzenbök, Emmy
Noether, Brouwer, and Mannoury. He also gave credit to Professor Johann Antony
Barrau, whom we have already met in Chapter 34 – he was Promotor of the Ph.D.
dissertation of P. J. H. Baudet —and will soon meet again on these pages:

The first one [weakness in the argument] was brought to my attention by a remark of
Professor Barrau, who had observed that the theorem concerning the number of inter-

63 N. G. de Bruijn informs [Bru8]: “The following story might interest you. I guess I once heard it from
[Arend] Heyting. At the University of Amsterdam there was a well-known geometry professor H. de
Vries. The story is that H. de Vries told later that in one particular year he had three brilliant students:
B. L. van der Waerden, Max Euwe, and C. Zwikker, and that [the world chess champion] Euwe was the
best one of the three. Zwikker became a physics professor.”
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sections of a curve and a surface in the projective R3 space that is generally credited to
Bezout, had only been proved by Bezout in the very special case in which the curve is
a complete intersection of two surfaces. Professor Barrau outlined for me two possible
proofs in the ensuing interchange of letters, one of them, indicated by Professor Wolff,
relied on the theory of Riemann Surfaces.

36.4 Van der Waerden at Hamburg

In 1975 Van der Waerden commences to tell the Story of Hamburg [Wae20]:

[In 1926] I went to Hamburg as a Rockefeller fellow to study with Hecke, Artin, and
Schreier.

He confirms it to the interviewer in 1993 [Dol1]:

Yes, after one semester at Göttingen, Courant started to take notice of me. He procured
for me, on the recommendation of Emmy Noether, a Rockefeller grant for 1 year. With
this I studied another semester at Göttingen and one semester at Hamburg with Artin.

In his 1930 Moderne Algebra [Wae3], Van der Waerden enumerates his Hamburg
duties when he lists the sources of this book:

A lecture by E. Artin on Algebra (Hamburg, Summer session 1926).
A seminar on Theory of Ideals, conducted by E. Artin, W. Blaschke, O. Schreier,

and the author [i.e., Van der Waerden] (Hamburg, Winter 1926/27).

I asked Hamburg University what position Van der Waerden occupied at
Hamburg in 1926–1927. My inquiry was answered by Dekan Fachbereich Mathe-
matik Prof. Dr. Alexander Kreuzer on January 11, 2006:

For sure he [Van der Waerden] was not a “Wissenschaftliche Hilfskraft” of the Math-
ematische Seminar of the University of Hamburg and therefore not an “Assistent” of
any of the Professors. (At this time the word “Assistent” was not used).

He is not mentioned in the Vorlesungsverzeichnis (like every official member of
the University)64 and he has not given a lecture. He was here for one Semester and we
believe that he has still had a Rockefeller fellowship (or any other money not from the
University Hamburg).

Hamburg University’s Prof. Dr. Karin Reich of Geschichte der Naturwis-
senschaften, Mathematik und Technik and of the Department Mathematik, con-
firmed Kreuzer’s words (while hinting that I would learn it all if I only read other
biographers):

64 Formally Dean Kreuzer is correct. However, we see in winter 1926–1927 semester’s Vorlesungsverze-
ichnis (schedule) in the section Für höhere Semester, “561 Vortragsseminar über Algebra: Prof. Artin,
Prof. Blaschke, Dr. Schreier. Fr[eitag] 12-2 MathS[eminar],” just as Van der Waerden reported in
Moderne Algebra above, except his name is missing in Vorlesungsverzeichnis. I venture to conjecture
that he was simply added to the leaders of this seminar too late for Vorlesungsverzeichnis to reflect his
participation.
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As far as van der Waerden is concerned, I can’t give you any other information than
R. Thiele or A. Kreuzer have done. There was no affiliation, van der Waerden was a
Rockefeller Fellow, which is mentioned in all [sic] the biographies on van der Waerden.

Prof. Reich is right: it is “mentioned in all the biographies”, but does it make it
true? One must pause and retreat: after all, the German authors, especially Hamburg
University historians, know Hamburg University history best, or do they?

Van der Waerden’s Göttingen mentor Richard Courant—who would know better
than my present Hamburg colleagues whether Van der Waerden was a member of
the Mathematics Seminar, on November 29, [19]26 addresses his letter “Herrn Dr.
v.d. Waerden, Hamburg. Mathem. Seminar der Universität.”65 Furthermore, accord-
ing to Reinhard Siegmund-Schultze, the author of the definitive book [Sie] on the
Rockefeller mathematical charities, the Rockefeller archive contain no mention of
Van der Waerden ever receiving another Rockefeller fellowship: not in 1926–1927,
nor in 1933 (in 1933 the record shows that at least he applied for it).

We know for certain that Van der Waerden was at Hamburg on January 15, 1927,
for the Rockefeller official Wilbur Earle Tisdale, the new assistant to Augustus
Trowbridge, the head of the Paris Office of the International Education Board (IEB),
wrote in his diary on January 15, 1927:66

I talked for more than an hour with van der WAERDEN, who finished his fellowship
this [i.e., 1926] spring. He is now Assistant [sic] to Prof. Hecke, but will go in April to
Göttingen as Assistant to Prof. Courant and Prof. Emmy Noether. This is quite a boost
for him and he attributes it to the opportunities afforded by his fellowship.

So the man, who would have provided the Rockefeller money to Van der
Waerden, states that Van der Waerden was not a Rockefeller fellow at Hamburg,
but rather “Assistant to Prof. Hecke”—moreover, he states that contemporaneously.
Further in his notes, Tisdale records Van der Waerden describing himself in January
1927 as “van der Waerden, assistant [sic] in algebraic geometry and algebra.”

On the other hand, on July 23, 1928, the Curators of the University of Groningen
submitted the following information to the Minister of Education, Arts and Sciences
of the Netherlands:

He [Van der Waerden] received his doctorate in Amsterdam in 1926; after that he was
Assistant to Prof. [Wilhelm] Blaschke at Hamburg.67

This is repeated in the appendix to the Dutch mathematics magazine Euclides,68

where under the June 1931 photograph of the young and handsome Bartel, we read
among other:

65 New York University, Archive, Richard Courant Papers.
66 The Rockefeller Archive Center, “Tislog” (Tisdale’s Log). I am most grateful to Reinhard Siegmund-
Schultze for providing me with this and other Rockefeller Archive Center’s documents related to Van der
Waerden.
67 Het Nationaal Archief, Den Haag, finding aid number 2.14.17, record number 73 (Archive of the
Ministry of Education).
68 Euclides, 7th year (i.e., 1931), No. 6. By the way, they erred in the dates, which should have been
1926–’27.
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Assistant to Prof. Blaschke in Hamburg 1927–’28.

Thus, Van der Waerden was at Hamburg University in the position of an Assis-
tant, without teaching duties, but taking part in running the seminar together with
Artin, Blaschke, and Schreier. Formally, he assisted Hecke—as I view Tisdale’s
notes to be the most reliable document—or else Blaschke, but of course his main
goal for being at Hamburg was to learn abstract algebra from Emil Artin. From Van
der Waerden–Courant correspondence,69 we do know that Van der Waerden was at
Hamburg during summer and winter semesters of 1926–1927 (not one semester as
reported by Dekan Kreuzer). We also know that this was, perhaps, the most impor-
tant time of his mathematical life.

Hamburg time also allows an insight in the views and personality of Van
der Waerden. During the already mentioned January 15, 1927 interview with
Van der Waerden, Tisdale notes Van der Waerden’s predilection for categorical
opinions:

While he [van der Waerden] is young, he has very clear and definite opinions –
perhaps too much so. I talked to him concerning Kloosterman70 and, in his frank
way, he told me he considered Kloosterman to be lazy, an average straight forward
worker, but temperamental and requiring conditions to be just right before he can
work. . . His feeling is that [Edmund] Landau, at Göttingen, is a man without particular
vision.71

Still, Van der Waerden leaves a positive impression on Tisdale:

Van der Waerden appeals to me as a very intense, gifted and enthusiastic individual.
He has the unfortunate defect of stammering, especially in his more intense moments,
but he is so agreeable to talk to that the defect is rather minimized. I explained to
him how the seriousness of such fellows as himself might be influential in justify-
ing the appointment of future fellows, to which he reacted most enthusiastically and
agreeably.

During the interview, Van der Waerden favorably evaluates his Hamburg mathe-
matical group, as Tisdale records:

He feels that the school at Hamburg is exceptionally strong, especially considering its
youth. Prof. Blaschke in differential geometry, Prof. Hecke in algebraic numbers and
Prof. Artin in algebraic numbers and algebra in general form a very strong nucleus with
[Otto] Schreier, private lecturer and assistant, in theory of groups; van der Waerden,
assistant in algebraic geometry and algebra; [Hans] Petersson, assistant in analytical
theory of numbers; [Heinrich] Behnke, assistant to Hecke, in analytical functions; with
Kloosterman, I.E.B. fellow in analytical theory of numbers; Zwirner, in algebraic num-
bers; and Haacke (late assistant at Jena) in geometry.

69 New York University, Archive, Richard Courant Papers.
70 Hendrik Douwe Kloosterman (1900–1968), later a professor at the University of Leiden (1947–1968).
71 A year later this celebrated number theorist, or according to Van der Waerden “man without particular
vision,” will be asked—and will write —a glowing recommendation for Van der Waerden’s successful
appointment to a full professorship at Groningen.
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36.5 The Story of the Book

Emil Artin, a framer of abstract algebra, promised Richard Courant to write a book
on abstract algebra for the Courant-edited “Yellow Series” of Springer-Verlag. Dur-
ing the summer of 1926 he was giving a course on algebra attended by Van der
Waerden who was taking meticulous notes. Artin agreed to write this book, based
on his lectures, jointly with the 23-year young Dutchman. However, as we all know,
the book appeared a few years later under one name, that of the Student and without
the Master.

What happened is a question of enormous importance, for The Book has become
one of the most famous and popular books in the history of mathematics. Yet, I
have found no research published on this subject. Van der Waerden told his story,
his interviewers and his former Ph.D. students repeated it, and the historians and
mathematicians uncritically accepted thus invented fairytale! I invite you to join me
and take a look at the documents. It is most appropriate first to give the podium
to Prof. Van der Waerden [Wae20], who (in 1975) tells us how enormous Artin’s
contribution to the book really was:

Artin gave a course on algebra in the summer of 1926. He had promised to write a
book on algebra for the “Yellow Series” of Springer. We decided that I should take
lecture notes and that we should write the book together. Courant, the editor of the
series, agreed. Artin’s lectures were marvelous. I worked out my notes and showed
Artin one chapter after another. He was perfectly satisfied and said, “Why don’t you
write the whole book?”

The main subjects in Artin’s lectures were fields and Galois theory. In the theory of
fields Artin mainly followed Steinitz, and I just worked out my notes. Just so in Galois
theory: the presentation given in my book is Artin’s.

Of course, Artin had to explain, right at the beginning of his course, fundamental
notions such as group, normal divisor, factor group, ring, ideal, field, and polynomial,
and to prove theorems such as the Homomorphiesatz and the unique factorization the-
orems for integers and polynomials. These things were generally known. In most cases
I just reproduced Artin’s proofs from my notes.

I met Artin and Schreier nearly every day for two or three semesters. I had the
great pleasure of seeing how they discovered the theory of “real fields,” and how
Artin proved his famous theorem on the representation of definite functions as sums of
squares. I included all this in my book (Chapter 10). My sources were, of course, the
two papers of Artin and Schreier in Abhandlungen aus dem mathematischen Seminar
Hamburg 5 (1926), p. 83 and 100.

Van der Waerden gives further credits to Artin (ibid.):

In Chapter 5 (Körpertheorie) I mainly followed Artin and Steiniz. . .
Chapter 7 on Galois Theory was based on Artin’s course of lectures. . .
In Chapter 10. . . (a) the Artin-Schreier theory of real fields and representation of

positive rational functions as sums of squares. . . In treating subject (a) I closely fol-
lowed the papers of Artin and Schreier.

Van der Waerden repeats the story in 1994, and Prof. Dold-Samplonius publishes
it [Dol1]:
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Artin was supposed to write a book and wanted to write it with me. Having finished
the first chapter, I showed it to Artin. Then I sent him the second and asked him about
the progress of his part of the book. He hadn’t yet done anything. Then he gave up the
idea of writing the book with me. Nevertheless, the book is based on lectures of Artin
and Noether.

The idyllic picture is further enhanced by Dold-Samplonius’s in her 1997 eulogy
of Van der Waerden [Dol2]:

Artin gave a course on algebra that summer, and, based on van der Waerden’s lecture
notes, the two planned to coauthor a book on algebra for Springer-Verlag’s “Yellow
Series.” As van der Waerden worked out his notes and showed Artin one chapter after
another, Artin was so satisfied that he said “Why don’t you write the whole book?”

“Artin was so satisfied,” Van der Waerden and Dold-Samplonius lead us to
believe. In fact, Artin was so outraged that he obviously refused to write the book
together with the discourteous and ungrateful student. I read—in disbelief—Richard
Courant’s August 6, [192]7 letter to Van der Waerden:72

Dear Herr v.d. Waerden!
Herr Artin has sent me a copy of the enclosed letter about which I am somewhat

astonished and concerned. Do you understand Artin’s attitude? I don’t. Is there any
personal sensitivity behind this or are these differences of an objective nature? In any
case, one cannot force Artin. But I would like to hear your opinion before I answer him.

I hope you have not angered him.

Clearly, Artin refused to write the book with Van der Waerden, and thus “aston-
ished” Courant. He was obviously offended by Van der Waerden, but how? Let us
look at the surviving shreds of evidence. The skies are cloudless on November 29,
1926, as we glance into Courant’s letter to Van der Waerden:73

Dear Herr van der Waerden!
What about this admission of your Habilitation. It would be very good to get this

thing moving.
How are you doing otherwise? How is the book by Artin and you coming along?

We see first clouds in Van der Waerden’s December 2, 1926 reply:74

The Yellow Book is making progress; I have finished writing a large part; I have half-
finished other parts, and the plan for the whole is becoming more precise in details
through the conversations with Artin, the only thing is Artin himself writes very little.

So, Artin has given his course, Artin is making his material “more precise in
details through conversations,” but “Artin himself writes very little,” or – as Rudyard
Kipling would have put it [Kip] – Artin won’t “fetch and carry like the rest of us.”

72 New York University, Archive, Courant Papers.
73 Ibid.
74 Ibid.



382 VII Colored Integers

Two months later, on February 2, 1927, we sense more overcast from the Student
dissatisfied with his Master:75

My coexistence with Artin is still very fruitful. He forever digs up nice things that will
also have to come into the book, and from our conversations many details emerge by
which the proofs are simplified or new contexts are uncovered. Even if he does not
work on the book directly, it is still coming forward.

It seems like Artin has not only provided a well thought out lecture course, ready
for the note-taking, but further contributes to the joint book: “he forever digs up nice
things”, “many details emerge by which the proofs are simplified or new contexts
are uncovered.” But Artin won’t “plough like the rest of us” (Kipling again), and the
Student is upset and, just as in his letters to Courant, probably accuses the Master of not
writing down his fair share of “nice things.” Van der Waerden alleges that “He [Artin]
hadn’t yet done anything.” That would explain Artin’s explosion and refusal to write
his book with Van der Waerden. Now we can better understand the quoted above 1994
interview [Dol1]. Van der Waerden, in fact, tells us the truth, but without the context
behind it. Let us revisit it, now that we know the context. Van der Waerden says:

[I] asked him [Artin] about the progress of his part of the book. He hadn’t yet done
anything. Then he gave up the idea of writing the book with me.

But never mind the Master, the Student has gotten everything he needs, and
can now publish the book by himself, with the blessing of his mentor and “Yellow
Series” Founder and Editor Richard Courant.

As a mathematician, I have coauthored a number of works with others. It never
mattered to us who wrote down joint ideas and proofs. Such great mathematicians
as Paul Erdős, Israel M. Gelfand and Saharon Shelah often left the writing of
joint works to their coauthors. I am amazed at Van der Waerden’s narrow notion
of coauthorship. Producing a book requires not merely writing it down, but first
of all discovering and assembling numerous ideas, theorems, proofs, giving the
whole material structure and style. In all of these chores Artin’s contributions were
overwhelming, and to publish the book of Artin’s ideas without Artin as at least
a coauthor was grossly unfair, in my opinion. It could be classified as an act of
“nostrification.” I let Richard Courant [Cour] define the term:

A certain duty exists, after all, for a scientist to pay attention to others and give them
credit. The Göttingen group was famous for the lack of a feeling of responsibility
in this respect. We used to call this process – learning something, forgetting where
you learned it, then perhaps doing it better yourself, and publishing it without quoting
correctly – the process of “nostrification.” This was a very important concept in the
Göttingen group.

On the title page of the book—what an unusual place for acknowledgements—
Van der Waerden did give credit to Artin’s lectures (and Noether’s lectures) as
being “used” in the book—but was it enough? How many theorems, proofs, ideas
required—and did not get—specific credits to Artin?

75 Ibid.
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Van der Waerden published the two volumes in 1930 and 1931 in the Richard
Courant-edited Yellow Series. The great book had a great success. It excited gener-
ations of mathematicians (I included), and made B. L. van der Waerden famous.

Surely, Van der Waerden deserves credit for writing down and editing the book.
How much credit, depends upon how close the book was to Artin’s lectures and how
publishable Artin’s lectures were. Those who attended Artin’s summer 1926 lectures
cannot testify today. However, here at Princeton University I found a good number
of Artin’s students from his Princeton’s 1946–1958 years: Gerard Washnitzer (who
took all Artin’s courses 1947–1952), Harold W. Kuhn, Robert C. Gunning, Hale
F. Trotter, Joseph J. Kohn and Simon B. Kochen. Independently interviewed, they
were amazingly unanimous in their assessments and even in epithets they used. Tall,
slender, handsome, with a cigarette in one hand and chalk in the other, without ever
using any notes (well, sometimes a small piece of paper extracted for a second from
a jacket pocket), Artin delivered elegant, smooth, well thought out lectures, so much
so that notes, carefully taken, would be quite close to a finished book. Harold Kuhn,
who took Artin’s 1947 course, recalls:

Artin’s lectures were composed like a piece of music, with introduction, exposition,
development, recapitulation and coda.

“So, would transcribed lectures form a book?” I asked Harold, who replied:

Absolutely. In fact, lecture notes formed several of Artin’s books, on Galois Theory,
on Cauchy Theorem, etc.

Van der Waerden took such notes in his generation; Serge Lang did so in his.76 In
his book [Lan], p. vi], Lang calls Van der Waerden’s book “Artin–Noether–Van der
Waerden” – fair enough – but then shouldn’t he have called his book “Artin-Lang,”
n’est-ce pas?

There was another way to credit and honor the teacher. Van der Waerden gave
an example of it, when he had not “nostrified” somebody else’s lecture notes.
But of course, this was a special case of his admired mentor, Fräulein Emmy
Noether [Wae20]:

I took notes of the latter [Emmy Noether’s] course, and these notes formed the basis
of Emmy Noether’s [sic] publication in Mathematische Zeitschrift 30 (1929) p. 641.

36.6 Theorem on Monochromatic Arithmetic Progressions

As we have discussed in Chapter 34, at the Bad Kissingen September-1927 annual
meeting of the Deutsche Mathematiker Vereinigung (DMV, German Mathemat-
ical Society), Bartel L. van der Waerden announced a proof of the following
result [Wae2]:

76 “Since Artin taught me algebra, my indebtedness to him is all-pervasive,” wrote Lang in the foreword
of his Algebra book [Lan].
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For any k, l, there is N = N (k, l) such that the set of whole rational numbers
1, 2, . . . , N , partitioned into k classes, contains an arithmetic progression of length l
in one of the classes.

The Dutch Professor Wouter Peremans, Ph.D. 1949 under Van der Waerden,
writes [Per, p. 135] that this “result. . .made him [Van der Waerden] at one stroke
famous in the mathematical world.”77

I truly love this classic result, and this is precisely why I have become interested
in Van der Waerden’s life in the first place. However, I confess, that the appearance
of this result could not have possibly made Van der Waerden “at one stroke famous
in the mathematical world” – indeed, it took time for this publication to be noticed
and taste for such new Ramsey-type results to develop. Initially Van der Warden
himself must have not thought highly of his now classic result and he did not expect
others to appreciate it, for he published it in an obscure Dutch journal Nieuw Archief
voor Wiskunde, whereas his algebraic geometry papers that he considered important,
were published in the most prestigious journal Mathematische Annalen. Nicolaas G.
de Bruijn, who knows best, confirms [Bru3, p. 116] :

Old and respectable as the “Wiskundig Genootschap” may be, it has never been more
than a small country’s mathematical society. Accordingly, it is not surprising that the
society’s home journal, the “Nieuw Archief voor Wiskunde”, has a relatively small
circulation, and, as a second order effect, that the Nieuw Archief does not get more
than a small part of the more important contributions of the Dutch to mathematics.

From Van der Waerden’s captivating account of How the Proof of Baudet’s Con-
jecture Was Found [Wae13, 14, 16, 18, and 26], we learned that the proof was
obtained as a result of the collaboration of three mathematicians: Emil Artin, Otto
Schreier and Bartel L. van der Waerden, but credited to just one, who published the
result. Let me repeat just one passage from Van der Waerden’s reminiscences, which
we have read in full in Chapter 33:

Finding the proof of Baudet’s conjecture was a good example of team-work. Each of
the three of us contributed essential ideas. After the discussion with Artin and Schreier
I worked out the details of proof and published it in Nieuw Archief voor Wiskunde 15,
p. 212 (1927).

A thorough historian of mathematics (if such an endangered species exists)
would contradict me by pointing out credit to Artin in the footnote of this 1927
publication [Wae2]. Indeed, we read:

The conjecture that the generalization from k = 2 to arbitrary k would work by induc-
tion, comes from Herr Artin.

77 Peremans also writes: “The problem circulated in German mathematical circles in the twenties and
famous mathematicians like Artin and Schreier tried in vain to solve it. Van der Waerden succeeded.” No
substantiation of this myth is known to me. In fact, Van der Waerden contradicts it himself [Wae, 14, 16,
18, and 26].
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Artin and Schreier contributed much more—Van der Waerden told us so in detail
(Chapter 33)—thus, the theorem could have been published under the names of all
three coauthors. Perhaps, Van der Waerden simply did not realize the significance
of the result and thus gave no thought to joint authorship, for as I mentioned earlier,
he published it in an obscure journal of the Dutch Mathematical Society.

As we have learned in Chapter 34, Van der Waerden in fact proved the conjecture
discovered independently by Pierre Joseph Henry Baudet and Issai Schur. He never
met either of his coauthors of the classic Baudet–Schur–Van der Waerden Theorem.

36.7 Göttingen and Groningen

In the waning days of February 1927, Van der Waerden successfully passed Habili-
tation at Göttingen University under the wing of Richard Courant, thus “curing” his
Dutch doctorate. In April 1927 he became Courant’s Assistent.

History possesses its own sense of humor; it also repeats itself. We will see both
attributes at the junctions of the lives of Bartel L. van der Waerden and Johan Antony
Barrau.

Act One of their story, according to Van der Waerden, took place during Van
der Waerden’s high school years. In 1994, when he conveyed this story to the
interviewer [Dol1], Van der Waerden ridiculed the Groningen professor Barrau for
allegedly making numerous mistakes in his book on analytical geometry. He wrote
to the author about it. Barrau was impressed and—in an elegant compliment—
informed Van der Waerden that he would like Van der Waerden to succeed him if he
were to leave Groningen. To the contrary, we know for a fact that Van der Waerden
acknowledged with gratitude—and with no disrespect—his correspondence with
Barrau in the preface of his 1926 doctoral dissertation.

Act Two of the story took place in 1927, when Barrau moved from Groningen to
Utrecht, when his chair was indeed offered to Van der Waerden. The following year,
on May 6, 1928, Van der Waerden entered the Barrau’s chair at Groningen, with
the assistance of glowing recommendations by such celebrities as David Hilbert,
Edmund Landau and Richard Courant. Surely, Van der Waerden could have found a
lesser ranked professorship at a higher ranked German university. However, Gronin-
gen made the 25-year old young man “Ordinarius,” i.e., a Full Professor.

Act Three of Barrau–Van der Waerden story will have to wait until December
1942. We will play it out it in the next section. Meanwhile, here at Groningen
another important event took place.

In the midst of his Groningen years, in 1929 Van der Waerden accepted a partic-
ularly productive visiting appointment at Göttingen: in July he met there his future
wife. Camilla Rellich, two years Bartel junior (born September 10, 1905) was the
sister of Franz Rellich, who in the same year (1929) defended his Ph.D. dissertation
under Richard Courant. Already on September 27, 1929 Bartel and Camilla united
in a marriage that lasted a lifetime. Their first child, Helga, was born in Gronin-
gen on July 26, 1930. Their other two children would be born in Germany: Ilse on
October 16, 1934, and Hans Erik on December 7, 1937.
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Groningen seems to have been a stepping-stone for a number of fine mathemati-
cians. Van der Corput was also there, and Van der Waerden recalled learning a lot of
mathematics from him. Most importantly, at Groningen, Van der Waerden finished
“The Book.”

36.8 Transformations of The Book

“The Book” was the main outcome of Van der Waerden’s years at Groningen. Every-
one who has written a book would agree that Van der Waerden proved to be a great
expositor of the new abstract view of algebra. He writes in the preface of the 1930
first edition of volume 1 that the book, started as Artin’s lecture notes, has substan-
tially changed, and by the time of its release it was difficult to find Artin’s lectures
in it. I know of no way to verify this statement today. Granted, Van der Waerden’s
contribution must have grown from 1927 to 1930. However, it is also clear that
an unusually large contribution of the non-author Artin remained as we have seen
above when we cited Van der Waerden’s own 1975 words. The book became an
instant classic, which many generations of mathematicians enjoyed. I too remember
reading, during my freshman year (1966–1967), the early Russian translation (vol.
1, 1934; vol. 2, 1937) with great delight and profit.

Unlike his mentors Brouwer and Hilbert, Van der Waerden apparently did not
have firm mathematical principles that he was willing to fight for, as the story of
changing—and changing back—his Moderne Algebra book shows. It is surprising
that the quick learner, Van der Waerden seemingly failed to see the importance of
the battle over the foundations of mathematics that raged for decades and take a
firm position on it. The leading historian of the Axiom of Choice Gregory Moore
writes [Moo]:

In 1930, van der Waerden published his Modern Algebra, detailing the exciting new
applications of the axiom [of choice]. . . Van der Waerden’s Dutch colleagues per-
suaded him to abandon the axiom in the second edition of 1937. He did so. . . [which]
brought such a strong protest from his fellow algebraists that he was moved to reinstate
the axiom and all its consequences in the third edition of 1950.

Indeed, in January 1937, in the preface to the second edition of volume 1, Van
der Waerden himself discloses the surprising transformation of his book [Wae6]:

I have tried to avoid as much as possible any questionable [sic] set-theoretical rea-
soning in algebra. Unfortunately, a completely finite presentation of algebra, avoiding
all non-constructive existence proofs, is not possible without great sacrifices. Essential
parts of algebra would have to be eliminated, or the theorems would have to be formu-
lated with so many restrictions that the text would become unpalatable and certainly
useless for a beginner. . .

With the above mentioned aim in mind, I completely omitted those parts of the
theory of fields which rest on the axiom of choice and the well-ordering theorem.
Other reasons for this omission were the fact that, by well-ordering principle, an extra-
neous element [sic] is introduced into algebra and, furthermore the consideration that
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in virtually all applications the special case of countable fields, in which the count-
ing replaces the well-ordering, is wholly sufficient. The beauty of the basic ideas of
Steinitz’ classical treatise on the algebraic theory of fields is plainly exhibited in the
countable case.

By omitting the well-ordering principle, it was possible to retain nearly the original
size of the book.

Then in the preface to the third edition, in July 1950, we read about Van der
Waerden’s puzzling reversal [Wae11]:

In response to many requests, I once again included sections about well-ordering and
transfinite induction, which were omitted in the second edition, and on this foundation,
I presented theory of fields developed by Steinitz in all its generality.

36.9 Algebraic Revolution That Produced Just One Book

Van der Waerden’s book became so popular because of its high quality, but also, it
seems to me, because no competition occurred. Indeed, started by Emmy Noether
and Emil Artin, algebraic revolution swept mathematics during the 1920s and 1930s,
yet for decades only one book on the new algebra was published. Why did this
happen? Documents show that a three-volume book by one of the leading algebraists
Richard Dagobert Brauer (1901–1977) was under contract with Springer and in the
works, and Van der Waerden had something to do with blocking this competition
book. Let us look at the facts.

Even though Richard Courant was Jewish, as a combatant in World War I, he was
exempted from the April 7, 1933 Third Reich’s civil service law that removed Jews
from the ranks of professors. Nevertheless, on May 5, 1933 he was served a letter
of dismissal. He accepted an invitation for a year’s visit from Cambridge University
and informed Van der Waerden accordingly:78

Between the 24th and 28th of October I am supposed to give lectures for students in
Holland in Amsterdam, Utrecht, Groningen and Leiden, and for that reason I want
to depart from here on the 22nd. Presumably from Holland I will travel directly to
England. I have an invitation to Cambridge for the next academic year.

As a result of this departure, Courant – and Ferdinand Springer79 – wanted to
find someone, who could serve as a figurehead editor, while Courant would pull all
of the strings from Cambridge. The choice naturally fell on the Courant’s protégé,
Van der Waerden, to whom Courant offered the job on October 10, 1933:80

I want to ask you therefore the following on the basis of a conversation that Neugebauer
and I recently had with Springer. Because it is probable, because of my uprootedness

78 Courant to Van der Waerden, letter of October 10, 1933. New York University, Archive, Courant
Papers.
79 Ferdinand Springer, Jr. (1881–1965).
80 New York University, Archive, Courant Papers.
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and my work as the editor of Yellow Series at Springer, I will be a little bit hampered,
we thought about whom one can take in as a representative in case of such hindrance,
and in the process we agreed, without any trouble, that you would be the obvious
person for this role. I want to ask you today whether in principle you are inclined to
do this.

Courant adds, “It would not be a large burden on you,” as Courant expects to
make all decisions himself. The protégé immediately accepts (October 13, 1933 let-
ter to Courant81). However, things change, when Courant is not offered a longer stay
at Cambridge, and so during Courant’s Christmas visit of his family in Göttingen,
he elevates Van der Waerden to a more-or-less real editor of the Yellow Series, and
a member of editorial board of the Mathematische Annalen:82

During the short visit last week I spoke explicitly with Springer about different things,
among others about the case of the Annalen. In the meantime, as Hilbert told me, you
have accepted the invitation to join the Editorial Board, and I hope that this signifies
the beginning of a continual reenergizing of the Annalen Editorial Board. Springer
feared that Hilbert has somewhat mixed up thing, which can happen easily, but still it
is no longer necessary that I do anything in this case.

In regard to the editing of my [sic] Yellow Series, I would like, as we have already
considered this, to regard you from now on as the editor, with the thought on the back
of my mind, that in case I should go to America for a longer time, you could take care
of the thing possibly more than in a purely formal capacity.

Now we are ready to look at the fate of Richard Brauer’s Algebra book. The year is
1935. Richard Courant, who by now lives in New York, offers his and Emmy Noether’s
(now at Bryn Mawr College in Philadelphia) defense of Brauer’s book against Van der
Waerden’s reservations, in the July 16, 1935 letter to Van der Waerden:83

I find it to be a mistake to change something in the contracts and agreements that
have existed for years, for example with Richard Brauer. Brauer’s book, whose new
plan I will soon send to [F. K.] Schmidt,84 has been spoken through in this past year
repeatedly with Emmy Noether, and will certainly not be a superfluous publication.

Van der Waerden takes a bold move of excluding Courant from the loop and
going straight to Ferdinand Springer. But he cannot simply disregard Emmy
Noether’s opinion. He writes about it on August 10, 1935 from Laren, Holland,
where he is visiting his parents:85

In regard to Brauer (R.), I proceeded on the assumption that B. [Brauer] himself, as
Schmidt assumed, did not really want to get too involved with the book. If that is
wrong and if even Emmy Noether is in agreement on the book, then for the time being
I withdraw my reservations. However, I will be very interested in looking at the plan

81 Ibid.
82 Ibid.
83 Ibid.
84 Friedrich Karl Schmidt, Van der Waerden’s co-Editor of the Yellow Series.
85 New York University, Archive, Courant Papers.
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that the author of course will send us and form an opinion on that basis. In any case, I
agree with Schm[idt] and Spr[inger] that there is no hurry in view of the current state
of the market for books on algebra. In other words, one should definitely not try to
push it forward.

Courant is outraged with his protégé for going to Springer before a consultation
with him. He starts his August 20, 1935, 5-page letter as follows:86

I did not find it pleasant that discussions. . .instead of being conducted between us first
were taken to Springer without an attempt at previous agreement with me, for Springer
through this would get an impression, as if in a number of cases my basic point of view
is being disregarded.

Courant throws his unconditional support behind Richard Brauer:

Under no circumstances could I declare myself in agreement with any step against
Richard Brauer.

Courant then offers us a rare insight into the story of Brauer’s book:

Once again the prehistory. An age-old plan of the appearance of the Frobenius’s alge-
bra lectures through Schur was transformed a long time ago into the plan of the appear-
ance of Schur’s lectures. Schur then named Richard Brauer as a coauthor and in the
course of time rolled the whole thing off on to him. After very careful consultations
at the time, also with Emmy Noether, the contract was undertaken, in which it was
clearly expressed that it would be an elementary concrete algebra and in certain sense
an enlargement of your book.

When long afterwards the Nazi revolution came and Brauer went to America, we
expressly discussed with Springer the issue whether under these changed circum-
stances, also of business circumstances, the plan should be adhered to. Springer him-
self desired this at the time thoroughly, and even in order to help Brauer, paid him a not
an insubstantial advance of royalties. Over here Brauer worked a lot on the book, by the
way, continually in close contact with Emmy Noether, with whom he was more closely
connected here than anyone else was.87 The only serious competition to Brauer’s book
seems to me to be Perron. In the past, Springer was continually of the position that that
existence of a competition book in another press posed no problems for him. Brauer’s
book will be very different from Perron’s book in an extraordinary number of points.
Therefore it can be hoped that it can still find readers in Germany. Over here where
Brauer without a doubt has a big career and where he is praised and appreciated far and
wide, his book has a substantial chance (by the way, Brauer has become a Professor at
Toronto).

I wrote to Schmidt of a possible modification of the plan where a division in three
volumes was foreseen. First is an elementary introduction, directed at wide circle of
readers, the second refinements, and the third Galois Theory – all three relatively inde-
pendent. The first volume could soon be ready. At this point I have pushed Brauer con-

86 Ibid.
87 Brauer and Noether saw each other regularly. Brauer spent 1934–1935 academic year at the Institute
for Advanced Study in Princeton as Herman Weyl’s assistant, while Emmy Noether taught at Bryn Mawr
College in Philadelphia and that year conducted a weekly seminar at Princeton University.
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tinually because after everything that has happened, this seemed to me what Springer
wanted. But if the principle of speed is going to be explicitly given up, one can say to
Brauer, you should take time, and in all probability, one can select the English language
instead of the German. One can also, if you and Schmidt are in agreement, suggest
changes in the plan. I believe that in both of the named cases [second being Szegö’s
book], today’s standpoint within Germany that non-Arian authors represent a problem,
should be set aside as much as possible. But it is clear to me, that for Springer, in order
to exist, and also for the reason that he wants to serve the cause, such standpoints
occasionally have to play a role, and force him to be especially cautious.

Van der Waerden must have felt threatened by Courant’s plan to publish Brauer’s
book as “an enlargement of your [i.e., Van der Waerden’s] book.” However, the
following 2 weeks, come shocking news of Springer firing his key Jewish employ-
ees. In view of this, Courant begins to think that Springer may no longer approve
of books by Jewish refugee scientists. On September 3, 1935 Courant gives up his
fight for the Brauer’s book:88

From Neugebauer I received a very short message, according to which non-Aryan
employees have been released like crazy from Springer Verlag, including Arnold
Berliner89 and Fräulein Strelitz. . .

That our correspondence regarding Szegö, Brauer, Wintner, etc., appears in a new
light because of this turn of events, is of course clear. Springer must have been under
heavy pressure for a long time and have become more fearful and cautious than he
showed me directly.

Finally, on September 28, 1935, Van der Waerden replies with the intention to
allow at most one of three Brauer’s volumes:90

There is no hurry with Brauer’s book, since the book does not fill in a gap in the
textbook literature. Since the author has started, he should complete the elementary
part at his leisure – just at his leisure. But the planned second (or third? I am still
unclear about this) volume “Galois Theory” Schmidt and I would like to suppress in
no uncertain terms. Galois Theory is so well represented in so many books and also
so completely represented in the Yellow Series that a new textbook of this kind seems
completely superfluous. I assume that even Brauer, who as we know has better things
to do, will realize that.

Courant tries to write a response on October 15, 1935, but does not send it (an
unusual hesitation for such a confident communicator), and finally re-writes and
sends one on October 18, 1935:91

In the concrete publisher affairs which we are discussing I see no other deserving resort
than to terminate Brauer’s contract. For the present he seems to be fairly frightened and

88 New York University, Archive, Courant Papers.
89 Arnold Berliner (1862–1942), the Editor and Founder of the journal Naturwissenschaften [Natural
Sciences], published by Springer-Verlag, who committed suicide in 1942.
90 New York University Archive, Courant Papers.
91 Ibid.; both the unsent and the sent copies survive.
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sad concerning this prospect. However, since Brauer has the strongest rear cover by
Flexner, Veblen, and Weyl, it will be easy for him to publish his book by an American
publisher or by one of the publishers being in development. Without any doubt, if his
book is written rather well, it will have success over here.

In reply, Van der Waerden states that “Brauer’s book. . . is not justified by any
scholarly [sic] interest.” He drafts a letter to Richard Brauer terminating the con-
tract with him and on November 1, 1935, sends it to Courant for review and
delivery:92

Enclosed is a letter to Brauer that I ask you to read and, if you have no heavy objections,
send on to Brauer, whose current address I do not know. From it you will see that after
a long conversation with Schmidt, I have still come to the position that Brauer’s book
would represent for us a considerable impediment that is not justified by any scholarly
interest. After long reflection I decided to request from him a book on the Invariant
Theory. But if your efforts to find an American publisher for his book succeed, I am
very much in agreement. About the Invariant Theory we can still talk to him when this
book is done.

Courant is surprised by Van der Waerden’s rare, in Courant’s opinion, tact and
delivers the bad news to Brauer on November 16, 1935:93

Your letter to Brauer I found – not of course in absolute terms but relative to you –
so carefully diplomatic, and also so nice and heartfelt, that I sent it on to him without
any reservations. For myself I have written to him several times and now that he has
overcome the shock I am hoping to receive his answer.

Courant is relieved, as on November 28, 1935 he reports Brauer’s acceptance of
the termination of his contract:94

At the same time you will have received a letter from Brauer, according to which the
whole affair has been rather satisfactorily taken care of.

Unlike Van der Waerden, Richard Brauer was not a charismatic expositor.
Encouraged by Schur, Springer, and Courant, Brauer went along with writing the
book, and even a three-volume set. Van der Waerden’s opposition, coupled with
the anti-Semitic and anti-emigrant pressures on Ferdinand Springer in the Third
Reich, stopped this most promising project. In the end, Van der Waerden fended
off the competition, and Brauer went back to his favorite pastime, research. The
world of mathematics has never gotten to see the three-volume Algebra by Richard
Brauer. However, we did, get a huge three-volume set [BraR] of Brauer’s collected
papers.

92 Ibid.
93 Ibid.
94 Ibid.
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36.10 Epilogue: On to Germany

Ever since his student’s years, Bartel L. van der Waerden aspired to a job in
Germany, perhaps, the place-to-be for a mathematician at the time. The leading
German colleagues had a very high opinion about him. To prove it, it suffices to
mention that Van der Waerden was ranked 3rd on the list of all-important David
Hilbert’s succession at Göttingen.95 The Dutch academics knew about it, and tried
to lure Van der Waerden to remain in the Netherlands. Van Dalen informs:96

There were forces that tried to keep Van der Waerden in Holland. It was in particular
Paul Ehrenfest97 who made an effort to get Van der Waerden appointed in Leiden. . . He
was aware that Leiden could not compete with Göttingen [no place could at the time!],
‘The idea that in the fall you will start to work here, and that Leiden will develop
into one of the centres of mathematics has been so much fixed in my head. . ., that I
would be totally discouraged if you were snapped away in the last moment’ [February
6, 1930].

How serious the option was, appears from the fact that Hilbert had at Ehrenfest’s
request written a recommendation for Van der Waerden.

On May 1, 1930, Van der Waerden informed Erich Hecke that he intended to
remain at Groningen for the time being; “I had refused a call to Leiden,” he wrote.98

The attempts to keep Van der Waerden in the Netherlands failed, when on May 1,
1931 he succeeded Otto Hölder as Professor at Leipzig University. Once in Leipzig,
Van der Waerden joined the seminar conducted by the physicists Werner Heisenberg
and Friedrich Hund. Van der Waerden was an extremely quick learner. He picked
up physics from them (as he did algebra from Emmy Noether and Emil Artin)
and already the following year published a book on applications of group theory
to quantum mechanics in the Springer’s Yellow Series [Wae4].

Hitler’s ascent to power at the dawn of 1933 found Van der Waerden contemplat-
ing his second Rockefeller (IEB) fellowship.

95 February 9, 1930 letter from Richard Courant to Paul Ehrenfest, cited in [Dal2], p. 688, footnote 28.
96 [Dal2], pp. 687–688.
97 Paul Ehrenfest (1880–1933), professor of physics at Leiden (1912–1933), a close friend of Albert
Einstein and Niels Bohr.
98 Nachlass von Erich Hecke, Universität Hamburg.
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In Search of Van der Waerden: The Nazi
Leipzig, 1933–1945

These tragic times provide such profound lessons of
human nature that we have got to learn from them as
much as we possibly can. We encounter heroes and
villains, but also a much more numerous group in
between of these two extremes. The life of one such
person “in between” is the subject of the text under
review.

– Alexander Soifer, [Soi29]

It is hard to be a historian. It is difficult if you have
not lived in the time you write about, and if you have,
it is even worse.

– N. G. de Bruijn, June 1, 200499

Good “history” is possible when historians take the
initiative to undertake their own investigations of
what has been accepted as “fact.”

– Harriet Sepinwall, February 6, 1996
College of Saint Elizabeth

Holocaust Education Resource Center

37.1 Prologue

We have examined Bartel Leendert van der Waerden’s early years and elucidated
his relationship with his distinguished family, which included two members of the
Dutch Parliament and an Amsterdam judge. It is now time to explore the complex,
controversial and largely unexplored territory: the 20 years of Van der Waerden’s
life in Leipzig and Amsterdam, 1931–1951. I am partitioning my report about these
controversial years into three sections to allow a deeper insight.

99 [Bru8]

A. Soifer, The Mathematical Coloring Book, 393
DOI 10.1007/978-0-387-74642-5 37, C© Alexander Soifer 2009
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Camilla, Bartel, Theo, Coen, Dorothea and Ben van der Waerden, 30th Anniversary of Theo
& Do’s marriage, Circa August 28, 1931, Freudenstadt, Southern Germany. Courtesy of Theo
van der Waerden

37.2 Before the German Occupation of Holland: 1931–1940

From 1933 till 1940 I considered it my most important duty to
help defend the European culture, and most especially science,
against the culture-destroying National Socialism.

– Van der Waerden, Defense, July 20, 1945100

On May 1, 1931, at 28 years of age, Bartel Leendert van der Waerden started
at Universität Leipzig as an Ordinarius.101 Germany at the time was the center of
the mathematical world, and Leipzig, although below Göttingen and Berlin, was
a fine university. This could be viewed as a promotion from his prior Ordinarius
position at Groningen University, the Netherlands. Bartel was accompanied by his
Austrian wife of one year, Camilla, born Camilla Rellich, and their baby daughter
Helga.

100 Rijksarchief in Noord-Holland (RANH), Papers of Hans Freudenthal (1905–1990), mathematician,
1906–1990, inv. nr. 89.
101 The highest professorial rank in Germany, roughly equivalent to a full professor at an American
university.
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Bartel L. van der Waerden, Leipzig, June 1931. Courtesy of Leipzig University

Less than 2 years later, Germany made a dramatic move that diminished its
position in the mathematical world. Following Hitler’s January 30, 1933 assent to
power, the April 7, 1933 “Law for the Restoration of the Professional Civil Service”
(Gesetz zur Wiederherstellung des Berufsbeamtentums) rid German universities of
all Jewish (in Nazi’s definition) professors, except for those who had entered civil
service before 1914, fought for Germany in the World War I, or lost a father or
a son in that war102. Van der Waerden included one short sentence about the year
1933 in “The Defense,” a document he wrote for de-Nazification Boards of Utrecht
and Amsterdam after the World War II: “In 1933 I traveled to Berlin and Göttingen
to protest the boycott of Landau’s classes by Göttingen Nazi students.”103 Unfortu-
nately, I know of no evidence substantiating or detailing Van der Waerden’s objec-
tions to these 1933 mass firings of the Jews. The firings included Van der Waerden’s
teacher and mentor Emmy Noether, about whom Van der Waerden wrote a beau-
tiful eulogy in 1935 [Wae5]. But when in 1933 she was thrown out of Göttingen
University, Van der Waerden was busy defending himself. Friedrich, the leader of
the mathematics students’ organization (Führer der mathematischen Fachschaft),
argued that as a foreigner Van der Waerden was not fit to be the Director of the

102 These exceptions were pushed through by the German President Paul von Hindenburg (1847–1934).
103 “The Defense,” Rijksarchief in Noord-Holland (RANH), Papers of Hans Freudenthal (1905–1990),
mathematician, 1906–1990, inv. nr. 89.
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Mathematics Institute. Van der Waerden was afraid he would lose his job, and on
March 29, 1933 wrote about his worries to Richard Courant in Göttingen, who
replied on April 15, 1933104 as follows:

I find it laughable if you believe that there is any threat to your Leipzig position because
you are Dutch. Instead, I am very afraid for your Leipzig colleague L. [F. Levi, who
was Jewish].

In his defense, Van der Waerden wrote the following letter to Dekan105

Weickmann of Philosophical Facultät106 in Leipzig on May 18, 1933:107

Your Magnificence!

I have just learned from you that the Ministry possesses a letter in which it is claimed
that I am of a non-Arian descent. I declare that I do not know how that conclusion was
reached and who could have written this to the Ministry. I am a full-blooded Arian and
I can prove that if necessary, because my ancestry can be tracked for three generations.

With loyal regards,

Yours
B. L. v. d. Waerden108

The number of Arian generations in Van der Waerden’s ancestry quickly grew,
for the next day, on May 19, 1933, Leipzig’s Rektor Achelis informed Minister
Hartnacke of Saxony, that the accusation that Van der Waerden was Jewish was not
correct, that Van der Waerden had proof that five generations of his ancestors were
Christians, and thus Van der Waerden should be able to retain his Directorship.109

At the time Van der Waerden was proving his Arianness, Princeton University
decided to invite him to a visiting professorship. “A meeting of the Research
Committee was held on Tuesday, May 9, 1933, in Dean [of the Faculty Luther
Pfahler] Eisenhart’s office, Fine Hall, at 12:00 noon. Present: Dean Eisenhart,
Professors [Edwin Grant] Conklin [Biology], [Rudolph] Ladenburg [Physics],
[Solomon] Lefschetz [Mathematics], [Henry Norris] Russell [Astronomy] and [Sir
Hugh] Taylor [Chemistry],” I read from the yellowed pages.110 Chapter 2 is of
interest:

2. Dean Eisenhart reported the desire of the Department of Mathematics to secure
Professor van der Waerden of Leipzig on the Mathematics funds for the first term of

104 Courant, letter of October 15, 1935, slightly modified later, on October 18, 1935. New York Univer-
sity Archives, Courant Papers.
105 About equivalent to a dean.
106 Equivalent to a part of a university, such as a school or a college.
107 Universitätsarchiv Leipzig, PA 70, p. 18.
108 See the facsimile of this letter in this chapter (p. 397).
109 Universitätsarchiv Leipzig, PA 70, p. 21.
110 Archive of the Department of Mathematics, Princeton University.
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B. L. van der Waerden’s claim of his Arianness

1933–34 at a salary of $3500. Dean Eisenhart reported that in this case also111 there
would be a delay on account of uncertain conditions in Germany.

Indeed, Princeton University offered Professor Van der Waerden a Visiting Pro-
fessorship for the September 15, 1933–February 15, 1934 semester. Having actively
sought and received approvals by Dekan Weickmann of the Leipzig’s Philosophical
Facultät, by von Seydewitz on behalf of the Minister of the Saxon Ministry of Peo-
ple’s Education (Ministerium für Volksbildung), and having assured a replacement

111 By this “also” Dean Eisenhart referred to Chapter 1 of these minutes, which is of an historical interest
too, and reads as follows: “Dean Eisenhart reported the inability of Professor Heisenberg to give a definite
answer to the offer of an 8 weeks engagement at a salary of $3000 at the present time owing to the uncer-
tain conditions in Germany. Professor Heisenberg suggested that he might be able to give a definite reply
at the end of the year. Dean Eisenhart has written to Heisenberg on the assumption that his letter meant
the end of the academic year and suggested that decision by July would be acceptable.” Chapter 7 of the
minutes is relevant too: “Professor Lefschetz raised the question of alternatives to Professor Heisenberg
in case it was found impossible to secure his services. After discussion, it was decided that the matter be
left in abeyance until further reports were available concerning the German situation.”
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(Privatdozent112 Dr. Friedrich Karl Schmidt from Erlangen University), Van der
Waerden suddenly changed his mind and on July 29, 1933 withdrew his approved
request for visiting Princeton University. This was the first major junction in the
life of Van der Waerden: had he come to Princeton, as a fine and young mathe-
matician, Van der Waerden would have most likely received further offers from
Princeton University or from the recently founded Institute for Advanced Study.
His life and the history of Algebraic Geometry would have been different. But Van
der Waerden chose to remain in the Nazi Germany, as did his friend the Nobel physi-
cist Werner Heisenberg, who did not accept Princeton (see a documentary proof in
Footnote 13), Harvard, Yale, and Columbia job offers during the early years of the
Third Reich.

Heisenberg’s nationalism and devotion to Germany as reasons for staying in the
Third Reich have been well established ( [Wal1], [Wal2], [Pow], etc.). Van der Waer-
den’s Princeton opportunity has never before been discussed in detail and backed by
documents. His surprising rejection of the Princeton offer begs a question: why did
he do it? Van der Waerden explains it in his August 12, 1933 letter to Oswald Veblen
of the Institute for Advanced Study:113

Like you, I am very sorry that we will not meet in Princeton in the next winter, but it
was really impossible for me to leave Leipzig at the time.

As we know from the Leipzig archive, all permissions had been granted. It is
therefore clear that Van der Waerden preferred courtesy to the truth in his letter to
Veblen. But what was the truth?

Van der Waerden asked his mentor Richard Courant to help him receive the
second Rockefeller (IEB) Fellowship, this time for work in algebraic geome-
try in Italy, primarily under Federigo Enriques and Francesco Severi in Rome.
On March 2 1933, Courant still at Göttingen, “informally and personally” asked
Dr. W. E. Tisdale, the Rockefeller Official in Paris, whether the support for Van der
Waerden was possible:114

Van der Waerden in spite of his considerable youth is one of the most outstanding
mathematicians currently in Europe. For the occupation of the Hilbert Chair he was
one of the 3 candidates of the Faculty. Now for some years van der Waerden has
successfully began to deal with the problems of Algebraic Geometry and it is his seri-
ous objective to really develop this area for Germany. In fact, the geometric-algebraic
tradition in Germany is almost extinct, while in Italy in the course of the past decades
it has blossomed.

Tisdale received the letter on March 6, 1933, and the same day replied to Courant,
asking to have Van der Waerden provide more details, which Van der Waerden did
in the March 12, 1933 two-page letter (received in Paris on March 31, 1933). This

112 Roughly equivalent to an associate professor, but without a guaranteed salary.
113 Library of Congress, Veblen Papers.
114 Rockefeller Archive Center (RAC); Collection IEB, Series 1, Sub-series 3, Box 61, Folder 1027.
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letter, written in English, provides an insight into Van der Waerden’s view of the
state of algebraic geometry.115

The algebraic geometry, originated in Germany by the work of Clebsch, Noether and
others, has been continued during the last 30 years nearly exclusively by Italian math-
ematicians: Enriques, Castelnuovo, Severi, and others. They developed methods and
theorems, which are of extremely high interest both for algebra and geometry, but
which are still awaiting exact algebraic foundation: The contact between Italian geom-
etry and German algebra is missing. I think, this is a typical case in which your foun-
dation can help. I know the algebraic methods which can serve as a base for algebraic
geometry very well, perhaps best of all German mathematicians.

Thus, Van der Waerden considered himself to be the best German mathemati-
cian for the job of putting algebraic geometry on the foundation of abstract algebra.
Moreover, for the first time in written records found by me—Van der Waerden cast
himself here as a German mathematician.

For his visit Van der Waerden requested the winter semester of 1933–1934:

. . . it would be desirable for me to stay half a year in Italy, and more especially in Rome
with Prof. Severi and Prof. Enriques.. . . A winter semester should be preferable, as I
can then stay half a year in full term in Italy, and need a replacement for teaching in my
place only during the 4 months of a winter semester. Perhaps the replacement could be
paid from your stipend, whereas I could live on my salary, if the Saxon Government
is willing to consent in this. . . I have acquired a sufficient knowledge of the Italian
language.

A successful Rockefeller (IEB) fellow first time around, Van der Waerden surely
expected—and deservedly so—an easy approval of his second fellowship. So, did
Van der Waerden simply choose Rome over Princeton? Indeed, I found proof of
it in his own words—even before he jumped through all the Leipzig bureaucratic
hoops—in a (undated, but definitely written in May or else June of 1933) letter to
Richard Courant:116

I still thank you many times for your efforts at Rockefeller. I only got a reply from
Tisdale that now there are sufficient documents to discuss the case with his colleagues
in Paris. . .

I have an offer from Princeton University, with a stipend, to spend the coming
winter semester (Sept-Jan.) there. This offer came already in the beginning of April.
But it does not tempt me as much as the Rome trip; I also do not know whether the
regime will allow this much of a leave of absence. . .

As we know, at some point—more precisely in late July 1933—Van der Waerden
learned that “the regime will allow this much of a leave of absence.” He may have
even then, in July 1933, hoped to get the Rockefeller money for a half a year in
Rome. Is this why Van der Waerden cancelled the approved by all sides visit to
Princeton? Perhaps, but there could have been another important reason for not

115 Ibid.
116 New York University Archive, Courant Papers.
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going to Princeton or to Rome: Van der Waerden did not really wish to leave
Germany for the first winter of the Third Reich:117

I cannot judge yet whether it is not cleverer to spend this winter in Leipzig.

What was so clever about staying in Germany during the winter of 1933–1934?
We will never know for sure, but a plausible question is in order: Did Van der
Waerden not wish to raise a suspicion of the brand new Nazi regime? Now that
Van der Waerden was not going to go to Princeton anyway, it was easy for him to
be generous and conscientious:118

I believe I will suggest to the Americans that this time they could spend their money
better than to get me out because I still have a position that I can keep.

It appears likely that the Rockefeller people, once they learned of the Princeton
offer to Van der Waerden, chose to use their funds to support those mathematicians
who depended solely upon the Rockefeller money, and thus decided not to fund Van
der Waerden’s second fellowship. According to the leading researcher of mathemat-
ics support in the Rockefeller Archive Center and the author of a monograph on the
subject [Sie] Reinhardt Siegmundt-Schultze, the Rockefeller Center has no approval
documents, which implies that Van der Waerden’s request was not funded. In fact,
Tisdale wrote in his diary on March 29, 1933:119

Van der Waerden, past fellow now at Leipzig is excellent. As a matter of fact Princeton
wants to get him in the faculty to replace shifts due to Flexner’s activity [i.e., the
creation of the Institute for Advanced Study]. They will probably ask him to come for
a semester in which they could have a mutual exchange of view.

Yes, the Princeton position would have likely become permanent for Van der
Waerden. It seems clear that Princeton mathematicians were unhappy about Van der
Waerden’s “clever” choice to stay in the Nazi Germany when they offered him a
great opportunity to get out. As we will see later, they remembered this rejection
after the war, when Van der Waerden was willing—moreover, eager—to come to
Princeton from the war-devastated Netherlands.

Alas, we ought to roll back to the Nazi Germany, year 1934. As was expected of
him, Van der Waerden signed and dated his oath to Hitler on November 1, 1934:120

I affirm that I have taken the following oath today:
“I swear: I will be faithful and obedient to the Führer of the German Reich and

People, Adolf Hitler, I will obey the laws and fulfill my official duties conscientiously,
so help me God.”

May 1935 started with the Ministry dismissing five Jewish professors from the
University of Leipzig – Doctor. of Medicine Bettmann, and four Philosophical Fac-

117 Ibid.
118 Ibid.
119 Rockefeller Archive Center, Tisdale Log 7 (1933), p. 27.
120 Universitätsarchiv Leipzig, PA 70, p. 33 (see facsimile on p. 401).
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B. L. van der Waerden’s oath to Hitler

ultät professors: Wach, Landsberger, Levi, and Weigert, all veterans of the World
War I, and as such exempted from the dismissal under the April 7, 1933 law. On
Friday, May 2, 1935, Leipzig’s Rektor Krueger discussed these firings with the
Staatssekretär Theodor Vahlen (coincidentally a mathematician himself), who was
in charge of the Third Reich’s university appointments in the Reichserziehungsmin-
isterium and reported directly to the Reichsminister of Education Bernhard Rust.

The Rektor announced these firings on Wednesday, May 8, 1935 in the after-
noon, at the Faculty meeting of the Philosophical Facultät. He merely wanted to
test the faculty’s sentiments, and not have a full-blown discussion. But three profes-
sors questioned the legality of the firings and spoke strongly in support of the fired
colleagues: the physicists Werner Heisenberg121 and Friedrich Hund,122 and Bartel
L. van der Waerden.

Upon the urgent demand (“tomorrow by 1 PM”) by the Saxon Ministry of People’s
Education for the “precise” text, the recording secretary Hch. Junker reconstructed the
meeting’s stenography on May 21, 1935 based on the notes he took during the meeting.
This surviving stenography allows us to “hear” the voices of the participants:123

Dekan: The dismissals were done “in the interest of the Service” (“im Interesse des
Dienstes”). It is not our responsibility to go further into that.

Heisenberg: This action has caused dismay among many of us because they [dismissed
professors] felt that it did not satisfy the meaning of the law. That is: combatants belong
to the people! It is our duty to help them in every respect especially because their

121 Werner Heisenberg (1901–1976); Nobel Prize “for the creation of quantum mechanics. . .”, 1932;
Max Planck Medal, 1933.
122 Friedrich Hund (1896–1997); Max Planck Medal, 1943.
123 Universitätsarchiv Leipzig, PA 70, pp. 36–40.
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students already stood up for them. It is necessary for the faculty to say that it is about
the people who have put their life at risk for us.

Golf:124 These are concerns that are justified. But please do not continue the discussion,
and do not ask questions. The report has been sent to Dresden now. The reply will
come. The Dean travels to Dresden tomorrow. Any further discussion today is therefore
superfluous. We hope that we will be informed about the reply.

Hund: I believe that I cannot refrain from expressing the sentiment among a few col-
leagues. If these actions become a fact that would mean that a meaning of the exemp-
tion in the law, that men who have fought on the frontlines could not be expelled,
would be violated. That would be a serious disappointment in the Government. Many
of us, who have not been to the frontlines, including myself, would have to be ashamed
before these men.

v.d.Waerden: It would be useful if a unanimous decision could be reached regarding
the rights of the combatants and the meaning of the law, which has obviously been
disregarded.

Dekan: I may remark that I allow this discussion only so that I can report in Dresden
about the sentiment on the Facultät’s commission (Facultätsausschuss).

Golf: I feel satisfied with what the Rektor told us. But I want to advise Professor
van der Waerden to be more cautious. He has said: a paragraph of the law has been
violated. He obviously did not keep in mind that this amounts to saying the ReiStatth.
[Reichsstatthalter of Saxony] has violated the law. We don’t know his reasons and it
is not up to us to make a judgment. So, please, be more careful, be more cautious with
your comments.

v.d.Waerden: (in half-voice across the table to Golf): Thank you!

Golf: (across the table, loudly): The matter is thus closed!125

Van der Waerden, of course, knew that Germany lived not by the law but by the
latest word of the Nazi Government. However, the law as it existed since April 7,
1933, provided for an exception for veterans of W.W.I, and Van der Waerden used a
violation of this law as the ground for his objection. No matter, a public protest was a
brave act – especially considering his foreign (Dutch) citizenship – although his oath
of loyalty to Hitler was of help, as was of help the fact that Van der Waerden was not
alone but a part of a group of three protesters. The stenography of the meeting leaves
an impression that Heisenberg, Hund, and Van der Waerden were “co-conspirators,”
who discussed politics between themselves, even though Camilla van der Waerden,
in presence of Prof. Van der Waerden, denied it in 1993: “with Heisenberg and Hund

124 Professor of Agriculture Arthur Golf (1877–1941), Rektor of Leipzig University (October 1933–
March 1935, and again October 1936–March 1937), member of NSDAP (Nationalsozialistische Deutsche
Arbeiterpartei, known as the Nazi Party) since 1932, the author of Nationalsozialismus und Universität.
Rektoratsrede (Leipzig, 1933).
125 In [Dol2] the author writes, clearly hinting at this 1935 episode, as follows: “Van der Waerden’s
personal file, kept in the archives of the University of Leipzig, shows, however, that he spoke out in
favor of young Jewish mathematicians.” This “young mathematicians” in reference to the aging by 1935
veterans of W.W.I shows that Prof. Dr. Dold-Samplonius has never read this document.
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we talked about science and not about politics” [Dol1]. In fact, Mr. Thomas Powers,
the author of the bestselling book The Heisenberg’s War [Pow], has kindly provided
me with the (largely unpublished) notes of the interview with Van der Waerden that
his fact finder Ms. Delia Meth-Cohn conducted in Zürich on February 21, 1989:

In Leipzig, Heisenberg, Friedrich Hund, Friedrich Carl Bonhoefer126 and v.d.W [Van
der Waerden] had formed a clique (alliance) to maintain the scientific level in math-
ematics and physics against the Nazis. They were all reliable anti-Nazis, met very
frequently and talked a lot about political questions.

Van der Waerden even cited one such particular political discussion in his private
April 28, 1948 letter to Heisenberg:

Do you remember what I said to you when you showed me the [1937] article in Das
Schwarze Corps? “That is a nice title, white Jew, you can be proud of that.” Instead of
being proud, the article annoyed you.127

As to Heisenberg, on July 21, 1937 he asked the SS Reichsführer Heinrich Himm-
ler personally for a protection from the attack by the inventors of the notorious
notion of “Deutsche Physik” Philipp Lenard and Johannes Stark that Van der Waer-
den referred to above. This protection was granted by Himmler, who on July 21,
1938 wrote to his Gestapo chief Reinhard Heydrich, “I believe that Heisenberg
is a decent person and that we cannot afford to lose or to silence this man, who
is still young and can still produce a rising generation in science.”128 The same
day Himmler promised protection in a letter to Heisenberg personally. This high
SS protection ended forever the days when Heisenberg could publicly criticize any
actions of the regime, even if he were so inclined, for Heisenberg became a highly
protected asset of this “gangster regime” (as Van der Waerden would call it in 1945
in a letter to Van der Corput). Heisenberg had numerous opportunities to emigrate, as
he received numerous offers before the war started, from Princeton, Harvard, Yale,
Columbia, etc. – but he chose to stay and to serve Germany – the Nazi Germany, as
was the case.

We roll back to the Third Reich, to the year 1935. Shortly after the Leipzig faculty
meeting, on September 15, 1935, the new definitions of “Jewishness” and its relation
to citizenship were approved by Hitler’s willing lawmakers in the so called “Nurem-
berg Laws.” It is surprising to me that 13 days after the new law provided a blanket
prohibition of Jewish civil service employment, Van der Waerden showed a certain
insensitivity towards a firing by Springer-Verlag of a Jew, the founder and editor of

126 Actually Karl Friedrich Bonhoeffer (1899–1957), professor of physical chemistry at the University
of Leipzig from 1934 till the end of W.W.II.
127 Private Papers of Werner Heisenberg, Max Plank Institute for Physics, Munich. Prof. Mark Walker
was first to discover and use Heisenberg—Van der Waerden correspondence in his Ph.D. thesis and
books. I am grateful to him for sharing it with me. I also thank Dr. Helmut Rechenberg and Werner
Heisenberg Archive he directs, for permitting to quote this correspondence.
128 [Gou], pp. 116–119.
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the celebrated Springer-Verlag’s journal Naturwissenschaften Arnold Berliner. On
September 28, 1935 Van der Waerden wrote to Richard Courant as follows:129

It does not seem that the Springer publishing house has been seriously attacked. The
demand to dismiss the Jews who were still in service was only due to intensify. I do
not understand why in foreign countries one gets so upset about the editorial change
in the Naturwissenschaften. Berliner130 was certainly 73 years old.

Courant had to explain to Van der Waerden what should have been obvious:131

You do not understand the excitement abroad about the removal of Berliner. Of course,
everything would have been in order if B. because of his age would have been retired
observing the proprieties corresponding to his position and merits. In fact, however,
the removal appears abroad, and it seems to be the case, as to be fired in a hurting
way due to pressure coming from outside. The great reputation of B. has given in this
context the reason for a heavy general criticism and for expression of doubt concerning
the possibilities of Springer to pursue an objective publishing leadership. I have, partly
from extremely influential people, received comments and further inquiries which I
cannot describe in a letter to Germany.

Acloudof theThirdReich’s suspicionhungoverVanderWaerden’sheadever since
his May 1935 public comments at the Faculty meeting. Van der Waerden would be
criticized for opposing Bieberbach, the founder of the notorious anti-Semitic notion of
Deutsche Mathematik,132 at the September 13, 1934 meeting of the D.M.V. (German
Mathematical Society), even though the majority of mathematicians present opposed
Bieberbach. Van der Waerden would have to defend himself from this accusation even
8 years later, in 1942 (I will present his defense later in this part). Some (but not all) of
Van der Waerden’s many travel requests would be denied. German representatives in
the Netherlands would be asked to check on the behavior of his father, Dr. Theodorus
van der Waerden, who was a member of the Second Chamber of the Dutch Parliament
(1918–1940) from the Socialist Democratic Workers Party (Sociaal-Democratische
Arbeiderspartij, or shortly SDAP). On May 9, 1939, the German Embassy in Haag
advised the Foreign Office in Berlin as follows:133

In response to the order of 11 April of this year

Re: Dr. of Engineering Theodorus van der Waerden
Born 21 August 1876 in Eindhoven

Dr. van der Waerden has been active in the Socialist Democratic movement since his
days as a student. At the moment he is a Socialist Democratic representative in the

129 New York University Archives, Courant Papers.
130 Arnold Berliner (1862–1942), the Editor and Founder of the journal Naturwissenschaften (Natural
Sciences), who committed suicide in 1942.
131 Courant, letter from October 15, 1935, slightly modified later, on October 18, 1935. New York Uni-
versity Archives, Courant Papers.
132 “German Mathematics” as opposed to “Jewish Mathematics.”
133 Universitätsarchiv Leipzig, PA 70, p. 51.
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Second Chamber, and he allegedly belongs to the more moderate wing. In his attitude
towards the New Germany, he probably does not differ from his Marxist comrades. He
has not become apparent in this respect in public, though.

(Signed) Zech

Based on this not-too-damaging report about his father, the Saxon Ministry of
People’s Education advised Van de Waerden’s Dekan at Leipzig as follows on
August 23, 1939:134

Confidential!

Herr Reich’s Minister of Education has sent me the attached report from the German
Embassy in Haag about the father of Professor van der Waerden and remarked that
a successful continuation of his teaching activity at Leipzig University requires of
Professor van der Waerden, who has kept his Dutch citizenship, a loyal attitude towards
the National Socialist Germany and its institutions and political restraint.
If you learn certain facts, which prove that Professor van der Waerden does not comply
with this expectation, I ask for a report.

Ordered by
(Signed) Sudentkowski

Van der Waerden clearly saw the Nazi regime for what it was. On August 10,
1935135 he wrote from his parents’ house in Laren, The Netherlands, to Richard
Courant, who was already in New York:

We are here in Holland for two months and rest up our souls from the constant tensions,
hostilities, orders and paperwork. We do not have yet the successor to Lichtenstein;
instead Ministries examine who has not yet been completely switched over [to the
National Socialism], who is a friend of Jews, who has a Jewish wife, etc., as long as
they themselves are not torn apart by their fight for power.

Yet, Van der Waerden chose not to remain in the Netherlands during this and
several other visits (in 1933, 1935, 1938, 1939, 1940, and 1942), including those
visits when he stayed in the Netherlands with his wife and children (i.e., at least in
1935 and 1939), and not to go to the United States, as we saw above. He preferred
to live in the Nazi Germany. This choice appears so contradictory that it begs a
question: why did Van der Waerden prefer Germany? I will attempt to answer this
most important question in the course of this investigation.

Van der Waerden was no rebel: he complied with the laws of the Third Reich and
with its persistent recommendations. I have copies of several official letters, which
Van der Waerden closed with the recommended “Heil Hitler!” P. Peters, a student at

134 Ibid., p.50.
135 New York University Archives, Courant Papers.
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Amsterdam, claimed in print136 on February 8, 1946 that “every single day he [Van der
Waerden] gave Heil Hitler salute in public at the start of his lectures to the enemy.”137

On the other hand, his conduct as an associate editor of the major German math-
ematical journal Mathematische Annalen was commendable. Since 1934 Van der
Waerden had been one of the associate editors of Mathematische Annalen, published
by Springer. In the late 1930s, the editorial room consisted of the editor-in-chief Erich
Hecke and two associate editors—Van der Waerden and Heinrich Behnke. Not only
was this a trio of fine mathematicians. It was also a group that tried to be fair toward
all authors, Jews included. Prof. Sanford Segal provided a wonderful description of
the dynamics of this editorial room [Seg, pp. 234–244], during 1939–1941, and of
the test they got from the publisher, Ferdinand Springer. Not wishing to jeopardize
the journal with the Nazi authorities by publishing Jewish authors, Springer informed
Hecke accordingly during their December 20, 1939 meeting. Hecke threatened to
resign rather than compromise the integrity of the editorial process. To Hecke’s satis-
faction, Van der Waerden threatened to resign as well. “Under no circumstances do I
want to form an obstacle if Springer wants to form National Socialist editorial board
for Annalen,” Van der Waerden wrote to Behnke on May 10, 1940 [Wae7]. In fact,
Hecke did resign (letter of resignation was dated June 24, 1940), allowing only for
his name to remain on the journal’s cover (as a symbol of Hilbert’s pedigree, whose
studentErichHeckewas), andonlyundera threatbyFerdinandSpringer tostoppaying
Blumenthal’s pension.138 Van der Waerden remained an editor, possibly convinced by
Behnke who believed that their resignation would open the door to worse people in
the editorial room. (Van der Waerden’s editorship of the Annalen lasted 35 years, from
1934 until 1968.)

37.3 Years of the German Occupation of the Netherlands:
1940–1945

What I should explain to the Dutch people is, however, not
my actions before 1940, but those after the Netherlands had
been attacked by Germany. . .I have never given a class or
worked on things that could be used for military purposes.

136 Propria Cures, a weekly of the students of the University of Amsterdam, February 8, 1946. More
about this in the next Chapter.
137 I do not know, of course, how Mr(s) P. Peters got to know this, and the degree to which we can rely
on this report. But Peters replied to Prof. Van der Waerden’s February 1, 1946 letter, published in Propria
Cures, and had Van der Waerden disagreed, he could have published a rebuttal, which he did not do.
138 Ludwig Otto Blumenthal (1876–1944), the first research student of David Hilbert, was the Editor
of Mathematicsche Annalen. As a Jew, he had to step down from his editorship in 1938, and in 1939
emigrate from Germany to the Netherlands. His pension, paid by Springer, was the sole source of existence
for his sister, who remained in Germany. In 1943 Otto Blumenthal and his wife Mali were sent to the
concentration camp at Westerbork where Mali Blumenthal died. Otto Blumenthal died in Theresienstadt
on November 12, 1944.
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In 1943 the Faculty of Physics and Mathematics at Utrecht
asked me whether I would accept an appointment as a
Professor there. I asked them to postpone the matter
if possible until after the war, because I did not want
to be appointed by the Van Dam139 department.

– Van der Waerden, Defense, July 20, 1945140

As a Ph. D. 1968 under Van der Waerden, Prof. Dr. Günther Frei writes with
authority of an expert and with an understandable admiration for his teacher. The
trouble is he does so without much historical research. For example, he perpetuates
the myth [Fre1] that “Baudet”—and Baudet alone—authored the conjecture Van der
Waerden proved in [Wae2]. This is why I read with caution his passionate words in
the 1998 eulogy [Fre2]:

Before and during the war van der Waerden lived in Leipzig as a foreigner, who had
always refused to surrender his Dutch citizenship, which exposed him to many hostilities
from the Nazis. This could not however affect his morally upright bearing.

Unlike Frei, who apparently believes that history is beneath mathematics and needs
no proofs, I will present here documents that enable you to decide whether Van
der Waerden’s “morally upright bearing” was affected. Van der Waerden did retain
his Dutch citizenship – and this fact could be perceived as showing his distaste for
the Third Reich’s citizenship. However, the following episode allows an unexpected
insight and a different interpretation.

When Germany treacherously attacked the Netherlands on May 10, 1940 and con-
quered the country by May 15, 1940, the Dutch inside Germany were at first treated
as enemies. In fact, right on May 15, 1940, Van der Waerden was suspended by the
Rektor from teaching at Leipzig University:141

I already asked you yesterday over the phone to refrain from any teaching activity
until further notice. I herewith repeat this order in writing and ask you to discontinue
your administrative activity as Director of Mathematical Seminars and of Mathematical
Institute.

Meanwhile I have asked the Ministry for a decision whether in view of your being
an official and your oath to the Führer my order regarding your activity as a Professor
and Director of the Institute should stay.

Van der Waerden was very soon reinstated. His reaction to this brief suspension
allows us to better understand Van der Waerden’s views of Germany and the Nether-
lands. He understood that the suspension was likely to be short-lived, but that he could
be asked to accept the Third Reich’s citizenship. The day following the suspension,

139 Prof. Dr. Jan van Dam, Secretary-General of the Ministry of Education of the Netherlands (Opvoeding,
Wetenschap en Cultuurbescherming) during the war.
140 Rijksarchief in Noord-Holland (RANH), Papers of Hans Freudenthal (1905–1990), mathematician,
1906–1990, inv. nr. 89.
141 Universitätsarchiv Leipzig, PA 70, p. 55.
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B. L. van der Waerden, c. early 1940s. Courtesy of Leipzig University

on May 16, 1940, Van der Waerden wrote [Wae8] to a much admired mathematician
and trusted friend, Erich Hecke:142

For the time being I am not allowed to teach courses. But the Rektor has already written
to Berlin and asked for authorization to allow me to carry on my office. The Dekan
predicts that this would be smoothly approved; maybe I would be asked to become a
German citizen. You will understand that I would be uncomfortable with that at this
time. In principle I have no objections against German citizenship, but at this moment
when Germany has occupied my homeland I really do not want to abandon my neutrality
and take the German side.

How can one explain Van der Waerden’s “neutrality” when Germany brutally
invaded his homeland? Could it be that Van der Waerden believed he belonged to
German culture in general, and to German science and mathematics in particular? If
so, this would also explain why Van der Waerden did not accept the offer to leave
Germany that he received in the middle of World War II.

In the previous section, we “attended” the May-1935 faculty meeting at Leipzig,
where Van der Waerden bravely criticized the Saxon Minister for violating the law and
firing four Jewish professors. Of course, the Minister wanted to retaliate, and Van der
Waerden was accused of anti-Nazi conduct at the 1934 D.M.V. (German Mathematical
Society) meeting at Bad Pyrmont that took place nearly a year earlier. Amazingly even
for the massive Nazi bureaucracy, 8 years later this case was still open, and Van der

142 Archive of Mathematische Annalen’s Editor Erich Hecke; Prof. Dr. Holger P. Petersson private
collection.
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Waerden still had to defend himself for his 1934 conduct. On June 13, 1942 Van der
Waerden explained what had happened in 1934 in a letter “to Dozentenschaftleiter
Prof. Dr. M. Clara, with copy to the Rektor and the Dekan.” Let us listen:143

In defense against an accusation directed against me I report about the events at the
annual meeting of the D.M.V. in Pyrmont on Sep 13, 1934.

The Danish mathematician Harald Bohr sharply attacked the German mathematician
Ludwig Bieberbach in a newspaper article.144 Mr. Bieberbach defended himself against
this attack and has published his reply in the Annual Report of the D.M.V. vol 44.
In this reply, Bohr was personally insulted and labeled “parasite [schaedling] of all
international cooperation.” The publication happened against the stated will of the both
co-editors of the Annual Report, Hasse and Knopp. For that reason, Mr. Bieberbach was
held responsible during the Annual Meeting. The publication was sharply criticized by
me and many others. All of us regarded it as harmful to the reputation of the German
Science [die deutsche Wissenschaft]145 abroad. A couple of good Germans and National
Socialists sided with me, among them Mr.’s Hasse and Sperner, now treasurer of the
D.M.V. and editor of the Annual Report. Finally, the assembly approved by a large
majority a motion critical of Mr. Bieberbach’s action, and Mr. Bieberbach has stepped
down from his office of the Secretary of D.M.V.

This was an accurate description of the 1934 meeting. However, Van der Waerden
continued with words that would contradict his postwar claims of being “a strong
anti-Nazi”:

I firmly declare that I only had the interest and the reputation of the German Science
[die deutsche Wissenschaft]146 in mind. By no means did I comment [stellung nehmen]
against National Socialist principles or actions. The question of race in mathematics
and Mr. Bieberbach’s speech about it, which had formed the origin of Bohr’s attack, had
not been discussed during the meeting in question, just the form of the Bieberbach’s
personal counterattack and its publication in the Annual Report of D.M.V.

You may recall Johan A. Barrau, who arranged for Van der Waerden to succeed
him at Groningen in 1928, when Barrau moved to a chair at Utrecht (Chapter 36).
As his retirement at 70 was approaching, Barrau envisioned Van der Waerden as his
successor again, this time at Utrecht. On December 16, 1942 he wrote to Van der
Waerden about it, and asked for a clear answer:147

Dear Colleague,
At the end of the current semester, in Sept. 1943, it is my turn to resign and to be replaced.
The Faculteit choice of the successor is dependent on knowing with certainty whether

143 Universitätsarchiv Leipzig, PA 70, p. 59.
144 During 1933–1934 the German mathematician Ludwig Bieberbach, who later founded the movement
and the journal of the same name Deutsche mathematik, started to spread his race-based anti-Semitic view
of mathematics. The Danish mathematician Harald Bohr published a stern rebuttal of Bieberbach prior
to the Bad Pyrmont meeting of D.M.V.
145 The term die deutsche Wissenschaft had race-based anti-Semitic connotation.
146 See Footnote 145.
147 Utrecht University, Archive of the Faculty of Mathematics, Correspondence, 1942.
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you would be willing to return to the Netherlands. We are asking you politely to give
us certainty. If you are not at all inclined to do that, then it is easy for you to inform me
as soon as possible. However, if you want to think about it, then please tell me that too,
and we will then be waiting for your decision.

On December 28, 1942, Van der Waerden replied by postcard, stamped twice on
each side with “Geprüft. Oberkommando der Wehrmacht” [Examined. Supreme com-
mand of the Armed Forces] in a round seal:148

Thank you very much for your letter of December 16, 1942. With the reference to your
last sentence, I want to keep this matter in mind, it is very important to me. I will write
to you in early January.

Promptly on January 4, 1943, Van der Waerden elaborated, but refused to give a
clear answer:149

I feel honored by your request. I am pleased with it. I am not rejecting the idea to return
to Holland, on the contrary, I have always considered this possibility with respect to my
plans for the future.

That possibility has merits. I am sorry I cannot give you the certainty that you are
asking me. Whether I will accept a position or not is dependent upon circumstances, and
I can only judge them when the appointment is actually there. A lot depends how the
circumstances will be at that moment at the University of Leipzig, and I cannot judge
that right now and I will not be able to judge that in two weeks either.

I would very much like you to keep me informed about this case in the future.

On the same day, January 4, 1943, Van der Waerden promptly met with his Leipzig
University bosses and put it in writing on January 5, 1943:150

To the Rektor of the University via the Dekan [Heinz] of the Philosophy Facultät.

Magnificence!

The Facultät of Natural Philosophy of the Utrecht University (Holland) has asked me
whether I would possibly be willing to accept the Ordinarius position in mathematics
when it becomes vacant in September 1943. As I have already told you orally yesterday,
this inquiry is tantamount to an offer since negotiations about offers are unusual in the
Netherlands. I have informed the Utrecht Facultät that I cannot yet decide whether or
not I will accept the appointment by the [Dutch] Ministry. I ask you to inform the Saxon
Ministry of People’s Education of this development.

Heil Hitler!

[signed] B.L.v.d.Waerden

Three days later, Dekan Heinz added his own text below Van der Waerden’s:

148 Ibid.
149 Utrecht University, Archive of the Faculty of Mathematics, Correspondence, 1943.
150 Universitätsarchiv Leipzig, PA 70, p. 66 [the document is mistakenly dated 1942 by van der Waerden].
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Forwarded to His Magnifizence Herr Rektor of the University of Leipzig for his infor-
mation.

Heil Hitler!

[signed] Heinz

d.Z.Dekan

On July 27, 1943, the Utrecht’s Faculteit of Mathematics and Physics officially
proposed to make Van der Waerden their first choice and informed the latter of this
decision:151

Faculteit of mathematics and physics is honored to let you know that Faculteit is propos-
ing to put you in the first place for the vacancy that is caused by the retirement of
prof. dr. J. A. Barrau as professor in synthetic and analytical, descriptive and differ-
ential geometry. We would like to know if you are willing to accept the eventual posi-
tion in Utrecht.

Chair and Secretary of the Faculteit

Even though Van der Waerden knew and informed his Leipzig bosses in early
January 1943 that “this inquiry is tantamount to an offer since negotiations about
offers are unusual in the Netherlands,” he again, even on Sept 19, 1943, avoided giving
a clear answer to Utrecht:152

I am very pleased that the Faculteit has the intention to put me first on the list for the
Barrau opening. The possibility to return to my country is attractive to me, but I am sorry
that in current circumstances of the war I cannot give you certainty that I will accept the
appointment.

Finally, on January 18, 1944, the Secretary-General of the Ministry of Education
of the Netherlands (Opvoeding, Wetenschap en Cultuurbescherming) Prof. dr. Jan van
Dam asked Van der Waerden for a definitive answer:153

The presiding [forsitzende] Kurator of the University of Utrecht suggested to me to
appoint you as a Professor of synthetic, analytical, descriptive and differential geometry
and to fill the position that was vacated by Prof. J. A. Barrau’s retirement. In fact,
Professor Barrau has recently turned 70. This nomination is in accordance with the
recommendation of the Faculty of mathematics and physics.

Since it is very important to me that the vacant position be filled as soon as possible,
I would like to ask you to let me know whether you wish to be considered for this
appointment.

The Secretary General of the Ministry for Education, Science and Administration of
Culture.

[Signed] J van Dam

151 Utrecht University, Archive of the Faculty of Mathematics, Correspondence, 1943.
152 Ibid.
153 Universitätsarchiv Leipzig, PA 70, p. 69.
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At this point, Van der Waerden pleased his Leipzig bosses with his desire to remain
in Germany for the duration of the war, as he did not want “to become a deserter.” The
Dekan informed the Rektor, who in turn reported to the Ministry:154

25 February 1944
Dekan of the Philosophical Facultät of Leipzig University
To His Magnificence Herr Rektor of the University

ThecolleaguevanderWaerden informedmeaboutanoffer tohimfromtheUniversity
of Utrecht. During my discussion with him he expressed his intention to stay in Leipzig
for the duration of the war. I feel satisfied with his attitude.

Heil Hitler!
[signed] Heinz

[BACK SIDE:]

Rektor Leipzig, 1 March 1944
of Leipzig University Beethovenstrasse 6 I. Mü

Nr. A: 73

To the Reichsstatthalter of Saxony, Ministry for People’s Education,
Dresden – N 6

The Ordinarius of mathematics Professor Dr. van der Waerden has informed me of
an offer to him from the University of Utrecht and he has expressed that he wants to
stay in Leipzig during the war since he does not want to become a deserter. I welcome
this decision but—without having addressed the official side of the matter—for general
reasons I would deem it worth considering to enable Prof. van der Waerden to move to
a different university later.

Taken into consideration Professor van der Waerden’s behavior in connection with
the terror attack on Dec 4, 1943, which I got to know from the Dekan of the Philosophical
Facultät, Math-Scientific Division, I would be grateful if Prof. van der Waerden were
invited to the Ministry to discuss the job offer which he has received.

[Signature] Wilmanns

Thus, the Third Reich’s education executives were assured by Van der Waerden
of his loyalty to Germany (whether he really did not wish to be a “deserter” of the
Third Reich or was lying, we will never know). Only the Dutch Faculty at Utrecht
was kept in limbo, until Secretary-General of Education J. van Dam wrote to the
President-Kurator of Utrecht University on May 22, 1944:155

In agreement with your proposal concerning the filling of the vacancy in the synthetic,
analytical, descriptive and differential geometry, I have given your proposal to the Ger-
man authorities for their judgment. While at the same time I have written to Prof. dr.
Van der Waerden to ask him if he would be willing to accept this position.

From the German side I received some time ago the request to “let go of this idea”
[in German: “Abstand nehmen zu wollen”].

154 Universitätsarchiv Leipzig, PA 70, pp. 79–80 (in fact, 3 pages).
155 Utrecht University, Archive of the Faculty of Mathematics, Correspondence, 1944.
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Prof. Van der Waerden has written to me that at this time he does not have permission
from the German Ministry of Education to leave his position in Leipzig. From his letter,
I would draw a conclusion that he would be willing to come to Utrecht.

After more discussion with the German authorities here in this country, one has
told me that they indeed would not give permission for the departure of Prof. Van der
Waerden from Leipzig. They are not against him personally.

Under these circumstances, I ask you to think about in which manner we can provide
education on a temporary basis and to give me a proposal concerning this matter.

How does one interpret this document? On February 25, 1944 Van der Waerden
informed his German bosses, who in turn reported to the Ministry for People’s Edu-
cation of Saxony that Van der Waerden wanted to remain at Leipzig. It seems logical
that then, according to Van der Waerden’s wishes, the Saxon Ministry informed Van
Dam that they would not allow Van der Waerden to leave Leipzig. Separately, Van
der Waerden answered Van Dam’s January 18, 1944 letter by asserting his interest in
the Utrecht job, but claiming that he did not have the German permission to leave for
Utrecht. It is logical to conjecture that the latter Van der Waerden’s assertion was false.
Indeed, after the war, when Van der Waerden defended himself from the suspicions
of his collaboration with the Germans, he never once mentioned that the German
government did not allow him to accept the Utrecht job. Van der Waerden did not wish
to go to Utrecht, and blaming the Germans for it appeared to be a convenient excuse
for him at the time, in 1944.

Even much later, in 1993, Van der Waerden would recall the Utrecht story without
mentioning this alleged German prohibition of the Dutch employment [Dol1]:

I had an offer from Utrecht. During the war they had written asking if I wished to come
to Utrecht. I answered, “Not now, but after the war I shall come.”

What did Van der Waerden mean here by “after the war?” If this was his reply to the
original December 16, 1942 Utrecht offer, how could he have possibly known then
how and when the war would end? The first real predictor, the German loss in the
battle at Stalingrad was to come on February 2, 1943, and the D-day, June 6, 1944,
was much farther away.

Written right after his arrival in Amsterdam after the war, Van der Waerden’s expla-
nation on July 20, 1945 was more detailed, but again lacked the blame of the German
prohibition to leave his Leipzig’s job:156

In 1943 the Faculty of Physics and Mathematics at Utrecht asked me whether I would
accept anappointmentasaProfessor there. I asked themtopostpone thematter if possible
until after the war, because I did not want to be appointed by the [Secretary-General of
the Dutch Ministry of Education Jan] Van Dam department.

Did Van der Waerden really believe that an approval by the Secretary-General
of Education van Dam (who served the German occupiers) of his faculty-initiated
Utrecht appointment would stain his reputation more than spending the entire period
of the brutal German occupation of the Netherlands in the Third Reich? Is it possible

156 RANH, Papers of Hans Freudenthal, inv. nr. 89.
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that the real issue was “neutrality” again: going to Utrecht would have been perceived
as abandoning the “German side” and violating Van der Waerden’s “neutrality”?

One thing is clear: professorship at Utrecht appears to have been a fallback posi-
tion for Van der Waerden – in case of Germany’s defeat in the war. This conjecture
is confirmed by Constantin Carathéodory’s March 25, 1944 reply157 to an apparent
request for advice from Van der Waerden:

As concerning Utrecht, I very well understand your standpoint. But it is not yet the end
of all days, and it would be unfortunate if you would not be able to arrange for keeping
open for some time the possibility to move there.

In his March 14, 1944 letter Prof. Van der Waerden asked D.M.V.158 President
Wilhelm Süss whether he should accept the Utrecht’s offer. The Utrecht’s offer was
apparently used in this letter by Van der Waerden to obtain another position. What
Van der Waerden really longed for was a professorship at Göttingen. He asked Süss
to use the latter’s influence to help Van der Waerden obtain the position, and in par-
ticular to contact Helmut Hasse at Göttingen, whom Van der Waerden had already
written to earlier. In support of his request for a Göttingen job, Van der Waerden
enumerated – more openly than ever before – the evidence of his deep attachment to
Germany:159

I have spent my best energies for Germany which I have applied to The German Science
[die deutsche Wissenschaft]160. I have written practically all my works and books in
German language, I learned and also taught a major portion of my mathematics in
Germany; I have a German wife and my children have been raised as pure Germans.161

Quite expectedly, after the war Van der Waerden’s “German wife” would become
“Austrian” again. After the war, Van der Waerden would never again take pride in
raising his children as “pure Germans.” “Morally upright bearing,” Prof. Günter Frei
alleges? No Sir, in tyranny one can only leave, die, or compromise.

The Utrecht’s offer was apparently used by Van der Waerden to obtain a salary
raise as well. On July 6, 1944 he wrote the following rather angry words to the Saxon
Ministry of Education’s Ministerialdirector Dr. Schwender:162

My problem is as follows:
As it was conveyed to me with A : 18bSt 5 [letter reference number?] on May 12th,

the Reich’s Education Minister has said that the requested and again approved raise
of my teaching salary by the Saxon Ministry would not be addressed. A reason was

157 Carathéodory to Van der Waerden, letter in German of March 25, 1944; ETH-Bibliothek Zürich,
Wissenschaftshistorische Sammlungen HS 652:10611.
158 Deutsche Mathematiker-Fereinigung (German Mathematical Society).
159 See the facsimile of this passage on page 415.
160 The term “The German Science” (similarly to “The German Mathematics”, “The German Physics”)
may have had a different meaning here than would, say, “Science in Germany,” as it was used at the time
to refer to the particular Third Reich’s variety of race-based science.
161 ETH, Hs 652:12031.
162 ETH, Hs 652: 11835.
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B. L. van der Waerden’s “Germanness,” a facsimile

not given. I assume that the basis is in that the Reich’s Ministry does not appreciate
my work in Germany. Just a few months ago one of my colleagues by his own word
received a raise of his salary by 3,000 RM [Reich’s marks]. In view of the fact that my
mathematical colleagues also have higher salaries, I believe that this denial [in salary
raise] is a demotion. For me it is not only about the money but also about the recognition
of my work.

I am still dealing with the Dutch Ministry about my call to Utrecht. I have conveyed
to them that I will not come during the war, but that my final decision is dependent upon
success of my dealings in Dresden and Berlin.

I would therefore request you to convey to me what the reasons are in whatever form
would be appropriate for you.. . . Perhaps the reasons will reawaken the old accusations
which one had against me in Berlin.

Meanwhile Van der Waerden was, apparently, active in the affairs of his Leipzig
University. In the summer of 1944 when Leipzig University was filling a professorship
in physics, Van der Waerden offered an inclusion in the short list of candidates to the
closest personal and professional friend of Werner Heisenberg, Carl-Friedrich von
Weizsäcker, a professor at the University of Strasburg, who [Wal1, p. 108] was a
member of the Nationalsozialistischer Lehrbund (National Socialist Teacher League
of Germany). Van der Waerden did not know, of course, that together with Heisenberg,
Weizsäcker had been a key researcher in the “Uranverein” (“Uranium Club”) of the
“Heereswaffenamt” (The Army Weapons Bureau), a group that strived to create a
German atomic bomb and an atomic reactor.



416 VII Colored Integers

On July 24, 1944 Weizsäcker replied in the style reminiscent to that of Van der
Waerden’s letters to Utrecht, for he wanted Leipzig’s professorship to be his fallback
position:163

The decision is not very easy for me to take. I do have the wish to have an assistant of
my own; under this condition the University of Leipzig would attract me. But even then
I would stay here if the conditions remain as they are in Strasburg. But this is difficult
to foresee.

Before this Chapter can be concluded, I have got to mention the “Furniture and
Books Affair.” On December 4, 1943, Van der Waerden’s house was damaged by
the allied bombardments. On February 19, 1944 he asked for—and on 11 May
1944 received164—the Reichsminister for Science’s approval for travel to the Nether-
lands:165

To the Reichsminister for Science via Herr Rektor of the University of Leipzig
I ask for permission for a private trip to Holland in March 1944 to buy furniture and

scientific books.
I have lost all my furniture and books during the air raid on Leipzig on Dec 4, 1943,

and I have learned that in Holland there are still possibilities for replacements.

B.L.v.d. Waerden

How does one interpret this document? Is it possible that the occupied Dutch peo-
ple needed food more than books and furniture, and thus “in the Netherlands there
[were] still possibilities for replacements”? Did Professor Van der Waerden view the
Netherlands as just a source of supplies for himself? Or, as Prof. N. G. de Bruijn has
hypothesized in his June 1, 2004 e-mail to me [Bru9], did Van der Waerden, perhaps,
have other motives and used books and furniture as an excuse to go to the Netherlands?
But why would Van der Waerden seek the opportunity to go to the Netherlands, to
defect from Germany? This was unlikely, for if he went to the Netherlands at all, he
quickly returned back to Germany.

37.4 Epilogue: The War Ends

When D-Day came on June 6, 1944, the outcome of the war became clear. The end of
the war found the Van der Waerden family—Bartel, Camilla, and their three children
Helga, Ilse, and Hans—in the Austrian countryside at Tauplitz, near Graz, in the house
of his mother-in-law [Dol1]. Van der Waerden did not wish to return to Leipzig. He
and his family allowed the American liberators to transport them from Austria to the

163 ETH, unlabeled letter.
164 ETH, Hs 652:12289.
165 Universitätsarchiv Leipzig, PA 70, pp. 70–71, 76–78, 81–82.
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Netherlands, where Van der Waerden thought he still had that job offer, at Utrecht
University—after all, in the two and a half years of Utrecht’s courting him, he never
said “no” to them.

In the next Chapter, we will follow Professor B. L. van der Waerden to the
Netherlands.



38
In Search of Van der Waerden: The Postwar
Amsterdam, 1945166

It was not at all fitting for a Dutchman to make
mathematics in Germany flourish in those years
when Germany was preparing for war and was
throwing out the Jews everywhere.

– J. G. van der Corput, August 20, 1945167

It is my sincere desire to keep you for the Fatherland
and for higher education.

– J. G. van der Corput, August 28, 1945168

38.1 Breidablik

Dr. Theo van der Waerden169 was a Member of the Second Chamber of the Dutch
Parliament from SDAP (Sociaal-Democratische Arbeiderspartij) and a universally
beloved politician. When in the mid-1920s his and Dorothea’s three sons—Bart,
Coen, and Ben—left their Amsterdam house to live on their own, Theo built a
house in the Amsterdam’s suburb of Laren at Verlengde Engweg 10. The magnificent
house even had a name, proudly displayed right below the large bay window of the
second floor: Breidablik. Ben’s daughter Dorith explains [WaD3] that Breidablik
“means wide view and comes from the old Norwegian saga about the gods Wodan
and Donar.” Coen’s son Theo adds [WaT1]:

Breidablik means “with a wide view” (the view was beautiful) and figuratively: “people
with a broad view”.

166 This part II of the triptych first appeared in April 2004 [Soi21]; it covers only the second half of 1945,
but this is a very important time, well worth the effort. Part I (Chapter 37) was first published in July,
2004 [Soi20]; part III (Chapter 39) first appeared in the January-2005 issue of Geombinatorics [Soi24].
167 Van der Corput to Van der Waerden; ETH-Bibliothek Zürich, Wissenschaftshistorische Sammlungen,
ETH, Hs 652: 12161.
168 Van der Corput to van der Waerden; ETH, Hs 652: 12162.
169 See more about the Van der Waerden family in Chapter 36.

418 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 38, C© Alexander Soifer 2009
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Breidablik. Courtesy of Dorith van der Waerden

Dr. Theo van der Waerden succumbed to cancer on June 12, 1940 in Breidablik.
His wife Dorothea, depressed by the German occupation of the Netherlands, took
her own life on November 14, 1942. The magnificent house stood empty—or so
it appeared. In fact, Breidablik was used to save lives during the German occupa-
tion [WaT1]:

When grandmamma died in 1942, the house was rented to people. They have hidden
people sought by the Nazis.

Now that the war was over, occupation ended, and Breidablik stood empty
indeed, ready for its new tenants. Following the war’s last “three months, distant
from all culture and barbarism”170 in the Austrian Alps, the Van der Waerdens were
liberated by the American armed forces. Van der Waerden was not thrilled about the
hardships of his liberation, and he described it on July 1, 1945 in a letter to Otto
Neugebauer171 from the camp for displaced persons at the town of Sittard in the
southern most Dutch province of Limburg:172

170 Van der Waerden, July 1, 1945 letter to Otto Neugebauer; Library of Congress, Manuscript Division;
a copy sent to me without identification of its location within this vast archive – likely from the Veblen
Papers.
171 Otto E. Neugebauer (1899–1990), a historian of mathematics, an anti-Nazi, the founder of Zentral-
blatt für Mathematik (1931) and ofMathematical Reviews (1940).
172 Library of Congress, Manuscript Division, Washington, D.C.; no holding location has been provided
to me.
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When the Americans have liberated us, we were like cows pushed together in cattle
wagons and transported to Holland, my wife, 3 children and I. The transport lasted
16 days, it was horrible. The children were of course sick but then recovered here in
a camp.

Months later, in November 1945, Van der Waerden was still angry at the
Americans, whose “friendly” offer turned into a distasteful experience, as he wrote
to Richard Courant of New York:173

When the Americans came, and we were given a friendly offer to get a direct flight to
Holland, the misery began. Three weeks we spent in hard freight wagons [Güterwagen]
and in dirty unsanitary camps with poorly prepared and hard to digest food174

However, Van der Waerden knew, that by comparison with many other sur-
vivors, he did all right, or, perhaps, he did not wish to appear as a whiner to his
friend Courant, so he crossed out the above description and replaced it with the
softer words:

The repatriation was less than attractive. Three weeks in freight wagons and camps,
but of course one can survive that.

On July 1, 1945 Van der Waerden was a free man. He expected to get a ride from
the camp to Laren very soon, for in writing from the Sittard camp to his American
colleagues Lefschetz, Veblen, and Neugebauer on that day he gave the Breidablik
return address. Indeed Breidablik was ready to provide the roof over the heads of
Bartel and Camilla van der Waerden and their children Helga, Ilse, and Hans. In a
few days the Van der Waerdens made it to this magnificent house. Now they needed
to find bread for their table.

The Van der Waerdens had had it easier in Germany during the war than in the
occupied Dutch. After the 5 years of occupation and a devastating last winter, life
in the Netherlands immediately after the war was no bed of roses. Van der Waerden
assessed it so on July 1, 1945: “Holland is freed from oppression, but it is—like
Germany and Austria—in a desolate state. Food supply is sufficient, but all other
necessities of life are lacking. . .”175 The postwar life in the Netherlands must have
been even harsher on the Van der Waerdens, who arrived in the Netherlands with
practically nothing. Even half a year later they were so short on bare necessities
that Dr. Van der Waerden had to step on his (considerable) pride and ask Richard
Courant in New York for help:176

173 November 11, 1945 Van der Waerden’s letter to Richard Courant; ETH, Hs 652:10649 (unfinished
and unsent, 2 pages survive). The complete 3-page letter was sent on November 20, 1945. It is located in
New York University Archives, Courant Papers.
174 Here and throughout the book, strikethrough text represents words carefully crossed out and readable
in the original manuscript.
175 Van der Waerden, July 1, 1945 letter to Solomon Lefschetz; ETH, Hs 652:11346.
176 Van der Waerden, December 29, 1945 letter in English to Richard Courant; New York University
Archives, Courant Papers.
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I thank you very much for sending me the two volumes of Courant-Hilbert. Your
kindness gives me courage to utter another wish. We are so short of underwear and
warm cloths for the children. Helga is 15, Ilse 11, Hans 8 years old. My father’s house
is extremely cold. Perhaps your wife has got some wool or things the children don’t
wear any more? They can be as old and ugly as they may: my wife can change nearly
anything into anything. And further: Would it be possible to send a sheet (of bed)? We
have only 4 sheets for 5 beds, and it is quite impossible to get any here.

I hope that you and your wife will not be angry with me for asking so much. If it
is difficult for you, or if your people need the things more than I, please don’t send
anything.

38.2 New World or Old?

I do not mind his remaining a German Professor
until the end – I do mind his remaining a German
Professor at the beginning!

– Otto Neugebauer, August 15, 1945177

The reader may recall the 1933 invitation by Princeton University that Profes-
sor Van der Waerden received in April of 1933, shortly after Hitler’s ascent to
power (Chapter 37). Upon receiving all of the approvals, Van der Waerden suddenly
decided against going to Princeton at the last moment in late July 1933. After just
one week in the Netherlands, on July 1, 1945, he wrote from the Sittard camp to
the Princeton’s new mathematics chair Solomon Lefschetz.178 After the war, Van
der Waerden would have been given a hero welcome at Leipzig University – why
did he not return there? This question occupied me for many years, until I found
the answer in this letter, addressed to Lefschetz. Even Lefschetz never learned the
answer, for it was contained only in the copy Van der Waerden kept for himself in
which the answer was written and then crossed out! We read here—and nowhere
else—that Van der Waerden particularly did not wish to go back to Leipzig because
Leipzig was now in the Russian zone of occupation, and he had no desire to live
under the Russian rule. More generally, Van der Waerden did not wish to stay in
the Netherlands, Austria or Germany due to their “desolate state.” He believed he
could get a position in the Netherlands, likely referring to his old Utrecht offer, but
preferred to come to America:179

Peace at last, thank God! By the help of our mighty allies, Holland is freed from
oppression, but it is – like Germany and Austria – in a desolate state. Food supply

177 Letter to Heinz Hopf; Hopf Nachlass, ETH, Hs 621:1041.
178 Solomon Lefschetz (Moscow, 1884-Princeton, 1972), professor (1924–1953) and chair of mathemat-
ics department (1945–1953) at Princeton University. In 1945 he replaced the long term chair (1929–1945)
Luther Pfahler Eisenhart.
179 Letter written in English; ETH, Hs 652:11346.
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is sufficient, but all other necessities of life are lacking: not even railways are going.
Scientific work and international contact are practically impossible.

In March, my home in Leipzig having been destroyed by bombs, I could escape
with my family from the bomb hell to Austria. From there we have just been repa-
triated to Holland. Returning to Leipzig, which belongs now to the Russian zone of
occupation, seems impossible and, even if possible, not advisable. I can get a position
in Holland probably but Holland is in a heavy political and economical crisis, as I said
before. For all these reasons I should like to go temporarily or definitively to America.

In particular, Van der Waerden wanted to be invited to Princeton again:

Several years ago, you encouraged me to write to you if I wanted to be invited to
America. In the year 1939180 I was invited to come to Princeton as a guest for half a
year. Do you think that this invitation could be repeated? I should enjoy very much
getting into contact with the American mathematicians again, especially with those of
Princeton. I shall accept with joy any invitation of this kind. . . With best greetings to
Veblen,181 Neumann182 and the other Princetonians.

That same day, July 1, 1945, Van der Waerden wrote a nearly identical letter
to Oswald Veblen at the Institute for Advanced Study in Princeton.183 The only
difference was in the justification for wanting to come to America: to “a desolate
state” of Holland, Germany and Austria, Van der Waerden added a high praise of
mathematics in the U.S.:

I have been cut off from international mathematics, whose heart pulses in America, for
five years, and I want to regain contact as soon as possible.

The third July 1, 1945 letter Van der Waerden sent to Otto Neugebauer.184 On
August 20, 1945 Solomon Lefschetz replied:185

I was very sorry to hear about your losing your home in Leipzig and can well under-
stand your desire to come to the United States (who does not feel the same way in
Europe just now?). However, we are in a complete state of flux here and the time
does not seem very propitious for bringing in scientists from the outside, especially
professors in former German universities. I have transmitted copies of your letter to
some mathematicians that know you, in particular to the members of the Institute for
Advanced Study, for the pre-war invitation that you mention can only have come from
them. They have informed me that there is nothing available at the present time. One
of them did express the hope that you would accept the position at Utrecht since, no
doubt, you are very badly needed there. I confess that I agree a little bit with him.

180 True, but he was invited six years earlier, in 1933, see Chapter 37.
181 Oswald Veblen (1880–1960), professor at Princeton (1905–1932), the first professor at the Institute
for Advanced Study (1932–1950), instrumental in saving European scientists from Hitler and bringing
them to the U.S.
182 John von Neumann (Budapest, 1903-Washingron D.C., 1957), mathematician and physicist, one of
the great scientists of the twentieth century, professor at the Institute for Advance Study.
183 Letter written in English; ETH, Hs 652:12193.
184 Library of Congress, Manuscript Division, Washington, D.C.; no holding location has been provided
to me.
185 ETH, Hs 652:11347.
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Van der Waerden could not have found Lefschetz’s letter particularly encour-
aging. No doubt he sensed a thinly concealed irony behind Lefschetz’s rhetorical
question: “who does not feel the same way in Europe just now?” Lefschetz was
even more blunt when he acknowledged that the time was not “very propitious for
bringing in scientists from the outside, especially professors in former German uni-
versities.” Lefschetz seemed to be implying that Van der Waerden made a wrong
choice by staying in Germany, and that now had to pay the price for being on
the wrong side of the divide during the war. In Lefschetz’s “defense” one should
note that he treated harshly and sarcastically the vast majority of humans around
him. Even in Lefschetz’s 1973 eulogy [Hod] Sir William Hodge quoted Princeton
students’ song:

Here’s to Lefschetz (Solomon L.)
Who’s as argumentative as hell,
When he’s at last beneath the sod,
Then he’ll start to heckle God.

One must add that in his reply Prof. Lefschetz was factually wrong: not only did
the 1933 invitation come from Princeton University and not from the Institute, but
Lefschetz himself attended the meeting of the Princeton’s Research Committee that
decided to invite Prof. Van der Waerden (Chapter 37).

Moreover, Princeton did need an algebraist. Lefschetz simply had someone else
in mind, and was willing to charm him in. On Wednesday, October 17, 1945, he
wrote to the algebraist of his choice:186

Dear Artin,
Owing to recent losses in our department,187 to which now must be added Wedder-

burn’s188 retirement (soon to be official), I feel very strongly that we should add a major
scientist to our staff. You are the first person of whom I thought in this connection and,
if possible, I would just as soon not go further in my search. Your achievements as a
mathematician, together with your well-known sympathetic influence on the younger
men, do indeed make you the man of the hour.

Artin happily responded on October 21, 1945:189

186 Personnel File of Emil Artin, Princeton University.
187 Lefschetz likely refers here to the July 1, 1945 retirement of the long term professor, chair, and
dean of graduate school Luther Pfahler Eisenhart, and September 1945 departure of (associate) professor
Henri Frederic Bohnenblust for Indiana.
188 Joseph Henry Maclagan Wedderburn (February 2, 1882, Scotland – October 9, 1948, Princeton),
a Scottish born algebraist and Princeton professor. On the occasion of his retirement, on October 29,
1945 all members of Mathematics Department of Princeton signed the following resolution, drawn by
A. W. Tucker and A. Church: “RESOLVED that the Department of Mathematics record its appreciation
of the long and distinguished service of Professor J. H. M. Wedderburn as a member of the faculty of
Princeton University and its appreciation of the signal contribution he has made to the reputation of the
Department by his outstanding mathematical research and his unstinted efforts as editor of the Annals of
Mathematics. It is the hope of his colleagues that retirement will not bring these contributions to an end
but that he will continue to add to scientific life of the Department for many years to come.”
189 Personnel File of Emil Artin, Princeton University.
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Dear Lefschetz:
It is with very great joy that I received your letter and I feel deeply honored that

you are thinking of me. I would not be a mathematician if I would not feel greatly
interested and attracted by a chance to go to Princeton. Princeton is now after all the
center of all mathematics.190

As if especially for my narration, Artin then asked:

How did the case of van der Waerden go on after his letter?

This Artin’s question shows that Lefschetz circulated Van der Waerden’s July
1, 1945 letter asking for a Princeton job, likely together with Lefschetz’s negative
reply. On October 27, 1945, Lefschetz informed Artin that Van der Waerden had not
been invited to Princeton:191

Nothing has been done regarding van der Waerden—nothing, at least from this side.

Before replies from America could arrive, Dr. Van der Waerden wrote two letters
to his friend Heinz Hopf, a German mathematician, now a Swiss citizen, working
at the ETH in Zürich.192 I have been unable to locate these letters, but according to
Hopf’s August 3, 1945 reply,193 they were written on July 19 and 21, 1945. Hopf
praised Switzerland and its neutrality:194

Here is Switzerland one is naturally less fanatical, in my opinion, as a particularly
important and happy consequence of our neutrality. . .It goes well for my wife and
me. . .we are happy that we are Swiss.

It is plausible that this praise of the Swiss neutrality and Hopf’s happiness with
the Swiss citizenship may have planted in Van der Waerden an interest in living in
Switzerland. Hopf was unhappy that the Swiss considered—as they should have, in
my opinion—“Hitlerism” to be a part of the German culture:

I ask you not to misunderstand the above comment about neutrality, the open opinions
here are completely unified against Germany, the bitterness about the Nazis is gigantic,
but the boundaries between Hitlerism and the German culture are not always observed
here either.195

190 The Lefschetz—Artin correspondence was kept “entirely confidential,” as Lefschetz put it in his
October 17, 1945 letter. The Mathematics Department of Princeton was briefed on Artin’s acceptance
only at the March 22, 1946 faculty meeting, two days after Artin’s formal acceptance telegram.
191 Personnel File of Emil Artin, Princeton University.
192 Heinz Hopf (1894–1971), one of leading topologists, professor at ETH since 1931, from a Jewish
German family.
193 Letter to Van der Waerden, August 3, 1945, ETH, Hs 652:11129.
194 In view of revelations of recent years, the Swiss neutrality during the war has been questioned.
195 In my opinion, Nazism (to a great regret of so many) was a product and part of the German culture,
every bit as Marxism or music of Bach and Beethoven were. Of course, there is high culture and low
culture, but both of them are parts of culture in a broader sense of the word, and who can—or should—
split them apart?
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Nevertheless, Hopf was optimistic that these uncertain “boundaries” would not
affect the Swiss mathematicians’ perception of Van der Waerden:

The question is “How would Swiss mathematicians today personally view you?” –
I believe I can answer this way: Certainly almost all, perhaps, absolutely all, would
not only see in you an important intellectual, but those with real interest in you,
and who have known about you over the last few years across the borders, would
be clear that you have been no Nazi, and indeed that the Nazis could not stand you.
The Carathéodory’s situation over the last few years has been the same as yours, and
for his 70th birthday many Swiss mathematicians dedicated their works to him.

Hopf understood the liability of Van der Waerden’s spending the entire Nazi time
in Germany, including the 5 years of the Nazi occupation of the Netherlands, and
offered Van der Waerden a line of defense:

. . . one would probably have to argue this way: he worked as a professor in Germany
even during a period of abuse of his homeland by Germany because he believed that he
could somehow accomplish to save the culture in Europe this way, and consequently
he tried to save Germany in some way. I believe it would be very difficult to argue
against this. . .”

It is unclear whether Prof. Hopf sincerely believed that one could save the
German culture by serving and thus empowering the Nazi state. Van der Waerden
would indeed use this line of defense in the Netherlands, as we will see later, but not
altogether successfully. Hopf meanwhile admitted poor prospects of finding a job in
Switzerland:

. . . your finding a job here is a more problematic question. . .the possibilities of a posi-
tion in Switzerland at the moment are very minor, almost impossible.

And so Hopf suggested Van der Waerden to consider a job in Germany, that
advice Van der Waerden probably did not appreciate:

I believe that for someone who believes himself to be youthful, has a strong ability
to work and has energy, it could really be satisfying to work right now in Germany
in pure science. Perhaps, because the situation in Germany is now so miserable and
possibly without hope that the younger powers could more intensively work on pure
intellectual and cultural ideas, which they have not been able to do before, or even
anywhere else. . .

Hopf also advised exploring employment opportunities in the U.S.:

I would in this situation also write to America, perhaps to Weyl.196 (By the way, I wrote
to Neugebauer, a few days ago, right after Kloosterman’s visit, I wrote to him briefly
about you.).

Finally, Hopf scolded the Dutch for not immediately jumping on the opportunity
to hire Van der Waerden:

196 Hermann Klaus Hugo Weyl (1885–1955), professor at ETH (1913–1930), Göttingen (1930–1933)
and the Institute for Advanced Study (1933–1952).
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When the Dutch, whom you can approach with clean conscience and offer them your
services, do not want you, then in my opinion they hurt themselves, and that is their
business. I consider it certain that in a few years, when the waves have calmed down a
bit, somewhere in the world you will work again in the profession – assuming naturally
that you with your family can economically survive until then, which I am not sure about.

Van der Waerden would quote these lines to the Dutch almost immediately,
within 2 weeks. Four and a half months later, in his next letter of Dec 18, 1945,
Heinz Hopf explained his long silence by his inability to invite Van der Waerden
even for a short visit. What was the reason? The Swiss treasured their neutrality
more than Van der Waerden’s expertise:

All my attempts to invite you here for a few presentations ended up without success.
It was very strictly suggested to avoid right from the beginning any kind of conflicts
with friendly governments. I am not the only one here that regrets this.197

So, after all, there was a price for the Swiss neutrality: in 1945 Switzerland did
not allow even a brief visit to the former German Professor Van der Waerden. As we
will soon see (Chapter 39), the Swiss would drop this caution the very next year.

Some time in July–August, 1945 Hopf wrote about Van der Waerden’s plight to
the German historian of mathematics Otto Neugebauer, who now lived in the U.S.
and edited Mathematical Reviews that he created in 1940 after Springer-Verlag put
pressure on Neugebauer to Nazify Zentralblatt für Mathematik. On August 15, 1945
Neugebauer replied to Heinz Hopf in English as follows:

. . . I have heard directly from van der Waerden. I do not mind his remaining a German
Professor until the end – I do mind his remaining a German Professor at the beginning!
However, I feel very differently than the Lord and [thus] I do not intend to do anything
positive or negative.198

Meanwhile, Van der Waerden had heard neither from Hopf (since the early
August) nor from Neugebauer. Thus, on November 11, 1945, Van der Waerden
wrote to his early mentor and friend Richard Courant199 in New York about the
bombings of the late months of the war, his tough repatriation, and his new job
at the “Royal Dutch Oil.”200 On December 13, 1945 Courant, a refugee from the
Nazi Germany himself, sent a guarded reply. Before deciding whether to renew
their old friendship, Courant wanted to know why Van der Waerden chose to stay in
Germany:

I wish very much that there were an opportunity of talking to you personally and for
that matter to other old friends who have been in Germany during the war. Of course, so

197 ETH, Hs 652:11130.
198 Hopf Nachlass, ETH, Hs 621:1041.
199 Richard Courant (1888–1972), a Jewish German Émigré to the U.S., active in helping refugees from
the Nazis find jobs in the U.S., the founder of the Mathematics Institute at Göttingen and the Courant
Institute of Mathematical Sciences at the New York University.
200 ETH, Hs 652:10649.
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much has happened in the meantime that in many cases much will have to be explained
before one can resume where one left off. Your friends in America, for example, could
not understand why you as a Dutchman chose to stay with the Nazis.201

Moreover, Courant made his request for an explanation public: at the top of the
letter, I see a handwritten inscription:

cc. sent to: Reinhold Baer202, U. of Ill. Urbana Herman Weyl – Inst. for Advanced
Study Princeton Veblen

(Courant’s papers include both, Van der Waerden’s November 20, 1945 hand-
written letter and its typewritten copy, which suggests that Courant had it typed and
copies sent to the same addressees as his reply.) As Lefschetz before him, Courant
too apparently believed that Van der Waerden made the wrong choice. On December
20, 2004, I had an opportunity to ask Ernest Courant,203 the elder son of Richard
Courant and a prominent nuclear physicist himself, a natural question: “What did
your father think about Van der Waerden?” He replied as follows:

He [Richard Courant] considered him [Van der Waerden] a great mathematician, and
was a bit critical of him for being perhaps too comfortable in the Nazi Germany.

Thus, America and Switzerland had to wait. Beggars could not be choosers, and
so dr. Van der Waerden was now—finally—willing to seriously entertain a profes-
sorship in his “desolate” (his word) homeland.

38.3 Defense

Some of the stories are difficult to believe. Part of all
this is the way people always talk about their past.
The reasons they give for their behaviour in the past
may be just inventions, colored by how history took
its course.

– N. G. de Bruijn, June 1, 2004 [Bru9]

Van der Waerden expected that the Utrecht chair, first offered to him in December of
1942, was still waiting for him. He also did not mind a chair at Amsterdam. But fol-
lowing the liberation, the Militair Gezag (Military Authority) installed Commissie
van Herstel at each of the five Dutch universities, which gradually became known
as College van Herstel (Recovery Board, or Restoration Board), formed to advise

201 New York University Archives, Courant Papers.
202 Reinhold Baer (1902, Berlin-1979, Zurich), a famous group theorist, who was a professor at Univer-
sity of Illinois (1938–1956) and then at Frankfurt.
203 Ernest David Courant, born in 1920 in Germany, came to the U.S. in 1934 with his family; a nuclear
physicist, member of the National Academy of Sciences, distinguished scientist emeritus of Brookhaven
National Laboratory.
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the Military Authority on how to act against collaborators and other pro-German
professors and staff members, and when the university could be re-opened. It was
expected that all suspect staff would be removed in a few months time. However,
the removal took much longer.204

The Utrecht University’s College van Herstel en Zuivering (Board of Recovery
and Purification), as it was called there, was installed on 18 June 1945,205 while
the University of Amsterdam’s College van Herstel (Board of Recovery) came into
being on June 8th, 1945.206 At the time the University of Amsterdam belonged to
the City. Yet B. & W., the executive, consisting of the Burgemeester en Wethoud-
ers (mayor and aldermen), could not appoint professors; only the city council that
numbered 45 could appoint them. However, an appointment of a professor needed
a Royal assent. The Queen could never give her assent if the government did not
submit to her a request for assent. On the other hand, the government would not
submit a request for assent if there was even a slight chance that the Queen would
refuse it, as she had a few times during these postwar years.

Originally Dutch, Professor of the History of Mathematics at the Massachusetts
Institute of Technology Dirk J. Struik maintained close ties with the leading Dutch
colleagues, and based the following statement to me [Str] on a letter he had received
from Jan Schouten207 in 1945–1946:

Though he [Van der Waerden] stayed at the University of Leipzig during the Hitler
days, he was able to protect Jewish and left wing students.208 This was brought out
after the war when his behavior in Leipzig was scrutinized by a commission of his
peers in the Netherlands. He was entirely exonerated.

204 I am grateful to Dr. Peter J. Knegtmans, the University Historian at the University of Amsterdam,
for the information on Colleges van Herstel and the workings of the City of Amsterdam, contained in
his e-mails [Kne4] and [Kne5] to me. See more in his book [Kne2]. The Dutch postwar educational and
governmental systems were a “jungle”, and it was invaluable to have such a uniquely qualified guide!
205 It consisted of Jonkheer Mr. Dr L.H.N. Bosch ridder van Rosenthal, president (and also former pres-
ident, 1930–1940, until he was dismissed during the war by the German authorities); Dr. H.W. Stenvers;
Dr. A.J. Boekelman; and Miss Marie-Anne Tellegen as an extra member, who must have combined
this appointment with her job as director of the Queen’s Cabinet. The Utrecht College van Herstel en
Zuivering was converted into the (normal) College van Curatoren in June 1946.
206 It consisted of the neurologist Prof. C. T. van Valkenburg, who during the German occupation initi-
ated the resistance of general doctors and medical specialists; the architect Wieger Bruin who had been an
active member of the resistance movement among artists; and Gijs van Hall, a fundraiser and banker for
the resistance, who later became mayor of Amsterdam. It was to investigate staff against whom suspicion
had risen, but in fact it did so only in cases of doubt and then very superficially due to its acting at the
same time as the College van Curatoren. It was converted and extended into the College van Curatoren
on May 19, 1947.
207 Jan Arnoldus Schouten (1883–1971), professor of mathematics and mechanics at Delft (1914–1943),
and extraordinary professor (similar to associate professor) at Amsterdam (1948–1953).
208 As we have seen in Section 37, Van der Waerden spoke against firing of Leipzig’s Jewish professors
in 1935, and published papers of Jewish authors in the Annalen. I found no evidence of him “protect
Jewish and left wing students.”
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On April 12, 1995, I quoted this statement in my letter to Professor Van der
Waerden and asked him to describe for me in detail this “commission of his peers.”
On April 24, 1995, Van der Waerden mailed his reply [Wae25] (see the facsimile of
this letter on p. 429):

Before your letter came, I did not know that a commission was formed to investigate
my behaviour during the Nazi times.

However, I have established that the University of Amsterdam’s College van
Herstel (CvH) did investigate Van der Waerden, for the City executive, B. & W.,
wrote about Van der Waerden to a de-Nazification board, such as the CvH.209 More-
over, Waerden knew about the investigations: on July 20, 1945, just a few weeks
after he had returned to the Netherlands, he wrote in his own hand his “Defense”
and forwarded it to the Amsterdam’s College van Herstel, which was also submitted
to the Utrecht’s College van Herstel en Zuivering,.210 This was Van der Waerden’s
defense of his reasons for staying in the Nazi Germany, and his activities in the Third

Van der Waerden, April 24, 1995 letter to Alexander Soifer

209 Dr Knegtmans [Kne2] refers to the April 17, 1946 letter from B. & W. of Amsterdam to CvH, archief
Curatoren nr 369, which says that “the [Van der Waerden’s] appointment did not go through also because
the Minister had told the City Council beforehand that he would not ratify it.”
210 On August 14, 1945, the Faculty of Mathematics and Physics of Utrecht University forwarded this
document to de Commissie tot Herstel en Zuivering, when they recommended van der Waerden as their
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Reich. This is a very important testimony, that has never before discussed by histo-
rians. I am compelled to include the translation of this Dutch handwritten document
in its entirety (with my commentaries; see also its facsimile in this chapter):211

Defense

Since 1931 I have been a Professor at the University of Leipzig. The following
serves as an explanation as to why I stayed there until 1945:

1) From 1933 till 1940 I considered it to be my most important duty to help defend the
European culture, and most especially science, against the culture-destroying National
Socialism. That is why in 1933 I traveled to Berlin and Göttingen to protest the boycott
of Landau’s classes by Göttingen Nazi students. In 1934212 Heisenberg and I strongly
protested against the dismissal of 4 Jews in a faculty meeting at Leipzig. Because of that
I got a reprimand by the Saxon Government (Untschmann213) and an admonition that as
a foreigner I should not interfere in German politics. What my wife and I have personally
done to help Jewish friends with their emigration is not relevant here, but what is, is that
as [an] editor of the Math. Annalen I accepted until 1942 articles of Jews and “jüdische
Mischlinge”214, furthermore that in the Gelbe Sammlung [Yellow Series] of Springer
which I was partially responsible for, an important work by a Jewish author appeared
in 1937 (Courant-Hilbert, Methoden der Mathematischen Physik II), and that in 1941 a
non-Arian was promoted by me. In 1936,215 when my esteemed teacher Emmy Noether
died, I pointed out the great merits of this Jewish woman.

I could not have known in advance that all this would be like “punching a brickwall”
[vechten tegen de bierkaai] and that the Nazis would drag the entire German culture
with them into their destruction. I still hoped that the German people would finally
see reason and would put an end to the gangster-regime. Meanwhile my work was not
altogether for nothing because my students, such as [Herbert] Seifert, Hans Richter,
Wei-Liang Chow, Li En-Po, Wintgen, etc., whose dissertations were accepted in the
Math. Annalen, have done an excellent work at Leipzig. If I had not been in Germany,
these [students] would likely not have encountered the problems that I have given them.

Van der Waerden was meticulous in adhering to the facts of his activities under
the Third Reich. His record of noble and courageous behavior toward the Jews dur-
ing the Nazi years can withstand the most prejudiced scrutiny. However, Van der
Waerden was not telling the whole truth. Thus, he did not mention his statement
about being a “full-blooded Arian” (1933), his oath of allegiance to Hitler (1934), and
his use of the recommended “Heil Hitler” salute in lectures and letters (Chapter 37).

first choice for J. A. Barrau’s position. Utrecht University, Archive of the Faculty of Mathematics, Cor-
respondence, 1945.
211 Utrecht University, Archive of the Faculty of Mathematics, Correspondence, 1945. This was an
important document for Dr. Van der Waerden: even half a year later, on January 22, 1946, Van der
Waerden included a copy of “The Defense” in a letter to his friend Hans Freudenthal. Subsequently,
another copy of this document is held at RANH, Papers of Hans Freudenthal (1905–1990), mathemati-
cian, 1906–1990, inv. nr. 89.
212 True, but it took place in 1935, see Chapter 37.
213 This must be the last name of an official in the Saxon Government.
214 In this Dutch document, this Nazi term for people of Jewish and Arian mixed blood, appears in German
in quotation marks. The rough English translation is “Jewish miscegenants”.
215 True, but it took place in 1935.
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As Heinz Hopf advised, Van der Waerden justified his staying in the Nazi
Germany by stating that it was his “most important duty to help defend the European
culture, and most especially science, against the culture destroying National Social-
ism.” However, as is evident from Hopf’s description of the public opinion in
Switzerland, many of Van der Waerden’s contemporaries found it difficult to sep-
arate the “German culture” from “Hitlerism.” Given Van der Waerden’s scruples
regarding the “gangster-regime,” his fellow scientists—then and now—considered
his willingness to serve that regime naı̈ve at best and hypocritical at worst. Van
der Waerden continued his “Defense” with part 2, dedicated to the 5 years of the
German occupation of the Netherlands:

This all may serve for closer understanding of my attitude towards the Nazis. What I
should explain to the Dutch people is, however, not my actions before 1940, but those
after the Netherlands had been attacked by Germany.

2) From 1940 to 1945. After the breakout of the war with the Netherlands, I was
first locked up and then released on the condition that I do not leave Germany.216 So I
was practically in the same position as those who were forced laborers in Germany.

If I had given up my position, then I would have probably been forced to work in
an ammunitions factory.

To say that a university full professor was “in the same position as those who
were forced laborers in Germany,” was to make a dramatic exaggeration, and it
likely appeared as such to the Dutch who read the “Defense.”

I have never worked for Wehrmacht [the German Army], I have never given a class or
worked on things that could be used for military purposes.

This could be true, but Van der Waerden taught students, many of whom may have
served in Wehrmacht and some definitely “worked on things that could be used for
military purposes.”217 Besides, by working in the Nazi Germany’s Civil Service, Van
derWaerdencontributed towhat, after thewarhecalled“thegangster regime,”and lent
his credibility and his acclaim as a distinguished scientist to that of the Third Reich.

In 1943218 the Faculty of Physics and Mathematics at Utrecht asked me whether I
would accept an appointment as a Professor there. I asked them to postpone the matter
if possible until after the war, because I did not want to be appointed by the Van Dam219

department.

216 Leipzig professor Hans-Georg Gadamer, in a letter to Y. Dold-Samplonius [Dol1], claimed for him-
self “a little act of heroism” for getting an immediate help of police chief in Van der Waerden’s release.
Van der Waerden, however, seems to credit Nobel Physicist Werner Heisenberg with it. “I am still in your
debt: in the past when I was arrested, you helped me to something much greater, and that is freedom,” he
wrote to Heinsenberg on December 22, 1947 (see more on this correspondence in Chapter 39).
217 For example, J J O’Connor and E F Robertson write, “When war broke out [Van der
Waerden’s Ph D student] Seifert volunteered for war work with the Institut für Gasdynamik
which was a research centre attached to the German Air Force” (http://www-history.mcs.st-
andrews.ac.uk/Mathematicians/Seifert.html).
218 Actually, in December 1942.
219 Prof. Dr. Jan van Dam, Secretary-General of the Ministry of Education (Opvoeding, Wetenschap en
Cultuurbescherming)
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Van der Waerden, “Defense”



434 VII Colored Integers

For the discussion of the Utrecht offer, I refer you to the previous chapter. It suf-
fices to say here that coming home to Utrecht on the request of the Utrecht Faculty,
even with the approval by the Nazi-collaborating Minister Jan van Dam, would have
been much better for Van der Waerden’s reputation in his homeland and the rest of
the postwar world than continuing to serve the Third Reich to the end.

I do not need to add to this that I have never been a member of any NS [National
Socialist] organization or have sympathized with them, because that is self-evident for
a decent thinking human being. It was commonly known in Germany that I was not a
Nazi and because of that the government distrusted me and did not give me permission
to go to the Volta Congress in Rome in 1939, and to have lectures in Hungary or to
French prisoners of war, or to partake in the convention of mathematicians in Rome.

However, the Nazi government did allow Professor Van der Waerden to travel in
and out of Germany: for example, to the Netherlands in 1933, 1935, 1938, 1939,
1940, 1942, and 1944.

The Faculty at Munich suggested me as a successor to Carathéodory, but the party
authorities declared me “untragbar” [intolerable], and the appointment did not happen.

Also my wife, who is Austrian, has been strongly opposed the Nazi regime from
the very beginning.
Laren, N-H [North-Holland], 20 July 1945 B.L.v.d.Waerden

This is true that in the Munich deliberations Van der Waerden was perceived as a
philo-Semite, not subscribing to the Nazi ideology of anti-Semitism [Lit], and this
may have cost him the Munich job. As to Mrs. Camilla van der Waerden, who is now
Austrian again (she was “German” in the March 14, 1944 letter – see Chapter 37.3)
we will meet her soon and gain some insight into her views.

With the “Defense” submitted, Van der Waerden hoped to get a professorship at
Utrecht or Amsterdam. Van der Corput was the key man to this end.

38.4 Van der Waerden and Van der Corput: Dialog in Letters

Johannes Gualtherus van der Corput (1890–1975) was a professor of mathemat-
ics at Groningen (1923–1946) and Amsterdam (1946–1954). During the war and
the German occupation of the Netherlands, he took an active part in the Dutch
underground, and in 1945 spent a week in the Nazi jail for hiding people from
the occupiers in his house. According to Dr. Knegtmans (June 10, 2004 e-mail to
me, [Kne7]), “Van der Corput belonged to a small group of Groningen professors
that had developed some ideas about the postwar university in the sense that it had to
become a moral community that would be able to withstand any authoritarian threat
or defiance. Van der Leeuw, the first postwar minister of Education, had belonged to
the same group.” Right after the war Van der Corput was the organizational leader
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of the Dutch mathematicians and in 1946 became one of the founders and the first
director of the Mathematisch Centrum (Mathematics Center) in Amsterdam.220

Van der Corput knew Van der Waerden from their 1928–1931 years together at
Groningen, where young Bartel learned much mathematics from him [Dol1]. They
met in 1939 when the whole Van der Waerden family visited the Netherlands, and
Bartel gave a talk at Van der Corput’s Groningen University. The colleagues cor-
responded even during the war. A thick file of their 1945 correspondence, lying in
front of me as I am writing these lines, is an invaluable resource for understand-
ing their views on moral standards during the Nazi time and the occupation of the
Netherlands, and more generally, the moral dilemmas raised by the war and its after-
math. I will let the correspondents do most of the talking. A number of handwritten
versions of some of these letters exists. Some copies were sent to third parties, such
as Van der Waerden’s close friend mathematician Hans Freudenthal (1905–1990).
All of this indicates that Van der Waerden took this exchange extremely seriously.
The closeness of the two correspondents, who with no exception address each other
with amice (friend), allows for a rare insight.

On July 29, 1945 Van der Corput sends Van der Waerden a letter in which he
informs Van der Waerden of his (Van der Corput’s) new critical role in the mathe-
matical higher education of the Netherlands:221

. . . I have been appointed chairman of a commission to reorganize higher education in
mathematics in the Netherlands, which will have as its primary duty to offer advice for
the filling of vacancies in mathematics.222

Van der Corput realizes that his new authority to advise the minister of education
calls for a new responsibility, and so he continues with probing questions:

Your letter made me do a lot of thinking. I never understood why you stayed in Ger-
many between 1933 and 1940,223 and also why after 10 May 1940224 you did not return
to the Netherlands as so many succeeded in doing, if need be to go into hiding here.
Rumors went around about you that you were not on our side any more, at least not
entirely. That could have been slander. I would find it important if you could explain
to me the situation completely and in all honesty.

220 The Center still functions today, but under a new name CWI, Centrum voor Wiskunde en Informatica
(Center for Mathematics and Computer Science).
221 ETH, Hs 652: 12159.
222 Prof. Dr. Gerardus J. van der Leeuw, Minister of Education, Arts and Sciences (Onderwijs, Kunsten
en Wetenschappen) appointed J. G. van der Corput to be the chair of the Committee for the Coordi-
nation and Reorganization of Higher Education in Mathematics in The Netherlands (De Commissie tot
Coördinatie van het Hooger Onderwijs in de Wiskunde in Nederland). Members of the committee were J.
G. van der Corput, D. Van Dantzig, J. A. Schouten, J. F. Koksma, H. A. Kramers and M. G. J. Minnaert.
The Committee became known as the “Van der Corput Committee.”
223 Indeed, even some Germans went into exile: “Between 1933 and 1941, an estimated thirty-five thou-
sand non-Jewish Germans, not all of them Socialists, went into exile” [Scho, xiii].
224 The day of the Nazi Germany’s unprovoked attack on the Netherlands.
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Van der Corput concludes by relating his own resistance activities:

People were in hiding in my house throughout the entire war, 23 in total, of which
5 were Jews; I was a representative at Groningen of the Professors Resistance Group.
When I was arrested in February 1945, they found two people in hiding in my house, of
which one was Jewish. I was suffering from angina and was released from prison after
a week. My house and all my furniture were impounded [by the authorities] but we
moved back on the day of liberation. . . I was on the Committee of Free Netherlands225

and was arrested for disseminating illegal literature.

Van der Waerden replies on July 31, 1945.226 He expresses a delight with his
friend being in charge of appointments in mathematics, almost too much of a
delight – but then, understandably, crosses most of the delight out:

I am very happy to be able to direct my defense to the right address against the
things that have been blamed on me completely unexpectedly from all sides. So you
are chairman of the commission who will decide on the future occupation of the
professorships of mathematics, perfect! An illegal work of the highest order and what
is more, beneficent towards me. Delightful!

From the following lines we discover how the writing of the “Defense” has come
about. We also learn that Van der Waerden attaches a copy of the “Defense” to this
letter:

I have heard from Pannekoek227 and Clay228 that people were thinking about suggest-
ing me for the Weitzenböck229 vacancy at Amsterdam. When I spoke with Freudenthal
about it and told him that I was looking forward to possible collaboration with him,
he firstly pointed out the difficulties, especially from students’ circles, that could be
expected, and for the aspersions that would be cast upon me because of my stay in
Germany since 1933. He advised me to write down my defense, which I had presented
to him verbally. I have done it, and after conversations with others, I have added a few
more things. . . In this situation you now come forward and ask for my justification.
Voila! I hereby include a copy of the piece.230

Van der Waerden then explains why he did not return to Holland when Germany
waged the war against his homeland:

I truly did not come to the idea to return to the Netherlands after 1940 and to go into
hiding here. At the end of 1942 I came to Holland and have spoken with all sorts of

225 Vrij Nederland, an underground newspaper.
226 ETH, Hs 652: 12160.
227 Antonie (Anton) Pannekoek (1873–1960), professor of astronomy at the University of Amsterdam
and a well-known Marxist theorist.
228 Born Jacob Claij (1882–1955), a major supporter of Van der Waerden’s appointment, professor of
physics at the University of Amsterdam, 1929–1953, who played a major role in the reconstruction of
applied scientific research in the Netherlands after W.W.II.
229 Roland W. Weitzenböck (1885–1955), a professor of mathematics at the University of Amsterdam,
whose pro-German views cost him his job after the war.
230 Actually, ETH Archive, the holder of this letter, does not have a copy of the “Defense”. Fortunately
for us, the copy sent to Freudenthal has survived. See the text and the analysis of the “Defense” earlier
in this chapter.
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people (honestly no NSB-ers231 because those do not belong to my circle of friends)
but there was nobody who gave me [such] advise; the concept of going into hiding,
furthermore, did not exist at that time.

Van der Waerden is not being entirely open when he claims that he “truly did not
come to the idea to return to the Netherlands.” In fact, as we have already established
that in December 1942 he received a job offer from Utrecht, which he discusses with
Carathéodory and likely other colleagues. Van der Waerden then spells out the real
reason why he did not wish to come home during the war:

Why would I go to Holland where oppression became so intolerable and where every
fruitful scientific research was impossible?

Therefore, it appears that Van der Waerden never seriously considered going
to the Netherlands during the war. In a statement that Van der Corput must have
found particularly disingenuous, Van der Waerden claims that his “struggle” for the
German culture and science was at least as noble as his correspondent’s underground
activities in the Netherlands:

For your struggle of which I have heard with great delay and only in part, I had great
admiration and undivided sympathy, but I could not partake in it from that distance,
because I did not have enough contact with you. Since 1933 I waged another struggle,
together with other reasonable people such as Hecke,232 Cara,233 and Perron against
the Nazis and for the defense of culture and sciences. That I was on the good side of
that struggle was, as I thought, universally known. I did not expect that people here in
Holland would have so little understanding of it.

In the next letter, dated August 20, 1945, Van der Corput makes his displeasure
known to Van der Waerden, stating that he was not completely satisfied with his
friend’s explanations:234

Your letter has not completely satisfied me. You complain that we here in Holland have
no sufficient understanding of your troubles, but after reading your letter I wonder
whether you have a sufficient understanding of troubles with which we had to deal
with here and of what was to be expected of a Dutchman in these years. It is not clear
to me from your letter whether you consider your attitude in the past as faultless or
whether you plead mitigating circumstances.

Van der Corput refuses to condone Van der Waerden’s actions during the war,
comparing them unfavorably to his own unambiguous rejection of the Nazism:

Concerning me personally, in January 1939 I refused Hecke’s invitation, given to me
by [Harald] Bohr, to give one or more lectures, because I refused to come to Germany

231 Nationaal Socialistische Beweging (National Socialist Movement, a Nazi party in the Netherlands).
232 Erich Hecke (1887–1947), one of the best students of David Hilbert, a famous number theorist,
professor at the University of Hamburg (1919–1947), a man of highest integrity, who allegedly never used
Hitler’s salute, and who in 1940 resigned as the Editor-in-Chief of the leading journal Mathematische
Annalen in protest of the publisher Ferdinand Springer’s demand not to publish Jewish authors.
233 Constantin Carathéodory (1873–1950), a German mathematician of Greek ancestry, professor of
mathematics at Göttingen (1913–1918), and Berlin (1918–1920), and Munich (1924–1938).
234 ETH, Hs 652: 12161.
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as long as Hitler was in power. Consequently I have not gone to Germany after 1932.
In connection with this position of mine that was shared by very many, I do not under-
stand how you can so easily gloss over those years between 1933 and 1939. Indeed
it was not at all fitting for a Dutchman to make mathematics in Germany flourish
in those years when Germany was preparing for war and was throwing out the Jews
everywhere.

Van der Corput contrasts his and Van der Waerden’s positions with regard to the
German and the American mathematical reviewing journals:

Speaking of Jews, when Levi-Civitá was thrown out of Zentralblatt, I withdrew as
an associate (while giving my reasons) and suggested all Dutch associates to do the
same and to become associates for the Mathematical Reviews. Contrary to that, you
suggested to a couple of associates to stay on and, if I am not mistaken, you invited
new associates.

Van der Corput cites the 1939 incident that, apparently, still bothers him, and
directly asks whether Van der Waerden and his wife were Nazi sympathizers:

Furthermore I remember that after a lecture at Groningen in the Doelenkelder,235 you
spoke appreciatively about the regime in Germany, more especially about Göring,236

upon which I advised you to stop because this was not well received by the students
of Groningen. I have to add to that that I do not know whether or not you were being
serious at that time, but it made a strange impression on us, who considered Hitler a
grave danger for the humanity. From different sides I was furthermore told that you
wife was pro-Hitler, and that when she was supposed to come stay in Holland, she
even gave as a condition that no bad could be spoken about Adolf. I say this, because
you write that your wife was always against the regime. It is better that these things
are discussed in the open, because then you can defend yourself.

Nevertheless, Van der Corput clearly wants to help Van der Waerden, and through
him, Dutch mathematics:

I for myself think that the Netherlands has to be very careful not to lose [zuinig] its
intellect and especially the one like yours. I have always regretted that you went to
Germany and I will look forward to it if you can be won back completely for the
Netherlands. . .

I would want nothing better than for everything to be all right. Because there is no
Dutch mathematician with whom I like working more than with you. I would find it
fantastic if we could work on mathematics at the same university again. I think that we
could found a mathematical center then.

Van der Corput then explains why he needs to get information from Van der
Waerden:

I hope that you will not just excuse me for these questions but that you would also
understand them. Before the government can appoint someone it will conduct a very

235 The steakhouse De Doelenkelder still exists in Groningen: call 050-3189586 for reservations:-).
236 Hermann Göring, Commander-in-Chief of Luftwaffe (German Air Force), President of the Reichstag,
Prime Minister of Prussia and Hitler’s designated successor.
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detailed investigation, and it is to be expected that it will also ask for my advice. It is
therefore necessary for me to be well informed.

Perhaps to Van der Corput’s surprise, Van der Waerden remains nonchalant. He
asserts his complete innocence, and quotes the letter (see earlier in this chapter) he
received from Heinz Hopf just about 2 weeks prior:237

You ask whether I want to plead mitigating circumstances. Absolutely not! I demand a
complete exoneration because I do not think that I can be blamed for anything. And I
am also convinced that when my case now or after a few years when the understandable
commotion and confusion caused by the German terror has calmed down is looked
at objectively, that this exoneration will be given me. This conviction I shared with
Hopf in Zürich who (following a conversation with Kloosterman about me) writes:
“When the Dutch, whom you can approach with clean conscience and offer them your
services, do not want you, then in my opinion they hurt themselves, and that is their
business. I consider it certain that in a few years, when the waves have calmed down a
bit, somewhere in the world you will work again in the profession.”238

Van der Waerden continues by presenting, again, his (and Hopf’s) opinion that
one must differentiate between “the Hitler regime” and “the German culture”:

Your most important accusation, I assume, is the words “it was not at all acceptable
for a Dutchman to make mathematics flourish in Germany in the years when Germany
was preparing for the war and was throwing the Jews everywhere.”

In this sentence two things are identified with each other that I see as the strongest
opposites: the Hitler regime and the German culture.239 What was preparing for the
war and was throwing out the Jews was the Hitler regime; what I was trying to make
flourish or rather to protect against annihilation was the German culture. I considered
and still consider this culture to be a thing of value, something that must be protected
against destruction as much as possible, and Hitler to be the worst enemy of that cul-
ture. Science is international, but there are such things as nerve cells and cell nuclei in
science from which impulses are emitted, that cannot be cut out without damage to the
whole. And I mean that this standpoint is principally defensible even for a Dutchman,
and I should not be in the least ashamed for having taken this position.

Of course, it is understandable that people today here in Holland do not want to
know, to make a difference between the Nazis and Germany or the German culture.
Germany attacked the Netherlands and shamefully abused it, and the whole German
people are also responsible for that. For the duration of the war this position is com-
pletely true, but one must not use this as measure to measure things that happened
before the war.

By the way, nobody at the time thought to condemn my actions. The Dutch Gov-
ernment itself allowed officially in 1934 or 1935 that I could continue my activities in

237 ETH, Hs 652: 12153. The 4-page letter is undated; I am certain, however, that it was written between
August 21 and August 27, 1945.
238 The text in quotation marks is in German, see the discussion of this H. Hopf’s letter earlier in chapter.
239 Cf. H. Hopf’s letter to Van der Waerden of August 3, 1945 earlier in this chapter, from which this
idea may have come from. Could not have these two brilliant minds seen that the “German culture” gave
birth to the “Hitler regime”?
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Leipzig. The student organization invited me in 1938 for a series of talks, among other
places at Groningen, a certain Van der Corput asked me in 1943 to write a book for his
“Weten Sch. Reeks” [Scientific Series], and I could name a whole other series of things
like that.

Also the English and the Americans, and above all the Russians, make a distinction
between the Nazis, whom they want to destroy, and the German culture, which they
want to help resuscitate. Should we not try to make this objective way of judgment
acceptable also in the Netherlands again?240

Van der Waerden then explains his statement about Göring made during his 1939
visit to the Netherlands:

You seem to remember that I spoke appreciatively in the Doelenkelder about the
regime in Germany and more specifically about Göring. You must therefore consider
me as somebody without an elementary sense of right and wrong; because Göring is,
as everybody knows, a clever crook, whose henchmen burned the Reichstag and who
used that to abolish socialist parties. An unprecedented deception of the people that
was used to destroy the democracy and the parties to which I, because of tradition,
friendship, and because of my own father, was connected. And I would have defended
that criminal? And the Hitler regime moreover? And now I would twist around like a
weathervane and contend that I was always against Hitler? In other words, that makes
me a deceiver, a cunning liar! Nevertheless you always willingly offer me your medi-
ation, not only with words but also with deeds, with Noordhoff, give my defense to
Minnaert, and write that you do not like to work more with anybody than me. I do not
understand that attitude. Or rather I can only give one explanation to it, namely that
deep in your innermost a voice tells you: no, I know that man from before as decent
and truth-loving, let me give him an opportunity to defend himself.

Well, I can guarantee you, that what you write about the Doelenkelder must be
a misunderstanding. I have never uttered a word of defense of the Nazi regime to
anybody. The question which we spoke about in the Doelenkelder was, if I am not
mistaken, not whether this regime was defensible, but how can people cope in Germany
in spite of this regime. How is science under these circumstances possible? Then I may
have mentioned a few facts from which it was apparent that at Leipzig especially and
more importantly in mathematics, the pressure from above was not as oppressive as
people imagined it here. I may have mentioned in connection with something or other
that Göring was not an anti-Semite and even appointed Jews in his ministry, or I have
told how popular he was with the people and with his subordinates or something like
that. But to defend Hitler or Göring? Impossible!

Thus, Van der Waerden asserts that he did nothing wrong and “only” said the
Nazi pressure at Leipzig was not too bad, and that the second man of the Nazi
Germany, Göring, was not an anti-Semite! He then goes on to explain his wife
Camilla’s statements:

Now about my wife supposedly being a Nazi. Would you believe that this is the third
time that I hear this spiteful slander? I can not figure out where this slander is coming
from. We, my wife and I, have avoided any contact with the Nazis in Leipzig like
the black plague. Our acquaintances were only people who shared our horror for the

240 This paragraph is thinly crossed out in this version, but was not crossed out in another, unfinished
version in my possession.
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Nazi regime. And then, when she stayed in Holland, she asked that nothing bad be
said about Adolf? Do you honestly believe that my father, when we stayed with him
in 1939, would have accepted such a condition, or whether my brothers would have
kept themselves to it? The truth is that my wife could not tolerate it when bad was
spoken about the Germans. Indeed, German is her mother tongue, and she knew so
many kind people in Germany. If you do not want to believe all of this on my word,
then please write a letter to Frau Lotte Schoenheim, Hotel Stadt Elberfeld, Amsterdam.
From 1932 up until her emigration to the Netherlands in 1938, she has been frequently
in conversation with my wife and me, and after that in Holland has stayed in contact
with my family. She knows our opinion not only from words but also from deeds.

Thus, according to Van der Waerden, Camilla “could not tolerate it when bad
was spoken about the Germans.” Were all of the Germans in the Third Reich above
criticism in 1939? Did not Van der Waerden himself write above in this very letter
that “Germany attacked the Netherlands and shamefully abused it, and the whole
German people are also responsible for that”?

This handwritten letter is particularly important to Van der Waerden: he encloses
a large handwritten part of it, entitled “From a letter to Prof. J. G. van der Corput”,
in his January 22, 1946 letter to Freudenthal241 together with “The Defense,” which
was earlier submitted to the Amsterdam’s College van Herstel and Utrecht’s College
van Herstel en Zuivering.

In his immediate, Aug 28, 1945 reply, Van der Corput soft pedals on his probing
questions and assures Van der Waerden of his support:242

Am I mistaken if I have an impression that you wrote your letter in somewhat irritated
state? I believe that I have consistently acted in your interest; also during a conversation
with the minister I pointed out that the Netherlands should be very careful not to lose
[zuinig] a man like you. I even said that the Netherlands should rejoice if we get you
back for good. But there are general rules and it needs to be determined how much
those apply to you.

I have always considered it impossible that you are a “weathervane, a hypocrite,
and a cunning liar,” and I still consider it impossible. With my remark I wanted to
show that you in my opinion did not sufficiently realize how we thought of the Hitler
regime even then. It was all joking, and I never attached much significance to it, but
when afterwards remarks were made indicating doubt, I thought it was important for
you to mention this in my letter. I would be very sorry if I hurt you with it but it is
still better to bring these things out in the open and to give you an opportunity to rebut
them. To my great pleasure I found out today that it was said at the Mathematical
Congress in Oslo that you were known as a strong anti-National Socialist.

Immediately after receiving your letter I made sure that this week Friday night or
Saturday morning there will be meeting between me and the minister of education
about this matter. The minister has already told me in the first conversation that the
cabinet has spoken about general rules concerning the persons who were in German
service during the war. Those rules were not finalized then. Whether or not this hap-
pened since then I will find out this week.

241 RANH, Papers of Hans Freudenthal, inv. nr. 89.
242 ETH, Hs 652: 12162.
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Van der Corput leaves the last two points of Van der Waerden’s letter (Göring
and the Nazi sympathies of Mrs. Van der Waerden?) to a confidential in-person
conversation, and thus, to my regret, out of reach for this study:

About the different other points of your letter, I would like to speak with you orally
next week. Tuesday September 4 I hope to get to Laren for this before 9 o’clock in the
morning.

But not to worry anyway:

Be convinced that it is my sincere desire to keep you for the Fatherland and for higher
education.

Van der Corput communicates the first hopeful signs on Sept 11, 1945:243

. . .I have discussed your case with Oranje244 and Borst,245 leaders of the Professors’
Resistance.Aftermyexplanationneitheroneof themsawanyproblemwithyourappoint-
ment with one of the Dutch universities. They of course cannot decide anything, but as
is evident to me, it is much easier for the minister and his department if they know that
there is no opposition from that particular side. I have the impression that things will be
all right and that after a few months we will be able to collaborate more. . .

PS:. . . During my absence Van der Leeuw246 has called to tell me that both parts of
my most recent letter were “good”. One of the parts concerned my statement that we do
not need to fear any opposition from Borst and Oranje. . . It will all work out, that is my
opinion.

Five days later, Van der Corput is ready to celebrate “mission accomplished”:247

I have just received a written confirmation from Van der Leeuw. . . He writes: “We
should now figure how good the Van der Waerden’s matter is.”

This means that he is ready to nominate you.

On September 22, 1945, Van der Waerden describes the state of his employment
affairs to his friend and confidant Hans Freudenthal as follows:248

Minister Van der Leeuw told Van der Corput that now that Van der Corput and Borst
and Oranje of the Professors Resistance Group consider me as sufficiently “pure”, he
also considers the affair “OK”. My appointment at Utrecht is therefore very close.

243 ETH, Hs652: 12163.
244 Prof. J. Oranje, professor of law, Free University (Vrije Universiteit, a Calvinist university). During the
occupation Prof. Oranje was chair of Hooglerarencontact. According to Dr. Knegtmans, the illegal during
the German occupation Hooglerarencontact (Contact Group of Professors) tried to persuade professors
and university boards to close their universities in 1944.
245 Prof. Dr. J. G. G. Borst, professor of medicine, University of Amsterdam, one of the leaders of
Hooglerarencontact.
246 Prof. dr. Gerardus van der Leeuw, the Minister of Education, Arts and Sciences (“Onderwijs, Kunsten
en Wetenschappen”), 1945–1946.
247 September 16, 1945 letter from Van der Corput to Van der Waerden; ETH, Hs652: 12164.
248 RANH, Papers of Hans Freudenthal, inv. nr. 89.
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Then on September 29, 1945, Van der Corput informs Van der Waerden by a
telegram that College van Herstel en Zuivering of the University of Utrecht got on
Van der Waerden’s board as well:249

Minnaert250 signals College van Herstel considers Van der Waerden sufficiently polit-
ically reliable and desires appointment at Utrecht

Van der Corput

However, about a month later, unexpectedly, new problems surface. Van der Cor-
put informs Van der Waerden about them in his October 24, 1945 letter:251

Indeed there now come again difficulties concerning your appointments. As there is
someone in higher education, who works against you and among other things main-
tains that you had to use – and did regularly use – the Hitler salute at the inception of
your classes in Germany. Be so kind to give very clear answer to this question, so that
I can contradict it if this slander comes about again.

. . . This week I received an invitation from Faculty of Natural Sciences in Ams-
terdam to become Weitzenböck’s replacement. This shows that the opposition against
your nomination in Amsterdam is too strong. I do not know what I am going to do.
Personally, I like Utrecht better, but maybe I can do more for mathematics in Amster-
dam. . . .

I am not happy about the turn that the mathematical problems have taken. I would
be particularly sorry if certain illegal circles [illegale kringen – he probably means
former underground circles] will successfully delay your appointment at a Dutch uni-
versity.

Van der Waerden answers right away, on October 26, 1945. He does not give
a “very clear answer to this question” of the Hitler salute, or any answer for that
matter. He shares Van der Corput’s pessimism about his academic prospects in the
immediate future, and blames the students and Minister of Education Van der Leeuw
for it:252

After what I have read in the Vrij Katholiek253 about the radical demands of the stu-
dents and the willingness of Van der Leeuw to listen [to them], I think it will take some
time before I can get a position at Utrecht. I have something else now, as of October 1,
1945 I am working for Bataafsche.254

249 ETH, Hs 652: 12158.
250 Marcel Gilles Jozef Minnaert (1893–1970), a member of the “Van der Corput Committee,” see foot-
note 54 for more information on the Committee. Documents in the archive of the University of Utrecht
show that Minnaert—in a sense—represented Van der Waerden to the Utrecht’s College van Herstel en
Zuivering, which most likely had never met with Van der Waerden in person. This was a very beneficial
representation for Van der Waerden, because as an outspoken critic of Nazism Minnaert spent nearly 2
years in a Nazi prison, from May 1942 until April 1944 [Min].
251 ETH, Hs652: 12166.
252 ETH, Hs652: 12167
253 De Vrij Katholiek (The Free Catholic) monthly of the Free Catholic Church in the Netherlands, was
published 1926–1992.
254 Bataafsche Petroleum Maatschappij (B.P.M.), today known as the Royal Dutch Shell.
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Van der Corput’s reply comes a full month later, on November 26, 1945. He
opens his letter with good news:255

I very much want you to have a position in higher education. The Committee for Math-
ematics [Wiskundecommissie] intends to create Center for Pure and Applied Mathe-
matics, most likely in A’dam [Amsterdam], and if the Center comes into being, I want
you to work there.

Then there come the bad news:

But there are problems, and I hate time after time to ask you these questions and ask
you for clarifications but I have to do this. In order to support you I need the answers
to these questions.

It now centers around three clearly indicated points:
The first. Your father and your uncle repeatedly and with a lot of emphasis have

insisted before the war that you should leave Germany. They felt it was your duty to
leave but you refused, and they considered it as neglect of your duties.

The second. some people are certain that your wife is an anti-Semite, others believe
that this is too strong a statement, but she did not want to have anything to do with Jews.

The third. During the war there was an opportunity for you to go to America, but
you refused, for you [argued that you] needed to stay because you could do a good
work for your students, some of whom were Jews. If this is true that even during the
war, when you had a chance to go to the United States, you still did not want to leave,
this will create definite difficulties for you.

Apparently, without receiving a reply, Van der Corput writes again on December
8, 1945, this time quite apologetically:256

I am not asking you these things for myself. . . I want to collaborate [with you] as
much as I can. . .It would be very unpleasant if these questions would somehow cause
the deterioration of my relations with you or your wife. Please, understand I only need
it for the government.

Van der Waerden immediately, replies on December 10, 1945. He first reassures
Van der Corput of his friendship:257

This correspondence will not have negative consequences on our relationship and
friendship; there is no danger for that.

While in my letters there is sometimes a tone of annoyance, it is against people who
disseminate certain gossip against me and definitely not against you because I know
that you have worked tirelessly in my interest and in the interest of the Dutch science.

Then there come the words that spell out Van der Waerden’s fundamental princi-
ples:

On the other hand, I also cannot imagine that you are irritated by my democratic anti-
Fascist point of view that I have expressed in my letter. My point of view is that when
appointments are concerned, only capacities of the appointee should be taken into

255 ETH, Hs652: 12168.
256 ETH, Hs652: 12169.
257 ETH, Hs652: 12170.
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account, and not – as it is usual in the Fascists regimes – the person’s character, his
past, and his political trustworthiness.

I had been raised under the influence of my father, who was a principled democrat,
then I had been under the influence of Hitler, and that counter-point of view led to terri-
ble consequences. You too actively fought against the Nazis, and fought for democracy
and freedom of our people. So I cannot imagine that you would have a problem with
my point of view even if you do not share all aspects of it.

This dialog in letters is so alive that I feel compelled to enter it and say: Bartel,
you invoke your principled democrat father as your great influence. But according
to Van der Corput (12/26/1945 letter above), “Your father and your uncle repeat-
edly and with a lot of emphasis have insisted before the war that you should leave
Germany. They felt it was your duty to leave but you refused, and they considered
it as neglect of your duties.” You did not contradict, and so I believe this to be truth.
I agree with your father Dr. Theo and his brother Jan: you should not have served
the “gangster-regime” (your words), occupying and terrorizing your people. Mathe-
maticians do not live in a vacuum, and thus their “character,” their “past”, and their
morality matter, especially in Holland right after five years of brutal occupation.

Meanwhile, Van der Waerden ends the letter with the major good news, promis-
ing an Amsterdam professorship to him very soon:

Revesz258 has told me yesterday that the Amsterdam Faculty recommended me for
appointment to ordinary [professor] to B. en W. Thus things have started to happen now!

On December 22, 1945, Van der Waerden writes again.259 This three-and-a-half-
page letter is full of technical negotiations. One alderman prefers Van der Waerden’s
appointment to be at an extraordinary (bezonder) professor level (rather than at the
level of a full professor). Van der Waerden does not mind that, but then he wants
to keep his oil industry position as well. Jacob Clay thinks that this solution is very
good. Van der Waerden further asks for a lectureship at Amsterdam for his friend
Hans Freudenthal. And he wants a clear definition of the boundaries between duties
of Van der Corput, Freudenthal, Brouwer, and himself. Van der Waerden discusses
these details, because in his mind, his appointment at Amsterdam is a done deal.

In the end, Van der Corput is not completely satisfied with the positions of Van
der Waerden the man. But Van der Corput has a great respect for Van der Waerden
the mathematician, and he believes that if he were to help Van der Waerden get a
fine position at Amsterdam, then Van der Waerden would spend his career there,
and thus would greatly benefit their homeland.

It is worthwhile to note here that Van der Waerden is much more open and harsh
in his criticism of the Dutch in his November 20, 1945 letter (in German) to Richard
Courant of New York University than in all of his correspondence with Van der
Corput:260

258 Hungarian born (fled in 1920) Geza Révèsz (1878–1955) was the first and founding professor in
psychology at the University of Amsterdam; a close friend of L. E. J. Brouwer.
259 ETH, Hs652: 12171.
260 New York University Archives, Courant Papers.
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The Dutch are completely crazy. They have no concept in their heads except “cleans-
ing” (“Sauberung”): they punish all those who had worked together with the Germans.
There are managers, bosses who would not employ any workers who were forced to
work in Germany.261 There are more political prisoners in Holland than in all of France,
even though the Dutch showed much more character in the war than the French did.
So is my appointment to Utrecht, which ran into great difficulties, even though it was
a done deal with the faculty for years. I am very happy that I currently have a pleasant
job in the industry and can await the return to normal circumstances.

And while Van der Waerden demands “a complete exoneration” from Van der
Corput, Van der Waerden sounds more conciliatory in his December 29th, 1945
letter (in English) to Courant:262

I am much pleased that you have the intention to resume the old friendship with me
and other old friends as far as possible, and that old Göttingen will keep a warm place
in a corner of your heart. And just for that reason, I am convinced that you at least
will understand a little bit what my other friends in America could not grasp, namely
“why I as a Dutchman chose to stay with the Nazis”. Look here, I considered myself in
some sense as your representative in Germany. You had brought me into the redaction
[editorial board] of the Yellow Series and the Math Annalen, I thought, in order to
watch that these publications were not nazified and that they might maintain their
international character and niveau [standard] as far as possible. This I considered as
my task, and together with Hecke and Cara [Carathéodory] I have done my best to
fulfill it, which I could do only by staying in Germany. [It] is not that plain and easy to
understand, apart from other sentimental and familiar [familial] links attaching me to
Germany. I have made some mistakes perhaps, but I have never pacified with the Nazis.

Under “other sentimental and familiar [familial] links” to Germany, Van der
Waerden no doubt refers to his “German wife,” to raising his three children “pure
German,”263 and to his sense of belonging to the German culture in general, and the
German mathematics in particular. For the first—and to the best of my knowledge
the only—time Van der Waerden admits making “some mistakes.”

The Dialog in Letters, presented here will undoubtedly force the reader to define
his or her positions on many fundamental issues, such as the place of a scientist in a
tyranny.

38.5 A Rebellion in Brouwer’s Amsterdam

For decades mathematics at the University of Amsterdam had been run by the
most famous Dutch mathematician of the twentieth century, Luitzen Egbertus Jan
Brouwer (1881–1966), an ordinarius at Amsterdam ever since 1913. Brouwer had

261 Van der Waerden refers here to Arbeitseinsatz, the Nazi forced labor program.
262 Ibid.
263 Van der Waerden, Letter to Wilhelm Süss, March 14, 1944, ETH, Hs 652: 12031.
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a famous feud with the leading German mathematician David Hilbert. Likely due
to Van der Waerden’s closeness to Hilbert, Brouwer did not wish Van der Waerden
to get a chair at Amsterdam. But following the liberation, Brouwer was suspended
from office for a few months while the Amsterdam’s College van Herstel investi-
gated his behavior during the occupation. This suspension and Brouwer’s advanced
age allowed younger charismatic mathematicians to wage a power struggle with
him. J. G. van der Corput was the leader of this new generation. He and Jacob Clay,
professor of physics at the University of Amsterdam, undertook what one might call
“The Battle of Van der Waerden.”

Professor Dirk van Dalen has kindly shared with me relevant chapters of his
then not yet submitted manuscript of his brilliant, comprehensive biography of
L. E. J. Brouwer [Dal2]. Van Dalen believes that Van der Waerden did not get a uni-
versity job in 1945–1946 because of Brouwer’s opposition. I respectfully disagree
and believe that Brouwer’s opposition to Van der Waerden’s chair at Amsterdam
only strengthened Clay’s and Van der Corput’s resolve, and thus increased Van
der Waerden’s chances. Professor Nicolaas G. de Bruijn, who succeeded Van der
Waerden at the University of Amsterdam in 1952, seems to agree with my vision of
this complicated affair. Following are my questions and his answers [Bru10]:

A.S.: Was Brouwer against hiring Van der Waerden at Amsterdam in 1945–46? If
“yes” why was Brouwer against? How influential was Brouwer in such matters in
1945–46. . .?
N.G.B: Brouwer did not have much influence. He had a fight with the rest of the world,
in particular with his Amsterdam colleagues and with the Amsterdam mathematical
centre. . .
A.S.: As I understand, Van der Waerden’s strongest supporters were Clay and Van der
Corput, am I right?
N.G.B.: You may be right. Along with Schouten they were the older people, and in
those days the older people dominated the networks. But the support of the younger
generation, like Koksma, Van Dantzig and Freudenthal, must have been very essen-
tial. In particular the fact that Van Dantzig and Freudenthal were Jewish may have
impressed the authorities.

In fact, on September 22, 1945 Van der Waerden assured Van der Corput of being
ready to join in the war against Brouwer if necessary:264

Dear Colleague!
I would of course have preferred if the whole Faculteit, including Brouwer, approved
my appointment. If you are prepared together with me to make something good of
mathematics in Amsterdam even against Brouwer, if that is necessary, I will be collab-
orating in that effort.

On the same day Van der Waerden summarized for his close friend Hans
Freudenthal the state of the Brouwer’s Amsterdam:265

264 ETH; Hs652: 12165.
265 RANH, Papers of Hans Freudenthal, inv. nr. 89.
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Van Dantzig saw the future of math in Amsterdam as rather bleak. Unless a coun-
terweight to the influence of Brouwer could be formed by the filling of the second
professorship by somebody who can stand up to Brouwer, he feared that Brouwer
would want to rule with 4 lectors dependent on him.

Clay told me that Brouwer had answered evasively his question whether he supports
my candidacy, and he obviously does not want to work with me (something I have
already known). Clay, however, wanted to nominate me against Brouwer’s will if I can
guarantee him that I would accept the appointment. I answered him today:

“I would have of course preferred if the entire faculty including Brouwer were to
approve my appointment. But if you are prepared to literally go to war with me and to
try to make something good out of mathematics in Amsterdam, even against Brouwer
if that is necessary, then I would like to offer my help. However, if the appointment
at Utrecht comes first, then I would take it as you understand. I desire to take my part
in the reconstruction of the Dutch science as soon as possible, be it at Utrecht or at
Amsterdam.”

Clay did not seem to want to conclude the matter soon, so I think nothing will come
of it. If something were to come of it, I would also try to find a beneficent solution to
the conflict between Freudenthal and Bruins.266 Because my coming to Amsterdam
only makes sense when you and I can set the tone there, and not when you stay in a
subservient position and both of us have to fight Brouwer and creatures all the time.

Three months later Van der Corput was able to talk Brouwer out of opposing Van
der Waerden’s appointment at Amsterdam. On December 30, 1945 Van der Corput
reported this development to Van der Waerden:267

With Brouwer I have come to an agreement that he will only cover the courses about
intuitionism, that he will give exams only to the students that have an interest in that
particular discipline. And he liked my willingness in this. He agrees with your appoint-
ment to extra-ordinary also with an appointment of Freudenthal as a lecturer. . .

He [Brouwer] has 51/2 years left before his retirement, while I have about 15 years
left. I can count on his help, and we can work together. . .

Apparently, Brouwer, even agreed to pass on to Van der Corput and Freudenthal
his “baby,” the journal Compositio Mathematica that he founded in 1934—in spite
of his falling out with Freudenthal:268

He [Brouwer] asked if I was willing to take over the Secretariat of the Compositio,
together with Freudenthal. I wrote about it to Fr. [Freudenthal]. If he is willing then
I would be too. The result of this is that the Br.’s [Brouwer’s] name would remain
but that Freudenthal and I would publish Compositio, while Fr. [Freudenthal] and Br.
[Brouwer] would not have anything to do with each other.

With Minister Van der Leeuw’s support and Brouwer’s blessing, Van der Waer-
den was on course to a professorship, when his ship ran into an “explosion” in the
sea of public discourse. To be continued in the next chapter.

266 Evert Marie Bruins (1909–1990), a mathematics faculty at the University of Amsterdam.
267 ETH, Hs652: 12172.
268 Ibid.
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In Search of Van der Waerden: The Unsettling
Years, 1946–1951

39.1 The Het Parool Affair

When in May 1940 the Germans conquered our
country Mr. Van der Waerden was still standing
behind his podium at Leipzig.

– Het Parool, January 16, 1946

I find it surprising that the early media records have been completely overlooked
and never mentioned by any of the many prior biographers of Van der Waerden.
Did they view the news reports to be too much off the calf and not carrying lasting
truths? Yes, the shelf life of a newspaper is one day, but it captures—and preserves—
the zeitgeist, the spirit of the day, better than anything else available to a historian.
Moreover, in our Drama of Van der Waerden, a newspaper was an important player.
I therefore will use newspapers here liberally and unapologetically.

If after the war Bartel L. van der Waerden were to go back to Leipzig—or any
other place in Germany—he would have been received with open arms. After the
war both East and West Germanies were quite soft even on Nazi collaborators,
which Van der Waerden certainly had not been. In addition, Van der Waerden’s
loyalty to Germany and German mathematics had been unquestionably great.269

The Netherlands was another matter. Its standards of “good behavior” during the
Nazi time and occupation were much higher, especially when judged by the editors
of a publication like Het Parool, a newspaper that had been heroically published
underground ever since July 1940,270 and had paid for it by lives and freedom of
many of its workers. After the war and the occupation, at the circulation of 50,000
to 100,000 copies in Amsterdam alone, and local editions appearing in more than
ten cities in the country [Kei], Het Parool had an enormous moral power.

269 On June 12, 1985 Leipzig University awarded Prof. Dr. Van der Waerden the honorary doctorate.
270 It started under the title Nieuwsbrief van Pieter’t Hoen on July 25, 1940 and became Het Parool on
February 10, 1941 [Kei].
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In early January 1946 everything was in place for Dr. Van der Waerden’s pro-
fessorship at the University of Amsterdam. The City Council’s meeting with his
appointment on the agenda was about to begin in the afternoon of January 16, 1946,
when just hours earlier a “bomb” exploded on page 3 of Het Parool [Het1]:271

Him??
No, not him!

The proposal to appoint Dr B C [sic] van der Waerden as professor in the faculty
of mathematics and physics at the University of Amsterdam should surprise all those
who know that Mr. Van der Waerden served the enemy throughout the entire war. His
“collaboration” is not today’s or yesterday’s news. When the war broke out in Septem-
ber 1939, and the Netherlands, fearing invasion, mobilized, Mr. Van der Waerden was
standing behind his podium at the University of Leipzig. He had stood there for years.
And he continued to stand there. He saw the storm coming as well, but he did not think
about coming back to his fatherland. When in May 1940 the Germans conquered our
country Mr. Van der Waerden was still standing behind his podium at. . .Leipzig. And
he continued to stand there. For five years the Netherlands fought Germany and for all
those five years Mr. Van der Waerden kept the light of science shine in. . .Leipzig. He
raised Hitler-followers. His total ability – a very great one – and all his talent – a very
great one – were at the service of the enemy. Not because Mr. Van der Waerden had
been gang-pressed (geronseld) to the forced Arbeitseinsatz [labor service], not because
it was impossible for Mr. Van der Waerden to go into hiding; no, Mr. Van der Waerden
served the enemy, because he liked it at Leipzig; he was completely voluntary a helper
of the enemy, which – and this could not have remained unknown to Mr. Van der
Waerden – made all of higher education plus all results of all scientific work serve
enemy’s “totale Krieg” [total war].

When asked, Mr. Van der Waerden cannot answer what an average German answers
when he hears of the boundless horrors done in the country: “Ich habe es nicht
gewusst” [I did not know]. In the middle of the war years Mr. Van der Waerden came
back to the forgotten land of his birth and he heard and saw how disgracefully his
patrons (broodheeren) were acting here. Did he not care at all? (Liet het hem Siberisch
koud?) A few weeks later Mr. Van der Waerden was standing behind his podium
at. . .Leipzig again. In the Netherlands firing squads shot hundreds. In the concentration
camps, erected as signs of Kultur (culture) by the Germans in Mr. Van der Waerden’s
second fatherland, many of the best of us died; as did a few Dutch colleagues of Mr.
Van der Waerden. Did that do anything to him? The story is becoming monotonous:
Mr. Van der Waerden raised the German youth from behind his podium at. . .Leipzig.

However that is where the house of cards collapsed. Germany, including Leipzig,
surrendered. The Third Reich, which Mr. Van der Waerden had hoped would last, if not
a thousand years, then at least for the duration of his life, became one great ruin. And at
that very moment Mr. Van der Waerden remembered that there existed something like
the Netherlands and that he had a personal connection to it. He looked at his passport:
yes, it was a Dutch passport. He packed his bags. He traveled to “the fatherland.” Now
Leipzig was not that nice anymore. All those ruins and all those occupying forces –

271 In search for greater expressiveness, the authors included in this Dutch article some passages in
German. I am leaving them in German, and add translation in brackets. I also include in parentheses
some Dutch expressions that are particularly hard to adequately translate into English.
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yuk (bah). After five years of diligent service to the mortal enemy of his people, Mr.
Van der Waerden was now prepared for the other camp.

There are more like him. But what is worse, the University of Amsterdam seems
willing to give this Mr. Van der Waerden another podium immediately. Mathematics
has no fatherland, you say? Yes, sir (tot uw dienst), but in the Netherlands in the year
1946 it should be desired of a professor of mathematics that he does have one, and that
he remembers it more timely than on the day on which his podium in the land of the
enemy became too hot under his shoes.

This passionate article, which circulated throughout the whole country, with “Mr.
Van der Waerden was standing behind his podium at Leipzig” being repeated over
and over like a refrain in a song, must have made the Amsterdam City Council
concerned, if not embarrassed. While Nazi collaborators or even volunteers of the
German labor service (Arbeitseinsatz) among the faculty, staff, and students were
removed from the University, the City Council was planning to approve the appoint-
ment of a professor who voluntarily served Germany the entire Nazi time, including
the five terrible years of the German occupation of the Netherlands. The approval of
Van der Waerden’s appointment was postponed. The following day, on January 17,
1946, Het Parool reported the outcome [Het2]:

Prof. VAN DER WAERDEN NOT YET APPOINTED
Appointment halted

After the Amsterdam City Council convened yesterday afternoon in the Committee
General (Comité Generaal), Mayor de Boer announced that, as a result, the nomination
to appoint Professor Dr. B. L. van der Waerden, Professor of Mathematics at Leipzig,
as Extra-Ordinarius (Buitengewoon Hoogleeraar) at the University of Amsterdam has
been put on hold.

Because of the publication in Het Parool about Professor Van der Waerden, the
Council suggested that there should not be a rush action. Further information was
demanded.

On behalf of B. en W.,272 City Alderman (Wethouder) Mr. De Roos responded
that Professor Van der Waerden had good papers. Leipzig was a mathematical cen-
ter. Beforehand many authorities were asked for information; among others also the
Commission of Learned People (Gestudeerden) in Germany. The College van Her-
stel (College for Restoration)273 of the University and also the faculty supported the
appointment. For now, however, the appointment has been halted; B. en W. will consult
later with the College van Herstel.

Van der Waerden was outraged not only by the City Council’s refusal to approve
his appointment, but also by such heavy and public accusations by the newspaper

272 “B en W” stands for Burgemeester en Wethouders, i.e., Major and Aldermen.
273 Once again, we have here a definitive proof that Professor van der Waerden was not correct when
he wrote to me on April 24, 1995 [Wae25] “Before your letter came, I did not know that a commission
was formed to investigate my behavior during the Nazi times.” College van Herstel was precisely such a
de-Nazification commission; see the previous chapter for more on this subject.
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that was read and respected practically by everyone in the postwar Netherlands. On
January 22, 1946 he wrote the following lines to his friend Hans Freudenthal:274

Amice,
Thank you for your kind letter. It did us a lot of good to have at least one loyal

friend in the midst of this enemy world.
I have sent the enclosed rebuttal to Het Parool and to Propria Cures. Already before

that I supplied Clay with the necessary data for the Alderman’s275 defense of [Van der
Waerden]. I have the impression from the report of the council meeting in Het Parool
that the Alderman is fighting for me like a lion.

The attitude of the students gives me a great joy. As soon as I am there I will win
them for me completely. I am convinced of that.

I am not certain as to why Dr. Van der Waerden got “a great joy” from the stu-
dents’ attitude. As we will soon see, students presented a vocal opposition to his
appointment. Also, note Van der Waerden’s line “I supplied Clay with the necessary
data for the Alderman’s defense”: we will soon learn about the content of this data
from a Het Parool’s article.

In this letter to Freudenthal, Van der Waerden enclosed two documents—the
“Defense” and “From a letter to Prof. J. G. van der Corput”—both discussed in
great detail in the previous chapter, as well as the following handwritten letter to
the editor,276 which he sent to both papers, Het Parool277 and Propria Cures, even
though the latter had not run any commentary on Dr. Van der Waerden’s impending
appointment:

Correction [Rechtzetting]

In the “Het Parool” dated Jan 16, my person was sharply attacked. I do not wish
to go into this at great length. The question of whether or not I acted wrongly is being
carefully researched by the concerned services.278 But I have to correct two untruths.
It is said that I hoped that the Third Reich would last for as long as I would. This is
slander. I was known in Germany and outside as a strong opponent of the Nazi regime;
I can prove this with witnesses.

It furthermore says that I returned because my podium became too hot under my
feet. This is also not true. I returned because the Faculteit of Math and Physics of the
State University of Utrecht asked me to take up a professorship in mathematics.

B. L. van der Waerden

274 Rijksarchief in Noord-Holland (RANH), Papers of Hans Freudenthal (1905–1990), mathematician,
1906–1990, inv. nr. 89.
275 Here Van der Waerden clearly refers to one particular Alderman (there were six): Mr. Albertus de
Roos (1900–1978), the alderman (1945–1962) for Education and Arts.
276 RANH, Papers of Hans Freudenthal, inv. nr. 89.
277 Van der Waerden’s letter to Het Parool was dated January 21, 1945, as seen from Het Parool’s January
23, 1945 acknowledgement sent to Van der Waerden and signed by Secretary Hoofdredactie: see ETH,
Hs 652: 11631.
278 Cf. Footnote 273.
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There existed words—about patriotism, love of the fatherland, contributions of
the Van der Waerden family to the Netherlands, desire to return home—which could
have touched the readers’ hearts and made a strong case for Van der Waerden’s
acceptance. Van der Waerden’s dry and proud text about returning because of a job
offer could not have possibly made things better for him. The self-description as
being a “strong” anti-Nazi could not be accepted by the editors who risked their
lives daily during the occupation. Both Het Parool (“Prof. Van der Waerden defends
himself,” [Wae9]) and Propria Cures279 (“Correction,” [Wae10]) published the com-
plete text of the above Van der Waerden’s “Correction” on February 1, 1946. Het
Parool added the following editorial response: [Het4]

We are pleased to give Mr. Van der Waerden the opportunity to defend himself. Has he
made his case stronger with this? No, not quite. Unless there are Dutchmen who truly
believe that the Germans from 1940 to 1945 allowed “strong” (!) opponents to occupy
professorships. Which acts show this strong anti-Nazism of Mr. Van der Waerden? And
the timing of his return to the fatherland in 1945 is then one of those rare coincidences
that one should believe as such. . .or not. Mr. Van der Waerden – and this is the heart
of the matter – from the first until the last day of the war served science in the land of
the enemy and this was compensated by the enemy’s money. He who has voluntarily
served the enemy from May ’40 to May ’45 is a bad Dutchman. Those who unleash
him afterwards on the Dutch youth do not understand the demands of this time. And
if the appointment of Van der Waerden is approved, then one should immediately stop
objecting to workers and students who volunteered for the labor service [De Arbeit-
seinsatz],280 etc., for the labor service [De Arbeitseinsatz] of Van der Waerden was
more complete than that of any other Dutchman. “Rewarding” (“Belooning”) that with
a professorship would mean that all the others who worked for the enemy voluntarily
deserve a feather and a bonus.

– Red (Editors) Het Parool

Earlier, on January 25, 1946, Het Parool had already reported the postponement
of the approval of Van der Waerden’s appointment [Het3]:

Prof. dr. B. L. van der Waerden

279 University of Amsterdam students’ weekly.
280 Under the Arbeitseinsatz program, the Dutch (and other) people were sent to work in Germany
(or “Greater” Germany). Those who went were punished after the war. In a 2004 e-mail to me, Dr.
Knegtmans comments as follows [Kne8]: “As far as I know, only very few people actually volunteered
for the Arbeitseinsatz. Most (several hundreds of thousands) did so under pressure and among them
were three thousand students of all Dutch universities and a few staff members. After the war, however,
there was some criticism of these men. Could they not have evaded conscription, some asked publicly.
I think they could not, because their names and addresses were known and most needed the income for
their families. This was of course not the case with the students, but in fact most students fled from the
Arbeitseinsatz in Germany back to Holland, while others did not return to Germany from their holidays. I
think that none of the students, staff members or professors of the University of Amsterdam was punished
for voluntarily joining the Arbeitseinsatz. Probably no one did join voluntarily. But some of the Nazis
among the students and staff joined the German army (or the Dutch Volunteer Corps) or paramilitary
German organizations. The staff members among them were removed from the university, the students
simply did not return to the universities.”
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The nomination of B. en W. to appoint Prof. dr. B. L. van der Waerden, which was
put on hold at the previous session of the city council, because of the article in “Het
Parool”, does not appear on the agenda for January 30th. It was put there initially,
but it has been scrapped off by B. en W., from which it can be deduced that further
consultation has not yet ended.

On February 13, 1946, Het Parool published its last commentary on the Van der
Waerden affair [Het5]. From it we can understand which data Van der Waerden
supplied to Prof. Clay for the Alderman Albertus de Roos (recall Van der Waerden
mentioning this data in his January 22, 1946 letter to Prof. Freudenthal):

Concerning Van der Waerden

The city council has circulated a little piece of advertising for the benefit of Prof.
Van der Waerden, of which the main points are that he protested against the firing of
the Jews in 1934 (even though he himself continued teaching classes) and that during
the war, with the exception of a family visit in November 1942, he was not allowed to
leave Leipzig, while, the little piece says, at that moment “going into hiding was out
of the question”, so that it could not be expected of Van der Waerden to “go under”,
even less so because he would have had to leave [his] wife and children in Germany.

This writing makes us slightly nauseous. November 1942! Pieter ‘t Hoen281 has
been in prison for eleven months, Wiardi Beckman282 is in prison, Koos Vorrink283 is
in hiding, indeed all Parool people are in hiding; the O.D.284 trial is over [resulting in]
70 people shot. The entire O.D. leadership is in hiding. All Vrij-Nederland people and
those of De Geus, and Je Maintiendrai, and Trouw, and De Waarheid are in hiding.285

In hiding, leaving behind wives and children! No, the little piece of advertising says
“going into hiding was out of the question.” And then the explosion comes: “. . .and
there was also no clear resistance [to the Germans] yet”!!! See above, reader! Novem-
ber 1942. Hundreds have been shot for the resistance. Thousands are in camps. Other
thousands have gone under. The illegal press flourishes (Parool 15,000 copies!). “No,
there was no clear resistance yet,” the writer of the little piece of advertising says.

281 Pieter ’t Hoen was the pseudonym of the Amsterdam journalist Frans Johannes Goedhart (1904–
1990), the founder of Het Parool, who was arrested in January 1942. [Kei] reports that “Goedhart was one
of the twenty-three suspects to be brought to trial before the German magistrate in the first Parool trial in
December 1942. Seventeen death sentences were pronounced and thirteen Parool workers were executed
by firing squad in February 1943. Goedhart managed to obtain a reprieve. He escaped in September 1943
and resumed his position on the editorial board.”
282 Herman Bernard Wiardi Beckman, (1904-Dachau, March 15, 1945), a member of the Editorial Board
of Het Parool, one of the intellectuals of the SDAP (De Sociaal-Democratische Arbeiders Partij), arrested
in January 1942, he ended his life in the Nazi concentration camp Dachau.
283 Jacobus Jan (Koos) Vorrink (1891–1955), a member of the Editorial Board of Het Parool, chairman
of SDAP (De Sociaal-Democratische Arbeiders Partij) and later of PvdA (De Partij van de Arbeid, labor
party), was arrested on April 1, 1943, and later sent to the Nazi Concentration Camp Sachsenhausen,
from which he was liberated by the Soviet Army in 1945.
284 “O.D.” stands for Orde Dienst, a national resistance organization.
285 Vrij-Nederland, De Geus, Je Maintiendrai, Trouw, and De Waarheid were Dutch underground pub-
lications of the occupation period.
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There was such a clear resistance that Van der Waerden was advised by his imme-
diate environs not to return [to Germany]. He went anyway. For three more years he
taught in the enemy’s country for the enemy’s money. Who could stomach to suspend
an art student from the university for a few years while at the same time make Van der
Waerden a professor?

Clearly, the use of the expression “strong” anti-Nazi in Van der Waerden’s reply
to Het Parool was treated as an exaggeration and, understandably, it backfired. Now
that Van der Waerden initiated a discussion on the pages of the student’s weekly
Propria Cures, he received a reply from P. Peters, apparently a student, in the next
February 8, 1946 issue of the weekly [Pete]:

To Mr. Editor

During the last weeks there has been repeated mention in the press of the appoint-
ment of Prof. B. L. van der Waerden to a professor in the group theory of algebra
at our University. Still cloaked in the clouds of dust blown up by the return of other
professors one should be surprised by the fact that no attention has been devoted by P.
C. (Propria Cures) to the discussion of Prof. Van der Waerden.

Prof. Van der Waerden, as is well-known, taught during the entire war at the Uni-
versity of Leipzig.

In “Het Parool” he recently declared having been anti-Nazi. Be it as it may, it is
not entirely clear how to square this with his collaborative attitude, most tellingly illus-
trated by the fact that after the defeat of the Netherlands, as he had grown used to doing
before that time, every single day he gave Heil Hitler salute (Heil Hitlergroet) in public
at the start of his lectures to the enemy. Given the circumstances, it is hard to accept that
he continued to fulfill his function in Germany under duress; even more so because,
as was said, he was offered a professorship in the Netherlands. Subsequently, in his
defense (in “Het Parool”) he does not discuss the voluntariness of his collaboration.

How tedious the subject of the purification might have become, let there be no
double standard.

Would it therefore be more tactful if the [City] Council, which is still contemplating
his appointment, avoids the provocation here, and that Prof. Van der Waerden remains
content with his present job (with B.P.M.) for now?

P. Peters

This was not an opinion of just one student: Dr. P. J. Knegtmans in his monograph
[Kne2] reported about the protest of a major student organization:

The ASVA286 protested heavily against the coming of the mathematician Professor Van
der Waerden to the University of Amsterdam because he had taught throughout the
entire war at a German university.

286 According to Dr. Knegtmans [Kne3], ASVA stands for Algemene Studenten Vereniging Amsterdam, a
new general student union that had emerged from the circles in the Amsterdam student resistance. During
the first postwar years it was very keen on matters involving the behavior of old and new professors during
the war.
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More precisely, Knegtmans reports in an e-mail to me [Kne3] that on February
5, 1946 ASVA wrote a letter to B. & W.287 According to Dr. Knegtmans’s notes
(translated by him for me), the letter said:

Word has reached the ASVA that Burgemeester & Wethouders have proposed prof.
Dr. B. L. van der Waerden as professor at the University of Amsterdam. This proposal
has surprised the ASVA, considering the fact that during the war prof. Van der Waerden
has been professor at a German university.

The ASVA is under the impression that the College van Herstel also had had some
doubts, before it eventually advised Burgemeester & Wethouders to go ahead with this
proposal. However, the facts that have surfaced about Van der Waerden’s behaviour
during the war are so serious, that his assignment would be unacceptable for the stu-
dents, as long as the results of the investigations by the College van Herstel remain
unknown.

Therefore, the ASVA requests to reveal the grounds on which Burgemeester &
Wethouders think Van der Waerden is qualified for a position of professor at a Dutch
university.288

On April 17, 1946 the Burgemeester & Wethouders replied289 not to ASVA,
but to a “de-Nazification committee,” the College van Herstel of Amsterdam.
Dr. Knegtmans’s notes (translated by him for me) convey the following [Kne3]:

Burgemeester & Wethouders inform the College van Herstel that they felt obliged
to withdraw the nomination to appoint dr. B. L. van der Waerden as extra-ordinary
professor in group theory and algebra that they submitted to the city council on 4-
January-1946, as it turned out that the government would withhold its assent in the
event of an appointment of Dr. Van der Waerden.

This is an important document. It shows that:

1. Prof. Dr. Gerardus van der Leeuw, the minister of Education, Arts and Sciences
(Onderwijs, Kunsten en Wetenschappen), who initially did not object to Dr. Van
der Waerden’s appointment, changed his mind,290 likely due to Het Parool’s and
students’ inputs, and informed B. & W. accordingly.

287 B. & W. stands for Burgemeester & Wethouders, or Mayor and (at the time six) Aldermen, or the
Executive Committee of the City of Amsterdam.
288 Archives of the ASVA in the International Institute for Social History in Amsterdam.
289 The Archives of the College van Curatoren in the Municipal Archives of Amsterdam (Gemeen-
tearchief Amsterdam).
290 In fact, Minister Van der Leeuw telephoned the Mayor of Amsterdam de Boer and asked for informa-
tion about Van der Waerden. On February 15, 1946, Mayor de Boer sent the Minister a two-page glowing
report, prepared by Van der Corput and signed by the Mayor. It included a mention of Samuel Goudsmit,
whom we will soon meet in this chapter: “Professor Goudsmit who as chair of American bureau in
Paris had a task of investigating political activities of professors in Germany has told Professor Clay and
Professor Michels that his investigation did not show anything against Prof. vdW. And a telegram was
received by Clay from Goudsmith ‘Preliminary Informations favorable.” (Het Nationaal Archief, Den
Haag, finding aid number 2.14.17, record number 73, Archive of the Ministry of Education.)
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2. Contrary to Dr. Van der Waerden’s statement to me [Wae25], the “de-
Nazification” committee, College van Herstel (CvH) of the University of
Amsterdam did investigate Van der Waerden, since the B. & W. letter about Van
der Waerden was addressed to CvH. Moreover, I have now received documents
of College van Herstel en Zuivering of Utrecht, which specifically deal with Dr.
Van der Waerden’s case among other matters.

3. Royal assent was required for a professorial appointment at any Dutch univer-
sity, including the municipal University of Amsterdam. Prof. van der Waerden
(as well as, apparently, his colleagues Van der Corput and Clay) had never
understood this last point, for even in 1993 he told his interviewer Prof. Dold-
Samplonius [Dol1] that “Amsterdam is a city university, and there the queen
was unable to interfere.” In fact, The University Historian of the University of
Amsterdam Dr. Knegtmans advises me as follows [Kne5]:

If Clay and Van der Corput really thought that an appointment as professor at the Uni-
versity of Amsterdam by the city council did not need approval by the queen, they were
mistaken. It did so by law of 1876 and this procedure was not changed until sometime
around 1980. However, approval by the queen did and does in fact mean approval of
the minister (of Education, in this case). The queen was and is not supposed to have an
opinion of her own. This [is] the minister’s responsibility. It is the minister who advises
the queen what to do: to give or not to give her approval. In Van der Waerden’s case
this meant that the then minister of Education, professor Gerardus van der Leeuw, pro-
fessor of theology [as well as religions and Egyptology] at the Groningen University,
who was minister in the first postwar year, withheld his approval of Van der Waerden’s
appointment as professor in Utrecht as well as in Amsterdam. Van der Waerden was
probably not appointed in Utrecht at all, because it was Van der Leeuw who had to
appoint him. He was probably only proposed as professor by the College van Herstel in
Utrecht.

In the end, the media and students held feet of the academics and the governments
to such a hot fire that the latter, convinced or not of the validity of the arguments,
were so scared to err in the public eye on the serious issues raised by the press
and students, that they gave up trying to place Dr. Van der Waerden in a Dutch
university. Moreover, on March 13 1946, this was formalized in a letter from Dr.
Gerardus J. van der Leeuw, Minister of Education, Arts and Sciences (Onderwijs,
Kunsten en Wetenschappen) to College van Herstel en Zuivering of the Utrecht
University:291

I notify you that the Council of Ministers has decided that persons, who during the
occupation years have continuously worked in Germany out of their free will, cannot
now be considered for government appointments.

291 This letter is a part of the documents provided to me by the Utrecht University Archives. These
documents show that the Utrecht’s College van Herstel en Zuivering was impressed by Van der Waerden
retaining his Dutch citizenship while in Germany during the years 1931–1945, and thus favored Dr. Van
der Waerden for the Utrecht job until this letter arrived.
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The reason for the decision was the discussion of a possible appointment of
Dr. B. L. van der Waerden to professor in Amsterdam.

It will be clear to you that the appointment of dr. Van der Waerden either in Ams-
terdam or in Utrecht cannot take place.

The Minister of Education, Arts and Sciences
Signed for the Minister by Secretary-General H. J. Reinink

Amazingly, Van der Waerden’s individual case prompted the government of the
Netherlands to pass a new order, banning all “persons, who during the occupation
years have continuously worked in Germany” from all of the government jobs!

I was unable to find Van der Corput’s opinion about the Het Parool Affair, but I
have just found the second best thing: the opinion of the second major supporter of
Van der Waerden at Amsterdam, Prof. Jacob Clay. Clay wrote to Van der Waerden
as follows just 6 days after the Minister’s decision, on March 19, 1946:292

Dear v d Waerden,
To my great regret our plan has not materialized at the last moment. The City gov-
ernment had already been convinced that the appointment was appropriate when the
decision from the Minister came that nobody who has worked in Germany during the
war, without any exceptions, for the time being would receive an appointment in public
service. The response that I had prepared was not looked at, and in retrospect I am sorry
that I have allowed the Alderman293 to keep me from responding to Het Parool. When
so much time has passed, it seems better not to bring these things up again. I now hope
very strongly that we will receive a better collaboration for the Mathematical Centre
and that in time this matter will still work out OK, and I do not doubt that this is going
to happen in time.

39.2 Job History 1945–1947

Upon his return to the Netherlands in late June 1945, Dr. Van der Waerden needed a
job as soon as possible. His friend, Hans Freudenthal, came through. He introduced
Van der Waerden to Bataafsche Petroleum Maatschappij (B.P.M.), today known as
Royal Dutch Shell, and on October 1, 1945 Van der Waerden got his first post-
W.W.II job as an analyst for B.P.M. In 1994 Van der Waerden recalled [Dol1]:

One day Freudenthal called me and wanted me to come to Amsterdam to talk. I went
to Amsterdam, and Freudenthal told me that he was able to find a position for me at
Shell. “Would you accept it?” Yes, of course; I accepted it most willingly.

Yet, Mrs. Van der Waerden was clearly bitter. We see it even half a century later
in this 1994 interview [Dol1] which continues with her words:

So we were saved. I have always said that they can take everything away from us but
our intellect.

292 ETH Hs652: 10646.
293 Clay here clearly refers to Albertus de Roos, the Alderman for Education and Arts.



39 In Search of Van der Waerden 459

Who are “they”? Who was taking “everything away” from the Van der Waerdens,
the Dutch people and the Queen, who refused to sign off on a university professor-
ship?

In 1946 a group of mathematicians, lead by Professor. Van der Corput, founded
the Mathematisch Centrum, MC for short (Mathematics Center) in Amsterdam. As
MC’s first director, Van der Corput hired Dr. Van der Waerden to a part-time (one
day a week) position as the applied mathematics director of the MC.

At this point Zürich enters the stage in our narration. The life-long ETH-
Zürich294 Professor Beno Eckmann recalls [Eck1]:

In 1944 Speiser295 left Zurich for Basel. Finsler296 was promoted and became his suc-
cessor in Zürich; Finsler had been associate professor of applied mathematics. So in
1944 the chair of applied mathematics became vacant. Lars Ahlfors297 was appointed
in 1945, but he left after 3 semesters. . .

Olli Lehto explains [Leh]: “Ahlfors did not stay long in Zürich; later he confessed
that he did not have a good time there.” Consequently Ahlfors gladly accepted
an offer to return to Harvard University (where he worked 1935–1938), and he
remained there for decades (1946–1977, afterward as an active Professor Emeritus).
The University of Zürich upgraded Ahlfors’ position (who was an extraordinary
professor) to a full ordinarius and started the search for his replacement.

In a fateful coincidence, the search started on March 13, 1946, the very same day
the Dutch Minister van der Leeuw announced to Utrecht the prohibition of all govern-
mental appointments for persons with backgrounds similar to Van der Waerden’s.

Dr. Heinzpeter Stucki, Universitätsarchivar, found only one document related
to this search, which, actually, proved to be of great significance: the six-page
July 15, 1946 report by Dekan H. Steiner to Executive authority (Regierungsrat)
Dr. R. Briner of the Education Directorate (Erziehungedirection) of the Zürich
Canton.298 Steiner chose two foreign mathematicians:

Prominent mathematicians are available today for a short time, and the two world-
famous mathematicians in question are: Rolf Nevanlinna299 (Finland) and Prof. van
der Waerden (Holland).

294 ETH, short for the Eidgenössische Technische Hochschule Zürich, often called Swiss Federal Insti-
tute of Technology is one of world’s premier universities and research centers.
295 Andreas Speiser (1885–1970), a professor of mathematics at the University of Zürich (1917–1944)
and then at the University of Basel.
296 Paul Finsler (1894–1970), a professor of mathematics at the University of Zürich (1927–1959) and
Honorary Professor thereafter.
297 Lars Valerian Ahlfors (Finland, 1907–USA, 1996), a professor of mathematics at Harvard University
(1946–1977), one of two first Fields Medal winners (1936).
298 Universität Zürich, Universitätsarchiv, ALF Mathematik 1944–1946.
299 Rolf Herman Nevanlinna (1895–1980), a professor of mathematics (1926–1946) and Rektor (1941–
1944) at Helsinki University; professor of applied mathematics at the University of Zürich (1946–1963,
Honorary Professor starting in 1949).



460 VII Colored Integers

Dekan assessed the candidacy of Prof. Nevanlinna first. After praising his math-
ematical achievements, Dekan addressed the personality of the candidate:

He was born on October 22, 1895 in Joensuu (Finland) and for many years he was
Rektor of the University of Helsinki. He had to leave this position in the consequence
of the political circumstances after the end of the war. Consequently, as he briefly
communicated, he is ready for an appointment at Zurich. . .

This was a rather short assessment: born-rektored-forced to resign. Looking at
this 15-page summary [Ste] of the 317-page biography of Rolf Nevanlinna, written
by his student (Ph.D., 1949) and advocate Olli Lehto, one is compelled to quote at
least some information, which should have been relevant to the neutral Switzerland
just 1 year after World War II:

In 1933 Hitler became the German Reichskanzler. Up to the year 1943 Nevanlinna was
of the opinion that Hitler in German history can be compared to Friedrich the Great
and Bismarck. . . He and other members of his family regarded the cause of the Nazi
Germany as their own cause. Germany was Nevanlinna’s motherland (his mother was
German). . . This contributed to. . . his Nazi-friendly convictions in particular, which
he expressed in a series of speeches and publications. Nevanlinna, however, has never
been a member of a National Socialist party and did not held anti-Semitic positions. . .

When in Finland as well as in Germany the thought arose to establish a Finnish
Volunteers Battalion, Nevanlinna welcomed this idea and agreed to the deployment
of volunteers unreservedly. On the demand of [Reichsführer SS] Himmler there was
developed the [Finnish] SS Battalion, and in the summer of 1942 Nevanlinna became
the Chairman of the SS Volunteers Committee of this Battalion!

Prof. Nevanlinna was the first choice of the University of Zürich. Dekan Steiner
then moved on to his second choice, Dr. Van der Waerden. Steiner admitted that

since he [Van der Waerden] became politically strongly disputed in Holland, the real
state of affairs had to be clarified.

Dekan then quoted a clarification supplied by the Dutch mathematician Jan A.
Schouten,300 who at that time lived in seclusion in Epe, The Netherlands:

Herr van der Waerden. . . remained during the war in Germany, to which he did not
have any military obligation, and he always behaved there as an enemy of Nazism and
in particular did much good for the Jews. The State Commission for Coordination of
Higher Education, which has been established here after the war, and of which I have
the honor to be a member, would have liked to have Herr van der Waerden in Amster-
dam or Utrecht. After putting him through the test, the “Cleansing Commission” found
him pure, and the Minister of Education was ready to appoint him. Then a Jewish
brother-in-law of Herr v. d. Waerden, who disliked him and particularly his (German)
wife for already a long time, unleashed a terribly dirty (hundsgemeine) agitation in the

300 Jan Arnoldus Schouten (1883–1971), from a well-known wealthy family of shipbuilders, a professor
of mathematics and mechanics at the Delft Technical University (1914–1943), extraordinary professor
(without teaching) of mathematics at Amsterdam University (1948–1953). Schouten was President of the
1954 International Congress of Mathematicians at Amsterdam.
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press. The Minister, who is no strong personality and who already had heavy unpleas-
antness with others such agitations, has thereupon allowed to intimidate himself. They
[the Dutch] cannot imagine themselves at all, what unhealthy conditions prevail here,
dirty malicious agitation with self-interest and political purposes, stemming from the
agenda many times born from craving for revenge. . .

Our principal purpose was to keep Herr v. d. Waerden provisionally for Holland, so
that as soon as the wave of hate and suspicion passes, to give him Ordinarius Professor,
as to a great mathematician.

These harsh words, directed at the recently liberated Netherlands, were intended
to make Dr. Van der Waerden appear as a victim of extremism. It must be said
that Dr. Schouten peddled gossip to the Swiss: Van der Waerden had no sisters and
thus had no brother-in-law, Jewish or otherwise. Regardless, so many Jews recently
had been killed, that it was in poor taste to blame a Jew for Van der Waerden’s
employment difficulties. But to claim that one ordinary person, Jewish or not, was
able to “unleash a terribly dirty agitation in the press” meant to take Zürich Faculty
for fools. Unbelievably, Dekan had accepted Dr. Schouten’s words as the truth, and
concluded Van der Waerden’s political evaluation with

No reason is thus present to refrain from a possible appointment of Herr v. d. Waerden
in Zurich.

Thus, two top choices, two world-class mathematicians, two individuals whose
political and moral choices were questioned during the immediate post-W.W.II time,
ended up at the top of the Swiss wish list. Nevanlinna was chosen for the position.
Prof. Beno Eckmann has summed up this succession as follows [Eck3]:

If I may make a remark as I see it today [in 2004]: Politically Nevanlinna and vdW
[Van der Waerden] were not easy cases for Switzerland one year after the war. But Uni-
versities tried to forget the past and look into the future. The decision for Nevanlinna
must have been mathematical: he was absolutely world famous and at that time many
mathematicians still considered analysis to be the most important part of mathemat-
ics – this has changed soon, algebra and topology became more and more important.

Indeed, this affair showed that the Swiss neutrality was a pragmatic rather than a
moral choice, façade rather than substance. Later Dekan Boesch would write about
this search as follows:301

It is explicit from the Faculty proposal for filling a new position of Professor of Applied
MathematicsdatedJuly15,1946, thatProf.VanderWaerdenwas thoroughlyconsidered.

Indeed, Dr. Van der Waerden was thoroughly considered, and the interest in
hiring Van der Waerden was high. In a few years this 1946 consideration would
bear fruit. Meanwhile, Van der Waerden continued his full-time work at Bataafsche
Petroleum Maatschappij (B.P.M.), and part-time work at the Mathematisch Centrum
(Mathematics Center).

301 Dekan Hans Boesch to Education Directorate [Erziehungedirection] of the Canton of Zürich, June 9,
1950; Universität Zürich, Universitätsarchiv, Lehrstuhlakten Mathematik.
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39.3 “America! America!”302

Van der Waerden surely wanted a university professorship—he held one since the
tender age of 25. As we know from his letters to Lefschetz, Veblen, Neugebauer, and
Courant, his first choice was an academic job in the United States. In early 1947,
Dr. Van der Waerden received a letter from Baltimore, Maryland that offered him both
a university professorship and an opportunity to live in America. Frank Murnaghan,303

the Johns Hopkins University’s chair of mathematics, offered Van der Waerden the
position of a Visiting Professor. In his May 5, 1947 letter, Van der Waerden informed
Johns Hopkins’ President Isaiah Bowman of his acceptance “with much pleasure.”304

Coincidentally, on the same day, May 5, 1947, the Board of Trustees of Johns Hopkins
approved the appointment. From their minutes we learn that the appointment was
effective July 1, 1947 to June 30, 1948.305 On May 13, 1947 the Provost Stewart
Macaulay specified Prof. Van der Waerden’s salary as $6,500 for the year.306 The Van
der Waerdens—Bartel, Camilla, Helga, Ilse, and Hans Erik—boarded the ship called
Veendam, which arrived in Port New York on September 29 or 30, 1947.307

At Johns Hopkins, Professor Van der Waerden was well respected, and was
offered a permanent professorship. This offer was made suddenly, and appeared
to have been the result of an unspecified “emergency,” as it was called in a number
of documents,308 which happened at Johns Hopkins University in the early February
1948.309 On February 6, 1948 President Bowman swiftly formed a special commit-
tee and wrote to its members the following letter:

An emergency has arisen in the Department of Mathematics that calls for early action
on an appointment recommended by both Dr. Murnaghan and Dr. Wintner310. The can-
didate is Dr. van der Waerden. . .You have received telephone notice of an Academic
Council meeting at 8:30 a.m. on Monday, February 9, in Room 315 Gilman Hall. You
will want to study the enclosed material on Professor van der Waerden before the
meeting.

302 From America the Beautiful, a song by Katharine Lee Bates.
303 Francis Dominic Murnaghan (1893–1976), mathematics chair at Johns Hopkins University (1928–
1948).
304 Johns Hopkins University (JHU), The Milton S. Eisenhower Library, Record Group 01.001 Board of
Trustees, Series 2, Minutes, May 5, 1947.
305 Ibid.
306 Ibid.
307 Ibid.
308 JHU, Record Group 01.001 Board of Trustees, Series 2, Minutes, 2/9/1948.
309 J. J. O’Connor and E. F. Robertson write as follows in The MacTutor History of Mathemat-
ics archive: “He [Murnaghan] held this post until 1948 when he retired after a disagreement with
the President of Johns Hopkins University, and went to Sao Paulo, Brazil” (http://www-history.mcs.
st-andrews.ac.uk/Mathematicians/Murnaghan.html). Did this disagreement take place? If so, was this
chair’s departure (chair did depart) the “emergency” that prompted such a rush in making Prof. van der
Waerden this offer? I was unable to confirm it.
310 Aurel Friedrich Wintner (Budapest, 1903- Baltimore, 1958), one of the leading mathematics profes-
sors at Johns Hopkins University (1930–1958).
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This was a short notice indeed. The next day, on Saturday (!), on February 7,
1948, the special committee, chaired by the chemist Alsoph H. Corwin, unani-
mously approved the mathematics department’s recommendation without the usual
external letters of reference. On Monday, February 9, 1948, the Academic Coun-
cil, also chaired by Prof. Corwin, at its special 20-minute meeting (8:30 A.M.
to 8:50 A.M.) “voted to suspend its hold-over rule and unanimously recommend
the appointment of Dr. van der Waerden” to the President. That same day (!), the
Board of Trustees approved the appointment of Prof. van der Waerden to a Full
Professorship that paid “$8,000 first year; $9,000 second year; and $10,000 third
year.”311 Amazingly, Van der Waerden turned down this offer and chose to return
to the Netherlands. Instead of himself he recommended his former Leipzig Ph. D.
student (Ph. D., 1936) and coauthor Wei-Liang Chow for the position. Chow would
indeed be hired the following year, and would serve as Professor at Johns Hopkins
for nearly three decades (1949–1977), including over ten years as the chair.

In 1945, Van der Waerden wanted badly to come and live in America. He got
such an opportunity in 1947. Why then in 1948 did he decide to reject a prestigious,
well-paid professorship at Johns Hopkins and leave America? He returned to Ams-
terdam, where, rightly or wrongly, he was not treated particularly warmly during
1945–1947. Was his treatment in the United States worse? I tried—and failed—to
find answers in the Archives of Johns Hopkins University. The investigative thread
seemed to have run into the dead end.

The time had passed. One day in my office I glanced at the many books on the
shelves, and picked one to read at home. It happened to be Heisenberg’s War: The
Secret History of the German Bomb by the Pulitzer Prize winner Thomas Powers. It
was a great read; moreover, Van der Waerden made a cameo appearance on the pages
of the book. So far no surprises: as we know from chapter 37, Van der Waerden
was Heisenberg’s friend at Leipzig and attended Heisenberg and Hund’s seminar
on quantum mechanics. However, here Van der Waerden appeared as Heisenberg’s
American pen pal in 1947–1948. The letters were quoted from the 1987 Princeton-
History Ph. D. thesis of Mark Walker, defended under the supervision of my dear
Princeton friend and the founder of the history of science program Charles Gillispie.
I was intrigued—and telephoned Tom Powers at his Vermont country home. Powers
led me to Walker—Walker sent me copies of the Heisenberg–Van der Waerden cor-
respondence. The answers to my questions were hidden in these letters!

Yes, the surprising answers were hidden in the Werner Heisenberg Archive in
Munich, in the unpublished December 22, 1947 letter from Van der Waerden to the
1932 Nobel Laureate and his friend Werner Heisenberg. I read in excitement and
disbelief:312

311 JHU, Record Group 01.001 Board of Trustees, Series 2, Minutes, February 9, 1948.
312 Van der Waerden’s letter to Heisenberg, December 22, 1947, Private Papers of Werner Heisenberg,
Max Plank Institute for Physics, Munich. I am most grateful to Prof. Mark Walker for sharing with
me the 1947–1948 correspondence between Van der Waerden and Heisenberg, and Van der Waerden
and Goudsmit, as well as Heisenberg’s unpublished work Die aktive und die passive Opposition im
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Dear Herr Heisenberg,
On the 9th of October I have sent you a care-package, write to me please if it has

arrived and how you are doing with groceries. I would be very glad to send you more
next year. I am still in your debt: in the past when I was arrested, you helped me to
something much greater, and that is freedom.

I need your advice: you are a reasonable man and at the beginning of this war,
you predicted who in the end would be the victor. I think I will receive an offer to be
a professor in Baltimore, and then I must decide either in favor of Baltimore Johns
Hopkins or Holland. In Holland, I would do for the most part applied mathematics and
I would train applied mathematicians at the newly founded Math. Centrum and at my
oil company. I like this work very well and my work at Johns Hopkins I like too, so this
[aspect] is equal. The people here are unbelievably nice and helpful: you know that.
Nevertheless, I would rather stay in Europe: I love Old Europe and so does my wife.

Thus, Van der Waerden liked his job at Johns Hopkins and considered American
people to be “unbelievably nice and helpful.” Yet, Bartel and Camilla van der Waer-
den preferred “Old Europe.” Fair enough, one can relate to that. However, his main
concern about living in Baltimore popped up in the next paragraph:

Now my question: how do you judge the prospects for war, and how do you judge
the question whether one could better secure one’s family in America or Holland if
the insanity would break out? The people here and in Europe are telling us that it is
crazy, that it is insanity, and that if you have a possibility to stay in America, it is
insanity to go back to Holland. Personally I do not believe there will be war, but if it
nonetheless should come, then an American big city does not seem to me to be the
most secure place in the world, but in the past I have been very mistaken in similar
cases and do not want to have a responsibility on my shoulders for leading my wife
and children to ruin. You understand more about nuclear physics than I do; what do
you think about this?

Here I have spoken with different people, and gotten a definite impression that
America would never start a war on its own, which has set me to rest.

Van der Waerden was afraid that in a large American city—Baltimore—his wife
and children would be in a real danger of a Russian atomic bomb attack! This may
sound irrational to us looking from today to the year 1947. However, I, recall similar
fears experienced by Van der Waerden’s successor at the University of Amsterdam,
Prof. N.G. de Bruijn, who wrote to me about it in his June 1, 2004 e-mail [Bru9]:

. . .in 1952 I got a professorship in Amsterdam and. . .I preferred not to live in town but
in a village 20 kilometers to the east of it. Nobody would believe now that one reason
I had at that time was that in a Russian atomic attack my family would be pretty safe
at that distance. A few years later atomic bombs would be hundred times as strong as
the Hiroshima type, so the whole argument became utterly silly.

Dritten Reich used in this chapter. Walker was first to discover and use them in his research, dissertation
[Wal1] and the book [Wal2]. His main interest was the physicists Heisenberg and Goudsmit and their
debate; mine is Van der Waerden, hence I am quoting somewhat different passages from these important
materials, and offer my own analysis of them. I also thank Dr. Helmut Rechenberg, Heisenberg’s last
Ph. D. student and Director of the Werner Heisenberg Archive for the permission to reproduce these
materials.
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Van der Waerden concluded his December 22, 1947 letter to Heisenberg with the
hope that Germany would be rebuilt and they would once again work there together:

They [Americans] even see in all seriousness a desire to support the reconstruction of
Germany, which I am very happy about. [Richard] Courant thinks that because of the
Marshall plan, in some years Germany would once again reach the heights. Maybe we
will get together again!

In the March 16, 1948 letter, Van der Waerden informed Heisenberg that “In
principle, I have accepted the job offer from [the University of] Amsterdam.” Before
we follow Professor Van der Waerden to Amsterdam, we will briefly visit a “letteral
triangle,” which could be a subject of a wholly separate book.

39.4 Van der Waerden, Goudsmit and Heisenberg: A ‘Letteral
Triangle’

Over the last 2 years of the World War II, Dr. Samuel A. Goudsmit,313 an Amer-
ican nuclear physicist born in the Netherlands, served as the Chief of Scientific
Intelligence of the U.S. War Department’s Alsos Missions, dedicated to gathering
information about the German nuclear program, capturing its materials, equipment
and records, and capturing and interrogating its leading scientists. In his 1947 book,
entitled Alsos [Gou] Goudsmit attributed the German fiasco in building the atomic
bomb to the treatment of science in the totalitarian Nazi state and scientific blunders
of Werner Heisenberg and other scientists, rather than to Heisenberg’s concerns for
the fate of the humanity. The book prompted public and private debate between the
two old friends, Goudsmit and Heisenberg. Much more about the Alsos Mission and
the debate can be found in [Pow] and [Wal1] respectively. Of course, we have rich
eyewitness accounts written by Alsos’s major players in [Gou], [Pash], and [Grö].

Upon reading Alsos, on March 17, 1948, Van der Waerden wrote a letter to
Samuel A. Goudsmit that opened with high praise:

With great interest I have read Alsos. It has kept me in tension during half of the night.
Your picture of characters is excellent: by a few strokes men like Bothe, Weiszäcker,
Mentzel, Osenberg are drawn down to their feet. Also the main actor has been well
approached: the somewhat mysterious character of W. H. [Werner Heisenberg] has
now become clearer to me in several respects. What you write about the causes of
the German failure [to produce atomic bomb], about self-overestimation and clique-
mentality is well motivated and certainly correct.314

He then posed a number of important questions:

313 Samuel Abraham Goudsmit (1902, Den Haag-1978, USA); Max Planck Medal, 1964.
314 I left unedited the Dutch into English translations of this letter and the following Goudsmit’s reply,
because these translations were made by Van der Waerden himself for Dr. Mark Walker, who has kindly
shared them with me.
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You write, “The bomb is what they were after.” How do you know that, or rather what
do you mean exactly? Do you mean that these people, knowing who Hitler is, planned
the horrible crime to give into his hands an atomic bomb? If this is what you mean,
what proofs do you have for this horrible accusation? As far as I can see it is only the
document on page 178315. . .

Goudsmit replied in March (no date), 1948:316

I don’t agree with you that it is a crime that they worked on it. It’s a thing you cannot
stop. It is a kind of scientific triumph, of which you realize the consequences only
when it is too late. If they really had succeeded, I am firmly convinced that von Laue
would have done his very best to prevent its use. But it would have been in vain. The
same thing happened here [in the US]. Before the bomb was used, several colleagues
have issued a petition not to use the bomb.

Goudsmit then sited a number of documents in his book Alsos and outside of it
that showed that the German scientists worked in the direction that led to an atomic
bomb, and advised the Nazi authorities accordingly. The main reasons for failure,
in his opinion, were scientific errors of the German scientists:

. . . they did not understand that it was possible to make a small bomb.

In his March 16, 1948 letter to Heisenberg, Van der Waerden copied the words
he wrote to Goudsmit, and assured his friend of the Leipzig years Heisenberg of his
support:317

Since coming here I have tried in a cautious way to defend you.

Following a long conversation with Goudsmit, Van der Waerden wrote two more
letters to Heisenberg. In studying Van der Waerden, I clearly see that he had always
valued the character of a person (himself included) more than the person’s deeds.
Likewise, he advised Heisenberg in the first April 19, 1948 letter:318

Questions like the one about the complacency [English word used] of the German
physicists and about things you and your friends failed to see – questions like these
lose importance in my eyes, compared to the much more important ones, whether
your character [sic] is to be criticized, and whether one can and should work with you
together.

The following day, Van der Waerden, like a good defense attorney, decided to
teach his friend Heisenberg how to defend himself by asking him a series of leading
questions that contained answers desired by Van der Waerden:319

315 A secret Gestapo summary, dated May 1943, enumerating two applications of uranium fission: the
Uranium Engine, and the Uranium Bomb.
316 Private Papers of Werner Heisenberg, Max Plank Institute for Physics, Munich.
317 Ibid.
318 Ibid.
319 Ibid.
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G. [Goudsmit] thinks that if you and your group found plutonium, you would have
decided to make the bomb. Afterwards many of you would have tried to prevent the
use but it would have been in vain. I have held on to the possibility that you would
have stopped this thing. For support, I have pointed to your sentence: “We always
thought to keep this thing in our hands.” We have then got to the legal question of not
to condemning in dubio pro reo [Latin: the presumption of innocence].

But personally I would like to know your answer to this question. Surely you have
considered it. When you wrote to higher authorities about possible [atomic] explosives,
was all that only a pretense in order to get money for physics? Did you firmly decide
to never in any circumstances to let it go that far? Then everything would have been in
order; in regards to these people every deceit would be permitted. Or?

You understand what I mean. As your attorney, I have enough facts to defend you.
But as your friend I would so terribly like to believe that under all circumstances your
decency would have been stronger than your nationalism plus ambition. Can you give
this belief a support? Have you had any conversations with trusted persons that could
give me a place to begin? And what does Hahn think about this question?

Indeed, was Heisenberg’s decency, under all circumstances including the Nazi
regime, stronger than Heisenberg’s enormous nationalism and ambition? In his heart
of hearts, Van der Waerden probably knew the answer but did not wish to believe it.
He was determined to continue his work of defending Heisenberg “in cautious way.”
However, some doubt can be seen in Van der Waerden’s next, April 28, 1948 letter
to Heisenberg (even though he always publicly defended Heisenberg). Apparently,
in the non-surviving April 1, 1948 letter, Heisenberg approved Van der Waerden as
his (unofficial, of course) defense attorney, and advised Van der Waerden to start his
defense by the invocation of the Nazi “atmosphere.” Van der Waerden replied:320

Unfortunately, I cannot begin with “atmosphere.” It is so inconceivable, everyone feels
the atmosphere differently! What I need is concrete statements, decisions, conversa-
tions, and so on, which you have had.

Also even the mere denial “This statement has naturally never been made in this
way,” would be useful for me. You are supposed to have said “How nice it would have
been if we had won.” That is allegedly the literal statement. Can you remember what
you said, if not this? Or, did you mean something different by that?

Of course, you are right, that in the questions of “German” Physics you have
achieved a real success and of course it is irrelevant to hold it against you. Neverthe-
less, the reaction of the others is not inconceivable. It is not logical I admit. However,
emotionally it is conceivable. Do you still remember what I said to you when you
gave me to read an article in the Schwarzen Corps? That is a nice title: White Jew,
you can be proud of that. Instead of being proud, you were angry about the article. Of
course, you were right that in the interests of physics you have acted as you did in the
connection with [Niels] Bohr. However, on the other side, could you have contact with
these people, exercise influence over them without compromising yourself? I assume
yes, but I can understand if others do not believe it.

320 Ibid.
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Only one Heisenberg’s reply, apparently, survives that of April 28, 1948. Heisen-
berg warns Van der Waerden that:

. . . because every letter from Germany is read by the censor, and therefore particularly
when it has to do with the matter of atomic bomb, and is finally somehow made public,
I must write to you more briefly and “more officially” than I would like to.321

Heisenberg then repeats his, now well-known and well-contested, explanations
of the German failure to produce an atomic bomb. He even goes as far as to insinuate
his belief in the moral superiority of the German physicists over the Allied:

You want to know basically my human position to this question. At the beginning of
the war when I was drawn in the work on uranium, at first I found out. . .what was
possible in this area. When I (end of 1941) knew that the uranium pile would work
and that one probably would be able to make atomic bombs (. . .I thought the effort
would be still larger than it in fact was), I was deeply horrified by the possibility that
one could give such weapons to any person in power (not only Hitler).

When in the fall of 1941 I spoke with Niels Bohr in Copenhagen, I directed this
question to him whether physicist had the moral right to work on atomic problems
during war. Bohr asked back whether I believed that the military application of atomic
energy was possible, and I answered: yes, I knew it. I then repeated my question and
Bohr answered to my surprise that the military involvement of physicists is inevitable
in all countries, and therefore it was also justified. . .

When at the beginning of 1942 in Germany the official discussions about the ura-
nium problems began, I was very happy about it that the decision had been taken from
us. The Führer’s orders prevented large efforts for atomic bombs. Besides irrespective
of that, it was clear that atomic bombs in Germany would never be completed during
the war. I would have regarded it in any case a crime to make atomic bombs for Hitler.
But I do not find it good that the atom bomb was given others in authority, in power,
and was used by them. On the other hand, I have also learned something from the
past years that my friends in the West do not really want to see, that in times like
these almost no one could avoid committing crimes or supporting crimes by inaction,
whether it is the Germans, the Russians or the side of the Anglo-Saxons. . .

1) P.S., reading this letter I see that the last sentence could be misunderstood in
two ways. First, one could think that I wanted to designate Oppenheimer or Fermi as
criminals or one can assume that under certain circumstances I would have been ready
to commit various crimes “for Hitler.” I hope you know me well enough to know that
both of these are not intended.

Heisenberg seems more sincere in the following passage of his New York Times
interview (in English):322

German sciences sank to a low ebb. I think I am safe in saying that, because of their
sense of decency most leading scientists [in the Nazi Germany] disliked the totalitarian
system. Yet as patriots who loved their country they could not refuse to work for the
Government when called upon.

321 Ibid.
322 Kaempffert, W., “Nazis Spurned Idea of an Atomic Bomb,” New York Times, Dec. 28, 1948, pg. 10.
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These words explain the rationale for Heisenberg’s choices. He subscribes to the
widely shared, but false notion of patriotism, according to which in times of war a
true patriot has to rally behind his government, even if the government is engaging
in ostensibly criminal activities.

Moreover, Heisenberg apparently considers himself to be in “active opposi-
tion” to the Nazi regime. Prof. Mark Walker found and first discussed [Wal1,
pp. 335–338] an amazing unpublished November 12, 1947 Heisenberg’s 4-page
paper Die aktive und die passive Opposition im Dritten Reich.323 I agree with
Walker’s analysis that while on the surface Heisenberg refers to the “active opposi-
tion” of the second highest ranked diplomat of the Third Reich Ernst von Weizsäcker
(the father of Heisen-berg’s friend and collaborator Kare Friedrich von Weiszäcker),
he counts himself among the active oppositionists. Werner Heisenberg must have
used all of his vast ingenuity to present a Nazi collaboration as “the active resis-
tance” to the Nazies! Those who were thrown out of the Nazi Germany, he labels as
being in “passive [read: worthless] opposition” (he even insinuates that they chose
the exile). Those who actively fought the regime he believes “did not understand the
stability of a modern dictatorship, tried the path of open, immediate resistance dur-
ing the first years and ended up in a concentration camp [read: worthless].” Heisen-
berg then describes the worthy and morally noble behavior in the Third Reich:

For the others who recognized the hopelessness of this way, there remained another
way, the attainment of a certain degree of influence, i.e., the attitude that had to appear
on the outside like collaboration [with the Nazi regime]. It is important to be clear that
this was in fact the only way really to change anything. This attitude that alone had con-
tained the prospect of replacing National Socialism with something better but without
enormous sacrifices, I would like to designate as the attitude of active opposition [sic].

On the outside the position of these people was much more difficult than that of
the others. Remember, the active opposition had to repeatedly make concessions to the
system on unimportant points in order to possess the influence to improve things on
important points. In a certain sense he had to play a double game. The unavoidable
difficult moral problem that was put before the member of the active opposition one
can understand by means of the following constructed case, to which the reality may
well have come close some times.

Heisenberg then illustrates his moral position with a hypothetical example. He
finds it acceptable—moreover, highly moral—to prove loyalty to the Nazis by sign-
ing a death sentence for an innocent person, if this allows saving other lives:

Let us assume that a man wishing to save human life comes into a position where
he really can decide about life and death of other people. And further let us assume,
and this in a really evil system as National Socialism is thoroughly thinkable that he
can only prevent the execution of 10 innocent people by means of signing a death
sentence for another innocent person. He knows that the 10 others will be executed

323 I thank Prof. Walker for sharing with me the text of this document. I also thank Dr. Helmut Rechen-
berg and Werner Heisenberg Archive he directs, for permitting to quote this document and Heisenberg’s
correspondence with Van der Waerden and Goudsmit.
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through the action of someone who will be put in his place if he does not sign the
death sentence. The fate of the one is in any case sealed, no matter whether he signs
or not, nothing is changed. So how should he act? Personally I believe that after a
conscientious reflection, that in such a case the signing a death sentence is demanded
of us, which entails of course that we are prepared to bear the consequences of that
personally. To measure this by the ultimate moral standards, it seems to me that a
person who acts and thinks in this manner stands higher than the one who simply says,
I do not want anything to do with all of this.

It seems as if the theoretical physicist Heisenberg justifies collaboration with the
Nazi regime and murder of an innocent person by a simple arithmetic calculation
10−1 = 9. Human life, in my opinion, carries infinite value, and if Heisenberg were
to understand that, his arithmetic would have given an uncertain result: 10×∞−1×
∞. Heisenberg’s allegory is a masterpiece of hypocrisy, in which he elevates Nazi
collaborators to heroes of active resistance, and denigrates into dummies the real
heroes, who fought the regime and paid the high price for it. The reader may recall
(Chapter 37) that Heisenberg sought and received protection personally from the SS
Reichsführer Himmler. Having attracted the high personal attention and patronage
of Himmler, Heisenberg could hardly allow himself as much as a whisper of an
opposition to the Nazi regime—but here, after the war, he insinuates that he was a
hero of “active resistance”!

I have got to quote here a passionate letter that the co-discoverer of nuclear fission
Lise Meitner wrote in late June 1945 to her coauthor Nobel Laureate Otto Hahn. She
addresses Hahn, Heisenberg, and other scientists who collaborated with the Third
Reich, and without even reading Heisenberg’s manuscript (which Heisenberg wrote
2 years later), she powerfully rebuts Heisenberg’s pretense of any resistance, even a
passive one [LS, p. 310]:

You all worked for Nazi Germany and you did not even try passive [sic] resistance.
Granted, to absolve your consciences you helped some oppressed person here and
there, but millions of innocent people were murdered and there was no protest. I must
write this to you, as so much depends upon your understanding of what you have
permitted to take place. Here in neutral Sweden, long before the end of the war, there
was discussion of what should be done with German scholars when the war was over.
What then must the English and the Americans be thinking? I and many others are
of the opinion that one path for you would be to deliver an open statement that you
are aware that through your passivity you share responsibility for what has happened,
and that you have the need to work for whatever can be done to make amends. But
many think it is too late for that. These people say that you first betrayed your friends,
then your men and your children in that you let them give their lives in a criminal war,
and finally you betrayed Germany itself, because even when the war was completely
hopeless, you never once spoke out against the meaningless destruction of Germany.
That sounds pitiless, but nevertheless I believe that the reason that I write this to you
is true friendship. You really cannot expect that the rest of the world feels sympathy
for Germany. In the last few days one has heard of the unbelievably gruesome things
in the concentration camps; it overwhelms everything one previously feared. When
I heard on English radio a very detailed report by the English and Americans about
Belsen and Buchenwald, I began to cry out loud and lay awake all night. And if you



39 In Search of Van der Waerden 471

had seen all those people who were brought here from the camps. One should take a
man like Heisenberg and millions like him, and force them to look at these camps and
the martyred people.

As to Heisenberg’s concept of moral superiority of the German physicists over
the Allied scientists, it was best refuted by Prof. Philip Morrison of Cornell Univer-
sity in his December 1947 review [Morr] of Goudsmit’s Alsos:

The documents cited in Alsos prove amply that, no different from their Allied coun-
terparts, the German scientists worked for the military as best their circumstances
allowed. But the difference, which it will never be possible to forgive, it that they
worked for the cause of Himmler and Auschwitz, for the burners of books, and the
takers of hostages. The community of science will be long delayed in welcoming the
armorers of the Nazis, even if their work was not successful.324

Regretfully, Morrison’s latter prediction had not materialized. Very soon, in
1950—and again in 1954—Heisenberg was invited for V.I.P.325 lecture tours to the
United States. On May 14, 1958, he was made a Foreign Honorary Member of the
American Academy of Arts and Sciences. After the war, Heisenberg could have
even been offered a job in the U.S., as were many of the Third Reich’s scientists and
engineers. America was acquiring ammunition for the Cold War and was paying a
high moral price for it.

Decades later, in 1989, Delia Meth-Cohn showed the pages of Mark Walker’s dis-
sertation [Wal1] with the Van der Waerden—Heisenberg correspondence to Dr. and
Mrs. Van der Waerden during the interview in their Zürich home. She recorded their
reaction as follows:

[Van der Waerden] was quite shocked to see the pages from his [Walker’s] dissertation
with the letters. He had no idea that these letters still existed – and his wife copied the
pages, almost in tears at how wonderful the letters were that her husband had written
to Heisenberg.326

324 I wish to note here that deplorably, the high moral authority of the Nazi years’ Germany, the Nobel
Laureate Max von Laue, added his insult to the Nazi injury of Goudsmit when he wrote, “We do know
that Goudsmit lost not only father and mother, but many near relatives as well, in Auschwitz and other
concentration camps. We realize fully what unutterable pain the mere word Auschwitz must always evoke
in him. But for that very reason one can recognize neither him, nor his reviewer Morrison, as capable
of an unbiased judgment of the particular circumstances of the present case” (Bulletin of the Atomic
Scientists 4(4), 1948, p. 103). Morrison was absolutely right in his reply: “I am of the opinion that it
is not Professor Goudsmit who cannot be unbiased, not he, who most surely should feel an unutterable
pain when the word Auschwitz is mentioned, but many a famous German physicist in Göttingen today
[Heisenberg], many a man of insight and responsibility, who could live for a decade in the Third Reich,
and never once risk his position of comfort and authority in real opposition to the men who could build
that infamous place of death” (Bulletin of the Atomic Scientists 4(4), 1948, p. 104).
325 Abbreviation for “Very Important Person.”
326 Meth-Cohn, D., Manuscript of Feb. 21, 1989, Zurich interview with B. L. van der Waerden, courtesy
of Mr. Thomas Powers, the author of the best-selling book [Pow], for whom Ms. Meth-Cohn conducted
this, mostly unpublished interview.
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39.5 Professorship at Amsterdam

By 1948, the de-Nazification of the Netherlands was over, and Colleges van Herstel
were gone. In addition, the American acceptance improved Dr. Van der Waerden’s
standing in Europe. Yet, L. E. J. Brouwer eloquently objected to Van der Waer-
den’s appointment in his April 15, 1948 letter to the Minister of Education. More-
over, Dirk van Dalen believes that “the feelings expressed in this passage perfectly
reflected the general opinion of the Dutch, and in particular the students, in the
matter”:327

From a researcher like Professor Van der Waerden, who is only theoretically, but
not experimentally active, the scientific influence is almost independent of personal
presence. Thus, as soon as a materially and scientifically favourable position has been
secured, the question of his presence here in the country loses all scientific and national
importance, and it becomes almost exclusively a matter of national prestige. From a
viewpoint of national prestige the motivation of his appointment here in the country
seems however extremely weak to the undersigned. For if it is claimed that by the
presence of Professor Van der Waerden in Amsterdam the strength of our nation is
enhanced, the reply is forced upon us that in that case the national strength of the
German empire has been enhanced during the whole period of the Hitler regime by the
presence of Professor Van der Waerden in Leipzig. And if it is argued that if Professor
Van der Waerden is not offered a suitable position in the Netherlands, this will be
done by America, the reply is forced upon us that if at the moment there are positions
open to Professor Van der Waerden in America, this should not have been less the case
between 1933 and 1940, when many prominent and right-minded German scholars
and artists were welcomed with open arms in America, and that therefore one has to
assume that Professor Van der Waerden had not felt the desire to turn his back on the
Hitler regime.

The late Prof. Herman Johan Arie Duparc (1918–2002) wrote down the follow-
ing recollections for me during our September 1996 meetings in his apartment in
Delft [Dup]:

Van der Corput and others feared again difficulties. He said to me: “Tomorrow vd
Waerden gives his first lecture; interesting; let us go there.” So we went there. There
were no difficulties.

So times seemed to have changed and they could make him professor of mathemat-
ics (analysis) in 1950.

Then Van der Corput and vd Waerden had a common room in Amsterdam Univer-
sity. When vd Corput went to the US in 1950, I had to take over his work in 1950 and
met vd Waerden regularly there.

According to Duparc, in 1948 Van der Waerden was appointed as a bijzonder
(special) professor of applied mathematics at the University of Amsterdam. This
part-time (“one day a week”, according to Duparc) position was paid by the Foun-
dation, which “was just a derivative of the Mathematical Centre, with Clay and

327 [Dal2], 829–830.
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Van der Corput in the driver’s seat,”328 and thus did not require an approval by
the Queen. This was a far cry from a tenured full professorship at Johns Hopkins
University that Van der Waerden turned down, but this was a start. Plus, this time
Van der Corput hired Van der Waerden as a full-time director of applied mathemat-
ics at the Amsterdam’s Mathematisch Centrum, where Van der Waerden worked
part-time in 1946–1947. Then there came the prestigious membership in the Royal
Dutch Academy of Arts and Sciences, which had to be—and was—approved by the
Queen. However, this, was not the same Queen Wilhelmina, who in 1946 rejected
Van der Waerden and others who voluntarily worked for the German occupiers. Her
daughter Queen Juliana, who took over in 1948, presided over less principled and
emotional times.

After the Minister of Education indicated that he—and Queen Juliana—would
have no objections, on April 19, 1950 Van der Waerden was finally appointed to
an Ordinarius chair (a full professor) by the City Council of Amsterdam, effective
October 1, 1950. It appeared that the relationship between Holland and her prodigal
son Bartel had been restored and was likely to grow closer in time. Van der Waerden
had a fine job, and was among talented and supportive colleagues. Yet he chose to
accept a chair at the University of Zürich. Van der Waerden de-facto included his
notice of resignation in his inaugural [sic] speech “Concerning the Space” [Wae12],
given on Monday, December 4, 1950, at 4 o’clock in the afternoon at the University
Auditorium:

Eminent Clay and Van der Corput,
With undaunted energy you both have organizationally prepared my appointment

to a Professor regardless of all difficulties and you have finally reached your goal. I
appreciate this very much and will remain grateful to you forever for it. Even though
now I will soon be going to Zürich, I trust that another one would take over my job on
this faculty, which was organized by your ideas.

On March 21, 1951 Prof. Van der Waerden formally asked for his resignation
from the University of Amsterdam, which was granted effective May 1, 1951.

Van der Corput was proven wrong: he did all he could to support Van der Waer-
den in academia and government; he closed his eyes on his disagreements with
some of Van der Waerden’s moral positions and life’s choices (Chapter 38). Yet, in
the end he did not win Van der Waerden for Holland for the rest of the latter’s career.
Nicolaas Govert de Bruijn, who in 1952 became “another one [to] take over [Van
der Waerden’s] job on this faculty”, wrote to me about the understandable disap-
pointment of Van der Waerden’s colleagues at the University of Amsterdam [Bru8]:

I had regular contact with some mathematicians who knew him [Van der Waerden]
better than I did, like Kloosterman, Koksma, Van Dantzig, Freudenthal, Van der Cor-
put, who were disappointed by his leave after they had gone into so much trouble to
help him with jobs in the Netherlands.

And more [Bru9]:

328 [Dal2], p. 827.
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Actually I do not remember anything from my own experience. I only remember that
people like Koksma, Van Dantzig, Schouten329 confidentially complained that Van der
Waerden disappointed them after all the trouble they had taken. I suppose they had to
fight unwilling authorities in order to let them forget the objections from the past. Step
by step they got him a position with the Shell company, a part-time professorship at
the University of Amsterdam, the membership of the Royal Dutch Academy of Arts
and Sciences (which had to be signed by the queen) and finally the full professorship.
The people who all went through this trouble of course felt they lost their face with
respect to all those authorities when Van der Waerden unexpectedly left them in the
lurch. . .

As a part-time professor Van der Waerden taught applied mathematics, maybe
mainly from a pure mathematician’s perspective. As a full professor he had not even
started; around that time he decided to leave for Zurich. So there was hardly a Van der
Waerden tradition of courses in Amsterdam.

Amsterdam appears to have been used by Professor Van der Waerden merely as
a stepping stone.

39.6 Escape to Neutrality

Mathematics has no fatherland, you say?
– Het Parool [Het1]

Prof. Beno Eckmann remembers the Zürich 1950–1951 succession as follows
[Eck1]:

In 1950 Fueter330 retired. Shortly before I was offered that position (and to be “direc-
tor”). Then the position was offered to vdW [Van der Waerden] who accepted but his
appointment was finalized only in 1951 (I vaguely remember that there were discus-
sions among Zurich authorities whether it would be appropriate to appoint a man who
had remained in Nazi Germany during the war).

In fact, Eckmann was the early first choice [Eck2]:

I was asked either in 1949 or early in 1950 whether I would accept (I really cannot
remember when this happened – Rolf Nevanlinna talked to me personally, had I said
yes I would have received that position).

The voluminous file of Rudolf Fueter’s succession opens with Dekan of Philo-
sophical Facultät II Hans Boesch’s May 5, 1950 letter331 calling the meeting of
the Mathematics Commission for Monday, May 8, 1950 at 1400 hours in Dekanat

329 In view of Prof. Schouten’s 1946 (Section 39.2) and 1950 (Section 39.6) letters of reference to the
Swiss on Prof. Van der Waerden’s behalf, it is hard to understand his disappointment.
330 Karl Rudolf Fueter (June 30, 1880–August 9, 1950), a professor of mathematics (1916–1950) and
Rektor (1920–1922) of the University of Zürich.
331 Universität Zürich, Universitätsarchiv, Lehrstuhlakten Mathematik.
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room 13. A mysterious handwritten page, the stenography332 of this meeting, would
delight any professional or amateur paleographer. The Commission nominates
young Swiss mathematicians, such as Nef, Häfeli, etc., but only three candidates
are numbered:

1. Van der Waerden (03), Ord. Leipzig, Hollander
2. Pólya (62),333 Stanford University

3. Eckmann (17), ETH

References, who would be asked to evaluate the above candidates, are also listed
on this page:

Fueter, Speiser, Hopf, Ahlfors, Erhard Schmidt, Schouten

At the bottom of the page the final list appears again, without the stricken Erhard
Schmidt of Germany. Schouten’s name is separated by a line from the other four
names, for he is to be asked only about the current political opinion about Van der
Waerden in the Netherlands.

The following day Dekan Boesch sends identical letters334 to Van der Waerden
and Pólya, inquiring whether they would like to be considered for the position of
professor and director of mathematics institute in succession to the retiring Prof.
Fueter. The file does not contain a similar letter to Prof. Eckmann of ETH: he has
already turned down this position, for he has been quite happy at ETH, where he
would later become the founder of Forschungsinstitut für Mathematik.

On the same day Boesch also sends letters335 to the four official references. Van
der Waerden’s old correspondent on algebraic geometry (at least since 1936), Prof.
Paul Finsler of mathematics department, writes to the fifth, unofficial reference, Jan
A. Schouten of the Netherlands.

Shortly after letters of reference pour in. ETH Prof. Heinz Hopf recommends
considering only the top three candidates:336

G. Pólya is without a doubt one of the most interesting personalities among the living
mathematicians.. . . Professors and students at a university where Pólya works, work
with him, receive his instruction, and just by dealing with his personality get education,
intelligence, humor and goodness in such an unusual amount. We, colleagues at the
ETH, where he has been working for so long, miss him very much.. . .

B. L. van der Waerden is one of those mathematicians who in the last 25 years has
been instrumental in creating a significant change in the appearance of mathematics.

332 Ibid.
333 The apparent date of birth in parentheses should have been (87), for 1887. George Pólya, a professor
of mathematics at ETH (1920–1940) and Stanford University (1942–1978, including active Emeritus
Professor since 1953), a brilliant mathematician and pedagogue.
334 Universität Zürich, Universitätsarchiv, Lehrstuhlakten Mathematik.
335 Ibid.
336 Heinz Hopf’s 5-page long letter to Hans Boesch of May 14, 1950; Universität Zürich, Univer-
sitätsarchiv, Lehrstuhlakten Mathematik.
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His “modernization” is in the first line in the area of algebra, in which very clear
“conceptual”, “qualitative” thinking is placed in the foreground as opposed to “numer-
ical”, “quantitative” operations.. . . Certainly there would be nobody better than van
der Waerden to found a new algebraic school at the University of Zürich.. . .

B. Eckmann – about 30 years younger than Pólya and 15 (or something less) years
younger than van der Waerden – cannot of course have as many successes and can-
not yet be called in the same sense a famous mathematician as the other two I have
named. But I believe that he is on his best way to secure his place under the leading
mathematicians.. . . Many colleagues at the ETH are happy to have Eckmann amongst
us, especially I personally am very happy with the fact that he was my direct student.. . .
If he did get a call from another university, naturally we will attempt, with great energy,
to keep him with us. And I believe also that he himself does not see any enjoyment in
leaving the ETH.

Lars V. Ahlfors, Chairman of Mathematics Department at Harvard University,
expresses an opinion similar to Hopf’s:337

Among the Swiss mathematicians there remains certainly Prof. Eckmann the single
one whom I would consider seriously.. . .

From the foreign mathematicians I agree with you that certainly van der Waerden
and Pólya should be named in the first list. One must thank van der Waerden for having
strengthened algebraic geometry, even though I know that his work has been surpassed
by other people. Nevertheless, van der Waerden is a first class mathematician, but
it would be important to find out whether he is still on top in his knowledge. Prof.
Pólya in his own individual way stands in the zenith of knowledge. He has depth
and originality. He is, and I believe most mathematicians would agree with me, not
a leading mathematician but instead an extraordinarily skillful (Geschickter) one.

Prof. R. Fueter, shockingly, has nothing positive to say about George Pólya:338

Prof. Dr. Pólya, during his first years in a Zürich position [at ETH] attempted to work
together with us, but then in many situations worked against Speiser and myself and
fought with our students. In this situation I would also like to point out some of Prof.
Speiser’s views regarding this.

Fueter much prefers Van der Waerden or else one of his own many former doc-
toral students, such as W. Nef, H. Häfeli, Erwin Bareiss, or Kriszten:

I do not need to say anything new about Herr. Prof. Van der Waerden because in the
large materials regarding the call of Herr. Prof. Nevanlinna [1946] I have spoken about
him at length and all of that is still in effect today. Naturally he is much weightier than
the above mentioned young Swiss. But I would still like to mention how extraordinarily
desirable a Swiss would be as my successor because for so many years there was no
position open for young Swiss mathematicians.

337 Lars V. Ahlfors’s letter to Hans Boesch of May 21, 1950; Universität Zürich, Universitätsarchiv,
Lehrstuhlakten Mathematik.
338 Rudolf Fueter’s letter to Hans Boesch of June 1, 1950; Universität Zürich, Universitätsarchiv,
Lehrstuhlakten Mathematik.
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Andreas Speiser praises Van der Waerden and the young Swiss candidates, while
putting down Pólya as a mathematician:339

Of the foreigners Pólya does not even come into view. He has dealt with an enormous
amount of small problems but has never seriously worked in a serious area and would
rapidly sink the level of mathematics at the University. Opposite to this, Van der Waer-
den is an apt (trefflicher) mathematician, whom one would have to recommend.

Evaluating Pólya unfairly is not the only deplorable aspect of the Speiser’s letter.
Following praise for the (Jewish) mathematician Richard Brauer, Speiser uses—in
the year 1950—the Nazi Deutsch to describe Brauer as “not Arian (nicht arisch).”
Truly, old habits die hard!

Summing up, Prof. Van der Waerden is the unanimous choice of the four references.
Only one question remains: has Van der Waerden been sufficiently “purified”? This
is to be answered by Prof. Schouten. The latter sends his handwritten reply to Prof.
Finsler on May 12, 1950. Schouten’s letter deals exclusively with Van der Waerden
a person, and not at all with his mathematical work. The following is its complete
text:340

Dear Herr Colleague!
I have received your friendly letter of May 9. A few weeks ago Herr van der Waer-

den has been named an Ordinarius in Amsterdam. Political reservations do not apply
here [in the Netherlands] against him. I should actually say that they do not apply any
more, because certain circles had earlier tried completely without justification to raise
their voice against him. But that has all now passed and he is also now a Member of
the Royal Amsterdam Academy.

Even though I hope that you will not snap this man away from us, I must absolutely
tell you my opinion that he is completely politically harmless (unbedenklich).

With friendly greeting to the entire Zürich circle,
Yours most respectfully

J. Schouten

Thus, Prof. Van der Waerden is cleared for Swiss employment again. The Mathe-
matics Commission meets on June 3, 1950 and ends up with the same slate and order
of the three candidates they had started with.341 On June 9, 1950 Dekan Boesch
reports the faculty findings to the Education Directorate (Erziehungedirection) of the
Canton of Zürich in a 5-page letter.342 He lists, with compliments, a large number
of young Swiss mathematicians (no doubt to impress the government), but reserves
the highest compliments for

339 Andreas Speiser’s letter to Hans Boesch of May 10, 1950; Universität Zürich, Universitätsarchiv,
Lehrstuhlakten Mathematik.
340 Jan Schouten’s letter to Hans Boesch of May12, 1950; Universität Zürich, Universitätsarchiv,
Lehrstuhlakten Mathematik.
341 Universität Zürich, Universitätsarchiv, Lehrstuhlakten Mathematik.
342 Ibid.
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Mr.’s Van der Waerden, Pólya and Eckmann [who] would be the candidates for this
Mathematics Professor position, whereby Herr van der Waerden would be in first place
[, Herr Pólya in second place].343

Compliments for Prof. Pólya are outweighed by the following considerations:

One cannot ignore his advanced age, especially since Herr Pólya let us know that in the
case of the call he would have to give up his pension. In addition, there is an advantage
[to Pólya’s age of 63] that in the foreseeable future there would possibly develop again
a position for a Swiss mathematician [i.e., Pólya would die soon or else retire at the
mandatory age of 70].344 One has to also mention the rejecting positions of Mr.’s Fueter
and Speiser against Herr Pólya.

Prof. Van der Waerden, on the other hand, gets a clean bill of political health
from Dekan Boesch:

Certain problems found in Herr Van der Waerden’s working at the University of
Leipzig during the war, which were focused on by Holland, are no longer applicable
according to the communication that Prof. Schouten has forwarded. On the contrary, it
is explicit from the Faculty proposal for filling a new position of Professor of Applied
Mathematics dated July 15, 1946, that Prof. Van der Waerden was thoroughly consid-
ered.

As is mentioned above, Prof. Eckmann has turned down the offer before the
search begins, Prof. Pólya is rejected by Fueter and Speiser, who certainly know in
advance that they do not want Pólya back in Zürich. From day one of the search,
Prof. Van der Waerden is listed as the number one candidate. Thus, the elaborate
search seems to have been done to satisfy the rules of decorum, but has had only
one goal from the beginning—to hire Van der Waerden. He is offered the job on
September 20, and accepts it with “heartfelt gratitude” on September 24, 1950.345

One document in the Fueter succession deserves another look: the letter from
Dekan Boesch to the Education Directorate of the Canton of Zürich of July 14,
1950,346 in which Boesch asks the government to not only swiftly approve Van der
Waerden’s appointment, but also “to find out from Herr Van der Waerden if it would
be possible to begin his work in Zürich already in the forthcoming winter semester
1950/1951.” Thus, Van der Waerden has an opportunity to realize his Swiss dream
right away, without spending another year at Amsterdam. He apparently does not
agree to an early Zürich start. I can venture a conjecture to explain this refusal: per-
haps, Van der Waerden desires a vindication for the Het Paroolean humiliation, and
the Amsterdam full professorship with its Inaugural Lecture ceremonies in Decem-
ber 1950 provides such an opportunity. Van der Waerden wants to leave his Home-

343 Text in brackets added in pencil.
344 Time proved Herr Boesch to be wrong: George Pólya would live to the age of 98, and give inspiring
lectures at a very advanced age.
345 Universität Zürich, Universitätsarchiv, Lehrstuhlakten Mathematik.
346 Ibid.
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land as a winner, by willingly giving up Holland’s highest academic credentials he
has finally earned.

For a decade I have been absorbed with the following question: why did Professor
Van der Waerden leave the Netherlands for good in 1951? Was the University of
Zürich (which, in my opinion, was no match to its famed neighbor, ETH) a better
place than the University of Amsterdam? This was not at all obvious to me, so I
asked Prof. de Bruijn, who replied as follows [Bru9]:

We were looking at the US and Switzerland as a kind of paradise. Whether in the long
run Zürich would be much better than Amsterdam, may be open to discussion. In 1950
Amsterdam had lost the glory of Brouwer’s days of the 1920’s. . .

By the way, I really do not know the order of the events. The offer from Zürich
may have come at a time where the procedures for getting him the full professorship
at Amsterdam had hardly started. He may have kept the Zürich offer secret for a time,
in order to keep both possibilities open. If it had happened to me, I would have felt a
moral pressure against letting Amsterdam down.

H. J. A. Duparc recalled [Dup] in 1996:

Van der Waerden’s wife, Rellich,347 was German348 and had many difficulties in normal
life in Holland because of her speaking German language (Holland was occupied 5
years by the Germans).”349

N. G. de Bruijn [Bru10] added:

Justified or not justified, those anti-German feelings were very strong indeed. I can
understand that Camilla was treated as an outcast, and that she therefore disliked living
in Holland.350

Ms. Annemarie van der Waerden, Prof. van der Waerden’s first cousin, recalled
opinions of her parents and other family members:351

Camilla was a very proud woman: ‘like Carmen, from the opera’. She was furious
about all the things he had to go through and the accusations. Camilla had a lot to do
with the decision to move to Switzerland, a neutral country, a real centre of science.
For sure, Camilla is the one that broke the connections with his family in Holland.352

While the role of Mrs. Van der Waerden in the decision to leave the Netherlands
must have been significant, such an important decision had to be ultimately made

347 Mrs. Van der Waerden’s maiden name.
348 Actually Austrian. However, as have seen, Prof. Van der Waerden also calls her some times Austrian
and other times German.
349 Mrs. Van der Waerden learned and spoke Dutch, but apparently with a German accent.
350 Children, on the other hand, seemed to enjoy their life in Laren. Their first cousin Theo van der
Waerden recalls [WaT2]: “In 1949 we moved to Amsterdam. . . We met the family more and more, we
went to Laren, where Bart and his family lived (1945–1951). I had the impression that they loved the
house, the children were happy there with the schools, the nature, etc.”
351 Communicated by Mrs. Dorith van der Waerden [WaD1].
352 A correspondence shows that a certain degree of connections continued.
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by Professor Van der Waerden. Van der Waerden wanted at all times to be at the
best place for doing mathematics, which now moved to Switzerland and the United
States. Which one should he claim?

He aspired to belong to the German culture; it was important—perhaps, too
important—to him. The decision to move to Switzerland was the last critical deci-
sion of Van der Waerden’s career. He decided to leave the Fatherland of Suffering
for the Land of Neutrality, the Land of German language but not Germany.

Two years later Germany would invite Prof. Van der Waerden—to a chair at
München—and that offer would be rejected, not because “children did not want
to move any more,” as Mrs. Camilla Van der Waerden would lead us to believe
in 1993 [Dol1],353 but no doubt because of the desire to remain in a prosperous
German-speaking non-Germany.

In 1972 Van der Waerden retired from his professorship at Zürich. Germany did
not forget Van der Waerden’s loyalty. In 1973 he was awarded the old German Orden
Pour le Mérite für Wissenschaften und Künste (Order of Merit for Sciences and
Arts), limited to 40 German and 40 foreign living recipients. On June 12, 1985,
Leipzig University awarded Prof. Van der Waerden its honorary doctoral degree.

39.7 Epilogue: The Drama of Van der Waerden

One’s response to living under tyranny can only be
to leave, to die, or to compromise.

– Alexander Soifer, [Soi29]

Most authors tend to concentrate on exceptional personages. This may create time-
less lessons, but misses out on capturing times and places. The key times for us,
1931–1951, encompass the Nazi time and de-Nazification of Europe. These tragic
times provide such profound lessons of human nature that we have got to learn from
them as much as we possibly can. We encounter heroes and villains, but also a much
more numerous group in between these two extremes. The life of one such person
“in between” has been the subject of this research.354 Van der Waerden was neither
a villain nor a hero (as he was portrayed by all previous biographers). Studying his
life allows us to pose important questions about the role of a scientist in a tyranny,
and about some of the moral issues surrounding the World War II and its aftermath.

How does one understand and reconcile the contradictions in the record I have
presented on these pages? We witness instances of courage and compromise with
the Nazi authorities; signs of high integrity and instances of moral insensitivity;

353 The statement “Children did not want to move” surely implies children’s knowledge of the
München’s offer. However, one “child” at 23 was long married and gone from the parents’ house, while
another did not know about this offer until I shared this information in 2004.
354 The last three sentences come from my review of Carathéodory’s biography [Soi29], and appeared
as an epigraph for this triptych (Chapter 37). There are great similarities between the life of Van der
Waerden and the life of Constantin Carathéodory.
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declared desire to save the German culture and little effort to contribute to the culture
of the Netherlands, his fatherland that has been served with such a high distinction
by the rest of the Van der Waerden family.

People, who have known and liked Van der Waerden, prove to be surpris-
ingly unanimous in their explanations of these contradictions. Beno Eckmann, Van
der Waerden’s friend from 1951 to 1996, in his e-mail to me on Dec 7, 2004,
writes [Eck0]:

As a person and friend vdW [Van der Waerden] was very kind but seemed to be quite
naı̈ve.

Ms. Annemarie van der Waerden, Prof. Van der Waerden’s first cousin, recalls
the impressions of her parents and other family members about B. L. van der
Waerden:355

Childish, not in the world, no interest in politics. Never thinking about what people
would think of him and not understanding worldly matters. Totally impractical.

As recently as the year 2005 [Soi24], I too believed that Van der Waerden was a
naı̈ve, stereotypical abstract mathematician, who, as I put it, “built his morality on
the foundation of laws of the lands he lived in, by rules of formal logic. He seems
to have been quintessentially a mathematician—and not only by profession—but by
his moral fabric.”

Van der Waerden might have been naı̈ve. However, I now find this explanation
inadequate. He was not a prisoner of the “Ivory Tower”: he was aware of life around
him. He clearly saw the Nazi regime for what it was. On August 10, 1935, from his
vacation in Holland he wrote:356 “We are here in Holland for two months and rest up
our souls from the constant tensions, hostilities, orders and paperwork. . . Ministries
examine who has not yet been completely switched over [to the National Socialism],
who is a friend of Jews, who has a Jewish wife, etc., as long as they themselves are
not torn apart by their fight for power.” In the April 6, 1943 letter from Leipzig, Van
der Waerden described to a trusted friend, Erich Hecke, the tragedy of the occupied
Holland and the Holocaust:

Maybe he [Blumenthal] is in hiding like thousands of others. Maybe he is already in
Poland like ten thousand Jews from Holland.357

No, Van der Waerden was not naı̈ve, or not naı̈ve enough to thus explain his
life’s decisions. He knew the truth about the Nazi regime, and consciously and
opportunistically chose to tolerate it.

Van der Waerden’s record is complex. The evidence shows that on one hand, he
strived to be a highly moral individual, a fitting member of his great family. While in
Germany, he occasionally reached the moral heights he sought: in 1935 he publicly
objected to the firing of four Jewish professors and tried to hold Germany to its

355 Communicated by Mrs. Dorith van der Waerden [WaD1].
356 New York University Archives, Courant Papers.
357 Nachlass von Erich Hecke, Universität Hamburg.
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own April 7, 1933 law; in 1935 he wrote a eulogy for his Jewish mentor Emmy
Noether; through 1940 he was determined to publish Jewish authors in Mathematis-
che Annalen.

On the other hand, as a brilliant mathematician, he desired—perhaps felt
entitled—at all times to be in the best place for doing mathematics, even if the
time and place was the Nazi Germany, even if there was a price of moral compro-
mise attached to it. He should have been ashamed of his 1933 invocation of his
“full-blooded Arianness” while Jews were thrown out of their university positions;
his 1934 oath to Hitler; his Hitler salutes in letters and lectures—he knew those
were not the rituals his father and brothers would have approved. Worse yet, on
May 16, 1940, the day after Holland fell to the German invaders, Van der Waerden
failed to take the side of his oppressed homeland—he chose “neutrality” between
his homeland and her oppressor.

Van der Waerden knew the moral price he had paid for the comfort of doing
mathematics in the Nazi Germany, and he admitted it once, in his December 29th,
1945 letter to Richard Courant:358 “I have made some mistakes perhaps, but I have
never pacified with the Nazis.”

Despite having no illusions on the nature of “the gangster regime” (his words),
despite his father’s and uncle Jan’s insistence that it was Van der Waerden’s “duty”
to leave the Nazi Germany even before its occupation of Holland, Van der Waerden
chose to live there. “Why would I go to Holland where oppression became so intol-
erable and where every fruitful scientific research was impossible?” he wrote to Van
der Corput359 without even realizing that the intolerable oppression of his homeland
was caused by the very country he served!

For doing his “labor of love,” Van der Waerden chose the Third Reich, even
though the price was his silence, which was a form of condoning the Nazi regime.
This brings to mind the 1953 book The Captive Mind [Mil], by the Polish poet
and 1980 Nobel Laureate Czesław Miłosz. In this book, Miłosz coins the term
“Professional Ketman.” Under such a Ketman (unwritten contract between a sci-
entist and a totalitarian State), the scientist reasons in the following manner:

I pursue my research according to scientific methods, and in that alone lies the aim
of my life. . . Discoveries made in the name of a disinterested search for truth are
lasting, whereas the shrieks of politicians pass. I must do all they demand, they may
use my name as they wish, as long as I have access to my laboratory and money for
the purchase of scientific instruments.360

What does the State gain?

The State, in its turn, takes advantage of this Ketman because it needs chemists, engi-
neers and doctors.361

358 New York University Archives, Courant Papers.
359 Van der Waerden, letter to van der Corput; July 31, 1945; ETH, Hs 652: 12160. Van der Waerden
refers to Holland, occupied by Germany, 1940–1945.
360 [Mil], p. 69.
361 Ibid, p. 70.
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Likewise, Van der Waerden served for the Nazi Germany’s Civil Service, and lent
his credibility and his acclaim as a distinguished scientist to that of the Third Reich.

In 1994 Herbert Mehrtens [Meh] aptly coined a term “irresponsible purity” for
the scientists who pursued their pure academic fields in the Third Reich and yet
assumed no responsibility for thus serving and strengthening the criminal state. Van
der Waerden’s words and deeds serve as a clear example of this phenomenon.

The great anthropologist and my dear friend James W. Fernandez, upon reading
these chapters, summarized my findings concisely during our “Fang Summit”362 in
early August 2007: “Frailty of Brilliance!”

Van der Waerden must have felt the weight of his Nazi time conflict and compro-
mise for the rest of his life. Prof. Beno Eckmann, his friend for nearly half a century,
told me that Van der Waerden always avoided any mention of his time in the Third
Reich [Eck0]:

We never really talked about his time in Leipzig, in any case not about politics. He and
his wife seemed to avoid these themes.

What troubled the editors of Het Parool, Van der Corput and others the most was
not seeing a man who aspired high moral ground and fell victim of a compromise
with the Nazi tyranny. They detested the hypocrisy of denying the compromise, the
invocation of high moral ground, the ground they thought had eroded.

One’s response to living under tyranny can only be to leave, to die, or to compro-
mise. Van der Waerden chose the compromise between high moral aspirations and
doing mathematics in the Nazi Germany. The struggle between these two contradic-
tory goals was the drama—perhaps, the tragedy—of the life of Bartel Leendert van
der Waerden, one of the great mathematicians of the twentieth century, the century
marked by the brutal war he had spent in the enemy’s camp.

This has been my report on research, In Search of Van der Waerden. In it, I
have faithfully followed the approach used by Professor Van der Waerden him-
self [Wae15]:

I have tried to consider the great mathematicians as human beings living in their own
environment and to reproduce the impression which they made on their contempo-
raries.

In fact, this work is forever in progress, in search of the hero. While I have found
answers to most of the questions I posed to myself, I prefer to consider these four
sections as a report on research in progress, In Search of Van der Waerden. A com-
plete insight is impossible, we can only aspire to come as close as we can to it!

362 Our annual meeting devoted to the art and culture of the Fang people of Gabon, Africa, extensively
studied by Fernandez, and to other topics of mutual interest, such as a role of a scientist in tyranny.
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Ramsey Theory

There is a running discussion between Dieudonné
and Branko Grünbaum. Dieudonné sort of says that
geometry is dead and of course Branko Grünbaum
disagrees with him. I think I am on the side of Branko
Grünbaum and I hope that I will convince you that at
least combinatorial geometry is not dead.

– Paul Erdős1

1 [E83.03].



40
Monochromatic Polygons in a 2-Colored Plane

We have already met briefly a 2-colored plane in Problem 2.1, which can be restated
as follows:

Problem 40.1 For any positive d, any 2-colored plane contains a monochromatic
segment of length d.

Solve the following problem on your own.

Problem 40.2 For any positive d, any 2-colored plane contains a non-monochromatic
segment of length d; if at all each of the two colors is present in the plane.

Let me remind you that in our discussions a triangle stands simply for a 3-
element set. When these three points are on a line, we will call the triangle degen-
erate. Accordingly, a set of n points in the plane will be called an n-gon. An n-gon
with all n vertices in points of the same color is called monochromatic.

You may wonder why after discussing a multi-colored plane should we now talk
about a mere 2-colored plane? Would it not be more logical to put this chapter earlier
in this book? Yes, it would. But this logical approach creates, as Cecil Rousseau puts
it ([Soi1], introduction), “books written in a relentless Theorem–Proof style.” This
logical approach ignores a higher logic of mathematical discovery.

For me, personally, a fascination with the chromatic number of the plane problem
came first. Then I looked into a 2-colored plane. Why? If we can prove the existence
of monochromatic configurations in any 2-colored plane, we will have tools to study
a 3-colored plane. And configurations present in any 3-colored plane may provide
tools to attack a 4-colored plane. And it is a 4-colored plane where we “only” need
to find out whether a monochromatic segment of length 1 is necessarily present!2

With this rationale in mind, in 1989–1990 I proved some results, formulated
conjectures, and thus rediscovered Euclidean Ramsey Theory. I published a problem
essay [Soi2] about it in the first issue of volume I of the newly founded research
quarterly Geombinatorics. On July 5, 1991, Ron Graham sent me a copy of the
series of three papers by six authors, which broke the news to me: I was 15–17

2 Of course, others probably had different reasons for looking into 2-colored planes. Erdős et al. in their
trilogy [EGMRSS] were pursuing expansion of Ramsey theory to Euclidean Ramsey Theory.
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years too late: Paul Erdős et al., were first to discover what they named Euclidean
Ramsey Theory! Fortunately, some of my results remained new as you will see them
in this chapter (Problems 40.7, 40.14, 40.19), which is chiefly dedicated to Erdős
et al., series of papers [EGMRSS]. Paul Erdős referred to the authors as “us,” or
“the six.” All the distinguished six authors deserve to be listed here. They are Paul
Erdős, Ronald L. Graham, P. Montgomery, Bruce L. Rothschild, Joel H. Spencer,
and Ernst G. Strauss.

When three of the six coauthors wrote Ramsey Theory monograph (1st edi-
tion [GRS1] in 1980; 2nd edition [GRS2] in 1990), they did not include many of
the trilogy [EGMRSS] results in their book. Perhaps, they viewed these results as
being too “elementary” for their dense monograph. On the other hand, they realized
how difficult these “elementary” problems can be, for Paul Erdős and Ron Graham
included open problems of Euclidean Ramsey Theory in many of their (open) prob-
lem talks and papers. It seems that most of these results of “the six” and other results
of Euclidean Ramsey are appearing here for the first time in book form.

Problem 40.3 (Erdős et al., [EGMRSS]) 2-color the plane to forbid a monochro-
matic equilateral triangle of side d.
Solution: Divide the plane into parallel stripes, each

√
3

2 d wide (
√

3
2 d is the altitude

of the equilateral triangle of side d), then color them alternatively red and blue
(Fig. 40.1). Include in each stripe region its left border line, and do not include its
right border line and we are done.

Fig. 40.1

Problem 40.4 (Erdős et al., [EGMRSS]) Find a 2-coloring of the plane different
from the one in the solution of Problem 40.3 that does not contain a monochromatic
equilateral triangle of side d.

Solution: Start with the coloring described in the solution of Problem 40.3
(Fig. 40.1). Draw a line making, say, a π

3 angle with the border lines of the stripes
(Fig. 40.2), and change the colors of the points of their intersections. It is easy
to verify that as before, the plane does not contain a monochromatic equilateral
triangle of side 1.

If you solved Problem 40.4 on your own, you have probably noticed that your and
my solutions did not differ much from each other and from the solution for Prob-
lem 40.3. In fact, Paul Erdős et al., thought that the solutions cannot differ much!
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60°

Fig. 40.2

Conjecture 40.5 ([EGMRSS], Conjecture 1 of Part III) The only 2-colorings of the
plane for which there are no monochromatic equilateral triangles of side 1 are the
colorings in alternate strips of width

√
3

2 , as in the solution of Problem 40.3, except
for some freedom in coloring the boundaries between the strips.

Decades have passed; Ronald L. Graham and Paul Erdős repeated problems and
conjectures of the Euclidean Ramsey Theory, including 40.5, in their talks and
papers (example [E83.03]), but no proof was found to these easy-looking, hard-
to-settle triangular conjectures. However, in March 2006, a group of four young
Czech mathematicians from Charles University on Malostranské plaza (I visited
Jarek Nešetril at this historic place in 1996) Vı́t Jelı́nek, Jan Kyncl, Rudolf Stolar,
and Tomás Valla [JKSV] disproved this 33-year old conjecture!

Counterexample 40.6 ([JKSV, Theorem 3.19]) Every zebra-like 2-coloring of the
plane has a twin 2-coloring that forbids monochromatic unit equilateral triangles.

For definitions of “zebra-like” 2-coloring of the plane and of “twin” coloring, I
refer you to the original work, which, while not published by Combinatorica for
nearly a year (since submission in March 2006), is now made available by the
authors at arXiv. Here I would like to show an example of a zebra-coloring provided
to me by one of the authors, Jan Kyncl (Fig. 40.3).

Fig. 40.3

I wish to congratulate the authors for introducing into the field a brand new rich
class of 2-colorings of the plane, and for solving, in the negative, an old-standing
conjecture by Erdős et al.
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Any equilateral triangle can be excluded from appearing monochromatically by
choosing an appropriate 2-coloring of the plane. However, some triangles, exist
monochromatically in any 2-colored plane. The first such example was found by
Paul Erdős et al. [EGMRSS].

Problem 40.7 ([EGMRSS]) Any 2-colored plane contains a monochromatic trian-
gle with the small side 1 and angles in the ratio 1:2:3.

My Solution [Soi9]: Pick a monochromatic segment AB of length 2 (Problem 40.1)
and construct a regular hexagon H on AB as on the diameter (Fig. 40.4). If at least
one more vertex of H is of the same color as A and B, we are done. If not, we are
done too!

Fig. 40.4

Problems 40.7 and 40.8 were offered to high school students during the Col-
orado Mathematical Olympiad in 1990. The first was solved by several participants.
Nobody solved the second one.

Problem 40.8 ([Soi2]) Any 2-colored plane contains a monochromatic triangle with
the small side 1 and angles in the ratio 1:2:4.

Solution [Soi9] Assume that such a triangle does not exist in a 2-colored red and
blue plane. Toss a regular 7-gon of side length 1 on the plane (Fig. 40.5). Since 7 is
odd, two of its consecutive vertices will be of the same color. Say, A and B are blue.
Then D and F must be red. Therefore, C and G are blue. We got a blue triangle
CAG in contradiction to our assumption.

Fig. 40.5
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Problem 40.9 ([Soi2]) For any positive integer n, any 2-colored plane contains a
monochromatic triangle with the small side 1 and angles in the ratio:

a. n : (n + 1) : (2n + 1);

b. 1 : 2n : (2n + 1).

Proof Assume that a 2-colored plane P (red and blue) does not contain a monochro-
matic triangle with the small side 1 and angles in the ratio 1 : 2n : (2n + 1). Let the
diagonal of a regular (4n + 2)-gon of side 1 have length d. Due to Problem 40.1,
we can find in the plane P a monochromatic (say, red) segment S of length d. We
construct on S as on a diameter, a regular (4n + 2)-gon K . Now we number the
vertices of K starting with an endpoint of red diameter S (Fig. 40.6).

Now we start a rotation. The points 1 and 2n + 2 are red, therefore the points 2
and 2n + 3 are blue. Thus, the points 3 and 2n + 4 are red, etc. Finally, the points
2n + 2 and 1 are blue, which is a contradiction.

The existence of a monochromatic triangle with angles in the ratio n : (n + 1) :
(2n + 1) can be proved by a similar rotation. (Instead of adding 1 to the endpoints
of the diameter, we just add n + 1.)

Fig. 40.6

Leslie Shader from the University of Wyoming proved an important result.

Problem 40.10 (L. Shader, [Sha]) For any right triangle T , any 2-colored plane con-
tains a monochromatic triangle congruent to T .

As you can see, we have many examples of triangles that exist monochromati-
cally in any 2-colored plane, and one example of a triangle (equilateral) that may
not. Having realized this, I posed the following $25 problem to my university and
high school students in 1989 (published in [Soi2]).

Open $25 Problem 40.11 [Soi2]) Find all triangles T such that any 2-colored plane
contains a monochromatic triangle congruent to T .

Paul Erdős et al., tried to solve this very problem some 14 years before me.
Moreover, they posed the following conjecture in 1973.

Conjecture 40.12 ([EGMRSS], Conjecture 3 of Part III) For any non-equilateral
triangle T , any 2-colored plane contains a monochromatic triangle congruent to T .
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This problem appears surprisingly difficult, and in 1979, Paul Erdős set the prize for
it [E79.04]:

Many special cases have been proved by us (i.e., the authors of [EGMRSS]) and others
but the general case is still open and I offer 100 dollars for the proof or disproof.

In 1985 Erdős increased the pay off [E85.01]:

Is it true that every non-equilateral triangle is 2-Ramsey in the plane (i.e., Conjec-
ture 40.12)? I offer $250 for a proof or disproof.

Let me formally attach Erdős’s $250 tag to the above conjecture:

Paul Erdős’s $250 Conjecture 40.13 Is it true that any 2-colored plane contains
any non-equilateral triangle monochromatically?

Paul Erdős et al., also conjectured that any 2-coloring of the plane may not con-
tain monochromatically at most an equilateral triangle of one size.

Conjecture 40.14 ([EGMRSS]) If a 2-colored plane P does not contain a
monochromatic equilateral triangle of side d, then P contains a monochromatic
equilateral triangle of side d ′ for any d ′ �= d.

In 2003 Graham [Gra5] offered $100 for the proof:

Ronald L. Graham’s $100 Conjecture 40.15 Every 2-coloring of the plane con-
tains a monochromatic copy of every triangle, except possibly for a single equilat-
eral triangle.

Thus, you can win three prizes by solving essentially one problem!
My intuition regarding the above conjecture agrees with the authors of [EGMRSS],
except that I am not sure about degenerate triangles.

Open Problem 40.16 Is it true that any 2-colored plane contains a degenerate
isosceles triangle of small side 1 (Fig. 40.7)?

Fig. 40.7

In order to solve the above open problems, you need tools. Here are two for you.

Let T be a triangle. Then Tm will stand for the triangle whose sides are twice as
long as the corresponding medians of T (the medians of any triangle are themselves
the sides of a triangle—prove this nice elementary fact on your own).

Tool 40.17 ([Soi2]) For any triangle T , any 2-colored plane contains a monochro-
matic triangle congruent to T or Tm .
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Proof If one color is not present in the 2-colored plane, we are done; assume now
that both colors are present. Let the side lengths of T be a, b, and c, and P be a
plane colored red and blue. By Problem 40.2, P contains a segment AE of length 2a
with blue A and red E . The midpoint C of AE has the same color as A or E , let it
be blue as A.

We pick B and D such that ABCD is a parallelogram with side lengths b and c
(Fig. 40.8). If at least one of the points B, D is blue, we get an all blue triangle ABC
or ADC. Otherwise BED is an all red triangle with side lengths twice as long as the
corresponding medians of T (prove this nice geometric fact on your own).

Fig. 40.8

Prove the following corollary of Tool 40.17.

Problem 40.18 Any 2-colored plane contains a monochromatic equilateral triangle
of side 1 or

√
3.

Out of the many nice tools contained in [EGMRSS], I would like to share here
with you my favorite. Erdős et al., prove it in a true Olympiad style, so I am not
changing a thing in it. However, I am adding an additional diagram showing that the
statement is true for the case when the triangle K is degenerate as well.

Tool 40.19 ([EGMRSS] Theorem 1 of Part III) Let K be a triangle with sides a,
b, and c, and let Ka, Kb, and Kc be equilateral triangles with sides a, b, and c
respectively. Then a 2-colored plane contains a monochromatic triangle congruent
to K if and only if it contains a monochromatic triangle congruent to at least one of
the triangles Ka, Kb, Kc.

Proof Consider the configuration in Fig. 40.9. The six triangles HBC, ABD, CDE,
EFH, DFG, AHG all have sides a, b, and c. The triangles ABH, DFE, BCD, FGH,
HEC, ADG are equilateral with sides a, a, b, b, c, c, respectively. We see that if one
of the second six triangles is monochromatic, one of the first six must be monochro-
matic too. The converse is true by a symmetric argument.

If the triangle K is degenerate (this is one case the authors of [EGMRSS] did
not explicitly address), look at the configuration in Fig. 40.10 that I added for you.
No changes in the text of the proof are necessary while using Fig. 40.9 to prove a
degenerate case!

The following problem is a good test of your skills: try it on your own before
reading the solution.
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Fig. 40.9

Fig. 40.10

Problem 40.20 (László Lovász, [Lov2]) Prove that any 2-colored plane contains a
monochromatic triangle with side lengths

√
2,

√
6, and �.

Proof Given a 2-colored plane P . Due to Tool 40.18, P contains a monochromatic
equilateral triangle of side

√
2 or

√
6 (just use as T an equilateral triangle of side√

2; the sides of Tm will be equal to
√

6). In either case, due to Tool 40.19, the plane
P contains a monochromatic triangle with sides

√
2,

√
6, and �.

You may think that we are only concerned with triangles: we aren’t. The
following problem is a new form (and solution) of a problem that the famous
American problem solver and coach of the American team for the International
Mathematics Olympiad, Cecil Rousseau, once created for the 1976 USA Mathe-
matics Olympiad (USAMO).
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Problem 40.21 (Cecil Rousseau; USAMO, 1976) Any 2-colored plane contains an
m × n monochromatic rectangle such that m = 1 or 2, and n is a positive integer
not greater than 6.

Proof Toss on a 2-colored plane (red and blue) a 2 × 6 square lattice (Fig. 40.11).

Fig. 40.11

By the Pigeonhole Principle, out of the seven vertices (i.e., intersections of the
lattice lines) in the top row AB, at least four must be of the same color, say, blue. We
keep the corresponding four columns and throw away the rest (Fig. 40.12).

Fig. 40.12

If the second or third row in Fig. 40.12 contains more than one blue vertex, we
get a monochromatic blue rectangle, and the problem is solved.

If the second and third rows contain at most one blue vertex each, then we throw
away the columns corresponding these blue vertices. We are left with a monochro-
matic red rectangle located in the second and third rows.

I was able to strengthen this result in 1990, and offered it at the 1991 Colorado
Mathematical Olympiad (CMO). Try to solve it on your own first.

Problem 40.22 (CMO 1990, [Soi9]) Prove the statement of Problem 40.21 with n
not exceeding 5.

Proof Given a 2-colored plane. If one color, in fact, is not present at all we are
done. Otherwise, due to Problem 40.2, there are two points A and B of opposite
colors distance 6 apart. Construct on AB a 2 × 6 square lattice like in Fig. 40.11 and
repeat word by word the solution of Problem 40.21.

This train of thought naturally runs into the following open problems.

Open Problem 40.23 [Soi9] Is the statement of Problem 40.21 true with n not
exceeding 4?

Open Problem 40.24 Find the lowest upper bound for n, such that the statement of
Problem 40.21 is true.

It is easy to prove the statement of Open Problem 40.23 conditionally.
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Problem 40.25 If a 2-colored plane P contains a monochromatic degenerate isosce-
les triangle of side 1 (Fig. 40.7), then P contains an m ×n monochromatic rectangle
such that m = 1 or 2, and n is a positive integer not exceeding 4.

Proof Let a 2-colored plane P (red and blue) contain a monochromatic, say blue,
degenerate isosceles triangle T of side 1. We construct on T a 2 × 4 square lattice
(Fig. 40.13).

The first from (from the left) column is all blue. If any of the other four columns
contain at least two blue vertices, then we get all-blue rectangle. Otherwise, each
of these four columns has at least two red vertices. But there are only

(3
2

) = 3
distinct ways to have two red vertices in a column. Therefore, at least two of the
four columns have two red vertices in the same rows, i.e., we obtain an all-red
rectangle.

Fig. 40.13

The image of a figure F under translation is naturally called a translate of F .
Erdős et al., found a cute use of the Mosers Spindle.

Problem 40.26 ( [EGMRSS] Theorem 3 of Part II) Given a 2-colored plane P (red
and blue) and a triangle T in it. Then P contains a pair of red points distance d apart
for every d, or a blue monochromatic translate of T .

Proof Let A, B, C be the vertices of T . Assume that for a positive d there is no pair
of red points d apart. We toss the Mosers Spindle S (Fig. 2.2) of side d on the plane,
and denote by S1 = t1(S) and S2 = t2(S) the images of S under translations through
�AB and �AC respectively.

Due to observation after Problem 2.2, any three vertices of the spindle S contain a
pair of vertices distance d apart. Therefore, each seven-point set S, S1, S2 contains
at most two red points. Thus, there is a vertex, say A, of S such that all three vertices
A, t1(A) and t2(A) are blue. They form a translate of T !

Problem 40.27 ( [EGMRSS], Theorem 1′ of Part II) Any 2-colored plane (red and
blue) contains a red pair of points distance 1 apart, or 4 blue points on a line 1
distance apart.
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Proof Assume a 2-colored plane P does not have either a red pair of points distance
1 apart or a four blue points on a line distance 1 apart. Then P must have a red point
p. The circle C1 of radius 1 and center p must be entirely blue.

Now we add a concentric circle C2 of radius
√

3 and an equilateral triangle a, b,
c inscribed in C2 (Fig. 40.14). Denote the points of intersection of C2 and ab by d
and e.

It is easy to confirm (please do) that

|ad| = |de| = |eb| = 1

Since both d and e are blue (they are on C1), not both a and b are blue. This is
similarly true for a and c, and for b and c. Therefore, at most one of a, b, c is blue.
Suppose a and b are red;

Now we rotate ab about the center p, to its new position fg, such that |a f | = 1.
Then, of course, |bg| = 1. Therefore, f and g are both blue. So are h and i (they are
on C1). Thus, we get a blue quartet f, h, i, and g distance 1 apart, in contradiction to
our initial assumption.

p e 

i 

b 

g 

c 

h 

d

a 
f 

Fig. 40.14

Having proved 40.26, Erdős et al., [EGMRSS, Part II, p. 535] formulated but
could not decide the following question:

Is it true that any 2-colored plane (red and blue) contains a red unit length seg-
ment or a blue unit square?

On March 25, 1977, the Hungarian mathematician Rozália Juhász submitted (and
in 1979 published) an impressive paper [Juh], where in one stroke she proved a pow-
erful generalization of Problem 40.26, and more than answered the above question
by Erdős et al., in the positive:
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Problem 40.28 ( [Juh], Theorem 1) For any 4-gon Q, any 2-colored plane (red and
blue) contains a pair of red points distance 1 apart, or a monochromatic blue 4-gon
congruent to Q.

In the same paper Juhász showed that the result of Problem 40.28 is not true for
an n-gon where n ≥ 12.

Counterexample 40.29 ( [Juh], Theorem 2) There is a 12-gon K and a 2-colored
plane P (red and blue) such that P does not have either a monochromatic unit-
distant red segment or a blue monochromatic 12-gon congruent to K .

Construction: First let us describe the 2-coloring of the plane that does the job.
We start with a regular triangular lattice with distance 2 between nearest vertices
(Fig. 40.15).

Fig. 40.15

We make every vertex of the lattice to be the center of a red circular disk of
radius 1/2. With every disk we also color red half of its boundary under its horizontal
diameter and the left point of that diameter. The rest of the plane we color blue
(Fig. 40.16). You can easily verify that our 2-colored plane P has no red monochro-
matic segment of length 1. You can also show (do!) that any closed disk (i.e., disk
including its boundary circle) of radius 2√

3
+ 1

2 (shown in Fig. 40.16) in P must
contain at least one of the red disks (together with its boundary).

Fig. 40.16

Let us now define our 12-gon K . We draw a regular triangular lattice just like the
one in Fig. 40.15, but with side

√
3

2 , and a circle C of radius 2√
3
+ 1

2 with its center in
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the center of one of the triangles (Fig. 40.17). Inside C we have exactly 12 vertices
of the lattice, they form our 12-gon K .

All there is left to show is that P does not contain a blue monochromatic congru-
ent copy of K .

Fig. 40.17

Place a congruent copy K1 of K anywhere in the plane P , together with a sur-
rounding circle C1 congruent to C . As we noticed above, C1 will contain completely
at least one of the red disks C2. C2 (with its red half-boundary) in turn will contain
at least one of the vertices of K1. Thus, at least one of the vertices of K1 will always
be red!

About 15 years later, Rozália Juhász’s 12-point counterexample was improved
by the two other Hungarian mathematicians, György Csizmadia and Géza Tóth. On
January 15, 1991 they submitted, and in 1994 published [CT] an 8-point counterex-
ample, thus “almost” closing the gap.

Counterexample 40.30 (Csizmadia and Tóth) There is an 8-point set K in the plane
(namely, a regular 7-gon and its center) and a 2-colored plane P (red and blue) such
that P does not have either a monochromatic unit-distant red segment or a blue
monochromatic set congruent to K .

Problems 40.28 and 40.30 deliver the state of the art in this direction. Can we
guarantee a monochromatic blue pentagon of at least one given shape and size
in a 2-colored plane without red monochromatic segment of unit length? Nobody
knows! (So far pentagons have been slow to enter the Euclidean Ramsey Theory.)
A small 3-number gap remains:

Open Problem 40.31 For which n in the interval 5 ≤ n ≤ 7 is the following state-
ment true:

For any n-gon K , any 2-colored plane (red and blue) contains a pair of red points
distance 1 apart, or a monochromatic blue n-gon congruent to K ?



41
3-Colored Plane, 2-Colored Space,
and Ramsey Sets

Having created Problem 40.8 in 1989–1990, I tried the same construction in a
3-colored plane, and it worked! It is certainly not much but we know so little about
a 3-colored plane that every little bit helps.

In 1991 [Soi3] I named an n-gon K in an n-colored plane representative if all
n colors are represented among its vertices. (Paul Erdős and Ron Graham preferred
the term rainbow.)

Problem 41.1 [Soi3] Any 3-colored plane contains a monochromatic or represen-
tative triangle T with the small side 1 and angles in the ratio 1 : 2 : 4.

Proof Assume that a 3-colored plane P (red, white, and blue) does not contain a
monochromatic congruent copy of T . Toss a regular heptagon H of side 1 on the
plane P .

H can have at most 3 vertices of the same color, because any 4 vertices of H
contain a triangle congruent to T (prove it on your own). On the other hand, by the
Pigeonhole Principle H must contain at least 3 vertices of the same color. Hence, 3
it is: H contains, say, three red vertices.

There are only three ways (up to rotations and reflection) to have 3 red vertices
on H without red monochromatic copy of T (Fig. 41.1). Numbers of white and blue
vertices must be 3–1 or 2–2 respectively. It is now easy to verify (do) that every
completion of three colorings in Fig. 41.1, subject to the above constraints, contains
a representative copy of T .

Fig. 41.1

We probably cannot expect a guaranteed monochromatic copy of any triangle in
a 3-colored plane. I would like to know which ones we can guarantee:

500 A. Soifer, The Mathematical Coloring Book,
DOI 10.1007/978-0-387-74642-5 41, C© Alexander Soifer 2009
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Open Problem 41.2 Find all triangles T , such that any 3-colored plane in which
all three colors are present, contains a monochromatic or representative triangle
congruent to T .

Ronald L. Graham believes that we can exclude any triangle with an appropriate
3-coloring. He formulated the following conjecture during our July 10, 1991 phone
conversation (it appeared in 1991 in [Soi3]). Now [Gra7], [Gra8] Graham is offering
$25 for it.

Graham’s $25 Conjecture 41.3 (R. L. Graham) For any triangle T there exists a
3-colored plane that does not contain a monochromatic triangle congruent to T .

And now, as promised in the title of this chapter, let us peek at 2-colorings of
the space E3. Unlike the case in the plane E2, we do get a unit monochromatic
equilateral triangle in any 2-coloring of E3.

Problem 41.4 ( [EGMRSS], Theorem 6 of Part I) Any 2-colored space E3 contains
a unit monochromatic equilateral triangle.

Proof Let the space E3 be 2-colored, red and blue. We pick two points A and B of
the same color, say red, distance 1 apart (we can pick such A and B in any plane of
the space E3). If there is a third red point C at distance 1 from both A and B, we
are done. Otherwise, we get a whole circle S1 of blue points that lies in the plane
perpendicular to AB through the midpoint O1 of AB (Fig. 41.2).

Fig. 41.2

The radius of this circle S1 is
√

3
2 . Now we pick a chord MN of S1 of length 1.

If there is a third blue point K at distance 1 from both M and N , we are done.
Otherwise there is a whole circle S2 of red points in the plane perpendicular to the
plane of S1 (Fig. 41.3). The radius of S2 is, of course, the same as the radius of S1

(because we really used the same construction for both circles).

Fig. 41.3
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If this second alternative holds as we rotate the chord MN about O1, the white
circle S2 will rotate about O1 accordingly and will create for us a degenerate torus T
(a torus without a hole in the middle due to self intersection). Thus, we get a whole
red torus T !

The largest horizontal circle (equator) S3 on the torus T has diameter d =
√

2+√
3

2

(verify that). We can inscribe in S3 an equilateral triangle K of side
√

3
2 d =

√
6+3
4 >

1. Moving symmetrically the vertices of K along the surface of the torus T towards
the middle of T (so that the plane determined by K remains horizontal), we will get
a new equilateral triangle K1 of side 1 on T . Since K1 is on T and the whole torus
T is red, K1 is the desired monochromatic triangle.

Paul Erdős et al., used a clever method similar to their solution of Problem 41.4
to prove the following stronger result. Try to prove it on your own.

Problem 41.5 ( [EGMRSS]), Theorem 24 of Part PII) For any 2-colored space E3

there is one color such that equilateral triangles of all sizes occur in that color.

This result, of course, makes one wonder whether a similar success can be guar-
anteed on the plane. However, this, is an open question:

Open Problem 41.6 [EGMRSS, Part III, p. 579] Is it true that for any 2-colored
plane E2 there is one color such that all triangles which occur monochromatically
occur in that color?

Now we can prove for the space what is still an open problem for the plane.

Problem 41.7 For any triangle T , any 2-colored space E3 contains a monochro-
matic triangle T1 congruent to T .

Proof Let T be a triangle with sides a, b, and c, and the space be 2-colored. By
Problem 41.5, the space contains a monochromatic equilateral triangle Ka of side
a. Since the plane P that contains Ka is 2-colored, due to Tool 40.19 we have in P
a monochromatic triangle T1 with sides a, b, and c, which is congruent to T .

For right triangles this result can be proved even for a 3-colored space, as Miklós
Bóna and Géza Tóth showed in 1996 [BT]:

Problem 41.8 (M. Bóna and G. Tóth) For any right triangle T , any 3-colored space
E3 contains a monochromatic triangle T1 congruent to T .3

In conclusion I would like to present here, without proofs, the two main results
and the main open problem of the Erdős et al., trilogy [EGMRSS], and related
results by P. Frankl and V. Rödl, and I. Křiž.

Generalizing the line R1, the plane R2 and the space R3, we define the
n-dimensional space Rn for any positive integer n as the set of all n-tuples
(x1, x2, . . . , xn), where x1, x2, . . . , xn are real numbers. When the distance between
two points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of Rn is defined by the equality

3 Compare this result to Shader’s Problem 40.10.
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d =
√

(x1 − y1)2+(x2 − y2)2+. . . +(xn − yn)2 (∗)

we get the Euclidean n-dimensional space En (in other words, En is just Rn together
with the distance d defined by (∗).

Many notions are generalized from E2 and E3 straight forwardly to En . The
sphere of radius r and center O in En is the set of all points of distance r from
O . A 4-point set P in the plane is called a d1 × d2 rectangle if it is congruent to
the set {(0, 0), (d1, 0), (0, d2), (d1, d2)}. Similarly, a 2n-point set in En is called a
d1 × d2 × . . . × dn rectangular parallelepiped if it is congruent to the set

{(x1, x2, . . . , xn)|x1 = 0 or d1; x2 = 0 or d2; . . . ; xn = 0 or dn}.

A finite subset C of En is called r-Ramsey for En if for any r -coloring of En

there is a monochromatic subset C1 congruent to C . If for every r there is n such
that C is r -Ramsey for Rn , then the set C is called Ramsey.

Now you are ready for two main results by Paul Erdős et al.

Necessary Condition 41.9 ( [EGMRSS], Theorem 13 of Part I) If a set C is Ram-
sey, then C must lie on an n-dimensional sphere for some positive integer n.

Sufficient Condition 41.10 ( [EGMRSS], Corollary 22 of Part I) Any subset of a
rectangular parallelepiped is Ramsey.

There is obviously a gap between the necessary and sufficient conditions for a
finite set to be Ramsey. In fact, in 1986 Peter Frankl from France and Vojtech Rödl
from Czechoslovakia proved that the Sufficient Condition 41.10 is not necessary
by showing that even obtuse triangles (which cannot be embedded as subsets in a
rectangular parallelepiped) are Ramsey:

Problem 41.11 (P. Frankl and V. Rödl, [FR1]) All non-degenerate triangles are
Ramsey.

In their consequent paper they generalized this result to n-dimensional Euclidean
spaces.

Problem 41.12 (P. Frankl and V. Rödl [FR3]) Any non-degenerate simplex (i.e.,
n + 1 points generating the whole n-dimensional Euclidean space) is Ramsey.

In 1991 Igor Křiž [Kri1], then from the University of Chicago (and presently from
the University of Michigan), published powerful results that imply the following:

Problem 41.13 (I. Křiž) Any regular polygon is Ramsey.

Thus we finally get the first Ramsey pentagon: the regular one. Křiž’s results also
imply a similar result in three dimensions:

Problem 41.14 (I. Křiž) Any regular polyhedron is Ramsey.

This result has just (2007) been generalized by Kristal Cantwell [Can2] to all
regular n-dimensional polytopes.
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Problem 41.15 (K. Cantwell) All regular polytopes are Ramsey.

In his next 1992 paper [Kri2] Igor improved Frankl–Rödl result 41.11:

Problem 41.16 (I. Křiž) Any trapezoid is Ramsey.

As no criterion for a set to be Ramsey appeared, Paul Erdős attempted to speed
up the process in 1985 [E85.01]:

We (i.e., the authors of [EGMRSS]) do not know which (if any) of these alternatives
characterize Ramsey sets, and I offer $500 for an answer to this question.

Paul Erdős’s $500 Problem 41.17 Find a criterion for a set to be Ramsey.

Ever since 1993, if not before, up to the present [Gra3], [Gra7], [Gra8] Ronald
L. Graham expressed his $1000-belief that the necessary condition 41.9 is also suf-
ficient:

Ronald L. Graham’s $1000 Problem 41.18 Prove that all spherical sets are
Ramsey.

He also offered a consolation prize for a partial result [Gra7], [Gra8]:

Ronald L. Graham’s $100 Problem 41.19 Prove that any 4-point subset of a circle
is Ramsey.
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Gallai’s Theorem

42.1 Tibor Gallai and His Theorem

Gallai’s theorem is one of my favorite results in all of mathematics. Surprisingly, it
is not widely known even among mathematicians. Its creator was Tibor Gallai, born
Tibor Grünwald, a member of the Hungarian Academy of Sciences, who passed
away on January 2, 1992 at the age of 79. His lifelong close friend and coauthor Paul
Erdős was visiting me in Colorado Springs4 when Professor Vera T. Sós called from
Budapest to give Paul the sad news of Gallai’s passing. I asked Paul to write about
Gallai for Geombinatorics. Here is Paul’s Obituary of My Friend and Coauthor
Tibor Gallai [E92.14] in its entirety, including the sketch for Sylvester–Gallai that
he drew on the margin of his manuscript.

“I met Tibor Gallai in 1929 when we were both in high school. We knew of each other’s
existence since we both worked at the Kozépiskolai Matematikai Lapok, a journal for
high school students which appeared every month and published problems and their
solutions by students. This periodical had an immense influence on Hungarian mathe-
matics; many children before the age of 15 realized that they wanted to be mathemati-
cians, and many of the well-known mathematicians as young people worked in this
journal. Gallai and I worked together on mathematics since 1930 and had many joint
papers (for details, see my forthcoming obituary of Gallai in Combinatorica and also
the article of Lovász and myself in Combinatorica, Vol. 2, 1982 written for Gallai’s
70th birthday).
Here I just want to state some of the elementary results of Gallai which can easily be
understood by beginners. In 1933 I conjectured that if x1, x2, . . . , xn are n points in the
plane, not all on a line, then there is always a line which goes through precisely two
of our points. I thought that I will prove this in a few minutes but, in fact, I could not
prove it. I told my conjecture to Gallai who found a very nice proof of it which goes
as follows: Project one of the points to infinity and join it to all the other points. If my
conjecture would be wrong, we would get a set of parallel lines each of which contains
at least two finite points. Consider now the oblique lines, each of them contains at least
three points. Take the line which has the smallest angle.

4 We were working on our join project, a book of Paul’s open problems: Problems of pgom Erdős, which
I hope to finish by 2010.
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On the line in the middle there must be another point besides x2, say y and one
of the lines x1 y or yx3, clearly gives a smaller angle. This contradiction proves the
conjecture. A few years later L. M. Kelly found that my conjecture is not really
mine. It was conjectured in 1893 by Sylvester but as far as we know, Gallai was
the first who proved it. The simplest proof is due to L. M. Kelly. By the way,
I observed that Gallai’s theorem implies that n points not all on a line determine at
least n distinct lines. There is a very nice related conjecture of Gabriel Dirac. Let
x1, x2, . . . , xn be n points not all on a line. Join every two of them. Then at least
one of the points has n

2 − c lines incident to it. Beck, Szemerédi, and Trotter proved
that there is a point with at least c1n lines incident to it; their c1 is positive, but it is
very small.
Gallai was very modest—I would almost say abnormally so. Many of his beautiful
results were published with great delay. Often he did not publish them at all and they
were later discovered by others. He felt sorry for this only once. Dilworth in 1950 in
the Annals of Mathematics proved the following classical theorem: Let ϑ be a partially
ordered set. Assume that the maximal number of non-comparable elements is d , then
ϑ is the union of d chains. In fact, Gallai and Milgram had a complete proof of this
beautiful theorem in 1942. Milgram was a topologist who did not realize the impor-
tance of this result. Gallai wrote their joint paper in German. Milgram wanted to have
it published in English and promised to rewrite it but delayed it until it was too late. I
promised Gallai never to mention this in his lifetime since the theorem should clearly
be known as Dilworth Theorem.
Hilbert, in his beautiful obituary of Minkowski it Math Annalen 1909 wrote ‘I can only
be grateful that I had a friend and co-worker for such a long time.’ This is what I have
to say about Gallai and “May his theorems live forever.”

Paul Erdős added [E92.15]:

A few years before his death he [Gallai] finally accepted the degree of Doctor of the
Academy and two years ago, much against his will, he was even granted the member-
ship in the Academy.

Indeed, Gallai discovered a number of fabulous results, some of which were
named after other mathematicians: he preferred not to publish even his greatest
results. Why did he not publish them? On July 20, 1993 in Kesztely, Hungary during
a dinner my (then) wife Maya, our baby Isabelle and I shared with George Szekeres
and Esther Klein, the legendary couple from the legendary circle of young Jewish
mathematicians in the early 1930s Budapest, I was able to ask them about the friend
of their youth.
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Tibor Gallai, 1935–1936. Courtesy of Alice Bogdán

“Gallai was so terribly modest,” explained George Szekeres. “He did not want to
publish because it would show the world that he was clever, and he would be restless
because of it.”

“But he was very clever indeed,” added Esther Klein-Szekeres. Esther continued:
“Once I came to him and found him in bed. He said that he could not decide which
foot to put down first.”

“Gallai was Paul Erdős’s best, closest friend,” continued George. “I was very
close with Turán. It was later that Paul Erdős and I became friends.”

I always thought, as probably everyone, that hypergraphs were invented by the
great French graph theorist Claude Berge. Amazingly, Gallai was first here too: at
the age of 18–19 (Gallai was born on July 15, 1912), he introduced hypergraphs.
Paul Erdős mentioned it in passing in his 1991 talk at Visegrád (Hungary) Confer-
ence, and published 3 years later [E94.22]:

As far as I know, the subject of hypergraphs was first mentioned by T. Gallai in
conversation with me in 1931, he remarked that hypergraphs should be studied
as a generalization of graphs. The subject really came to life only with the work
of Berge.

Paul Erdős told me that Tibor Gallai discovered the theorem of our prime interest
in the late 1930s. He did not publish it either. It first appeared in the paper [Rad2]
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by Richard Rado (with a credit to “Dr. G. Grünwald,” which was Gallai’s last name
then; the initial “G” should have been “T” and must be a typo). Rado submitted this
paper on September 16, 1939; it is listed in bibliographies as a 1943 publication,
but in fact came out only in 1945—the World War II affected all facets of life, and
made no exception for the great Gallai result. I hope you will enjoy it as much as I
have, and try your wit and creativity in proving this beautiful and extremely general,
classic result. Readers, unfamiliar with m-dimensional Euclidean space, can look
up the definition in chapter 41 or assume m = 2: plenty of fun is to be found in
the plane!

Gallai’s Theorem 42.1 ( [Rad2]) Let m, n, k be arbitrary positive integers. If the
lattice points Zn (i.e., the points with integer coordinates) of the Euclidean space
En are colored in k colors, and A is an m-element subset of Zn , then there is a
monochromatic subset A′ of Zn that is homothetic (i.e., similar and parallel) to A.

In fact, with out too much effort the Gallai Theorem can be strengthened as
follows:

Gallai’s Theorem 42.2 ( [GRS2]) Let m, n, k be arbitrary positive integers. If the
Euclidean space En is colored in k colors and A is an m-element subset of En , then
there is a monochromatic subset A′ of En that is homothetic to A.

In 1947, the well-known Russian mathematician Aleksandr Yakovlevich
Khinchin (1894–1959) published a book Three Pearls of Number Theory [Khi1].
The booklet was an instant success, and second edition came out in 1948 [Khi2].
It included a new, “much simpler and transparent,” in the opinion of Khinchin,
exposition of Van der Waerden’s proof (which we discussed in Chapter 33), pro-
posed by the Russian mathematician M. A. Lukomsakja from Minsk. In 1951 this
second edition of the book was translated into German and in 1952 into English.
Each of these translations proved instrumental in bringing into existence two more
independent proofs of Gallai’s theorem. The 1951 German translation [Khi3]
inspired Ernst Witt to discover his proof in 1951 ( [Wit], submitted on September
21, 1951; published in 1952), while the 1952 English translation [Khi4] stimulated
Adriano Garsia in finding his proof in 1958. Khinchin writes [Khi3]:

It is not out of the question that Van der Waerden’s theorem allows an even simpler
proof, and all efforts in this direction can only be applauded.

Witt [Wit] quotes this Khinchin’s call to arms in his paper, and happily reports:

This was the occasion to strive for a new order of proof that then led directly to a more
general grasp of the problem.

How does one attribute credit for this classic result? Graham, Rothschild, and
Spencer call it “Gallai’s Theorem” ( [GRS2], while Hans Jürgen Prömel with his
coauthors Vojtech Rödl and Bernd Voigt call it “Gallai–Witt’s Theorem” [PR], [PV].
It is not a deciding factor for me that Gallai did not publish his proof— he shared it
with Rado in 1930s, who gave Gallai credit very early, in 1939. It is not a deciding
factor that Garsia did not publish his proof— he provided me with an old blue-line,
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faded from age, copy of his 1958 proof. Witt and Garsia appear to have discovered
their proofs independently from Gallai, and their proofs constitute contributions to
the field. However, the significant time that had lapsed between the 1930s and the
1950s prompts me to give credit for the discovery of the theorem to one person, and
call it accordingly Gallai’s Theorem.

Let me briefly introduce you to double induction, which will be used in the proof
of Gallai’s Theorem.

42.2 Double Induction

There is a curiosity related to induction in mathematical education. We all learn
induction, some in high school, others in college. It is presented in numerous
ways in numerous textbooks. However, when we start reading research articles, we
encounter a more powerful version, called a double induction. So as we read, we
have to understand what it is and be confident that it is a valid method. To the best
of my (and Paul Erdős’s) knowledge, the double induction is not presented in any
textbook. To aid you, I will describe it for you here before using it.

Given lattice points on a line (Fig. 42.1):

Fig. 42.1

If we can visit the first point from the left, and we possess the translation ⇒ that
takes us from any point to its neighbor to the right, then we can visit each lattice
point on the line.

This is a (new) formulation of the Mathematical Induction Principle. It is one of
the axioms of positive integers (and cannot be proven without assuming the truth of
an equivalent statement).

The Double Induction does the same thing but on a two-dimensional lattice
(Fig. 42.2). If we can visit the origin O and we possess two translations, ⇒ and
⇑ that take us from any point to its neighbor to the right or above respectively, then
we can visit each lattice point of the plane.

Now you can easily envision a triple induction, a quadruple induction, etc. (even
though I have not seen them actually used).

The double induction was used in the proofs of Baudet–Schur–Van der Waerden’s
theorem, Ramsey’s theorem, and Gallai’s Theorem.

42.3 Proof of Gallai’s Theorem by Witt

Now we are ready to look at Ernst Witt’s proof of the Gallai’s theorem. In fact, it
took an effort to read Witt’s page and a half exposition before I completely under-
stood his dense and beautiful proof (published in German, of course). I will try to
preserve the beauty of it here, but will “unzip” it, make it more accessible and less
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O

Fig. 42.2

dense. Witt proves Gallai’s theorem for the plane. An n-dimensional generalization
is straight forward.

Theorem 42.3 (Gallai’s Theorem for the plane) For any arbitrary positive integer k
and a finite n-element set Sn of points in the plane, there is a finite set � = �(n, k)
of points in the plane, such that if � is colored in k colors, there is a monochromatic
subset S′

n of � that is homothetic to Sn .

Proof by Ernst Witt, “unzipped”: We can think of points of the plane as of complex
numbers. (Those who prefer to visualize points as ordered pairs of real numbers
can do so. By addition of points in the plane we would mean the component-wise
addition; multiplication of a point by a real number would be performed component-
wise as well.)

Let the given figure Sn consist of n distinct complex numbers e1, e2, . . . , en .
Without loss of generality we can assume that e1 = 0. We say that a figure S′

n is
homothetic to the figure Sn if

S′
n = λSn + a,

where λ is a positive integer, and a is an arbitrary real number.
Given a figure Sn = {e1, e2, . . . , en}, we would say that the two points e1

1 and
e1

n from the set � = �(n, k) are connected by S1
n , if there is a homothetic image

S1
n = {e1

1, e1
2, . . . , e1

n} of Sn such that the subfigure S1
n−1 = {e1

1, e1
2, . . . , e1

n−1} of S1
n

is monochromatic.
We will prove the following Tool 42.4 and Theorem 42.3 in the same time:

Tool 42.4 (E. Witt, [Wit]) There is a finite set � = �(n, k, m) of points in the plane
such that for any coloring f (x) of � in k colors, � contains a sequence of pairwise
connected points a1, a2, . . . , am .
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In Tool 42.4 every pair of points ai , a j , (i < j) is connected by a homothetic
image Si j

n = ai + λi j Sn which is monochromatic with a possible exception of its
last point a j = ai + λi j en .

Proof by double induction: We will conduct a double induction in n and m with
arbitrary k. For n = m = 1 the tool is obviously true.

In order to prove the step m ⇒ m + 1, we assume that the following sets have
already been constructed,

�m = �(n, k, m) and �2
m = �(n, K , 2)

for a fixed n and m, and all k and K. Here K stands for the number of distinct ways
to color the set �m in k colors.

Now we can define the set �m+1 as follows:

�m+1 = �m+1(Sn, k, m + 1) = �m + Δm

= {x + y |x ∈ �m ; y ∈ Δm}

i.e., �m+1 consists of all sums x + y where x and y belong to the sets �m and
Δm respectively.

Assume that the set �m+1 is colored in k colors by a coloring f . Let y be an
arbitrary point of Δm . The coloring of �m+1 uniquely determines the coloring of
the subset

�m + y = {x + y |x ∈ �m },

and we can assign this coloring to the point y itself. Observe: since �m + y is a
translation of the set �m in the plane, what we assigned to the point y is a coloring
of �m , one of K possible colorings of �m (see the definition of K above). Thus we
got the set Δm colored by the induced coloring, call it f ∗, in K colors!

Now we can apply the inductive assumption to the set Δm = �(Sn, K , 2): we
conclude that Δm contains two connected by Sn points a and b, i.e., there is μ

such that

f ∗(a) = f ∗(a + μei ) for any 0 ≤ i < n.

In terms of the original coloring f of the set �m+1, the above equality means the
following:

f (x + a) = f (x + a + μei ) for any x ∈ �m and 0 ≤ i < n.

The set �m + a can be viewed as a copy of the set �m = �(Sn, k, m) with the
coloring in k colors that is induced by the coloring of �m+1. Therefore, by applying
the inductive assumption to �m + a, we conclude the existence of the sequence of
m pairwise connected points a1, a2, . . . , am .
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Denote am = ai + λ jm en for any 1 ≤ i ≤ n (of course, λmm = 0). We get:

f (ai ) = f (ai + � jm e j ) = f (ai + � jm e j + μe j ) for any 0 ≤ j < n

Taking into account ai + λ jmen + μen = am + μen , we obtain the extended
sequence of pairwise connected points:

a1, a2, . . . , am, am + μen.

Starting with �2 = �(Sn, k, 2), we can construct �m = �(Sn, k, m) for any m.
In particular, when m = k + 1, according to the Pigeonhole Principle, the sequence
of pairwise connected points a1, a2, . . . , ak, ak+1 contains two points, say ai and
a j , of the same color. Since ai and a j are connected, there is a set S1

n homoth-
etic to Sn that contains ai and a j , and monochromatic with a possible exception
for the color of a j . But ai and a j are of the same color, therefore the set S1

n is
monochromatic.

We are now ready to prove the second inductive step of our double induc-
tion: n ⇒ n + 1. Assume that the sets �(Sn, k, 2) and �(Sn, k, k + 1) are con-
structed. Let Sn+1 = {e1, e2, . . . , en, en+1} be a given (n + 1)-element set. We
define the set �(Sn+1, k, 2) as the union of all homothetic images S1

n+1 of Sn+1

such that at least one of its n-element subsets lies in �(Sn, k, k + 1). Assume
now that the set �(Sn+1, k, 2) is colored in k colors. According to the paragraph
above, there is a monochromatic homothetic image S1

n = {e1
1, e1

2, . . . , e1
n} of the set

Sn = Sn+1\{en+1} = {e1, e2, . . . , en} that lies in the set �(Sn, k, k + 1). Just add the
point e1

n+1 to S1
n that makes the set S1

n+1 = S1
n ∪{e1

n+1} to be homothetic to Sn+1. We
are done: the points e1

1 and e1
n+1 are connected by the homothetic image S1

n+1 of the
given set Sn+1, such that all the points of S1

n+1 except possibly for e1
n+1 are colored

in the same color.

Ernst Witt concluded his paper with a noteworthy footnote, showing his way of
visualizing the above proof:

In order to better conceptualize, one can imagine in some courtyard � taut
clotheslines, on which from clothespins ai hang similarly shaped laundry pieces
S1

n , which are monochromatic except for small mistake on the right end e1
n . Every

clothespin carries n − 1 pieces of laundry.

Ernst Witt was born on the island of Alsen in 1911. Alsen together with the rest
of North Schleswig became part of Germany in 1864. The island was returned to
Denmark in 1920. Two-year old Witt went to China with his missionary parents. At
9 he was sent back to Germany to live with his uncle. Witt studied at the universities
of Freiburg and Göttingen. His doctoral work at Göttingen was supervised by Emmy
Noether. That was the dawn of Hitler’s rein. Witt’s former student at Hamburg (and
presently a Bielefeld professor) Ina Kersten writes in his biography [Ker] that on May
1, 1933 Witt joined the Nazi party and the storm troopers SA—observe, he did it days
after his teacher Noether was fired by the Nazi regime. After the war, as a proof of
how little the Nazi and SA memberships meant to him, Witt claimed that his family
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did not know about his belonging to the SA and the Nazi party [Ker]. He was not as
considered towards his fired from Göttingen Jewish mentor Emmy Noether [Bert]:

Storm trooper Ernst Witt, resplendent in the Brownshirt uniform of Hitler’s paramili-
tary, knocked on a Jew’s apartment door in 1934. A short, rotund woman opened the
door. Emmy Noether smiled, welcomed the young Nazi into her home, and started her
underground math class. The Brownshirt was one of her favorite pupils.

Indeed, Witt must have been Noether’s second most favorite student behind only
Van der Waerden. Since Emmy Noether was forced out as Jewish and liberal, Witt
defended his doctorate under Gustav Herglotz in July 1933, and joined Helmut
Hasse’s seminar, who entered Göttingen in 1934 as the Director of the mathematics
institute and professor. Hasse’s seminar was also attended by Oswald Teichmüller,
who joined the Nazi party and the storm troopers even before Hitler came to power,
and who was the boycott leader of Edmund Landau’s classes.

Gian-Carlo Rota writes [Rota]: “There is no reason why a great mathematician
should not also be a great bigot.” These words are fully applicable to Witt’s semi-
nar leader Helmut Hasse. Hasse actively supported the gagster Nazi regime and its
complete disregard for the most basic human rights, and expressed the most hateful
attitudes towards people of other races and ethnicity. For instance, during Hasse’s
talk in Pisa after the start of World War II and before Italy’s collapse, L. Tonelli
asked Hasse about the fate of Polish mathematicians (and in particular of Schauder).
Hasse replied:

Poles should not do mathematics. They should work in coal mines and agricultural labor.5

It is amazing that even long years after the end of the war, Hasse did not change
his racist rhetoric. Sanford Segal, who presents much material on Hasse [Seg],
describes how in the 1960s at Ohio State University, Hasse claimed that “slavery
in America had been good institution for blacks.” Right after the war Hasse was
welcomed to research positions and shortly after to professorships and other high
honors by both East Germany and West Germany—Mathematik über alles! But let
us return to our “hero,” Ernst Witt.

Kersten [Ker] informs that in 1934 Witt became Hasse’s Assistant at Göttingen.
In 1937 Emil Artin left Hamburg for the United States. In 1939 Witt was appointed
to the downgraded to an Associate Professor position of Artin and worked there
until his dismissal by the British Military Authority in the fall of 1945. However,
the Brits could not keep long grudges against the Nazis in Germany, and in 1947,
Witt was reinstated in his position, in 1957 promoted to an Ordinarius, and remained
on the job until his retirement in 1979.

Kersten describes Witt’s 1960–1961 visit to the Institute for Advanced Study at
Princeton, and his “astonishment” at the negative reaction of the Institute’s members
when Witt disclosed his Nazi past:

On day during a discussion about a member of the National Socialist party, he [Witt]
felt obligated to declare that he had also been a member of that party. To behave oth-

5 The source: Jacopo Barsottti, who attended this Hasse’s lecture.
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erwise would have seemed insincere to him. He found, to his utter astonishment, that
his contacts with his colleagues were suddenly severed.

Could Witt not comprehend that people at the Institute, some of whom escaped
from the Nazis, were “sincerely” shocked to find a former Nazi in their midst? I am
utterly astonished that Witt was “utterly astonished.”

In 1978, Ernst Witt was given honors of membership in the Göttingen Academy
of Sciences. He died in Hamburg on July 3, 1991 of natural causes.

42.4 Adriano Garsia

Let us now turn to Professor Adriano Garsia. The story of his discovery, told in the
February 28, 1995 e-mail to me, is almost as intriguing as the story Van der Waerden
told us in Chapter 33.

“I discovered the result in the fall of 1958. I was then a Moore instructor at MIT.
We used to have fun at the time tossing each other problems at the common room.
A student had asked the following question:

If we color the points of the plane in two colors can we always find a square with
vertices all of the same color?

This problem frustrated everybody. . . including me. . . Until Paul Cohen6 solved
it. I didn’t want to know the solution since I wanted to solve it myself. . . After a few
days of unsuccessful attempts I finally asked somebody who knew Paul’s solution
how he did it!

I learned that he had used Van der Waerden’s theorem on arithmetic progressions.
I did not know of Van der Waerden’s result at the time so I was at disadvantage on
this one. So I got hold of Khinchin’s book Three Pearls of Number Theory [Khi4]
and studied Van der Waerden’s proof very carefully.

I noticed then that the theorem could be generalized to higher dimensions to show
that we could find any finite set of lattice points (up to scaling) with all elements of
the same color.

I wrote up the proof and sent it to Van der Waerden who liked it and offered to
publish it in the Mathematische Annalen. However a few weeks later I got another
letter from Van der Waerden who had been doing some search on the literature on
the subject and discovered that precisely the same generalization had already [been]
published by T. Rado7. . . Under those circumstances he felt that although my proof
was much neater. . . he didn’t think it was worth publishing.

6 In 1963 the American mathematician Paul Joseph Cohen (April 2, 1934–March 23, 2007) invented
a technique called forcing and used it to prove that neither the continuum hypothesis nor the axiom
of choice can be proved from the standard Zermelo–Fraenkel system of axioms (ZF) for set theory. In
1966 he won Fields Medal for this great achievement at the International Congress of Mathematicians in
Moscow. He will appear again in Part X.
7 Actually R. Rado, [Rad2].
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In the mean time I had asked myself “what about a regular pentagon?. . .” In fact,
what if we are given any geometric figure consisting of a finite set of points, can
we find a stretch and translate of the figure with all elements of the same color?. . .
Now it developed that my proof could be used under this more general situation as
well. In fact, contrarily to P. Cohen or Rado who derived their result by applying
Van der Waerden’s theorem I had obtained mine by extending Van der Waerden’s
mechanism of proof.

Basically I showed that a sufficiently high “power” of the figure had to contain
a monochromatic stretch and translate of the figure. (Power here means that we
construct a figure of the form F + a1, F + a2, . . . F + an; with A + B representing
the vector sum of every point of A with every point of B.)

Although the version I had sent to Van der Waerden did not specifically address
itself to this more general situation very little needed to be added to include this.
Nevertheless after Van der Waerden’s second letter I gave up on the idea of pub-
lishing the result. I have still some duplicates of seminar notes in which the more
general result is presented. In fact the summer of 1959 I did give a lecture at Bell
Labs on it. I believe G. Rodemich who is now at JPL [Jet Propulsion Laboratory],
perhaps Henry Pollack was also at that lecture. . . I don’t quite remember others.
Jurgen Moser was at MIT at that time and I remember discussing my result with
him in great detail.

This is the story. I am presently visiting UQAM and University of Montreal and
it is difficult from here to locate those notes. I will get back to San Diego at the end
of March. Send me your address and I will mail you a copy.

The idea of the proof is noticing that the same pigeon-hole argument of the orig-
inal proof of Van der Waerden can be used in this more general situation. Induc-
tively, we consider “colored” powers of the figure as “colors” assigned to say the
center of the power. Then having proved the result for any number of colors and all
figures with n − 1 points, we construct in a sufficiently high power of that power a
monochromatic configuration of centers that is similar to the given figure minus a
point. However, monochromatic centers now means that the corresponding powers
centered at those points are all colored the same way! . . .

At this point we then use the Van der Waerden idea. . . which is well explained in
Khinchin’s book. Incidentally Khinchin states that he is presenting a simpler proof
but Van der Waerden himself assured me that his proof was identical. . . I never did
see Van der Waerden’s original proof.

That is the story as I can remember it . . .

Best wishes on your book,

Garsia

PS: I am surprised that you call this Gallai’s theorem. . . I was under the impression
that a formal language version of the result which could be easily translated into
mine (by sending letters into vectors) was due to Graham and Rothschild and a 3rd
author I can’t remember [Spencer – A.S.].”
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To complement this fabulous story, Adriano Garsia sent to me the original, faded
with age, 10 mimeographed blue-lettered pages of his notes, as he wrote on April
20, 1995 in another e-mail:

I finally found the notes from which the paper I sent to Van der Waerden was written.
I don’t seem to have any copy of that paper. The notes are a bit faded but still readable.
I am mailing them today. Best of luck in deciphering them.

– Garsia

Adriano Garsia was born in Tunisia on August 20, 1928. He received his sec-
ondary and college education in Rome, and Ph.D. from Stanford University in 1957.
He was a professor at the California Institute of Technology (1964–1966), and since
1966 has been a professor at the University of California San Diego.

42.5 An Application of Gallai

A beautiful application of the Gallai Theorem was found by Alexej Kanel-Belov
(listed as just Belov in this article) and S. V. Okhitin in 1992 [BO].

Theorem 42.5 ([BO]) Each cell of an [infinite] square grid contains an integer. For
any given non-zero integer n there is a square with sides parallel to the lines of the
grid, such that the sum of all integers inside it is divisible by n.

Proof Affix x and y axes along the lines of the grid. Now we “color” each unit cell
(x, y) of the grid in one of n colors by assigning to it the remainder S (x, y) upon
division by n of the sum of numbers located in all cells with coordinates (a, b) such
that 0 ≤ a ≤ x ; 0 ≤ b ≤ y.

The first quadrant of the grid is colored in n colors. By Gallai’s Theo-
rem, there is a monochromatic square, whose vertices have coordinates, say,
(x, y) , (x + k, y) , (x, y + k) , (x + k, y + k). But this is all we need to prove the
result, for it is easy to notice that the sum of all numbers inside this square is

S (x, y) − S (x + k, y) − S (x, y + k) + S (x + k, y + k) ,

and this sum is congruent to zero modulo n!

The authors generalize this theorem on two counts at once as follows.

Theorem 42.6 ([BO]) Each cell of an [infinite] k-dimensional square grid contains
an integer. For any given non-zero integer n and a positive integer m there is a
positive integer L = L(k, m, n) such that the grid contains a k-dimensional cube of
side Lm with all edges parallel to the lines of the grid, which is partitioned into mk

“little” cubes of side L , such that the sum of all integers inside each “little” cube is
divisible by n.

Hint: Instead of claiming a monochromatic square, as we did in the proof of 42.5, we
can now use the Gallai Theorem to claim the existence of a monochromatic subgrid
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homothetic to the k-dimensional square grid of side L (which consists, of course, of
mk cells of the same color).

Theorem 42.7 ([BO]) Each cell of an [infinite] k-dimensional square grid contains
a real number. For any given positive integer m and a (small) positive ε there is a
positive integer L = L(k, m, ε) such that the grid contains a k-dimensional cube of
side Lm with all edges parallel to the lines of the grid, which is partitioned into mk

“little” cubes of side L , such that the sum of all numbers inside each “little” cube
differs from an integer less than by ε.

Hint: The proof repeats the proof of the previous result with the more delicate inter-
pretation of coloring. We partition a unit segment [0,1] into N > 2kmkε equal
“little” segments – they are our “colors”–and determine the color of a cell of the
grid with coordinates (x1, . . . , xk) by the “little” segment into which the fractional
part falls of the sum of numbers in the grid’s cells with coordinates (a1, . . . , ak),
where 0 ≤ ai ≤ xi for 1 ≤ i ≤ k.

Of course, the Gallai Theorem allows us to generalize Theorems 42.5, 42.6,
and 42.7 further and use k-dimensional parallelepipeds of the given in advance ratio
of sides. I leave this development to you.

42.6 Hales-Jewett’s Tic-Tac-Toe

Surely you played Tic-Tac-Toe in your tender years (Fig. 42.1). The goal is to mark a
line of cells with your sign. In the “normal” Tic-Tac-Toe, the line can be horizontal,
vertical, and diagonal (there are two diagonals). In fact, we can represent the cells
by nodes, and replace X’s and O’s by two colors. The game then asks two players to
color the nodes in turn. The winner is the one who creates a monochromatic line in
his color. We will accept all the usual lines except one of the diagonals, going from
the upper left to the lower right corner (Fig. 42.2).

X

O

Fig. 42.1

Fig. 42.2

In 1963 the 25-year old Alfred W. Hales and 26-year old Robert I. Jewett published
the result that raised the Tic-Tac-Toe game to the level of a mathematical result of
Ramsey Theory, the result of great importance. Informally speaking, they proved that
the n-dimensional, r -player generalization of Tic-Tac-Toe cannot end in a draw, no
matter how large n is, and no matter how many people r play so long as the playing
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board has a sufficiently high dimension. (In fact, the first player has a winning strategy
due to the strategy-stealing argument.) As is often the case in mathematics, this is an
existence result: no algorithm is known for the winning strategy.

In order to present the theorem formally, we need to define an n-dimensional
cube and a combinatorial line, or simply a line in it. Given a fixed finite set, often
called alphabet, A = {a1, a2, . . . , am}, the n-dimensional cube on the alphabet A
is, expectedly, the set An = {(x1, x2, . . . , xn) : xi ∈ A}. Given a set of coordinates
S, Ø 
= S ⊆ {1, 2, . . . , n}, a line L is a set of the form

L = {
(x1, x2, . . . , xn) : xi = x j for i, j ∈ S; and xl = al ∈ A for l /∈ S

}

We are ready to formulate Hales—Jewett’s Theorem.

Hales—Jewett’s Theorem 42.8 [HJ] For any finite set A and positive integer k
there exists an integer N (A, k) such that for n ≥ N (A, k), any k-coloring of An

contains a monochromatic line.

A very clear “sketch of proof” can be found in [Gra1].
This result—as is often the case in mathematics—was obtained by the young

mathematicians: Alfred W. Hales was 23, and Robert I. Jewell 24. Alfred e-mailed
to me, on January 3, 2007, and recalled how it all came about:

Bob and I were undergraduates at Caltech8 together – he was a year ahead of me.
We had common interests in both math and volleyball. We also both worked in Sol
Golomb’s9 coding theory group at the Jet Propulsion Laboratory (JPL, affiliated with
Caltech) during summers, and we continued doing this when we were in graduate
school – he at the University of Oregon and I at Caltech.

The strong connection between error correcting codes and combinatorics led Sol to
steer us in various combinatorial directions and this led (eventually) to our joint paper
written at JPL in 1961.

In the December 17, 2007, e-mail, Alfred added:

I did ask Sol [Golomb] about this – You recall that he was our supervisor in the Jet
Propulsion Laboratory’s coding theory group. He seems to remember that a problem
in Martin Gardner’s column suggested to him the possibility of generalizing van der
Waerden’s theorem in some way, with applications to games and to coding in mind. He
thinks he discussed this with us, and we proceeded to formulate and prove the eventual
result.

In 1971 the Hales–Jewett Theorem earned the authors the George Polya Prize,
which they shared with Ronald L. Graham, Klaus Leeb, and Bruce L. Rothschild,
the authors of the Affine Ramsey Theorem.

There is a noteworthy connection between the two celebrated results (see proof
in [GRS2, pp. 40–41]):

Connection 42.9 Hales–Jewett’s Theorem implies Gallai’s Theorem.

8 California Institute of Technology.
9 We have already met Solomon Golomb in Chapter 2 of the book.



IX
Colored Integers in Service of Chromatic

Number of the Plane: How O’Donnell
Unified Ramsey Theory and No One

Noticed

An interesting recent result of O’Donnell [Odo4, 5],
perhaps giving a small amount of evidence that
χ

(
E2

)
> 4

– Ronald L. Graham [Gra6]

Give a man a fish and you feed him for a day. Teach
him how to fish and you feed him for a lifetime.

–

Indeed, I agree, Paul O’Donnell proved sensational results, showing that there are
unit distance 4-chromatic graphs of girth 9, girth 12, and even an arbitrarily high
girth. These results do give some evidence that, perhaps, the search for a 5-chromatic
unit distance graph may celebrate its victory one day—this is the result O’Donnell
was ultimately after, but has not succeeded: no one has.

The epigraph shows, of course, that Ron Graham appreciated the result, as did our
other colleagues. However, what no one noticed, was how great Paul O’Donnell’s
proofs were. The dilemma of results vs. methods of proofs reminds me the proverb
of the ancient Chinese sage, the father of Taoism (Lao Zi): “Give a man a
fish; you have fed him for today. Teach a man to fish; and you have fed him for a
lifetime.”

Just imagine you created a huge 4-chromatic graph without cycles of order say,
100. Now you need to embed it in the plane so that every edge is a unit segment.
Wouldn’t you feel that this is extremely hard and messy, and you would likely waste
much time and end up with nothing? Paul showed bravery and imagination when he
plunged into unit distance embeddings, which we studied in Chapter 14.

He has also set world records of embedding smallest known unit distance
graphs without small cycles, jointly with his friend and one time roommate Rob
Hochberg—we have seen those in Chapter 15.

I, however, appreciate the most his constructions in this section. Paul uses the
powerhouse of classic results of integer coloring, such as Baudet–Schur–Van der
Waerden’s Theorem, great results related to the search for the proof of Fermat’s
Last Theorem from Number Theory and Ergodic Ramsey Theory, such as Mordell–
Faltings’ Theorem and Bergelson–Leibman’s Theorem. He applies this powerhouse
of integer coloring and Number Theory sophistication to the problem of coloring the
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plane, the chromatic number of the plane problem. And by doing so, he is unifying
Ramsey Theory in general, and this book in particular—as nothing else would.

I have followed Paul’s research ever since my March 1992 talk at Florida Atlantic
University, where my talk inspired him to write his thesis on these problems. He then
visited me in Colorado Springs, and later claimed in his thesis that “it all came to
me as I drifted off to sleep on your couch.” In the end, I was a member of Paul
O’Donnell’s May-1999 Ph. D. defense committee at Rutgers University, together
with János Komlos, Michael Saks, and Endre Szemerédi. Yet, even though I knew
this dissertation well and followed through its many revisions, it took me time, well
after Paul’s defense, to fully appreciate how great Paul’s results and moreover meth-
ods were. Enjoy!



43
Application of Baudet–Schur–Van der Waerden

At the end of Chapter 14, I left you with the embedding of the 352,735-vertex
Blanche Descartes graph in the plane by Paul O’Donnell. You may ask, would
attaching longer k-cycles (k > 7) to the foundation vertices increase the graph’s
girth while keeping the chromatic number at 4? The answer is no, not if k-cycles
were attached to all k-element subsets of the foundation set, because some k-cycles
would have two or more vertex intersection which could cut down the girth of the
graph. We would get a chance to succeed at this construction if we were to dramat-
ically limit the number of attached k-cycles, by, say, allowing at most a single point
intersection for the k-subsets of the foundation to which k-cycles are allowed to be
attached. This is exactly what O’Donnell has implemented.

We met hypergraphs at the end of Section 26.1; let us get acquainted with a
special type of them here. A k-uniform hypergraph H is a family of k-element sub-
sets of an n-element set S. The vertices of H are the elements of S. The edges
(or hyperedges) of H are the k-element subsets. A cycle of length k > 2 in H is a
sequence of distinct vertices and edges of H ,

v1, E1, v2, E2, . . . , vk, Ek, (43.1)

such that vi+1 ∈ Ei ∩ Ei+1 for 1 ≤ i ≤ k (where the addition in the indices is
done modulo k). The girth of a hypergraph is the length of its shortest cycle. The
chromatic number of a hypergraph is the minimum number of colors needed to color
the vertices so that no edge is monochromatic, i.e., consists of vertices which are all
colored the same color.

Let n be a positive integer, H a graph on k vertices (k ≤ n), and S ⊆
(|n|

k

)

a k-uniform hypergraph.1 Then Gn,H,S would denote the Blanche Descartes graph2

1 Here the symbol

(|n|
k

)

stands for the set of all k-element subsets of the |n|-element set.

2 Defined in construction 12.10; see also examples of use 12.8 and 12.9.
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built on the foundation vertex set F = {
u∗

1, u∗
2, . . . , u∗

n

}
by attaching3 copies of H

to those subsets of F that are in S.
In this notation, the 112-vertex graph constructed in Problem 12.8 can be

recorded as G
7,3−cycle,

(|7|
3

). The 6448-vertex graph, first embedded by Wormald

(Section 12.3), can be recorded as G
13,5−cycle,

(|13|
5

). The girth 6, 352,735-vertex

Blanche Descartes graph embedded in the plane by Paul O’Donnell (see the end of
Chapter 14), is encoded as G

19,7−cycle,

(|19|
7

).

O’Donnell came up with a brilliant idea of attaching cycles only to certain arith-
metic progressions (for short, APs) of the foundation set and restricting APs in the
following two ways:

1. the set D of allowable common differences is chosen so that APs with distinct
common differences overlap by at most one element (overlaps by two or more
vertices may create small cycles).

2. given D, the set S is constructed so that APs with the same common difference
do not overlap.

The distance between any two points in a k-term AP is ad, where a < k and d is the
common difference. To prevent two APs from intersecting at two points, it suffices
to ensure that ad1 �= bd2 for all a, b less than k and distinct common differences
d1, d2 from D. Formally, let D j denote the set of allowable common differences
less than or equal to j . We define D j recursively:

D j =

⎧
⎪⎨

⎪⎩

D j−1 ∪ { j} , if for all d ∈ D j−1 and positive integers

a, b ∈ [k − 1] , ad �= bj ;

D j−1 otherwise.

⎫
⎪⎬

⎪⎭
(43.2)

Then the allowable set of common differences is:

D =
∞⋃

j=1

D j (43.3)

How dense is D? If too many numbers are in D, then the graph will have short
cycles. If too few numbers are in D, then the graph will not be 4-chromatic. So,
we need to perform a balancing act! The following tool gives an idea of the density
of D.

Tool 43.1 For all d, at least one of {d, 2d, 3d, . . . , k!d} is in D.

Proof If k!d ∈ D then we are done. If not, then there exist positive integers
a, b ∈ [k − 1] and d1 ∈ D with d1 < k!d such that ad1 = bk!d. Solving for

3 Defined in Section 14.1.
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d1, we get d1 = bk!d
a . Since a < k, a divides k!, and thus d1 is a multiple of d, as

desired.

Once we get D, we can construct the set S of APs. Let us formally define S:

S = S (n, k, D) = {{a, a + d, . . . , a + (k − 1) d} : d ∈ D, (43.4)

a ≡ 1, 2, . . . , d (mod kd) , a + (k − 1) d ≤ n}. (43.5)

For example, if D = {1, 3, 4, 5, . . . } then S(17, 3, D) is:

{1,2,3} {1,4,7} {1,5,9} {1, 6,11}
{4,5,6} {2,5,8} {2, 6,10} {2, 7,12}
{7,8, 9} {3,6,9} {3,7,11} {3, 8,13}
{10,11,12} {10,13,16} {4,8,12} {4,9,14}
{13,14,15} {11,14,17} {5,10,15}

Now we need to check the chromatic number and the girth of the graph
Gn,k-cycle,S for appropriate k and n, and verify that Gn,k-cycle,S is a unit dis-
tance graph.

It is delightful to see how Paul O’Donnell uses the Baudet–Schur–Van der Waer-
den’s Theorem (Theorem 33.1) to show that for some n, Gn,k-cycle,S is 4-chromatic!

Theorem 43.2 There exists n such that χ (Gn,k-cycle,S) = 4.

Proof By Baudet–Schur–Van der Waerden’s Theorem, there exists n such that any
3-coloring of the integers from 1 to n contains a monochromatic AP of length
(2k − 1)k!.

Let d be the common difference of this AP. By Tool 43.1 there exists d ′ ∈ D,
such that d ′ is a multiple of d such that d ′≤k!d. Hence there is a (2k − 1)-term
monochromatic AP of foundation vertices with d ′ ∈ D

ua, ua+d ′ , . . . , ua+(2k−2)d ′ . (43.6)

One of the first k of these indices is congruent to some element in {1, 2, . . . , k}
(mod kd). The vertex with this index and the k − 1 vertices after it (in the AP with
common difference d ′′) form a set in S. This set has a k-cycle attached. But if all of
these foundation vertices are of the same color, there are only two colors remaining
to color the odd cycle. Two colors are not enough. Thus at least four colors are
necessary to color Gn,k-cycle,S .

Theorem 43.3 For odd k ≥ 9, girth(Gn,k-cycle,S) ≥ 9.

Proof A cycle containing no foundation vertices is a k-cycle. All other cycles con-
sist of the foundation vertices separated by at least two vertices of an attached cycle.
It is therefore impossible to have a cycle with only one foundation vertex.
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A cycle has only two foundation vertices if the APs of the two attached cycles
intersect in two places. However, our choices for D and S prevent this.

A cycle with at least three foundation vertices has at least nine vertices. There-
fore, the girth of our graph is at least min {9, k}.

Observation: Just like the Blanche Descartes construction, this method general-
izes to arbitrary chromatic number. By attaching girth 9, (l −1)-chromatic graphs to
appropriate APs of the foundation vertices; we obtain girth 9, l-chromatic graphs.
However, we need to embed our graphs in the plane as unit distance graphs, and the
4-chromatic graphs seem to be the only reasonable candidates for it.

Theorem 43.4 There exists a girth 9, 4-chromatic unit distance graph.

Proof As we have established above, for appropriate choices of k and n, the graph
Gn,k-cycle,S is 4-chromatic of girth at least 9. Given odd k ≥ 9, let n0 be the small-
est such n. We show that Gn,k-cycle,S is a unit distance graph using an embedding
procedure similar to that used for the Blanche Descartes graphs in Chapter 14.

By the choice of n0, there is a 3-coloring of the foundation vertices labeled from
1 to n0 − 1 such that no monochromatic set has an odd cycle attached. We place
all the foundation vertices with color i in the δ-ball around Ci for 1 ≤ i ≤ 3. We
place vertex n0 in the δ-ball around C4. Since the vertices with a k-cycle attached are
always in at least 2 δ-balls, the embedding tools of Chapter 14 allow the attachments
of all cycles and removal of any coincidences. (Technically if the girth is more than
9, we add a 9-cycle to get a girth 9 graph.)



44
Application of Bergelson–Leibman’s
and Mordell–Faltings’ Theorems

To achieve a girth 12 unit distance graph, Paul O’Donnell alters the set D of
allowable common differences. This changes which sets are in S (i.e., which sets
of the foundation vertices get odd cycles attached). It’s no longer enough for the
sets in S to have intersection of size at most one, as we required in Chapter 43. In
addition, O’Donnell requires that no three sets in S intersect pairwise. How does
one achieve this?

Unexpectedly, O’Donnell uses sophisticated results of Number Theory and
Ergodic Ramsey Theory. He attaches k-cycles only to specified APs whose common
difference is an m-th power, for he wants to make use of BLT’s Corollary 35.10 of
Bergelson–Leibman’Theorem! (Chapter 35).

As was done in Chapter 43, we will again use the Blanche Descartes Gn,k-cycle,S

construction. We will then establish that the constructed graph is indeed 4-chromatic
girth at least 12 unit distance graph.

However, before we dive into “O’Donnellia,” we need to take a tour of Number
Theory related to Fermat’s Last Theorem. As is customary in this book, we will
include at least a brief history of this field in our excursion.

In 1922 Louis Joel Mordell (Philadelphia, 1888-Cambridge, 1972) conjectured
[Mor], and in 1983 the 29-year-old German mathematician Gerd Faltings published
(and in 1986 was awarded the Fields Medal primarily for his proof) this very impor-
tant result (in a more contemporary formulation than Mordell could have had). This
result, among other consequences, was, of course, a major step in the ascent of
Fermat’s Last Theorem. In consistently following my view that creating conjecture
is important (every theorem is preceded by a conjecture, and sometimes the con-
jecture is brought up by someone other than the one who proved it), I will call it
Mordell–Faltings’ Theorem. We need here precisely the consequences of this theo-
rem that are relevant to Fermat’s Last Theorem when we construct the set of allow-
able common differences. It deals with (integer) solutions of Diophantine equations
of the form

axm+bym+czm = 0. (∗)

A. Soifer, The Mathematical Coloring Book, 525
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Before we state the theorem, we need to introduce some preliminaries. A solu-
tion (x0, y0, z0) of (∗) is called primitive if gcd{x0, y0, z0} = 1; and trivial if
x0, y0, z0 ∈ { − 1, 0, 1}. Notice that if (x0, y0, z0) is a solution, then any integer
multiple of this triple is also a solution. Thus, if an equation has one solution it
has infinitely many. However, for an appropriate choice of m, it has only a finite
number of primitive solutions. For a better choice of m all primitive solutions are
also trivial. For the final choice of m, all equations (∗) with a, b, c ∈ { − k, . . . , k},
not all zero, have no nontrivial primitive solutions. This allows us to construct the
set of allowable common differences and the set of APs to which odd cycles are
attached.

Mordell–Faltings’ Theorem 44.1 A nonsingular projective curve of genus at least
two over a number field has at most finitely many points with coordinates in the
number field.

I refer you to contemporary Number Theory texts for definitions of terms used in
44.1. What we need here is the following Corollary, obviously relevant to Fermat’s
Last Theorem:

Mordell–Faltings’ Corollary 44.2 Given a, b, c ∈ Z not all zero, for m ≥ 4 the
equation axm + bym + czm = 0 has at most finitely many primitive solutions.

Tool 44.3 Given a, b, c ∈ Z , not all zero, there exists m such that the equation
axm + bym + czm = 0 has no nontrivial primitive solutions.

Proof Mordell–Faltings’ Corollary 44.2 states that for m ≥ 4, axm + bym + czm =
0 has finitely many primitive solutions. Given a, b, c, let w be the integer of the
largest absolute value in any primitive solution of ax4 + by4 + cz4 = 0. Choose
l = l(a, b, c) such that 2l > w. We need the following claim to complete the proof:

Claim 44.4 The equation ax4l + by4l + cz4l = 0 has no primitive solutions except
possibly trivial ones, in which x, y, z ∈ { − 1, 0, 1}.
Proof of 44.4 Assume ax4l

0 + by4l
0 + cz4l

0 = 0 with gcd{x0, y0, z0} = 1. Then

a
(
xl

0

)4 + b
(
yl

0

)4 + c
(
zl

0

)4 = 0 shows that xl
0, yl

0, zl
0 is a primitive solution of

ax4 + by4 + cz4 = 0. By the definition of w,

max
(∣
∣xl

0

∣
∣ ,

∣
∣yl

0

∣
∣ ,

∣
∣zl

0

∣
∣
) ≤ |w| < 2l ,

therefore, x0, y0, z0 ∈ { − 1, 0, 1}.
All there is left to complete the proof of Tool 44.3 is to choose m(a, b, c) = 4l,

which in view of 44.4 satisfies the statement of Tool 44.3.

Corollary 44.5 Given a positive integer k, there exists a positive integer m ′ such
that none of the equations axm ′ + bym ′ + czm ′ = 0 with a, b, c ∈ { − k, . . . , k} not
all zero, has a nontrivial primitive solutions.

Proof Given a, b, c, by Tool 44.3 there exists m = m(a, b, c) such that axm +bym +
czm = 0 has no nontrivial primitive solutions. The same holds with for any exponent
which is a multiple of m. Hence
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m ′ =
∏

{
{a,b,c}:a,b,c∈{ik,...,k}, not all 0

}
m (a, b, c)

suffices.

Everything is now ready for our construction. Given m ′ = m ′(k), we define D ={
xm ′

: x ∈ N
}
. This is the set of allowable common differences needed to construct

the set S of APs. Each AP in S corresponds to a set of foundation vertices with an
attached cycle.

Theorem 44.6 For odd k ≥ 13, gir th(Gn,k-cycle,S) ≥ 12.

Proof A few cases need to be addressed depending upon the number of the founda-
tion vertices in a k-cycle.

A cycle containing no foundation vertices is a k-cycle. All other cycles consist
of foundation vertices separated by at least two vertices of an attached cycle. So a
cycle with at least four foundation vertices has at least 12 vertices.

A cycle has three foundation vertices if the APs of the three attached cycles
intersect pairwise. Let ai be the starting point and di be the common difference,
1 ≤ i ≤ 3, for the three APs. The pairwise intersections of the APs imply the
existence of constants c1, c2, . . . , c6 between 0 and k − 1 such that

a1 + c1d1 = a2 + c2d2

a2 + c3d2 = a3 + c4d3

a3 + c5d3 = a1 + c6d1

Thus,

a1 + a2 + a3 + c1d1 + c3d2 + c5d3 = a1 + a2 + a3 + c6d1 + c2d2 + c4d3

or,

(c1 − c6) d1 + (c3 − c2) d2 + (c5 − c4) d3 = 0.

Since the common differences are all m ′-th powers and the three foundation ver-
tices are distinct, this is an equation of the form axm ′ +bym ′ +czm ′ = 0 with integral
coefficients a, b, c ∈ {−k, . . . , k} not all zero. By Corollary 44.5, it has only trivial
primitive solutions. Thus, any solution has all the di equal, yet in the construction
of S, APs with the same common difference do not intersect.

A cycle has only two foundation vertices if the APs of the two attached cycles
intersect in two places. Let ai be the starting point and di be the common difference,
1 ≤ i ≤ 2 for the two APs. The intersection of the APs implies the existence of
constants c1, c2, c3, c4 between 0 and k − 1 such that

a1 + c1d1 = a2 + c2d2

a1 + c3d1 = a2 + c4d2
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By adding up the respective side of these equalities, we get

(c1 − c3) d1 + (c4 − c2) d2 = 0.

Since the common differences are all m ′-th powers and the two foundation ver-
tices are distinct, this is an equation of the form axm ′ + bym ′ = 0 with non-zero
integer coefficients between −k and k. As in the previous case, there are no nontriv-
ial primitive solutions. The di must be equal, yet in the construction of S, APs with
the same common differences do not intersect.

A cycle with only one foundation vertex is not possible. Therefore the girth is at
least min {12, k}.
Observation: Just like Blanche Descartes’s girth 9 construction of Chapter 43,
this method generalizes to arbitrary chromatic number. By attaching girth 12,
(l − 1)-chromatic graphs to appropriate APs of foundation vertices, we get girth
12, l-chromatic graphs. Again, the only reasonable candidate for embedding in the
plane as unit distance graphs seem to be the 4-colorable graphs.

Theorem 44.7 There exists n such that χ (Gn,k-cycle,S) = 4.

Proof By BLT’s Corollary 35.10 of Bergelson–Leibman’s Theorem 35.9
(Chapter 35), there exists n such that any 3-coloring of the integers from 1 to n
contains a (2k − 1)-term monochromatic AP of foundation vertices

ua, ua+d , . . . , ua+(2k−2)d

where d is a m-th power. One of the first k of these indices is congruent to some
element in {1, 2, . . . , k} (mod kd). The vertex with this index and the k − 1
vertices that follow it, form a set in S. This set has a k-cycle attached. But if all of
these foundation vertices are of the same color, there are only two colors remaining
to color the attached odd cycle. This is not enough. Thus at least four colors are
necessary to color Gn,k-cycle,S .

We are ready for the embedding.

Theorem 44.8 There exists a girth 12, 4-chromatic unit distance graph.

Proof From the preceding theorems we know that for appropriate choices of k and
n, the graph Gn,k-cycle,S is a 4-chromatic graph of girth at least 12. Given odd k ≥
13, let n′ be the smallest such n. We will show that Gn′,k-cycle,S is a unit distance
graph using an embedding procedure similar to that used in the previous Chapter.
By the choice of n′, there is a 3-coloring of the foundation vertices labeled from 1 to
n′ −1 such that no monochromatic set has an odd cycle attached. We place all of the
foundation vertices of color i in the δ-ball around Ci , for 1 ≤ i ≤ 3. We place vertex
n′ in the δ-ball around C4. Since the vertices with a k-cycle attached are always in
at least 2 δ-balls, the embedding tools of Chapter 14 allow the attachments of all
cycles and removal of any coincidences. (Technically, if the girth is more than 12,
we add a 12-cycle to get a girth 12 graph.)
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Solution of an Erdős Problem:
O’Donnell’s Theorem

45.1 O’Donnell’s Theorem

In a surprising twist, the complete solution of Paul Erdős’s old July-1975 problem
about unit distance 4-chromatic graphs of arbitrary girth comes out to be simpler
than all partial solutions we have discussed in the previous two Chapters. In another
surprise, Paul O’Donnell uses in his solution the 1966 result obtained jointly by Paul
Erdős and Andras Hajnal, the result that has been known all alone, but no one has
noticed any connection! You may wish to revisit definitions of uniform hypergraphs
in the beginning of Chapter 43.

Theorem 45.1 (Erdős–Hajnal 1966, [EH1]) For all integers k ≥ 2, g ≥ 2 and l ≥ 2
there exist k-uniform, girth g, l-chromatic hypergraphs.

This theorem gives the desired generalization of the girth 9 and girth 12 construc-
tions. Instead of attaching cycles to APs, we attach cycles to the edges (hyperedges)
of a hypergraph. Given k and g, let H be a k-uniform, girth g, 4-chromatic hyper-
graph. Let n = |V (H )|. Then Gn,k-cycle,H is the desired graph (re-read its definition
in Chapter 43 if need be).

Theorem 45.2 (O’Donnell) χ (Gn,k-cycle,H ) = 4.

Proof Since H is 4-chromatic, any 3-coloring of the foundation vertices contains a
monochromatic hyperedge. In other words, any 3-coloring of the foundation vertices
has a monochromatic set with an odd cycle attached. That odd cycle cannot be
colored with the remaining two colors, so χ (Gn,k-cycle,H ) ≥ 4. With four colors,
one can be used for the foundation vertices leaving three for the odd cycles. Thus
χ (Gn,k-cycle,H ) = 4.

Theorem 45.3 (O’Donnell) gir th(Gn,k-cycle,H ) = k.

Proof The approach is to show that gir th(Gn,k-cycle,H ) ≥ min {k, 3g} and choose
g ≥ k/3. The only cycles containing no foundation vertices are the attached
k-cycles. All other cycles consist of foundation vertices separated by at least two
vertices of attached cycles. Since any two consecutive foundation vertices are in the
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shadow of an attached cycle in G (i.e., appear in a hyperedge of H ), the consecutive
foundation vertices form a cycle (i.e., hypercycle) in H . So if the girth of H is g,
the length of the cycle in Gn,k-cycle,H is at least 3g. Thus, all cycles of Gn,k-cycle,H

are either k-cycles or l-cycles for l ≥ 3g.

O’Donnell’s Theorem 45.4 [Odo3]; [Odo4, 5] For any k ≥ 3, there exists a girth
k, 4-chromatic unit distance graph.

Proof Assume k is odd. Let H be a k-uniform, 4-chromatic hypergraph with girth
≥ k/3 having the fewest vertices. Let n′ = |V (H )|, then as we know from the
previous theorems, Gn′,k-cycle,H is a girth k, 4-chromatic graph. As in the previous
two Chapters, we use the embedding tool chest of Chapter 14. By the choice of n′,
there is a 3-coloring of the foundation vertices labeled from 1 to n′ − 1 such that
no hyperedge is monochromatic, in other words, no monochromatic set has an odd
cycle attached. We place all the foundation vertices with color i in the δ-ball around
Ci for 1 ≤ i ≤ 3, and place vertex n′ in the δ-ball around C4. Since the vertices with
a k-cycle attached are always in at least 2 δ-balls, the embedding tools allow the
attachments of all cycles and removal of any coincidences. For an even k, a k-cycle
is added to the 4-chromatic unit distance graph of girth > k.

Would you like to see the embedded O’Donnell graph? Paul offers an illustration
(Fig. 45.1):

Fig. 45.1 A girth k 4-chromatic unit distance graph in the plane. (Notice, what looks like a
vertex is many vertices; what looks like an edge is many almost parallel edges.)

45.2 Paul O’Donnell

My old request for a “self-portrait” has been granted by Paul O’Donnell in his March
31, 2007 e-mail:
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I was born in New York City on April 18, 1968. I was adopted in October 1968 and
grew up in Jackson, New Jersey. I received my undergraduate degree in mathematics
and computer science from Drew University in 1989 and my Ph.D. in applied math-
ematics from Rutgers University in 1999. My doctoral thesis was on arbitrary girth
4-chromatic unit distance graphs in the plane, from a problem posed by Paul Erdős.

My interest in unit distance graphs sprang originally from a Putnam exam problem
about them, and from undergraduate courses taught by Linda Lesniak. This interest
was reawakened after attending Alexander Soifer’s 1992 presentation on the inter-
esting history of this problem at a conference at Florida Atlantic University in Boca
Raton. This marked the start of our friendship.

The main idea for the arbitrary girth unit distance graph work came a few years
later while dozing off to sleep on Alexander Soifer’s couch in Colorado Springs after
watching the Derek Jarman movie “Wittgenstein” with him.

I have taught at Rutgers University and Drew University. Currently, I am working
in the Research & Development Equity department of Bloomberg L.P. In my free time
I play ultimate frisbee and am a theatre/movie buff (credits include work on the L.A.
and off-Broadway productions of the musical Reefer Madness, and an appearance as
an extra in the movie Army of Darkness). My wife Carmelita and I also teach ball-
room/latin dance and are the proud parents of daughter Kimberly.

Paul O’Donnell



X
Predicting the Future

I never think of the future – it comes soon enough.
– Albert Einstein

Prediction is very difficult, especially about the future.
– Niels Bohr



46
What If We Had No Choice?

46.1 Prologue

A prudent question is one-half of wisdom
– Francis Bacon1

On the pages of this book we have seen a variety of approaches used in attempts
to settle the chromatic number of the plane problem (CNP). Tools from graph the-
ory (Chapter 17), topology (Chapters 8, 24), measure theory (Chapter 9), abstract
algebra (Chapter 11), discrete and combinatorial geometry (Chapters 4, 6, 7) have
been tried and yet no improvement has been attained in the general case. The range
for CNP remains as wide open as ever: χ = 4, 5, 6, or 7.

I felt—and wrote a number of years ago—that such a wide range was an embar-
rassment for mathematicians. The 4-Color Map-Coloring Problem, for example,
from its beginning in 1852 had a conjecture: 4 colors suffice. Since 1890, thanks to
Alfred Bray Kempe and Percy John Heawood [Hea], we knew that the answer was
4 or else 5. The CNP problem is an entirely different matter. After 58 years of very
active work on the problem, we have not even been able to confidently conjecture
the answer. Have mathematicians been so bad, or has the problem been so good?
Have we been missing something in our assault on the CNP?

These were the questions that occupied me as I was flying across the country
from Colorado Springs to the Rutgers University of New Jersey in October 2002,
for a week of joint research with Saharon Shelah, in my opinion a genius of problem
solving and a very quick learner (I knew that, for we produced a couple of joint
papers on Abelian group theory before, in 1984, when we met in Udine, Italy).2 On
Saharon’s request, I compiled a list of problems we could be interested in working

1 Quoted from [Pet], p. 494.
2 Ronald L. Graham and Joel H. Spencer [GS] agree with me: “Shelah is widely regarded as one of the
most powerful problem solvers in modern mathematics.”
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Saharon Shelah (left) and Alexander Soifer, Paul Erdős’s 80th Birthday Conference,
Keszthely, Hungary, July 18, 1993. Photograph by Maya Soifer

on together, and numbered them according to set-theorists’ taste, from 0 to 12. Prob-
lem 0 read as follows:

What if we had no choice?

This was a natural question for someone who grew up in the Soviet Union with
very few choices: we voted for one candidate per office, ate whatever food was sold
at the moment, and lived wherever we were allowed to live. But of course, I meant
here something else that made mathematical sense. So, let me explain.

Nicolaas G. de Bruijn and Paul Erdős reduced CNP to finite sets on the plane, as
we have seen in Chapters 5 and 26. Their famous theorem, obtained in fact shortly
before Ed Nelson even posed CNP, required the Axiom of Choice (AC). This is the
choice I referred to in my problem 0 for Saharon and me to ponder on:

What if we had no Axiom of Choice?

In the absence of the AC, we would not have the De Bruijn–Erdős Theorem, and
so CNP would not necessarily be reduced to finite plane sets. In particular, I was
interested in the following questions:

What can and should we use in place of the AC?
What results can we prove in this alternative Set Theory?
How would “choiceless” mathematics compare to the mathematics built on Choice?

And so Saharon and I met for a week of a Garden State autumn, and broke some
new ground. Before we look at the outcome of our meeting, I need to offer you an
excursion to the Land of Choice.
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46.2 The Axiom of Choice and its Relatives

To choose one sock from each of infinitely many
pairs of socks requires the Axiom of Choice, but
for shoes the Axiom is not needed.

— Bertrand Russell

At present, set theory has lost its relevance
– L. S. Pontryagin3

The AC was used implicitly throughout the nineteenth century. A careful observa-
tion would uncover that it was used for proving even such a classic result as the
sequential Bolzano–Weierstrass Theorem (every infinite bounded subset of reals
has a sequential limit point). In 1904, while proving the Well-Ordering Principle,
Ernst Friedrich Ferdinand Zermelo (1871–1953) formalized and for the first time
explicitly used the AC [Zer]:

The Axiom of Choice (AC): Every family Φ of nonempty sets has a choice
function, i.e., there is a function f such that f (S) ∈ S for every S from Φ.

The newborn axiom prompted a heated debate in the mathematical world. In
trying to defend the axiom, in a series of 1908–1909 papers Zermelo developed a
system of axioms for set theory. It was improved by Adolf Abraham Halevi Fraenkel
(1891–1965) in his 1922 [Fra1], [Fra2] and 1925 [Fra3] papers. Finally, in 1928
John von Neumann named it the Zermelo–Fraenkel set theory, or ZF [Neu]. The ZF
with the addition of the AC was naturally denoted by ZFC and named the Zermelo–
Fraenkel-Choice system of axioms.

The historian of the AC, Gregory H. Moore, opens his remarkable book about it
as follows [Moo]:

David Hilbert once wrote that Zermelo’s Axiom of Choice was the axiom “most
attacked up to the present [1926] in mathematical literature. . .” To this Abraham
Fraenkel later [1958] added that “the axiom of choice is probably the most interesting
and, in spite of its late appearance, the most discussed axiom of mathematics, second
only to Euclid’s axiom of parallels which was introduced more than two thousand
years ago.”

The Axiom postulated the existence of a choice function, without giving any
clue as to how to find it. Therefore it came as no surprise that the Axiom was
opposed by constructivists, intuitionists, and other mathematicians, who viewed
non-constructive existence results with great suspicion. Moore [Moo] observes that
“Despite this initial widespread distrust, today a vast majority of mathematicians
accepts the axiom without hesitation and utilize it in algebra, analysis, logic, set
theory, and topology.” Yes, I agree: vast majority accepts the AC, and consequently

3[Pon]. L. S. Pontryagin wrote this Life of Lev Semenovich Pontryagin. . . with the title modeled after
the autobiography of the Italian Renaissance sculptor Benevento Cellini. This statement was aimed at
A. N. Kolmogorov.
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ZFC as the standard foundation of set theory, but is it a good thing for mathematics?
A majority—any majority—political, social, mathematical, often loses sensitivity
that is so naturally preserved among minorities. We will later look into the con-
sequences of the near universal acceptance of the AC as a part of the foundation
of mathematics. Here I will introduce other axioms, and first of all, some weaker
versions of the AC.

Many results in mathematics really need just a countable version of choice:

The Countable Axiom of Choice (ACℵ0 ) Every countable family of nonempty sets
has a choice function.

Much later, in 1942 Paul Isaac Bernays (1888–1977) introduced the following
axiom [Bern]:

The Principle of Dependent Choices (DC) If E is a binary relation on a nonempty
set A, and for every a ∈ A there exists b ∈ A with aEb, then there is a sequence
a1, a2, . . . , an, . . . such that an Ean+1 for every n < ω.

The AC implies DC (see, e.g., Theorem 8.2 in [Jec]), but not conversely. In turn,
DC implies ACℵ0 , but not conversely. DC is slightly stronger than ACℵ0 , but it is a
sufficient addition to ZF for creating a foundation for the classical Lebesgue Mea-
sure Theory. We observe that, in particular, DC is sufficient for Falconer’s Theorem
(Theorem 9.1).

One—unfortunate in my opinion—consequence of the AC is the existence of sets
on the line that have no length (I mean, no Lebesgue measure). This “regret” must
have given birth to the following axiom:

(LM) Every set of real numbers is Lebesgue measurable.

Assuming the existence of an inaccessible cardinal,4 Robert M. Solovay (nowa-
days Professor Emeritus at Berkley), using Paul Cohen’s forcing, constructed in
1964 (and published in 1970) a model that proved a remarkable theorem [Sol1].
Mitya Karabash and I introduced [KS] the following term in honor of R. M. Solovay.

The Zermelo–Fraenkel–Solovay System of Axioms for set theory, which we
denote by ZFS, is defined as follows:

ZFS = ZF + ACℵ0 + LM,

and ZFS Plus, or shorter, ZFS+ would stand for

ZFS+ = ZF + DC + LM.

Now the Solovay Theorem formulates very concisely:

4 A cardinal κ is called inaccessible if κ > ℵ0, κ is regular, and κ is strong limit. An infinite cardinal
ℵα is regular, if cf ωα = ωα . A cardinal κ is a strong limit cardinal if for every cardinal λ, λ < κ implies
2λ < κ .
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Solovay’s Theorem: 46.1 ZFS+ is consistent.5

Solovay reports [Sol1] that “the original problem of showing ZF+LM consistent
was suggested to the author by Paul Cohen.” Here is how Paul Joseph Cohen (1934 –
March 23, 2007), the man who completed Kurt Gödel’s work and won Fields Medal
for it in 1966, described Solovay’s Theorem in 1966 [Coh2, p. 142]:

One of the most interesting results (concerning the relationship of various forms of
AC) is due to R. Solovay (as yet unpublished) which says that models N can be con-
structed in which the countable AC holds and yet every set of real numbers is Lebesgue
measurable.

Indeed, this is a profound result, which offers ZFS+ as a viable alternative to the
canonical ZFC. In particular, ZFS+ allows developing the usual Lebesgue Measure
Theory. On April 10, 2003 I asked Professor Solovay whether a stronger result is
possible, i.e., whether ZFS would suffice for building the Lebesgue Measure The-
ory. The following day Solovay replied [Sol2]:

I thought about this in the early 60’s. The only theorem for which I needed DC was the
Radon-Nykodim theorem. But I don’t know that there isn’t a clever way of getting by
with just Countable Choice and proving Radon-Nykodim. I just noticed that the usual
proof [found in Halmos] uses DC.

The Continuum Hypothesis (CH) states that there is no cardinal κ such that ℵ0 <

κ < 2ℵ0 .
The Generalized Continuum Hypothesis (GCH) states that for any infinite cardi-

nal λ there is no cardinal κ such that λ < κ < 2λ.
TheAxiomofConstructibility (V = L) introducedbyGödel in1940[Göd2], asserts

that every set is constructible, i.e. every set belongs to the constructible universe L.
Kurt Gödel (1906–1978) in 1940 [Göd2] and Paul J. Cohen in 1963–1964 [Coh1]

proved independence of AC (as well as of the Continuum Hypothesis, CH, and
the Generalized Continuum Hypothesis, GCH) from the rest of the axioms of set
theory, ZF.

As Saharon Shelah playfully summarized these developments in his 2003 “Log-
ical Dreams” [She3],

In short: The Continuum Problem asks:
How many real numbers are there?

G. Cantor proved: There are more reals than rationals. (In a technical sense:
“uncountable”, “there is no bijection from R into Q”).

The Continuum Hypothesis (CH) says: yes, more, but barely so. Every set A ⊆
R is either countable or equinumerous with R.

K. Gödel proved: Perhaps CH holds.
P. Cohen proved: Perhaps CH does not hold.

5 Assuming the existence of an inaccessible cardinal.
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Kurt Gödel also showed that ZF + V = L implies GCH; while the founder of
the famous Warsaw school of set theory and topology Wacław Franciszek Sierpiński
(1882–1969) proved that ZF + GCH implies AC.

Finally, one can remember L. S. Pontryagin not only as a fine mathemati-
cian and a fine anti-Semite, but also as a fool, who took his fight against any-
thing Kolmogorov’s to the extreme of such a ridiculous statement as this section’s
tongue-in-cheek epigraph “At present, set theory has lost its relevance.” What can
be more relevant to mathematics than its very foundation: set theory!

46.3 The First Example

The Axiom of Choice differs from other axioms of ZF
by postulating the existence of a set . . . without defin-
ing it . . . Thus it is often interesting to know whether a
mathematical statement can be proved without using
the Axiom of Choice.

— Thomas Jech [Jec]

Theories come and go; examples live forever.
– I. M. Gelfand

Saharon Shelah’s and my week-long joint work (entertainment of the mathematical
kind, really) resulted in the first surprising example. (The Conditional Chromatic
Number Theorem was obtained too—I will formulate it in the next Chapter.) We
dedicated the paper to the memory of our teacher, friend and coauthor Paul Erdős,
on the occasion of his 90th birthday. Let us look together at this example.

Our first task is to expand the definition of the chromatic number.6 How important
is it to select a productive definition? Socrates thought highly of this undertaking:
“The beginning of wisdom is the definition of terms.”7 And so I took 2 weeks to
“sleep” on a definition, and consulted with my coauthors Saharon Shelah and Mitya
Karabash before I stopped on the simplest definition, the one that came first to my
mind. “Simplest” surely is not a detractor: in fact, such aspects as simple and natural
are attributes of definitions that survive the test of time.

Without the AC, the minimum, and thus the chromatic number of a graph, may not
exist. In allowing a system of axioms for set theory not to include the AC, we need to
come up with a much broader definition of the chromatic number of a graph than the
one we have used in Chapter 12—if we want the chromatic number to exist. In fact,

6 It is the first task, but we did not think of it then, and so this definition appears here now for the first
time in print.
7 Quoted from [Pet], p. 494.



46 What If We Had No Choice? 541

instead of the chromatic number we ought to talk about the chromatic set. There are
several meaningful ways to define it. I am choosing the following definition.

Definition 46.1 Let G be a graph and A a system of axioms for set theory. The set
of chromatic cardinalities χA(G) of G is the set of all cardinal numbers τ ≤ |G|
such that there is a proper coloring of the vertices of G in τ colors, and τ is minimal
with respect to this property.

As you can easily see, the set of chromatic cardinalities does not have to have
just one element as was the case when A = ZFC. It can also be empty.

The advantage of this definition is its simplicity. Best of all, we can use inequal-
ities on sets of chromatic cardinalities as follows.

The inequality χA(G) > β, where β is a cardinal number, means that for every
α ∈ χA(G), α > β. The inequalities <, ≤, and ≥ are defined analogously. We also
agree that the empty set is greater than or equal to any other set.8 Finally, if β is a
cardinal number, χA(G) = β means that χA(G) = {β}.

I would like to introduce simple generalizations of the notion of unit dis-
tance graph.

A distance graph is a graph with the vertex set V ⊆ Rn for some n, and two
vertexes v1, v2 are adjacent if and only if the distance |v1v2| belongs to a fixed set S
of distances. In particular, when S = {1}, we get a unit distance graph.

A difference graph is a graph with the vertex set V ⊆ Rn for some n, and two
vertexes v1, v2 are adjacent if and only if their difference v1 − v2 belongs to a fixed
set S ⊆ Rn of differences. Of course, on the line distance graphs and difference
graphs coincide.

As always, Z , Q, and R stand for the sets of integers, rationals, and reals respec-
tively. We are now ready for the first example, which will demonstrate how dra-
matically the chromatic number of a simple graph we construct depends upon the
system of axioms for set theory. It is just 2 in ZFC and uncountable in ZFS. Let us
construct this surprising example and then prove its properties.

Example 46.2 (Shelah–Soifer [SS1]) We define a graph G as follows: the set R of

real numbers serves as the vertex set, and the set of edges is
{

(s, t) : s − t − √
2 ∈ Q

}
.

Result 46.3 (Shelah–Soifer [SS1]). For the distance graph G on the line,
χZFC(G) = 2, while χZFS(G) > ℵ0.

Claim 1 of 46.3: χZFC(G) = 2.

Proof Let S =
{

q + n
√

2; q ∈ Q, n ∈ Z
}

. We define an equivalence relation E on

R as follows: s Et ⇔ s − t ∈ S.
Let Y be a set of representatives for E (in choosing representatives we are using

the AC). For t ∈ R let y (t) ∈ Y be such that t Ey (t). We define a 2-coloring c (t)

8 I know, this convention seems to be counterintuitive, but it is handy, convenient, and allows to prove
meaningful results, as you will soon see.
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as follows: c (t) = l, l = 0, 1 if and only if there is n ∈ Z such that t − y (t) −
2n

√
2 − l

√
2 ∈ Q.

Without AC the chromatic situation changes dramatically:

Claim 2 of 46.3: χZFS(G) > ℵ0.

We will simplify the proof if we acquire a useful tool first.

Tool 46.4 If A ⊆ [0, 1) and A contains no pair of adjacent vertices of G, then A is
null (of Lebesgue measure zero).

Proof Assume to the contrary that A contains no pair of adjacent vertices of G yet
A has a positive measure. Then there is an interval I such that9

μ (A ∩ I )

μ (I )
>

9

10
(46.1)

Choose q ∈ Q such that
√

2 < q <
√

2 + μ (I )

10
.

Let B = A −
(

q − √
2
)

=
{

x − q + √
2 : x ∈ A

}
. Then

μ (B ∩ I )

μ (I )
>

8

10
. (46.2)

Inequalities (46.1) and (46.2) imply that there is x ∈ I ∩ A ∩ B. Since x ∈ B,

we have y = x +
(

q − √
2
)

∈ A. So, both x, y ∈ A and x − y − √
2 = −q ∈ Q.

Thus, {x, y} is an edge of the graph G with both endpoints in A, which is the desired
contradiction.

Proof of claim 2 of 46.3 Assume that the graph G is colored in ℵ0 colors properly
(i.e., the adjacent vertices are colored in different colors), and A1

1, . . . , A1
n, . . . are

the corresponding monochromatic sets. Let An = A1
n ∩ [0, 1) for every n < ω.

Since μ

(
⋃

n<ω

An

)

= μ ([0, 1)) = 1 and Lebesgue measure is a countably additive

function in ACℵ0 , there is a positive integer n such that An has a positive measure.
By Tool 46.4, An contains a pair of adjacent vertices of G, which contradict the
assumption that the graph is properly colored.

Remark: This example begs the question: Is AC relevant to the problem of chromatic
number χ of the plane? The answer depends upon the value of χ which we, of
course, do not yet know. However, this example points out the circumstances in
which the presence or the absence of AC could dictate the value of the chromatic
number of the plane.

9 The (Lebesgue) measure μ(S) of a set S is defined in Chapter 9.
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46.4 Examples in the plane

As the main object of our interest has been the good ole Euclidean plane, we aspire
to construct a difference graph G2 on the plane R2, and thus come much closer to
the setting of the chromatic number of the plane problem. The chromatic number of
the constructed below graph G is 4 in ZFC and uncountable in Zermelo–Fraenkel–
Solovay’s system of axioms ZFS.

Israil’ Moiseevich Gelfand once said “theories come and go, while examples live
forever.” Graphs presented here may prove to be an important illumination in this
area of research.

Example 46.5 (Soifer–Shelah [SS2]) We define a graph G as follows: the set R2 of
points in the plane serves as the vertex set, and the set of edges is the union of the

four sets
{
(s, t) : s, t ∈ R2; s − t − ε ∈ Q2

}
for ε =

(√
2, 0

)
, ε =

(
0,

√
2
)

, ε =
(√

2,
√

2
)

, and ε =
(
−√

2,
√

2
)

respectively.10

Result 46.6 (Soifer–Shelah [SS2]). For the difference graph G in the plane,
χZFC(G) = 4, while χZFS(G) > ℵ0.

Claim 1 of 46.6: χZFC(G) = 4.

Proof Let S =
{(

q1 + n1

√
2, q2 + n2

√
2
)

: qi ∈ Q, ni ∈ Z
}

. We define an equiv-

alence relation E on R2 as follows: s Et ⇔ s − t ∈ S.
Let Y be a set of representatives for E (we can choose them due to the AC). For

t ∈ R2 let y(t) ∈ Y be such that t Ey(t). We define a 4-coloring c (t) as follows:
c(t) = (l1, l2) , li ∈ {0, 1} if and only if there is a pair (n1, n2) ∈ Z2 such that
t − y(t) − 2

√
2(n1, n2) − √

2(l1, l2) ∈ Q2.

Claim 2 of 46.6: χZFS(G) > ℵ0.

We can create a tool similar to Tool 46.3, and then prove the claim 2 similarly to its
counterpart of Result 46.3.

We can define edges of the graph differently.

Example 46.7 (Soifer–Shelah [SS2]) The set R2 of points on the plane serves
as the vertex set for G, and the set of edges is the union of the two sets
{
(s, t) : s, t ∈ R2; s − t − ε ∈ Q2

}
for ε =

(√
2, 0

)
and ε =

(
0,

√
2
)

respectively.

Result 46.8 (Soifer–Shelah [SS2]) For the difference graph G in the plane,
χZFC(G) = 2, while χZFS(G) > ℵ0.

Claim 1 of 46.8: χZFC(G) = 2.

Proof Let S =
{(

q1 + n1

√
2, q2 + n2

√
2
)

: qi ∈ Q, ni ∈ Z
}

. We define an equiv-

alence relation E on R2 as follows: s Et ⇔ s − t ∈ S.

10 Q2, of course, denotes the rational plane, as in Chapter 11.
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Let Y be a set of representatives for E . For t ∈ R2 let y(t) ∈ Y be such that
t Ey(t). We define a 2-coloring c(t) as follows: c(t) = (ε1 + ε2)mod2 if and only if
there is a pair (ε1, ε2) ∈ Z2 such that t − y (t) − √

2 (ε1, ε2) ∈ Q2.

Claim 2 of 46.8: χZFS(G) > ℵ0.

Proof is similar to the one presented in Result 46.3.

You may wonder: what is so special about
√

2 in our constructions? Well,
√

2 is the
oldest known irrational number: a proof of its irrationality, apparently, comes from
the Pythagoras School. Our reasoning and results would not change if we were to
replace

√
2 everywhere with another irrational number.

46.5 Examples in space

Space isn’t remote at all. It’s only an hour’s drive
away if your car could go straight upwards.

– Fred Hoyle

Ideas developed above are extended here to construct difference graphs on the real
n-dimensional space Rn , whose chromatic number is a positive integer in ZFC, and
is not countable in ZFS.

Example 46.9 (Soifer [Soi23]) We define a difference graph Gn: the set Rn

of points of the n-space serves as the vertex set, and the set of edges is
n⋃

i=1

{
(s, t) : s, t ∈ Rn; s − t − √

2εi ∈ Qn
}

where εi are the n unit vectors on

coordinate axes forming the standard basis of Rn . For example, ε1 = (1, 0, . . . , 0) –
we will use this vector in the proof of Claim 2 below.11

Result 46.10 (Soifer [Soi23]). For the difference graph Gn, χZFC(Gn) = 2, while
χZFS(Gn) > ℵ0.

Claim 1 of 46.10: χZFC(G) = 2.

Proof Let S =
{

q + m
√

2 : q ∈ Qn, m ∈ Zn
}

. We define an equivalence relation

E on Rn as follows: s Et ⇔ s − t ∈ S.
Let Y be a set of representatives for E . For t ∈ Rn let y(t) ∈ Y be such a

representative that t Ey(t). We define a 2-coloring c (·) as follows: c(t) = ‖k‖mod2 if
and only if there is k ∈ Zn such that t − y (t) − √

2k ∈ Qn , where ‖k‖ denotes the
sum of all n coordinates of k.

Claim 2 of 46.10: χZFS(G) > ℵ0.
The proof is similar to the one of result 46.3—we just need an “n-dimensional

tool.”

11 Zn is a set of integral n-tuples and Qn is the “rational n-space.”
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Tool 46.11 If A ⊆ [0, 1)n and A contains no pair of adjacent vertices of G, then A
is null (of Lebesgue measure zero).

Proof Assume to the contrary that A ⊆ [0, 1)n contains no pair of adjacent vertices
of Gn , yet A has positive measure. Then there is an n-dimensional parallelepiped I ,
with a side parallel to the first coordinate axis of length, say, a, such that

μ(A ∩ I )

μ(I )
>

9

10
(46.3)

Choose q ∈ Q such that
√

2 < q <
√

2 + a
10 . Define a translate B of A as

follows:

B = A −
(

q −
√

2
)

ε1

Then

μ(B ∩ I )

μ(I )
>

8

10
(46.4)

Inequalities (46.1) and (46.2) imply that there is v ∈ I ∩ A ∩ B. Since v ∈ B, we
have w = v + (q −√

2)ε1 ∈ A. So, we have v,w ∈ A and v −w −√
2ε1 = −qε1 ∈

Qn . Thus, {v,w} is an edge of the graph G with both endpoints in A, which is the
desired contradiction.

We can certainly vary the definition of edges to get new graphs.

Example 46.12 (Soifer [Soi23]) We define a graph G: the set Rn of points of the n-

space still serves as the vertex set, but the set of edges is
⋃

0≤i �= j≤n

{
(s, t) : s, t ∈ Rn;

s − t − √
2

(
εi − ε j

) ∈ Qn
}

where εi are the n unit vectors on coordinate axes

forming the standard basis of Rn , and ε0 = 0 ∈ Rn .

Result 46.13 (Soifer [Soi23]) For the difference graph Gn, χ
ZFC(G) = 2n , while

χZFS(G) > ℵ0.

Claim 1 of 46.13: χZFC(G) = 2n .

Proof Indeed, the 2n vertices of the n-dimensional unit cube generated by εi , 0 ≤
i ≤ n, must all be colored in different colors, so the 2n colors are obviously needed.

Let Y be a set of representatives for E . For t ∈ Rn let y(t) ∈ Y be a
representative such that t Ey(t). We define a 2n-coloring c(t) as follows: c(t) =(
k1

mod2, k2
mod2, . . . , kn

mod2

)
if and only if there is k = (

k1, k2, . . . , kn
) ∈ Zn such that

t − y (t) − √
2k ∈ Qn , where ki

mod2 ∈ {0, 1} is the remainder upon division of ki by
2 for i = 1, 2, . . . , n.

Claim 2 of 46.13: χZFS(G) > ℵ0.
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Proof closely follows the one for Claim 2 of Result 46.10.

Observe: It is certainly possible to construct other examples of difference graphs
on Rn whose chromatic number in ZFC is any integer between 2 and 2n , and is
uncountable in ZFS.

These examples illuminate the influence of the system of axioms for set theory
on combinatorial results. They also suggest that the chromatic number of Rn may
not exist “in the absolute” (i.e., in ZF), but depend upon the system of axioms we
choose for set theory. The examples we have seen naturally pose the following open
problem:

Open AC Problem 46.14 For which values of n is the chromatic number χ (En) of
the n-space En defined “in the absolute”, i.e., in ZF regardless of the addition of the
AC or its relative?

46.6 AfterMath & Shelah–Soifer Class of Graphs

In the 1910s–1930s the foundations dominated mathematicians’ interests. Nowa-
days, the interest in the foundations in general, and in the AC in particular, dimin-
ished outside of set theory and set theorists and logicians. Most mathematicians have
settled on ZFC-based mathematics. Yet, Shelah–Soifer papers seemed to “strike
the mathematical heart” [Del]. They received a thought provoking critique [Del]
by Jean-Paul Delahaye, a complimentary mention in Ronald L. Graham’s articles
[Gra5], [Gra6], [Gra7], and [Gra8], entered the column by Joseph O’Rourke [Oro],
and were the subject of the column [Szp] by George Szpiro in the newspaper in
Zürich, the city where Van der Waerden lived for 45 years. It inspired a series of
works by various authors. We will look at one such paper in Section 46.7. Another
example was forwarded to me by Professor Branko Grünbaum in February 2005:

From: Janos Pach <pach@CIMS.nyu.edu>

Date: February 27, 2005 8:21:56 PM PST
To: eokoh@gc.cuny.edu, dlazarus@erols.com, sarioz@acm.org, aushakov@mail.ru,
herr strangelove@yahoo.com, mlaufer@gc.cuny.edu, tswaine@gc.cuny.edu,
syuan@gc.cuny.edu, msilva@gc.cuny.edu, dmussa@gc.cuny.edu,
jharlacher@gc.cuny.edu, Eva@Antonakos.net, mmunn@gc.cuny.edu,
raghavan@cs.nyu.edu
Cc: RLandsman@gc.cuny.edu (Robert Landsman)
Subject: Combinatorial Comp. Seminar on Wednesday
SEMINAR ON COMBINATORIAL COMPUTING March 2, Wednesday, 6:30pm
Room 6417, Graduate Center, 365 Fifth Avenue, NY
INDEPENDENCE IN EUCLIDEAN RAMSEY THEORY
Jacob Fox, Massachusetts Institute of Technology

In this talk, I will present several remarkable new developments on independence in
Euclidean Ramsey theory. S. Shelah and A. Soifer recently constructed a graph on the
real line with chromatic number 2 in the Zermelo–Fraenkel-Choice (ZFC) system of
axioms, but with uncountable chromatic number (if it exists) in a consistent system
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of axioms with limited choice, studied by Solovay in 1970. Motivated by these recent
results, Radoicic and I discovered that the statement “every 3-coloring of the non-zero
real numbers contains a monochromatic solution to the equation x 1+2x 2−4x 3 = 0”
is independent of the Zermelo–Fraenkel axioms for set theory. A system L : Ax = 0
of linear homogeneous equations is called a-regular over R if every a-coloring of the
real numbers contains a monochromatic solution to L in distinct variables. In 1943,
Rado classified those L that are a-regular over R for all finite a. In ZFC, if a is an
infinite cardinal, we classify those L that are a-regular. This classification depends
on the cardinality of the continuum. In the Solovay model, we classify those L that
are aleph 0-regular over R. We also leave several problems concerning the chromatic
number of graphs on Euclidean space.

To the best of my knowledge and literature search, the 1970 fundamental work
by Robert M. Solovay, has been cited in set theoretic works for decades, but has not
been known to or used in combinatorics and Ramsey Theory before [SS1] appearing
in 2003. Inspired by our surprising results, Solovay’s work and what Mitya Karabash
and I named Zermelo–Fraenkel–Solovay System of Axioms ZFS, the comparative
study of ZFC vs. ZFS has entered a number of recent combinatorial works, for
example by Jacob Fox and Rados Radoicic [FR], Boris Alexeev, Jacob Fox and
Ronald L. Graham [AFG], and Boris Bukh [Buk]. Ronald Graham [Gra8] summa-
rizes this group’s results as follows:

An interesting phenomenon has been recently observed by Fox, Radoicic, Alexeev
and the author [FR], [AFG] which shows how the axioms of set theory can affect the
outcome of some of these questions. For example, consider the linear equation E : x +
y + z −4w = 0. This is certainly not partition regular, and in fact, there is a 4-coloring
of the integers which prevents E from having any (nontrivial) monochromatic solution.
However, suppose we change the question and asked whether E has monochromatic
solutions in reals for every 4-coloring of the reals. It can be shown that in ZFC, there
exist 4-colorings of the reals for which E has no monochromatic solution. However, if
we replace the AC (the “C” in ZFC) by LM. . ., then in the system ZF + LM (which is
consistent if ZFC is), the answer is yes. On other words, in this system every 4-coloring
of the reals always contains a nontrivial monochromatic solution to E . On the other
hand, this distinction does not occur for the equation x + y − z = 0, for example.

Dmytro (Mitya) Karabash, an undergraduate student at Columbia University and
a fine mathematician, coined the term for the class of graphs Shelah and I stum-
bled upon:

Definition 46.15 (Dmytro Karabash) The Shelah–Soifer class S of graphs consists
of graphs G, for which χZFS(G) ∩ χZFC(G) = ∅. Let Sc stand for the complement,
i.e., class of graphs which are not Shelah–Soifer graphs.

Mitya and I then looked into what causes a graph to belong to this class, and
“how many” Shelah–Soifer graphs there are. The following results come from our
joint 2007 paper [KS].

Definition 46.16 ([KS]) Let d be the Euclidian metric in Rn . The distance set
between A, B ⊆ Rn is defined as follows: d(A, B) = {d(x, y) : x ∈ A, y ∈ B}.
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Definition 46.17 ([KS]) Let D ⊆ R+ = (0, ∞). The symbol Gn
D stands for the

graph with the vertex set Rn and the edge set {(x, y) : d(x, y) ∈ D}.
Theorem 46.18 ([KS]) If for D ⊆ R+, 0 is a limit point of D in R, then
χZFS(Gn

D) > ℵ0.

We can prove Theorem 46.18 using an argument analogous to proof of claim 2
in result 46.3. For the sake of diversifying our tools, we will use the old result of
Hugo Steinhaus (1887–1972) instead:

Steinhaus’s Lemma 46.19 ([Stei]). If A ⊆ R, is a set of positive Lebesgue mea-
sure, then the set A − A = {x − y : x, y ∈ A} contains a ball around 0.

Proof of Theorem 46.18 Let us argue by contradiction: suppose χZFS(Gn
D) ≤ ℵ0.

Then there exists a countable proper coloring c : Rn → N of Gn
D . Look at the

monochromatic sets Ai = {x ∈ Rn|c(x) = i}. Since all sets in Rn are measurable in
ZFS, we get

∑n
i=1 μ (Ai ) = ∞. Hence there exists i ∈ N such that μ(Ai ) > 0. Thus,

there exists a set of positive measure A ⊆ Rn such that d(A, A)∩D = ∅. We reduce
to case n = 1 by observing that there must exist a line L ⊆ Rn such that A ∩ L has
positive measure in L by product measure theorem (see, for example, Theorem 2.36
in [Foll]). Now we apply the Steinhaus Lemma 46.19 to see that d(A, A) contains
some interval [0, ε) and since 0 is a limit point of D, we get d(A, A) ∩ D �= ∅.

Definition 46.20 ([KS]) Set D ⊆ R is called integrally independent mod 2 if for any
n ∈ N , a1, a2, . . . , an ∈ Z and s1, s2, . . . , sn ∈ D, the equality

∑n
i=1 ai si = 0

implies 2|∑n
i=1 ai .

Theorem 46.21 ([KS]) If D ⊆ R+, |D| ≤ ℵ0, then χZFC(G1
D) ≤ ℵ0, i.e., for every

α ∈ χZFC(G1
D), α ≤ ℵ0. If in addition D is integrally independent mod 2, then

χZFC(G1
D) = {2}.

Proof For any p ∈ R, p lies in the connected component C of G1
D ,

C = C(p) = {x : ∃n > 0, ∃ {xi }n
i=1 ⊆ R, s.t.

|xi − xi+1| ∈ D, x0 = x, xn = p} =
∞⋃

i=1

Ci ,

where Ci = Ci (p) are defined inductively by C0(p) = {p} and Ci = Ci−1 + D =
{x + y|x ∈ Ci−1, y ∈ D}. Since |D| ≤ ℵ0, for every i, |Ci | ≤ ℵ0 and hence
|C | ≤ ℵ0. Thus we can color the component in ℵ0 colors by coloring each point in
different color. The AC allows us to similarly color all of the other components. But
the chromatic number of the graph is the supremum of the chromatic numbers of its
components and hence the first statement of the theorem is proven.

If D is integrally independent mod 2, then Ci ∩ C j = ∅ if and only if i − j is
even. Hence coloring each Ci according to its parity is a well-defined 2-coloring.

Theorem 46.22 ([KS]) For the set of graphs H = {G1
D : D ⊆ Rn}, |H ∩ S| =

|H ∩ Sc|, where S is the class of Shelah–Soifer graphs and Sc is its complement.
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To prove this theorem, let us first prove two tools:

Tool 46.23 ([KS]) If D ⊆ (ε,∞) for some ε > 0 then χZF(Gn
D) ≤ ℵ0.

Proof We obtain a proper ℵ0-coloring of Gn
D by cutting Rn into n-cubes of side ε√

n
and coloring each cube into a different color.

Tool 46.24 ([KS]) Let G1, G2 are graphs with the same vertex set V , and G =
G1 ∪edge G2 be their edge union. Suppose that G1, G2 are countably colorable in an
axiomatic system A, i.e., χ A(Gi ) ≤ ℵ0 for i = 1, 2. Then G is countably colorable
in A, i.e., χ A(G) ≤ ℵ0.

Proof Let c1, c2 be proper −ℵ0 colorings of G1, G2, respectively. Consider the
coloring c1 ⊕ c2 of G in ℵ2

0 colors defined by c1 ⊕ c2(v) = (c1 (v) , c2 (v)). This is
clearly a proper coloring of G which uses ℵ2

0 = ℵ0 colors.

Proof of Theorem 46.22 Let HD = {G1
D∪E : E ⊆ [1,∞)}.

1. First consider D ⊆ (0, 1) such that |D| ≤ ℵ0 and 0 is a limit point of D.
Theorem 46.21 implies χZFC(G1

D) ≤ ℵ0 and Tool 46.23 implies χZFC(G1
E ) ≤

ℵ0. Hence by Tool 46.24, χ (G1
D∪E ) = χ (G1

D ∪edge G1
E ) ≤ ℵ0. On the other hand,

for every G1
D∪E ∈ HD, χZFS(G1

D∪E ) > ℵ0 by Theorem 46.18. Hence HD ⊆ S.
2. Since |[1,∞)| = |R+| we get |HD| = 2|[1,∞)| = 2|R+| = |S| and hence |H | =

|H ∩ S|.
3. Now consider D = (0, 1]. Since each graph G1

D∪E in HD contains a com-
plete subgraph with the vertex set of the cardinality of continuum, we get
χZFS(G1

D∪E ) = χZFC(G1
D∪E ) = |c|, where c is continuum. Hence HD ⊆ Sc

and similarly to the argument 2 above, |H | = |H ∩ Sc|.

Theorem 46.22 suggests that the class S is “as big as” the class Sc, whatever “as
big” means. Let us make it formal.

Definition 46.25 ([KS]) Let θ be a class of all graphs and α a cardinal number. We
define a set θα as follows:

θα = {G ∈ θ : |V (G)|≤ α},

where V (G) is the vertex set of G, i.e., let θα be the set of graphs with the cardinality
of their vertex set not exceeding α.

We conjecture:

Conjecture 46.26 ([KS]) For any cardinal � > ℵ0, |θα ∩ S| = |θα ∩ Sc|.
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46.7 An Unit Distance Shelah–Soifer Graph

On July 10, 2007, my first day after the 3-day cross-country rally brought me from
Princeton to my home in Colorado Springs (the day also remarkable due to personal
thunders), I received the following e-mail from Melbourne, Australia:

Dear Professor Soifer,

I am a student from Monash Uni[versity] in Australia and I have done some work
on the chromatic number of the plane problem. I found your various publications on
the topic extremely helpful. I particularly liked your recent work with Saharon Shelah
and as part of my [Honours] bachelor’s thesis I found another example of a graph
with ‘ambiguous’ chromatic number. This graph is a unit distance graph so it may
be considered even further evidence that the plane chromatic number may also be
ambiguous as you have suggested. It has been submitted for review but you can find
a pre-print of it here http://arxiv.org/abs/0707.1177 if you are interested. As you will
notice, I am greatly indebted to your work since my proof is essentially analogous
to yours.

Kind regards,
Michael Payne

Indeed, the paper Michael submitted to arXiv the day before his e-mail to me
contains a fabulous example. He starts with unit distance graph G1 whose vertex set
is the rational plane Q2 and, of course, two vertices are adjacent if and only if they
are distance 1 apart.

Example 46.27 (Payne [Pay]) The desired unit distance graph G on the vertex set
R2 is obtained by tiling of the plane by translates of the graph G1, i.e., its edge set is

{
(p1, p2) : p1, p2 ∈ R2; p1 − p2 ∈ Q2; |p1 − p2| = 1

}
.

Claim 1: χZFC(G) = 2.

Proof By Woodall’s result 11.2, the chromatic number of the graph G1 is equal to
2. Since the graph G consists of non-connected components, tiles, each of which
isomorphic to G1, the whole graph G is also 2-colorable (the AC is used to select
“origin points” for 2-coloring of each tile).

Claim 2: 3 ≤ χZFS(G) ≤ 7.

Michael Payne shows first that any measurable set S of positive (Lebesgue) mea-
sure contains the endpoints of a path of length 3 in G. Of course, this would rule
out 2-coloring of S. Payne continues: “We can then proceed in a similar fashion to
Shelah and Soifer’s proof in [SS1].” Let us look at his proof.

Tool 46.28 ([Pay]) For any point p ∈ R2 and any ε > 0 there is q ∈ Q with |q| < ε

such that there is a path of length 3 in G starting at p and ending at p + (q, 0).
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Proof We use the fact that the rational points are dense on the unit circle to choose
an angle � such that (cos �, sin �) ∈ Q2 and

∣
∣
∣
∣cos α − 1

2

∣
∣
∣
∣ <

ε

3
.

The path starting at p and passing through the following three points has the
desired property:

p1 = p + (cos �, sin �),

p2 = p + (cos � − 1, sin �),

p3 = p + (2 cos � − 1, 0).

From the previous inequality,

|2 cos � − 1| <
2ε

3
< ε,

and so we can simply choose q = 2 cos � − 1.

Tool 46.29 ([Pay]) Any measurable set A ⊂ R2 of positive measure �(A) > 0
contains a pair of vertices of G that are joined by a path of length 3.

Proof Michael Payne’s proof of this central for the example tool is based, according to
him, on the use of ideas from Shelah–Soifer examples discussed earlier in this Chapter.
Assume that �(A) > 0. Then there is a unit square S in R2 with sides parallel to the
axes such that

μ (A ∩ S)

μ (S)
>

9

10
.

(Since A has positive measure, it must contain points with density equal to 1.
Around any such point we can find a square with the desired property.)

By Tool 46.28 we can choose a rational q such that |q| < 1/
10 and two points

(x, y) and (x + q, y) are joined by a path of length 3. Let A′ be a translate of
A : A′ = {(x + q, y) : (x, y) ∈ A}. We have

μ
(

A′ ∩ S
)

μ (S)
>

8

10
.

since the part of A translated out of S has measure at most �(S)/10 = 1/
10. The

two inequalities above imply that there exists u ∈ A ∩ A′ ∩ S. Indeed, assume that
A ∩ A′ ∩ S = Ø, then A ∩ S and A′ ∩ S are disjoint, and using additive property of
measure, we get:

μ(S)= μ(A ∩ S)+μ(A′ ∩ S)+μ(S\(A ∪ A′)).
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Dividing by μ(S) and using the density bounds, we get

1 >
9

10
+ 8

10
+ μ

(
S\ (

A ∪ A′))

μ (S)
,

which is a contradiction. Therefore, there exists a u ∈ A ∩ A′ ∩ S. Since u ∈ A′,
it has a pre-image v ∈ A such that u = v + (q, 0). So u, v ∈ A, and u and v are
connected by a path of length 3 in G.

Now proof of claim 2 of Payne’s Example 46.27 is easy: Assume that G is
2-colored, with the corresponding monochromatic sets A1 and A2 which together
cover the plane. At least one of the sets, say, A1, has positive measure. Thus by
Tool 46.29, A1 contains a pair of points connected by a path of length 3 in G.
However, in a 2-coloring of a graph, points connected by paths of length 3 must
have opposite colors. Hence, no 2-coloring of G exists.
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A Glimpse into the Future: Chromatic Number
of the Plane, Theorems and Conjectures

The importance of particular axioms being used
makes a surprising difference for the question of
determining the chromatic number of the plane, as
recently shown by Shelah and Soifer

– Ronald L. Graham [Gra6]

47.1 Conditional Chromatic Number of the Plane Theorem

In the previous chapter, we constructed graphs that highlight the difference between
our ZFC mathematics and mathematics that could have been, such as the ZFS
mathematics. But what does it have to do with the main problem of this book, the
chromatic number of the plane (CNP)?

Is AC relevant to the problem of the chromatic number χ of the plane? The
answer depends upon the value of χ which we, of course, do not (yet) know. How-
ever, in 2003 Shelah and Soifer published the following conditional result.

Conditional Chromatic Number of the Plane Theorem 47.12 12 (Shelah–Soifer
[SS1]).

Assume that any finite unit distance plane graph has chromatic number not
exceeding 4. Then:

∗)χZFC(E2) = 4;
∗∗)χZFS+(E2) ≥ 5.

Proof The claim ∗) is true due to De Bruijn–Erdős Compactness Theorem 26.1.

12 Due to the use of the Solovay’s Theorem, we assume the existence of an inaccessible cardinal.

A. Soifer, The Mathematical Coloring Book, 553
DOI 10.1007/978-0-387-74642-5 47, C© Alexander Soifer 2009
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In the Solovay’s system ZFS+ = ZF + DC + LM, every subset S of the plane
R2 is Lebesgue measurable. Indeed, S is measurable if and only if there is a Borel
set B such that the symmetric difference S�B is null. Thus, every plane set differs
from a Borel set by a null set. We can think of a unit segment I = [0, 1] as a
set of infinite binary fractions and observe that the bijection I → I 2 defined as
0.a1a2 . . . an . . . �→ (0.a1a3 . . . ; 0.a2a4 . . .) preserves null sets. Due to Falconer’s
Theorem 9.1 of Chapter 9, we can now conclude that the chromatic number of the
plane is at least 5 (and, of course, at most 7).

This conditional theorem allows for a certain historical insight. Perhaps, the
problem of finding the chromatic number of the plane has withstood for 58 years
all assaults in the general case, leaving us with a wide range for � being 4, 5, 6, or
7, precisely because the answer depends upon the system of axioms we choose for
set theory?

It is worth mentioning that I believe that the chromatic number of Euclidean
space En, n > 2, may also depend upon the system of axioms we choose for set
theory.

In the end of his 2007 paper, inspired by Shelah–Soifer series of papers, Michael
Payne, the author of the important Example 46.27 (see the previous chapter)
remarks:

After demonstrating the existence of graphs whose chromatic number depends on the
axiomatisation of set theory, Shelah and Soifer went on to formulate a conditional
theorem [which essentially showed that the chromatic number of the plane may be
ambiguous in a similar way to the graphs considered here [SS1]]. They showed that
the chromatic number of the plane may be 4 with AC but 5, 6 or 7 with LM. The
fact that our new example G [Example 46.27] is a subgraph of P [unit distance plane]
makes this possibility seem even more likely.

This also begs a question: was the choice of the mathematical standard ZFC
inevitable? Was this choice the best possible?

In fact, I can formulate an unconditional theorem, which is a consequence of the
same ideas as Theorem 47.1:

47.2 Unconditional Chromatic Number of the Plane Theorem

Can we get here anything unconditionally, in the absolute? Yes, we can, but not yet
in ZFC.

Unconditional Chromatic Number of the Plane Theorem 47.2 χZFS+(E2) ≥ 5.
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47.3 The Conjecture

I trust – all living is related,
The future is my everyday,
As heretic, I end by falling
Into Simplicity, the only way.

–Boris Pasternak, The Waves, 193113

The great Russian poet provided us with the fitting epigraph about simplicity.
Indeed, much of mathematical results are surprisingly simple, as are our conjectures.
Just look at Erdős–Szekeres’ Happy End Conjecture 29.15!

I have been asked—and asked others—what is the most reasonable expected
value of the chromatic number of the plane, and more generally of En . We dis-
cussed this in the very beginning of this book, in Chapter 3. Now, armed with
this book’s dozens of Chapters and wisdom of half a century, what should we
expect and try to prove? I believe that the chromatic number of the plane is
4 or 7.

Chromatic Number of the Plane Conjecture 47.3

χ
(
R2

) = 4 or 7.

It would be lovely to have four as the chromatic number of the plane: this is when
our Conditional Chromatic Number of the Plane Theorem 47.1 would shine. Yet, if
you, my reader, were to insist on my choosing just one value, I would choose the
latter:

Chromatic Number of the Plane Conjecture 47.4

χ
(
E2) = 7.

“OK,” you reply, “but then a unit distance 7-chromatic graph must exist in the
plane!” This is true, but it could be quite large. In fact, in 1998 Dan Pritikin pub-
lished the lower bound for the size of such a graph:

13 [Pas]. Translated by Ilya Hoffman and Alexander Soifer. The original Russian text is this (I am adding
four lines that follow):
В родстве со всем, что есть, уверясь

И знаясь с будущим в быту,
       Нельзя не впасть к концу, как в ересь,

 В неслыханную простоту.

 Но мы пощажены не будем,
 Когда ее не утаим.
 Она всего нужнее людям,
 Но сложное понятней им.
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Lower Bound for a Unit Distance 7-Chromatic Graph [Pri] Any unit distance
7-chromatic graph G satisfies the following inequality:

|G| ≥ 6198.

In fact, the size of the smallest such graph may have to be even much larger. Now,
try to construct it! For the 3-space I conjecture:

Chromatic Number of 3-Space Conjecture 47.5

χ
(
E3

) = 15.

In general, I believe in the following conjecture:

Chromatic Number of En Conjecture 47.6

χ
(
En

) = 2n+1 − 1.

As Paul Erdős used to say, “This conjecture will likely withstand centuries, but,
we will see!”



48
Imagining the Real, Realizing the Imaginary

What do you think of the abstract – do you believe
that one should deduce one’s abstraction from the
forms of nature, or that one should create the form,
outside of nature? Matisse replied, “There is always
a measure of reality. The rest, I agree, is
imagination.”

– Henry Matisse14

Everything you can imagine is real.
– Pablo Picasso

There is an intimate relationship between the
order of Nature (which constitutes the basis of life)
and the order of Art (which constitutes the basis of
civilization).

– Herbert Read.15

48.1 What Do the Founding Set Theorists Think about the
Foundations?

In the beginning (if there was such a thing) God
created Newton’s laws of motion together with the
necessary masses and forces. This is all; everything
beyond this follows from the development of
appropriate mathematical methods by means of
deduction.

– Albert Einstein, 1946.16

14 Interview with R. W. Howe [Fla], p. 186.
15 [Rea]
16 [Ein2, p. 19]
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Kurt Gödel and Paul J. Cohen believed that we would eventually identify all of
the axioms of set theory and when we have done so, we will no longer be able to
choose between CH and ¬CH (or, similarly, between AC and DC + LM) because
the additional axioms would exclude one of the options. Cohen shared his thoughts
on the subject in 1966 [Coh2, pp. 150–151]:

One can feel that our intuition about sets is inexhaustible and that eventually an intu-
itively clear axiom will be presented which decides CH. One possibility is V = L,
but this is almost universally rejected. . . A point of view which the author feels may
eventually come to be accepted is that CH is obviously false.

Saharon Shelah disagreed with this Platonic view in his 2003 Logical
Dreams [She3]:

Some believe that compelling, additional axioms for set theory which settle problems
of real interest will be found or even have been found. It is hard to argue with hope and
problematic to consider arguments which have not yet been suggested. However, I do
not agree with the pure Platonic view that the interesting problems in set theory can be
decided, we just have to discover the additional axiom. My mental picture is that we
have many possible set theories, all conforming to ZFC.

Before I queried set theorists about the state of their minds on the foundation
of set theory, I read their writings on the subject matter. Robert M. Solovay in his
pioneering 1970 paper [Sol1] states:

Of course, the axiom of choice [AC] is true.

Saharon Shelah writes in the introduction to his 1994 classic monograph Cardi-
nal Arithmetic [She2]:

If we interpret “true” [sic] by “is provable in ZFC” (the usual axioms of set theory),
as I do, then a large part of set theory which is done today does not deal directly with
true theorems – it deals, rather, with a huge machinery for building counterexamples
(forcing possible universes) or with “thin” universes (inner models). Very often the
answer to “can this happen?” is “it depends”. Now, I believe that this phenomenon is
inevitable, and expresses a deep phase of the development of set theory, which resulted
in many fascinating theorems (and also in quite a few proofs of mine). However, there
is still some uneasiness about it. A way to express it is to say that if Cantor would have
risen from his grave today, he would not just have problems with understanding the
proofs of modern theorems – he would not understand what the theorems actually say.

And so I asked some of the leading set theorists, the great contributors to the
axiomatics of sets, the following questions:17

∗) Has AC been good for mathematics?
∗∗) Ought AC to be a part of a “standard” system of axioms for set theory?
∗∗∗) What do you think of the Solovay system of axioms (ZFS)?
∗∗∗∗) How do you view the standard system of axioms for set theory?

17 June 11–20, 2006 author’s e-mal exchanges with Paul J. Cohen, Saharon Shelah, and Robert M.
Solovay.
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“My opinions shift and I have no obvious candidates [for the standard system
of axioms],” Paul J. Cohen replied [Coh3], and added: “Solovay’s result on LM is
very nice, but hardly an axiom.” Saharon Shelah [She4] saw a certain value in using
the Solovay system ZFS and systems weaker than ZFC:

The major question is what is true, i.e., when existence tells you something more if you
give an explicit construction. Now, working in ZF, ZF+DC and also ZF+DC+LM
and many other systems are ways to explicate the word “construct.”

In Shelah’s opinion [She4], AC has been “definitely” good for mathematics, AC
is true and “should be in our standard system [of axioms].” Robert Solovay also
believes that AC is true (and therefore his system, which I admire so much, ZFS+ =
ZF + DC + LM is false). He writes about AC [Sol3]:

a. It’s true.

b. It plays an essential role in all sorts of Theorems. e.g., the uniqueness of the
algebraic closure; existence of maximal ideals, etc.

This prompted my question: But. . .what is “true”? Shelah answered it as fol-
lows [She5]:

This is a meta-mathematical question. I will say [it] fits our image of set theory.
You may say this is circularly, but this is unavoidable.
You may be Platonist like Cantor then the meaning is clear.
You may say [it is] what mathematicians who have not been interested in the question
will accept.
You may be a formalist and then this is a definition of ZFC.

Shelah is clear on what is not true enough, in his 2003 paper [She3]:

Generally I do not think that the fact that a statement solves everything really nicely,
even deeply, even being the best semi-axioms (if there is such a thing, which I doubt)
is a sufficient reason to say it is a “true axiom”.

Not surprisingly, there is no rigorous definition of “truth.” This elusive notion is
subjective, and all we can hope for is to recognize a true axiom when we encounter
one. For Shelah, a true axiom is “what I feel/think is self evident.”18 This is a high
bar to clear, and only ZFC seems to have cleared it for most creators of set theory.
Even such serious candidates as CH, ¬CH, GCH, V = L are termed by Shelah as
“semi-axioms”, because they are not sufficiently “representative” of all possibilities.
Shelah elaborates [She3]:

Still most mathematicians, even those who have worked with GCH [and with other
semi-axioms, A. S.] do it because they like to prove theorems and they could not oth-
erwise solve their problems (or get a reasonable picture), i.e., they have no alternative
in the short run. . .

18 [She5].
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What are our criterions for semi-axioms? First of all, having many consequences,
rich, deep beautiful theory is important. Second, it is preferable that it is reasonable and
“has positive measure”. Third, it is preferred to be sure it leads to no contradiction. . .

Jean-Paul Delahaye [Del] believes that Shelah–Soifer results (Chapter 46) may
have put a new emphasis on the task of finding which world of sets we think we
live in:

It turns out that knowing if the world of sets satisfies the axiom of choice or a compet-
ing axiom is a determining factor in the solution of problems that no one had imagined
depended on them. The questions raised by the new results are tied to the fundamental
nature of the world of sets. Is it reasonable to believe that the mathematical world of
sets is real? If it exists, does the true world of sets – the one in which we think we
live – allow the coloring of S. Shelah and A. Soifer in two colors or does it require an
infinity of colors? . . .

A series of results concerning the theory of graphs, published in 2003 and 2004
by Alexander Soifer of Princeton University and Saharon Shelah, of the University of
Jerusalem, should temper our attitude and invite us to greater curiosity for the alter-
natives offered by the AC. The observation demonstrated by A. Soifer and S. Shelah
should force mathematicians to reflect on the problems of foundations: what axioms
must be retained to form the basis of mathematics for physicists and for mathemati-
cians?

48.2 So, What Does It All Mean?

I know of mathematicians who hold that the axiom of
choice has the same character of intuitive
self-evidence that belongs to the most elementary
laws of logic on which mathematics depends. It has
never seemed so to me.

– Alonzo Church19

Shelah–Soifer’s papers and related results we have discussed in this part seem
surprising and even strange. How can the presence of the AC or its version affect
whether we need 2 colors or uncountable infinity of colors for coloring a particular
easily understood graph? How can the chromatic number of the plane be, perhaps,
4 in ZFC and 5, 6, or 7 in ZFS+? What do these results mean?

Jean-Paul Delahaye opens his article about these Shelah–Soifer papers in Pour
la Science, the French edition of Scientific American, as follows [Del]:

The axiom of choice, a benign matter for the non-logician, puzzles mathematicians.
Today, it manifests itself in a strange way: it takes, depending on the axiom’s variants,
either two or infinity of colors to resolve a coloring problem.

19 Talk at the International Congress of Mathematicians in Moscow, 1966 [Chu].
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Just as the parallels postulate seemed obvious, the axiom of choice has often been
considered true and beyond discussion. The inventor of set theory, Georg Cantor
(1845–1918), had used it several times without realizing it; Giuseppe Peano (1858–
1932) used it in 1890, in working to solve a differential equation problem, consciously;
but it was Ernst Zermelo (1871–1953), at the beginning of the 20th century, who iden-
tified it clearly and studied it.

When Gödel and Cohen proved independence of AC from the rest of the axioms
ZF of set theory, they created a parallel, so to speak, between AC and the parallels
postulate. As so, when Shelah–Soifer came out, it showed that various buildings of
mathematics can be constructed.

Delahaye observes, “These [Shelah–Soifer’s] results mean, as with the parallels
postulate that several different universes can be considered,” and continues:

In the case of geometry, the independence of the parallels postulate proved that non-
Euclidian geometries deserved to be studied and that they could even be used in
physics: Albert Einstein took advantage of these when, between 1907 and 1915, he
worked out his general theory of relativity.

Regarding the axiom of choice, a similar logical conclusion was warranted; the
universes where the axiom of choice is not satisfied must be explored and could be
useful in physics.

Jean Alexandre Eugène Dieudonné (1906–1992), one of the founding members
of Nicolas Bourbaki, described the state of the foundations in 1976 as follows:

Beyond classical analysis (based on the Zermelo–Fraenkel axioms supplemented by the
Denumerable Axiom of Choice), there is an infinity of different possible mathematics,
and for the time being no definitive reason compels us to choose one of them rather than
another.20

The Solovay system of axioms ZFS+ is stronger than the system referred to by
Dieudonné. It allows us to build classical analysis, including the complete Lebesgue
measure theory; and it eliminates such counter-intuitive objects existing in ZFC as
non-measurable sets of reals.

Using the AC in their 1924 paper [BT], two Polish mathematicians Stefan Banach
(1892–1945) and Alfred Tarski (1902–1983) decomposed the three-dimensional
closed unit ball into finitely many pieces, and moved those pieces through rotations
and translations (pieces were allowed to move through one another) in such a way
that the pieces formed two copies of the original ball. Since the measure of the union
of two disjoint measurable sets is the sum of their measures, and measure is invariant
under translationsandrotations,wecanconclude that there isapiece inBanach–Tarski
decomposition that has no measure (i.e., volume). Having LM in the system of axioms
for set theory would eliminate this and a good number of other paradoxes.

ZFC allows us to create imaginary objects—or shall I say unimagined objects—
such as sets on the line that have no length, sets on the plane that have no area, etc.
Are we not paying a high price for the comfort of having a powerful tool, AC?

20 Quoted from [Moo, p. 4]
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Having lived most of my life in ZFC and having enjoyed using transfinite induc-
tion, in the course of my work with Shelah I came to a realization that I prefer
ZFS+ = ZF + DC + LM over ZFC because it assures that every set of reals is
measurable (which is consistent with my intuition: every point set on the line ought
to have length), while DC gives us as much choice as is consistent with LM.

Of course, by downgrading AC to DC, we would lose such tools as the transfinite
induction and the well-ordering of uncountable sets, and would consequently lose
some important theorems, such as the existence of basis for a vector space. However,
new theorems would be found when mathematicians spend as much time building
on the Solovay foundation ZFS+ as they have on ZFC.

48.3 Imagining the Real vs. Realizing the Imaginary

As far as the propositions of mathematics refer to
reality, they are not certain; and as far as they are
certain, they do not refer to reality.

– Albert Einstein, 1921 [Ein1]

We all know that Art is not truth. Art is a lie that
makes us realize the truth.

– Pablo Picasso, 1923 [Pic]

The mathematician is an inventor, not a discoverer.
– Ludwig Wittgenstein, 1937–1944 [Witt, p. 47e]

Einstein, Picasso and Wittgenstein expressed my views in the above epigraphs,
and spelled them out with a genius precision and conciseness.

Undoubtedly, vast majority of mathematicians are Platonists.21 They believe that
mathematical objects exist out there independently of the human mind, and math-
ematicians merely discover them. The Platonists believe that a mathematical state-
ment, such as AC, is objectively either true or false—we simply do not yet know
which it is (although in a poll, “AC is true” would win hands down). Likewise, a
question, what is the chromatic number of the first Shelah–Soifer graph G, surely,
must have a single answer; it cannot be “2 or uncountable infinity.” Therefore, for
the Platonists either ZFC or ZF + DC + LM is true, we just do not know which.
Platonists imagine the real.

How does one describe those who hold the view of mathematics that is dual to
that of Plato? I propose to call them Artists, especially since Picasso is part of this
group. To paraphrase Picasso,

Mathematics is an invention that makes us realize reality.

21 Jim Holt reminisces [Hol]: “Some years ago, while giving a lecture to an international audience of
elite mathematicians in Berkeley, I asked how many of them were Platonists. About three-quarters raised
their hands.”
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“The mathematician is an inventor, not a discoverer,” agrees Wittgenstein. Math-
ematics is certain only as an invention, or as Einstein put it,” As far as the laws of
mathematics refer to reality, they are not certain; and as far as they are certain, they
do not refer to reality.”

I believe that mathematicians do not only imagine the real, but moreover realize
the imaginary. Just like artists, mathematicians create objects that challenge reality
in every aspect: beauty, simplicity, intuitiveness, and counter-intuitiveness. The real
is but one of inspirations for creating mathematics.

Mathematics of ZFC is the house that Jack built. Has he built the only possible
house? Has he built the best possible house? Must we give up the village for a house,
as Richard III offered his kingdom for a horse?

I believe that mathematicians put all their eggs in one ZFC basket, and thus have
missed out on many alternative mathematical universes that can be built on many
alternative foundations, one of which is the Solovay’s ZFS+. Saharon Shelah also
thinks that we ought to build on many foundations, but he puts his main emphasis
on building up from ZFC. It seems we have been too comfortable and too noncha-
lant about seeing problems with ZFC and doing nothing about them. Mathematical
results presented in this part may be not important by themselves, but they illuminate
the many mathematics that could be built, and serve—I hope—as a wake up call.
Delahaye [Del] concludes his analysis of Shelah–Soifer’s series of papers with the
possibility of the emerging “set-ist revolution”:

In set theory, as in geometry, all axiomatic systems are not equal. Thinking carefully
about their meaning and the consequences of each one of them, and asking ourselves
(as it is done in geometry) what the particular usefulness of this or that axiom is in
expressing and addressing issues of mathematical physics, may be relevant once again
and could lead—why not—to a revolution of set theories, similar to the revolution in
non-Euclidian geometries.

Starting a revolution? All right! As long as the revolution is imaginary, in math-
ematics, and not a “real” revolution that causes death and destruction—I am with
The Beatles on that:22

You say you want a revolution
Well, you know

We all want to change the world.
. . .

You say you got a real solution
Well, you know

We’d all love to see the plan.

22 The Beatles, Revolution, 1968.
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Two Celebrated Problems

If faith can move mountains, disbelief can deny their
existence. And faith is impotent against such
impotence.

– Arnold Schoenberg, June 19241

Histories of two coloring problems, The Four Color Problem (4CP) and The Chro-
matic Number of the Plane Problem (CNP), have been strikingly similar on many
counts.

Each problem is easy to formulate and hard to solve.
Each problem was created by young students, ages 20 and 18 respectively, born

in the year ’32:

4CP by Francis Guthrie, born in 1832;
CNP by Edward Nelson, born in 1932.

The 4CP motivated the development of much of the graph theory. The CNP
inspired a lot of mathematical work and results in a great variety of fields in which a
solution was sought: combinatorics, graph theory, topology, measure theory, abstract
algebra, geometry, and combinatorial geometry.

As we have seen on the pages of this book, CNP and 4CP have an essential
non-empty intersection: Townsend–Woodall’s 5-Color Theorem.

Each of these problems had a chief promoter. For 4CP this was Augustus
De Morgan, who kept the problem alive for decades. Paul Erdős’s contribution
to keeping CNP alive is even greater. First of all, as De Morgan did for 4CP,
Erdős kept the flame of the problem lit. He made CNP well-known by posing
it in his countless problem talks and many publications, for example, we see it
in [E61.22], [E63.21], [E75.24], [E75.25], [E76.49], [E78.50], [E79.04], [ESi],
[E80.38], [E80.41], [E81.23], [E81.26], [E85.01], [E91.60], [E92.19], [E92.60] and
[E94.60]. Secondly, Paul Erdős created a good number of fabulous related problems,
some of which we have discussed in this book.

1 [Scho].
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Both problems require a very long time to be conquered. Victor Klee and Stan
Wagon [KW], observing that solving 4CP took 124 years, suggested that CNP might
require as long for its solution:

If a solution of CNP takes as long as 4CC, then we will have a solution by the
year 2084.

Will we succeed by 2084? Paul Erdős would have said, “We shall see!” Arnold
Schoenberg believed that faith can move mountains. Erdős urged us to believe that
the transfinite Book of all the theorems and their best proofs exists. Such a belief led
Appel and Haken to success at the breaking point of available computing. Such a
belief is needed to conquer my favorite open problem of mathematics: the chromatic
number of the plane. We shall overcome!

Thank you for inviting my book into your home and holding it in your hands.
Your feedback, problems, conjectures, and solutions will always be welcome in my
home. Who knows, maybe they will inspire a new edition in the future and we will
meet again!



Bibliography

[Abb1] Abbott, H. L., Some Problems in Combinatorial Analysis, Ph.D. thesis, University
of Alberta, Canada, March, 1965.

[Abb2] Abbott, T. K., Catalogue of the Manuscripts in the Library of Trinity College,
Dublin to which is added a List of Fagel Collection of Maps in the same Library.
Hodges, Figgis, & Co, Dublin, 1900.

[AZ] Abbott, H. L., and Zhou, B., On small faces in 4-critical graphs. Ars Combin. 32
(1991), 203–207.

[Abe1] Abelin-Schur, H., Talk at Schur-Gedenkkolloquium at at the Humboldt University,
Berlin, November 15, 1991, manuscript.

[Abe2] Abelin-Schur, H., Phone conversation of May 18, 1995.
[Aks] Aksionov, V. A., On continuation of 3-coloring of planar graph (Russian). Diskret.

Analiz. 26 (1974), 3–19.
[AM] Aksionov, V. A., and Mel’nikov, L. S., Some Counter examples Associated with the

Three-Color Problem, J. Combin. Theory, Series B 28(1980), 1–9.
[AFG] Alexeev, B., Fox, J., and Graham, R. L., On minimal colorings without monochro-

matic solutions to a linear equation, Combinatorial Number Theory: Dedicated
to Professor Ron Graham on the Occasion of His Seventieth Birthday. Walter de
Gruyter, Berlin, 2007, 1–22.

[AH0] Appel, K., and Haken, W., The existence of unavoidable sets of geographically good
configurations. Illinois J. Math. 20 (1976), 218–297.

[AH1] Appel, K., and Haken, W., The solution of the four-color map problem. Sci. Am.
237(4) (Oct. 1977), 108–121.

[AH2] Appel, K., and Haken, W., Every planar map is four colorable. Part I. Discharging.
Illinois J. Math. 21 (1977), 429–490.

[AH3] Appel, K., Haken, W., and Koch, J., Every planar map is four colorable. Part II.
Reducibility. Illinois J. Math., 21 (1977), 491–567.

[AH4] Appel, K., and Haken, W., Every Planar Map is Four Colorable. Amer. Math. Soc.,
Providence, 1989.

[Arn] Arnautov, V. I., Nediskretnaya Topologizuemost Schetnykh Kolets, (Russian). Dokl.
Akad. Nauk SSSR 191 (1970) 747–750. English Translation: Nondiscrete topologiz-
ability of countable rings. Soviet Math. Dokl. 11 (1970), 423–426.

[Arr] Arrias, E., In Memoriam Prof. P. J. H. Baudet. Eigen. Haard. 48(5) (Jan. 28,
1928), 92–94.

[BaO] Baker, H., and Oliver, E., Ericas in Southern Africa. Purnell, Cape Town.
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[BBH] Brauer, A., Brauer, R., and Hopf, H., Über dies Irreduzibilität einigen spezieller
Klassen von Polynomen. Jahresber. Deutsch. Math.-Verein. 35 (1926), 99–112.
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[BFS] Brüning, J., Ferus, D., and Siegmund-Schultze, R., Terror and Exile: Persecution

and Expulsion of Mathematicians from Berlin between 1933 and 1945. Deutsche
Mathematiker-Vereinigung, Berlin, 1998.

[Buk] Bukh, B., Measurable sets with excluded distances, manuscript, 22pp, January
25, 2007.

[BM] Burkill, H., and Mirsky, L., Monotonicity. J. Math. Anal. and Appl. 41 (1973),
391–410.
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[E61.05] Erdős, P., Graph theory and probability II. Canad. J. Math. 13 (1961), 346–352.
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[E85.33] Erdős, P., Some problems and results in number theory. Number Theory and Com-
binatorics, Japan 1984 (Tokyo, Okayama and Kyoto, 1984), World Sci. Publishing,
Singapore, 1985, 65–87.
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[E89.61] Erdős, P., Video recording of the talk “Some of My Favorite Problems II”. Univer-
sity of Colorado at Colorado Springs, March 17, 1989.
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[E91/8/10ltr] Erdős, P., Letter to A. Soifer of August 10, 1991.
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[E97.18] Erdős, P., Some of my favorite problems and results. The Mathematics of Paul
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[Göd1] Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme, I, Monatshefte für Mathematik und Physik 38 (1931), 173–198.
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[SW] Székely, L. A., and Wormald, N. C., Bounds on the measurable chromatic number
of Rn . Discrete Math. 75 (1989), 343–372.

[Szek] Szekeres, Gy., A Combinatorial Problem in Geometry: Remeniscences, in Paul
Erdös, The Art of Counting, MIT Press, Cambridge, Massachusetts, 1973, xix–xxii.

[SP] Szekeres, G., and Peters, L., Computer Solution To the 17-Point Erdős-Szekeres
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[Sz1] Szemerédi, E., On Sets of integers containing no four elements in arithmetic pro-
gression. Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.
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Surányi, J., 8, 9
Süss, W., 414
Sved, (Wachsberger) M., 227, 230, 231, 280
Sylvester, J. J., 163, 505, 506
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Erdős’s Favorite Conjecture, 355–358
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