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Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.

SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.

SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial.

Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .

When c-color
(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.

If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.

If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2

1. Prove that for every c , for every c coloring of
(N
2

)
, there is a

homogenous set USING a proof similar to what I did in class.
SKETCH When processing a node xi instead of saying
Either an inf numb of R or B edges come out of xi .
say
Either an inf numb of R1 or · · · or Rc edges come out of xi .

2. Prove that for every c , for every c coloring of
(N
2

)
, there is an

inf homogenous set USING induction on c.
SKETCH c = 1 trivial. Assume for c .
When c-color

(N
2

)
with colors {1, . . . , c} view it as c − 1

colors:
1, 2, . . . , c − 2 and color {c − 1, c} for those edges colored
EITHER. Get homog set.
If its Homog with color 1 or · · · c − 2 then done.
If its homog color {c − 1, c} then use 2-color case.

VOTE Which proof did you like better.



Problem 2- A Subtle Point

A Subtle Point that I will not take off points for.
I didn’t realize it myself until a student asked me about it.

When doing the case where color {c − 1, c} occurs inf often we
use 2-ary Ramsey.

So I am using the theorem
(∀) COL :

(N
2

)
→ [2] (∃) inf homog set.

NO, I am not using that! The set I am coloring is an infinite
subset of N. So I am really using the following trivial corollary of
the above theorem:
(∀) inf A ⊆ N, (∀) COL :

(A
2

)
→ [2] (∃) inf homog set.
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Problem 3

Proof for a-ary c-color Ramsey.
SKETCH Given COL :

(N
a

)
→ [c], form COL′ :

( N
a−1
)
→ [c − 1]

via

COL′(z1, . . . , za−1) = COL(x1, z1, . . . , za−1).

Find homog set inductively and kill all vertices not in that set.
x2 is min element of homog set.
Lather, Rinse, Repeat to get x1, x2, . . ..
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Problem 4 (slightly modified)

x1, x2, x3, . . . is an inf seq of reals.

For i < j .

COL(i , j) =


RED if xi < xj

BLUE if xi > xj

GREEN if xi = xj

(1)

Apply Ramsey Theory to get a theorem.
If homog RED then get subseq set xi1 < xi2 < . . .
If homog BLUE then get subseq set xi1 > xi2 > . . .
If homog GREEN then get subseq set xi1 = xi2 = . . .
Thm Every inf seq of R has either an inf ↑ seq, an inf ↓ seq, or an
inf = seq.
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Problem 4 Extra

Can generalize to Rn by either applying Ramsey with 2-colors n
times, or applying Ramsey with 3n colors.
Thm Every inf seq of Rn has an inf subseq where, for each
coordinate, either ↑ seq, or ↓ or =.

This is a part of the proof of the Bolzano-Weierstrass Theorem.
Next Slide.
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Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges
to a real.

2. Any decreasing sequence bounded sequence of reals converges
to a real.

This is not obvious. This depends on the construction of the Reals.

BW Thm If p1, p2, p3, . . . is an inf sequence of points in Rn that is
contained in a box, then there exists a subsequence that converges
to a point in Rn.

Proof
Problem 4 yields that there is a subsequence in each coordinate
that is either ↓, ↑, or =. Lemma yields each coord converges.
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Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled
Bolzano-Weierstrass to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to
Bolzano-Weierstrass Rap

which I then added to my collection.

It is the worst math novelty song ever. Listen for yourself:
https://www.youtube.com/watch?v=dfO18klwKHg
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Problem 5

p1, p2, p3, . . . ,

be an infinite sequence of points in R2.
Consider the following coloring of

(N
2

)
.

COL(i , j) =

{
RED if d(pi , pj) > 1

BLUE if d(pi , pj) < 1
(2)

Apply Ramsey Theorem. What do you get?
SOLUTION
Thm Given an infinite sequence of points in R2 there exists an
infinite subset so that either (a) they are all within 1 of each other,
or (b) they are all more than 1 apart.



Problem 4 and 5 thoughts

The proofs of the theorems in Problem 4 and 5 are FAR EASIER
with Ramsey Theory. The proofs without Ramsey end up doing
Ramsey in context.



Problem 6 (Extra Credit)

Prove or disprove:
For every 2-coloring of the edges of KN,N there exists H1, H2

infinite such that (H1,H2) is a homog set.

Discuss and Vote
SOLUTION FALSE. Color with

COL(i , j) =

{
RED if i < j

BLUE if i ≥ j
(3)
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Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample
works but you end up with an (H1,H2) homog set that only has
TWO colors. We will call that a 2-homog set.

Prove or disprove:
For every 100-coloring of the edges of KN,N there exists H1, H2

infinite such that (H1,H2) is a 2-homog set. 3-homog set(?).
Some c-homog with c < 100?
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Problem 7 (Extra Credit)

Prove or disprove:
For all colorings COL :

(Z
2

)
→ [2] there exists a set H ⊆ Z that is

order-equiv to Z and is homogenous.

Discuss and Vote
SOLUTION FALSE. Color with

COL(i , j) =


RED if i , j ≥ 0

BLUE if i , j < 0

BLUE if one is ≥ 0 and the other is < 0

(4)
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