## HW 01 Some Solutions

William Gasarch-U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

1. Prove that for every c, for every c coloring of  $\binom{\mathbb{N}}{2}$ , there is a homogenous set USING a proof similar to what I did in class.

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
 SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*. say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

- Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
  SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*.
  say
  *Either an inf numb of R*<sub>1</sub> or ··· or *R<sub>c</sub> edges come out of x<sub>i</sub>*.
- 2. Prove that for every *c*, for every *c* coloring of  $\binom{\mathbb{N}}{2}$ , there is an inf homogenous set USING induction on *c*.

ション ふゆ アメリア メリア しょうくしゃ

1. Prove that for every c, for every c coloring of  $\binom{\mathbb{N}}{2}$ , there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node  $x_i$  instead of saying Either an inf numb of R or B edges come out of  $x_i$ . say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

2. Prove that for every c, for every c coloring of  $\binom{\mathbb{N}}{2}$ , there is an inf homogenous set USING induction on c. **SKETCH** c = 1 trivial.

1. Prove that for every c, for every c coloring of  $\binom{\mathbb{N}}{2}$ , there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node  $x_i$  instead of saying Either an inf numb of R or B edges come out of  $x_i$ . say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

2. Prove that for every c, for every c coloring of  $\binom{\mathbb{N}}{2}$ , there is an inf homogenous set USING induction on c. **SKETCH** c = 1 trivial. Assume for c.

ション ふゆ アメリア メリア しょうくしゃ

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
 SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*. say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

Prove that for every c, for every c coloring of (<sup>N</sup><sub>2</sub>), there is an inf homogenous set USING induction on c.
 SKETCH c = 1 trivial. Assume for c.
 When c-color (<sup>N</sup><sub>2</sub>) with colors {1,..., c} view it as c − 1 colors:

 $1,2,\ldots,c-2$  and color  $\{c-1,c\}$  for those edges colored EITHER. Get homog set.

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
 SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*. say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

Prove that for every c, for every c coloring of (<sup>N</sup><sub>2</sub>), there is an inf homogenous set USING induction on c.
 SKETCH c = 1 trivial. Assume for c.
 When c-color (<sup>N</sup><sub>2</sub>) with colors {1,...,c} view it as c − 1 colors:

 $1,2,\ldots,c-2$  and color  $\{c-1,c\}$  for those edges colored EITHER. Get homog set.

If its Homog with color 1 or  $\cdots c - 2$  then done.

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
 SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*. say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

Prove that for every *c*, for every *c* coloring of <sup>(N)</sup><sub>2</sub>, there is an inf homogenous set USING induction on *c*.
 SKETCH *c* = 1 trivial. Assume for *c*.
 When *c*-color <sup>(N)</sup><sub>2</sub> with colors {1,...,*c*} view it as *c* − 1 colors:

 $1,2,\ldots,c-2$  and color  $\{c-1,c\}$  for those edges colored EITHER. Get homog set.

If its Homog with color 1 or  $\cdots c - 2$  then done.

If its homog color  $\{c - 1, c\}$  then use 2-color case.

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is a homogenous set USING a proof similar to what I did in class.
 SKETCH When processing a node *x<sub>i</sub>* instead of saying *Either an inf numb of R or B edges come out of x<sub>i</sub>*. say

Either an inf numb of  $R_1$  or  $\cdots$  or  $R_c$  edges come out of  $x_i$ .

Prove that for every *c*, for every *c* coloring of (<sup>N</sup><sub>2</sub>), there is an inf homogenous set USING induction on *c*.
 SKETCH *c* = 1 trivial. Assume for *c*.
 When *c*-color (<sup>N</sup><sub>2</sub>) with colors {1,...,*c*} view it as *c* − 1 colors:

 $1,2,\ldots,c-2$  and color  $\{c-1,c\}$  for those edges colored EITHER. Get homog set.

If its Homog with color 1 or  $\cdots c - 2$  then done.

If its homog color  $\{c - 1, c\}$  then use 2-color case.

**VOTE** Which proof did you like better.

A Subtle Point that I **will not** take off points for. I didn't realize it myself until a student asked me about it.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Subtle Point that I **will not** take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color  $\{c - 1, c\}$  occurs inf often we use 2-ary Ramsey.

A Subtle Point that I **will not** take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color  $\{c - 1, c\}$  occurs inf often we use 2-ary Ramsey.

ション ふゆ アメリア メリア しょうくしゃ

So I am using the theorem  $(\forall) \text{ COL}: \binom{N}{2} \rightarrow [2] (\exists) \text{ inf homog set.}$ 

A Subtle Point that I **will not** take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color  $\{c - 1, c\}$  occurs inf often we use 2-ary Ramsey.

So I am using the theorem  $(\forall) \text{ COL}: \binom{N}{2} \rightarrow [2] (\exists) \text{ inf homog set.}$ 

NO, I am not using that! The set I am coloring is an infinite subset of  $\mathbb{N}$ . So I am really using the following trivial corollary of the above theorem:

( $\forall$ ) inf  $A \subseteq \mathbb{N}$ , ( $\forall$ ) COL:  $\binom{A}{2} \rightarrow [2]$  ( $\exists$ ) inf homog set.

Proof for *a*-ary *c*-color Ramsey. **SKETCH** Given COL:  $\binom{\mathbb{N}}{a} \rightarrow [c]$ , form COL':  $\binom{N}{a-1} \rightarrow [c-1]$  via

 $\operatorname{COL}'(z_1,\ldots,z_{a-1}) = \operatorname{COL}(x_1,z_1,\ldots,z_{a-1}).$ 

Proof for *a*-ary *c*-color Ramsey. **SKETCH** Given COL:  $\binom{\mathbb{N}}{a} \rightarrow [c]$ , form COL':  $\binom{N}{a-1} \rightarrow [c-1]$  via

$$\operatorname{COL}'(z_1,\ldots,z_{a-1}) = \operatorname{COL}(x_1,z_1,\ldots,z_{a-1}).$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Find homog set inductively and kill all vertices not in that set.

Proof for *a*-ary *c*-color Ramsey. **SKETCH** Given COL:  $\binom{\mathbb{N}}{a} \rightarrow [c]$ , form COL':  $\binom{N}{a-1} \rightarrow [c-1]$  via

$$\operatorname{COL}'(z_1,\ldots,z_{a-1}) = \operatorname{COL}(x_1,z_1,\ldots,z_{a-1}).$$

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Find homog set inductively and kill all vertices not in that set.  $x_2$  is min element of homog set.

Proof for *a*-ary *c*-color Ramsey. **SKETCH** Given COL:  $\binom{\mathbb{N}}{a} \rightarrow [c]$ , form COL':  $\binom{N}{a-1} \rightarrow [c-1]$  via

$$\operatorname{COL}'(z_1,\ldots,z_{a-1}) = \operatorname{COL}(x_1,z_1,\ldots,z_{a-1}).$$

ション ふゆ アメリア メリア しょうくしゃ

Find homog set inductively and kill all vertices not in that set.  $x_2$  is min element of homog set. Lather, Rinse, Repeat to get  $x_1, x_2, \ldots$ 

 $x_1, x_2, x_3, \ldots$  is an inf seq of reals.

 $x_1, x_2, x_3, \dots$  is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
(1)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $x_1, x_2, x_3, \dots$  is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$

(1)

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < や

Apply Ramsey Theory to get a theorem.

 $x_1, x_2, x_3, \ldots$  is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$

(1)

Apply Ramsey Theory to get a theorem. If homog RED then get subseq set  $x_{i_1} < x_{i_2} < \dots$ If homog BLUE then get subseq set  $x_{i_1} > x_{i_2} > \dots$ If homog GREEN then get subseq set  $x_{i_1} = x_{i_2} = \dots$ 

 $x_1, x_2, x_3, \dots$  is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
(1)

Apply Ramsey Theory to get a theorem. If homog RED then get subseq set  $x_{i_1} < x_{i_2} < \ldots$ If homog BLUE then get subseq set  $x_{i_1} > x_{i_2} > \ldots$ If homog GREEN then get subseq set  $x_{i_1} = x_{i_2} = \ldots$ Thm Every inf seq of *R* has either an inf  $\uparrow$  seq, an inf  $\downarrow$  seq, or an inf = seq.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Can generalize to  $\mathbb{R}^n$  by either applying Ramsey with 2-colors n times, or applying Ramsey with  $3^n$  colors. **Thm** Every inf seq of  $\mathbb{R}^n$  has an inf subseq where, for each coordinate, either  $\uparrow$  seq, or  $\downarrow$  or =.

Can generalize to  $\mathbb{R}^n$  by either applying Ramsey with 2-colors n times, or applying Ramsey with  $3^n$  colors. **Thm** Every inf seq of  $\mathbb{R}^n$  has an inf subseq where, for each coordinate, either  $\uparrow$  seq, or  $\downarrow$  or =.

This is a part of the proof of the Bolzano-Weierstrass Theorem. Next Slide.

### **Bolzano-Weierstrass Theorem**

#### Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

#### **Bolzano-Weierstrass Theorem**

#### Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

**BW Thm** If  $p_1, p_2, p_3, \ldots$  is an inf sequence of points in  $\mathbb{R}^n$  that is contained in a box, then there exists a subsequence that converges to a point in  $\mathbb{R}^n$ .

#### **Bolzano-Weierstrass Theorem**

#### Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

**BW Thm** If  $p_1, p_2, p_3, \ldots$  is an inf sequence of points in  $\mathbb{R}^n$  that is contained in a box, then there exists a subsequence that converges to a point in  $\mathbb{R}^n$ .

#### Proof

Problem 4 yields that there is a subsequence in each coordinate that is either  $\downarrow$ ,  $\uparrow$ , or =. Lemma yields each coord converges.

The BW thm was proven in 1817, way before Ramsey's Theorem.

\*ロト \*昼 \* \* ミ \* ミ \* ミ \* のへぐ

The BW thm was proven in 1817, way before Ramsey's Theorem.

(ロト (個) (E) (E) (E) (E) のへの

The proof used a Ramsey-like argument.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.



The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap

which I then added to my collection.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap

which I then added to my collection.

It is the worst math novelty song ever. Listen for yourself: https://www.youtube.com/watch?v=df018klwKHg

 $p_1, p_2, p_3, \ldots,$ 

be an infinite sequence of points in  $\mathbb{R}^2$ . Consider the following coloring of  $\binom{N}{2}$ .

$$COL(i,j) = \begin{cases} RED & \text{if } d(p_i, p_j) > 1\\ BLUE & \text{if } d(p_i, p_j) < 1 \end{cases}$$
(2)

ション ふゆ アメリア メリア しょうくしゃ

Apply Ramsey Theorem. What do you get? **SOLUTION** 

**Thm** Given an infinite sequence of points in  $R^2$  there exists an infinite subset so that either (a) they are all within 1 of each other, or (b) they are all more than 1 apart.

#### **Problem 4 and 5 thoughts**

The proofs of the theorems in Problem 4 and 5 are FAR EASIER with Ramsey Theory. The proofs without Ramsey end up doing Ramsey in context.

# Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of  $K_{\mathbb{N},\mathbb{N}}$  there exists  $H_1$ ,  $H_2$  infinite such that  $(H_1, H_2)$  is a homog set.

# Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of  $K_{\mathbb{N},\mathbb{N}}$  there exists  $H_1$ ,  $H_2$  infinite such that  $(H_1, H_2)$  is a homog set. Discuss and Vote

# Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of  $K_{\mathbb{N},\mathbb{N}}$  there exists  $H_1$ ,  $H_2$ infinite such that  $(H_1, H_2)$  is a homog set. **Discuss and Vote SOLUTION** FALSE. Color with

$$\operatorname{COL}(i,j) = \begin{cases} RED & \text{if } i < j \\ BLUE & \text{if } i \ge j \end{cases}$$
(3)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

## Problem 6 (Future Extra Credit)

**Thought** What if we use 100 colors? The same counterexample works but you end up with an  $(H_1, H_2)$  homog set that only has TWO colors. We will call that a 2-homog set.

**Thought** What if we use 100 colors? The same counterexample works but you end up with an  $(H_1, H_2)$  homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of  $K_{\mathbb{N},\mathbb{N}}$  there exists  $H_1$ ,  $H_2$  infinite such that  $(H_1, H_2)$  is a 2-homog set. 3-homog set(?). Some c-homog with c < 100?

# Problem 7 (Extra Credit)

Prove or disprove: For all colorings  $\text{COL} : \binom{Z}{2} \to [2]$  there exists a set  $H \subseteq Z$  that is order-equiv to Z and is homogenous.

# Problem 7 (Extra Credit)

Prove or disprove: For all colorings  $\text{COL} : \binom{Z}{2} \rightarrow [2]$  there exists a set  $H \subseteq Z$  that is order-equiv to Z and is homogenous. Discuss and Vote

# Problem 7 (Extra Credit)

Prove or disprove: For all colorings  $COL : {\binom{Z}{2}} \rightarrow [2]$  there exists a set  $H \subseteq Z$  that is order-equiv to Z and is homogenous. Discuss and Vote SOLUTION FALSE. Color with

$$COL(i,j) = \begin{cases} RED & \text{if } i,j \ge 0\\ BLUE & \text{if } i,j < 0\\ BLUE & \text{if one is} \ge 0 \text{ and the other is} < 0 \end{cases}$$
(4)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

## Problem 7 (Future Extra Credit)

**Thought** What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.

## Problem 7 (Future Extra Credit)

**Thought** What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of  $K_Z$  there exists 2-homog H that is order-isom to Z. 3-homog. Some c-homog with c < 100?