Homework 04

Morally Due Tue Feb 22 at 3:30PM. Dead Cat Feb 24 at 3:30

- 1. (0 points) What is your name? Write it clearly. When is the take-home midterm due?
- 2. (40 points) Assume (X, \preceq_X) and (Y, \preceq_Y) are wqo. Consider the ordering $(X \times Y, \preceq)$ where \preceq is defined as

 $(x_1, y_1) \preceq (x_2, y_2)$ iff $x_1 \preceq_X x_2$ AND $y_1 \preceq_Y y_2$.

Show that $(X \times Y, \preceq)$ is a wqo.

GO TO NEXT PAGE

3. (50 points) Assume (X, ≤) is a wqo. Let P^{finite}(X) be the set of finite subsets of X. Let ≤' be the following order on P^{finite}(X).
Let Y, Z ∈ P^{finite}(X).
Y ≤' Z iff

there exists a FUNCTION $f: Y \rightarrow Z$ such that $(\forall y \in Y)[y \preceq f(y)]$.

- (a) (20 points) Prove or disprove: $(P^{finite}(X), \preceq')$ is a wqo.
- (b) (15 points) Modify \preceq' such that the function f has to be injective (also called 1-1). Prove or disprove: $(P^{finite}(X), \preceq')$ is a wqo.
- (c) (15 points) Modify \preceq' such that the function f has to be surjective (also called onto). Prove or disprove: $(P^{finite}(X), \preceq')$ is a wqo.

GO TO NEXT PAGE

4. (10 points) GOTO my webpage of funny music and GOTO the section on Math Songs

https://www.cs.umd.edu/~gasarch/FUN//funnysongs.html

- Listen to the Bolzano Weirstrauss rap- or as much of it as you can stand. Comment on it.
- Pick ANY OTHER math song AT RANDOM and listen to it. Is it better than the BW rap (hint: YES). Comment on it.

GO TO NEXT PAGE

5. (Extra Credit- NOT towards your grade but towards a letter I may one day write for you) (This will look like a prior extra credit but it's a new problem.)

Definition A bipartite graph is a graph with vertices $A \cup B$ and the only edges are between vertices of A and vertices of B. A and B can be the same set. We denote a bipartite graph with a 3-tuple (A, B, E).

Notation $K_{n,m}$ is the bipartite graph $([n], [m], [n] \times [m])$.

Notation $K_{N,N}$ is the bipartite graph $(N, N, N \times N)$.

Definition If COL is a *c*-coloring of the edges of $K_{N,N}$ then (H_1, H_2) is a homog set if *c* restricted to $H_1 \times H_2$ takes on only 1 value (I changed the wording on this so I can generalize it later.)

RECALL In a prior extra credit problem we DISPROVED the following:

For every 2-coloring of the edges of $K_{N,N}$ there exists H_1 , H_2 infinite such that (H_1, H_2) is a homog set.

In other words we showed the following:

There IS a 2-coloring of the edges of $K_{N,N}$ such that there is NO H_1 , H_2 infinite such that (H_1, H_2) is a homog set.

This inspires the following definition.

Definition Let $d \leq c$. If COL is a *c*-coloring of the edges of $K_{N,N}$ then (H_1, H_2) is a *d*-homog set if *c* restricted to $H_1 \times H_2$ COL takes on $\leq d$ values.

SO to recap- we could have a 2-coloring of the edges of $K_{N,N}$ where there is no 1-homog set. But there is clearly a 2-homog set, namely (N,N).

And now FINALLY the problem:

For ever $k \ge 3$ Prove or disprove: For every k-coloring of the edges of $K_{N,N}$ there exists H_1 , H_2 infinite such that (H_1, H_2) is a 2-homog set.