Homework 06

Morally Due Tue March 8 at 3:30PM. Dead Cat March 10 at 3:30

- 1. (0 points) What is your name? Write it clearly. When is the take-home midterm due?
- 2. (35 points) Let $R_a(k)$ be the least n such that for all COL: $\binom{[n]}{a} \rightarrow [2]$ there exists a homog set of size k.

For this problem assume $R_2(k) \leq 2^{2k}$ (which is true).

In class I sketched the beginning of the proof that $R_3(k) \leq 2^{2^{O(k)}}$.

For this problem give a complete rigorous proof.

GO TO NEXT PAGE

3. (35 points) Prove the following:

For all k there exists n such that for all COL : $\binom{\{k,\dots,n\}}{1} \rightarrow \omega$ there exists either

- a LARGE homog set, or
- a LARGE rainbow set (all the numbers are colored differently).

- 4. (30 points) Prove the following: For all k there exists n such that for all $COL: \binom{\{k,\dots,n\}}{2} \rightarrow [100]$ there exists an $H \subseteq [n]$ such that
 - H is a homog set, and
 - $|H| \ge 2^{2^{\min(H)}}$.