Homework 06

Morally Due Tue March 8 at 3:30PM. Dead Cat March 10 at 3:30

- 1. (0 points) What is your name? Write it clearly. When is the take-home midterm due?
- 2. (35 points) Let R_a(k) be the least n such that for all COL: (^[n]_a)→[2] there exists a homog set of size k. For this problem assume R₂(k) ≤ 2^{2k} (which is true). In class I sketched the beginning of the proof that R₃(k) ≤ 2^{2^{O(k)}}. For this problem give a complete rigorous proof.

GO TO NEXT PAGE

3. (35 points) Prove the following:

For all k there exists n such that for all $COL : \binom{\{k,\dots,n\}}{1} \rightarrow \omega$ there exists either

- a LARGE homog set, or
- a LARGE rainbow set (all the numbers are colored differently).

SOLUTION

We will determine n later.

Let
$$COL: \binom{\{k,\dots,n\}}{1} \to \omega$$

We define a coloring $COL': {\binom{\{k,\dots,n\}}{2}} {\rightarrow} [2]:$

$$COL'(x,y) = \begin{cases} EQ & \text{if } COL(x) = COL(y) \\ NEQ & \text{if } COL(x) \neq COL(y) \end{cases}$$

Apply Ramsey's theorem to get a homog set

$$\{h_1 < h_2 < \cdots\}$$

If its homog color EQ then these are all equal. if its homog color NEQ then these are all NOT equal. END OF SOLUTION

GO TO NEXT PAGE

- 4. (30 points) Prove the following: For all k there exists n such that for all $COL : \binom{\{k,\dots,n\}}{2} \rightarrow [100]$ there exists an $H \subseteq [n]$ such that
 - *H* is a homog set, and
 - $|H| \ge 2^{2^{\min(H)}}$.