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Let COL': ({k’é""}) — [2] via:

EQ if COL(x) = COL(y)

COL'(x,y) = {/\/EQ if COL(x) # COL(y)

Apply Large Ramsey theorem to get a Large Homog Set
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If COL/-homog color is EQ then H is homog for COL.
if COL’-homog color is NEQ then H is rainb for COL.
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We prove this by induction on c.
IB ¢ = 1. Obviously true.

IH Assume true for ¢ — 1.
We will try to proof Thm at c. Either
» We succeed! YEAH!

> We faill Then we will have an open interval where COL is

never color c¢. Hence we have COL: Q — [c — 1]. Then use
H.
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Case 2 Construction stops someplace. Ja < b such that
COL: (a, b) — [c — 1]. Induct.



