HW06 Some Solutions

William Gasarch-U of MD

 $(\forall k)(\exists n)(\forall \text{COL}: \binom{\{k,\dots,n\}}{1}) \rightarrow \omega \text{ either }$

- ▶ ∃ a LARGE homog set (LHS), or
- ► ∃ a LARGE rainbow set (LRS)

$$(\forall k)(\exists n)(\forall \text{COL}: \binom{\{k,\dots,n\}}{1}) \rightarrow \omega \text{ either }$$

- ▶ ∃ a LARGE homog set (LHS), or
- ▶ ∃ a LARGE rainbow set (LRS)

n is least such that $(\forall COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2])(\exists LHS)$.

```
(\forall k)(\exists n)(\forall \text{COL}: {\{k,...,n\} \choose 1}) \rightarrow \omega either
```

- $ightharpoonup \exists a LARGE homog set (LHS), or$
- ► ∃ a LARGE rainbow set (LRS)

n is least such that $(\forall COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2])(\exists LHS)$. Let $COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2]$ via:

```
(\forall k)(\exists n)(\forall \text{COL}: \binom{\{k,\dots,n\}}{1}) \to \omega either
```

- $ightharpoonup \exists a LARGE homog set (LHS), or$
- ▶ ∃ a LARGE rainbow set (LRS)

n is least such that
$$(\forall \text{COL'}: \binom{\{k,\dots,n\}}{2} \rightarrow [2])(\exists LHS)$$
. Let $COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2]$ via:

$$COL'(x, y) = \begin{cases} EQ & \text{if } COL(x) = COL(y) \\ NEQ & \text{if } COL(x) \neq COL(y) \end{cases}$$

$$(\forall k)(\exists n)(\forall \text{COL}: \binom{\{k,\dots,n\}}{1}) \rightarrow \omega \text{ either}$$

- $ightharpoonup \exists a LARGE homog set (LHS), or$
- ▶ ∃ a LARGE rainbow set (LRS)

n is least such that $(\forall COL': \binom{\{k,\dots,n\}}{2}) \rightarrow [2])(\exists LHS)$. Let $COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2]$ via:

$$COL'(x, y) = \begin{cases} EQ & \text{if } COL(x) = COL(y) \\ NEQ & \text{if } COL(x) \neq COL(y) \end{cases}$$

Apply Large Ramsey theorem to get a Large Homog Set

$$\{h_1 < h_2 < \cdots < h_{h_1+1}\}$$

$$(\forall k)(\exists n)(\forall \text{COL}: {\{k,...,n\} \choose 1}) \rightarrow \omega$$
 either

- $ightharpoonup \exists a LARGE homog set (LHS), or$
- ▶ ∃ a LARGE rainbow set (LRS)

n is least such that $(\forall COL': \binom{\{k,\dots,n\}}{2}) \rightarrow [2])(\exists LHS)$. Let $COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2]$ via:

$$COL'(x, y) = \begin{cases} EQ & \text{if } COL(x) = COL(y) \\ NEQ & \text{if } COL(x) \neq COL(y) \end{cases}$$

Apply Large Ramsey theorem to get a Large Homog Set

$$\{h_1 < h_2 < \cdots < h_{h_1+1}\}$$

If COL'-homog color is EQ then H is homog for COL.

$$(\forall k)(\exists n)(\forall \text{COL}: {\{k,...,n\} \choose 1}) \rightarrow \omega$$
 either

- $ightharpoonup \exists a LARGE homog set (LHS), or$
- ▶ ∃ a LARGE rainbow set (LRS)

n is least such that $(\forall COL': \binom{\{k,\dots,n\}}{2}) \rightarrow [2])(\exists LHS)$. Let $COL': \binom{\{k,\dots,n\}}{2} \rightarrow [2]$ via:

$$COL'(x, y) = \begin{cases} EQ & \text{if } COL(x) = COL(y) \\ NEQ & \text{if } COL(x) \neq COL(y) \end{cases}$$

Apply Large Ramsey theorem to get a Large Homog Set

$$\{h_1 < h_2 < \cdots < h_{h_1+1}\}$$

If COL'-homog color is EQ then H is homog for COL. if COL'-homog color is NEQ then H is rainb for COL.

Midterm Question

Prove or Disprove: $(\forall COL: Q \rightarrow [100])(\exists H \subseteq Q)[H \ Q-homog]$

Midterm Question

Prove or Disprove: $(\forall \text{COL}: Q \rightarrow [100])(\exists H \subseteq Q)[H \text{ Q-homog}]$ Its true. We prove it on next slide.

$$(\forall c)(\forall COL \colon \mathbf{Q} \to [c])(\exists H \subseteq \mathbf{Q})H$$
 is **Q-homog**

$$(\forall c)(\forall COL \colon \mathbf{Q} \to [c])(\exists H \subseteq \mathbf{Q})H$$
 is **Q-homog**

IB c = 1. Obviously true.

$$(\forall c)(\forall COL \colon \mathbf{Q} \to [c])(\exists H \subseteq \mathbf{Q})H$$
 is **Q-homog**

IB c = 1. Obviously true.

IH Assume true for c-1.

$$(\forall c)(\forall COL \colon \mathbf{Q} \to [c])(\exists H \subseteq \mathbf{Q})H$$
 is **Q-homog**

IB c = 1. Obviously true.

IH Assume true for c-1.

We will try to proof Thm at c. Either

▶ We succeed! YEAH!

$$(\forall c)(\forall COL \colon \mathbf{Q} \to [c])(\exists H \subseteq \mathbf{Q})H$$
 is **Q-homog**

IB c = 1. Obviously true.

IH Assume true for c-1.

We will try to proof Thm at c. Either

- We succeed! YEAH!
- ▶ We fail! Then we will have an open interval where COL is never color c. Hence we have COL: $Q \rightarrow [c-1]$. Then use IH.

COL: $\mathbf{Q} \to [c]$)($\exists \mathbf{H} \subseteq \mathbf{Q}$) \mathbf{H} is \mathbf{Q} -homog Let COL: $\mathbf{Q} \to [c]$.

Let COL: $Q \rightarrow [c]$.

We define a sequence q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in Q$ such that $COL(q_1) = c$.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in \mathsf{Q}$ such that $\mathrm{COL}(q_1) = c$.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in Q$ such that $COL(q_1) = c$.

Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in \mathsf{Q}$ such that $\mathrm{COL}(q_1) = c$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - 1, p_1) \rightarrow [c - 1]$.
- For $1 \le i \le n$

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in Q$ such that $COL(q_1) = c$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - 1, p_1) \rightarrow [c - 1]$.
- For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in Q$ such that $COL(q_1) = c$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - 1, p_1) \rightarrow [c - 1]$.
- ▶ For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q. If NOT then COL: $(p_i, p_{i+1}) \to [c-1]$.
- ▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2, ...$ such that $\{q_1, q_2, ...\}$ is Q-homog OR we fail.

Let $q_1 \in \mathsf{Q}$ such that $\mathrm{COL}(q_1) = c$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - 1, p_1) \rightarrow [c - 1]$.
- ▶ For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q. If NOT then COL: $(p_i, p_{i+1}) \to [c-1]$.
- ▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + 1) \rightarrow [c - 1]$.

Let COL: $Q \rightarrow [c]$.

We define a sequence $q_1, q_2,...$ such that $\{q_1, q_2,...\}$ is Q-homog OR we fail.

Let $q_1 \in \mathsf{Q}$ such that $\mathrm{COL}(q_1) = c$.

Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then $COL: (p_1 - 1, p_1) \rightarrow [c - 1]$.
- ▶ For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q. If NOT then COL: $(p_i, p_{i+1}) \to [c-1]$.
- ▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + 1) \rightarrow [c - 1]$.

Case 1 q_1, q_2, \ldots defined. It forms countable, dense, set with no endpoints.

Let COL: $Q \rightarrow [c]$.

We define a sequence q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in \mathsf{Q}$ such that $\mathrm{COL}(q_1) = c$.

Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

- ▶ If $(\exists q < p_1)[COL(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - 1, p_1) \rightarrow [c - 1]$.
- For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q. If NOT then COL: $(p_i, p_{i+1}) \to [c-1]$.
- ▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + 1) \rightarrow [c - 1]$.

Case 1 q_1, q_2, \ldots defined. It forms countable, dense, set with no endpoints.

Case 2 Construction stops someplace. $\exists a < b$ such that

 $COL: (a, b) \rightarrow [c - 1]$. Induct.

