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Problem 2

Give a sentence φ in the language of graphs such that

spec(φ) = {n : n ≡ 1 (mod 4)}.

SOLUTION Plan: (1) there is one isolated point, and (2) all
other points come in sets of C4’s.
(∃x) the AND of the following:
(∀y)[¬E (x , y)]. x is an isolated vertex.

(∀y 6= x)(∃z1, z2)[E (y , z1) ∧ E (y , z2) ∧ (∀w 6= z1, z2)[¬E (y ,w)]]
All vertices except x have degree exactly 2.

(∀y 6= x)(∃y1, y2, y3)[E (y , y1) ∧ E (y1, y2) ∧ E (y2, y3) ∧ E (y3, y)]
Every non-x vert is in a C4. All non-x verts have deg 2, so the
y1, y2, y3, y are in a C4 and are not connected to anything else.
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Problem 3

We use the language of 3-hypergraphs. One predicate: E (x , y , z).
We assume E is symmetric.

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

If (∃N ≥ XXX (n,m))[N ∈ spec(φ)] then

{n + m, n + m + 1, . . .} ⊆ spec(φ).

Fill in the XXX and prove it.



SOLUTION to Problem 3

Assume ∃ 3-hypergraph G = (V ,E ) on ≥ XXX vertices, G |= φ.
Witnesses: u1, . . . , un be the witnesses.

U = {u1, . . . , un} Y = V − U |Y | = XXX − n = ZZZ .

Y = {y1, . . . , yZZZ}

Want Y superhomog.
Map yi ∈ Y to the following

(n
2

)
sized vector. Index the vector by([n]

2

)
.

The {a, b} entry is E (yi , a, b).

We map ZZZ elt to 2(n2) elts.
∃ WWW = ZZZ

2(
n
2)

map to same vector.

Re-index to get:
{y1, . . . , yWWW } all have the same relation to all u ∈ U.
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SOLUTION to Problem 3 (cont)

Recap
XXX TBD
ZZZ = XXX − n
WWW = ZZZ

2(
n
2)

{y1, . . . , yWWW } all have the same relation to all u ∈ U.

Want all of the yi ’s to have same rel to each other.

Use 3-ary Ramsey. Let WWW = R3(m).
3-ary Ramsey yields homog set of size m.

The rest of the proof is like I did in class.
So what is XXX?

XXX = ZZZ + n = 2(n2)WWW + n = 2(n2)R3(m) + n.
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Problem 4

A number of the form x2 + x where x ∈ N, x ≥ 1, is called a Liam.

The first few Liam’s are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of
{1, . . . , n} there exists two numbers that are the same color that
are a Liam apart.

1. Find an upper bound on L(2).

2. Find an upper bound on L(3).
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SOLUTION to a

We show that (∀COL : [13]→ [2]) there exists x , y a Liam apart
that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam:
(∀x)[COL(x) = 1 =⇒ COL(x + 2) = 2 =⇒ COL(x + 4) = 1].

Hence COL(1) = COL(5) = COL(9) = COL(13)

1 and 13 are 12 = 33 + 3 apart. So COL(1) 6= COL(13).

Contradiction.
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SOLUTION to b

We show that (∀COL : [n]→ [3]) there exists x , y a Liam apart
that are the same color.

We determine n later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).



SOLUTION to b

We show that (∀COL : [n]→ [3]) there exists x , y a Liam apart
that are the same color.

We determine n later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).



SOLUTION to b

We show that (∀COL : [n]→ [3]) there exists x , y a Liam apart
that are the same color.

We determine n later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).



SOLUTION to b

We show that (∀COL : [n]→ [3]) there exists x , y a Liam apart
that are the same color.

We determine n later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).



SOLUTION to b (Diagram)

This diagram shows that COL(1) = COL(55).

More generally, COL(x) = COL(x + 54).

1

13

43

55

12 =
3
2 +

3

42 =
6 2

+
6

30 = 52 + 5

42 =
6 2

+
6

12 =
3
2 +

3

Figure: COL(x) = COL(x + 54)
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SOLUTION to b (Finale)

(∀x ∈ N)[COL(1) = COL(1 + 55x)]

We need

54k = x2 + x = x(x + 1)

OH- lets take x = 27.

54k = 27× 28 = 54× 14

Great! We take k = 14.

54× 14 = 27× 28 is Liam.
54× 14 = 756.

SO L(3) ≤ 757.

I suspect we can do much better.
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