HW08 Solutions

William Gasarch-U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's.

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following:

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)].$

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

ション ふゆ アメビア メロア しょうくしゃ

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)]$. x is an isolated vertex.

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)]$. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$

ション ふゆ アメビア メロア しょうくしゃ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)]$. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)]$. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

 $(\forall y \neq x)(\exists y_1, y_2, y_3)[E(y, y_1) \land E(y_1, y_2) \land E(y_2, y_3) \land E(y_3, y)]$

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOLUTION Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)]$. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

 $(\forall y \neq x)(\exists y_1, y_2, y_3)[E(y, y_1) \land E(y_1, y_2) \land E(y_2, y_3) \land E(y_3, y)]$ Every non-x vert is in a C_4 . All non-x verts have deg 2, so the y_1, y_2, y_3, y are in a C_4 and are not connected to anything else.

We use the language of 3-hypergraphs. One predicate: E(x, y, z). We assume E is symmetric.

$$\begin{split} \phi &= (\exists x_1) \cdots (\exists x_n) (\forall y_1) \cdots (\forall y_m) [\psi(x_1, \dots, x_n, y_1, \dots, y_m)] \\ \text{If } (\exists N \geq XXX(n, m)) [N \in \operatorname{spec}(\phi)] \text{ then} \\ &\{n + m, n + m + 1, \dots\} \subseteq \operatorname{spec}(\phi). \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Fill in the XXX and prove it.

SOLUTION to Problem 3

Assume \exists 3-hypergraph G = (V, E) on $\geq XXX$ vertices, $G \models \phi$. Witnesses: u_1, \ldots, u_n be the witnesses.

$$U = \{u_1, \ldots, u_n\} \qquad Y = V - U \qquad |Y| = XXX - n = ZZZ.$$

$$Y = \{y_1, \ldots, y_{ZZZ}\}$$

Want Y superhomog. Map $y_i \in Y$ to the following $\binom{n}{2}$ sized vector. Index the vector by $\binom{[n]}{2}$. The $\{a, b\}$ entry is $E(y_i, a, b)$.

SOLUTION to Problem 3

Assume \exists 3-hypergraph G = (V, E) on $\geq XXX$ vertices, $G \models \phi$. Witnesses: u_1, \ldots, u_n be the witnesses.

$$U = \{u_1, \ldots, u_n\} \qquad Y = V - U \qquad |Y| = XXX - n = ZZZ.$$

$$Y = \{y_1, \ldots, y_{ZZZ}\}$$

Want Y superhomog.

Map $y_i \in Y$ to the following $\binom{n}{2}$ sized vector. Index the vector by $\binom{[n]}{2}$. The $\{a, b\}$ entry is $E(y_i, a, b)$. We map ZZZ elt to $2^{\binom{n}{2}}$ elts. $\exists WWW = \frac{ZZZ}{2\binom{n}{2}}$ map to same vector. Re-index to get:

ション ふゆ アメビア メロア しょうくしゃ

SOLUTION to Problem 3

Assume \exists 3-hypergraph G = (V, E) on $\geq XXX$ vertices, $G \models \phi$. Witnesses: u_1, \ldots, u_n be the witnesses.

$$U = \{u_1, \ldots, u_n\} \qquad Y = V - U \qquad |Y| = XXX - n = ZZZ.$$

$$Y = \{y_1, \ldots, y_{ZZZ}\}$$

Want Y superhomog.

Map $y_i \in Y$ to the following $\binom{n}{2}$ sized vector. Index the vector by $\binom{[n]}{2}$. The $\{a, b\}$ entry is $E(y_i, a, b)$. We map ZZZ elt to $2\binom{n}{2}$ elts. $\exists WWW = \frac{ZZZ}{2\binom{n}{2}}$ map to same vector. Re-index to get: $\{y_1, \dots, y_{WWW}\}$ all have the same relation to all $u \in U$.

シック・ボート (中下・) (中・)

Recap XXX TBD ZZZ = XXX - n WWW = $\frac{ZZZ}{2\binom{n}{2}}$

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{n}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{n}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$. Want all of the y_i 's to have same rel to each other.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{2}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$. Want all of the y_i 's to have same rel to each other. Use 3-ary Ramsey. Let $WWW = R_3(m)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{2}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$. Want all of the y_i 's to have same rel to each other. Use 3-ary Ramsey. Let $WWW = R_3(m)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

3-ary Ramsey yields homog set of size m.

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{2}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$. Want all of the y_i 's to have same rel to each other. Use 3-ary Ramsey. Let $WWW = R_3(m)$.

ション ふゆ アメビア メロア しょうくしゃ

3-ary Ramsey yields homog set of size m.

The rest of the proof is like I did in class.

Recap XXX TBD ZZZ = XXX - n $WWW = \frac{ZZZ}{2^{\binom{2}{2}}}$

 $\{y_1, \ldots, y_{WWW}\}$ all have the same relation to all $u \in U$. Want all of the y_i 's to have same rel to each other.

Use 3-ary Ramsey. Let $WWW = R_3(m)$. 3-ary Ramsey yields homog set of size m.

The rest of the proof is like I did in class. So what is *XXX*?

$$XXX = ZZZ + n = 2^{\binom{n}{2}}WWW + n = 2^{\binom{n}{2}}R_3(m) + n.$$

ション ふゆ アメビア メロア しょうくしゃ

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

1. Find an upper bound on L(2).

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

- 1. Find an upper bound on L(2).
- 2. Find an upper bound on L(3).

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color. Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x+2) = 2 \implies COL(x+4) = 1].$

ション ふゆ アメビア メロア しょうくしゃ

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume $\operatorname{COL}(1) = 1$.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)

ション ふゆ アメビア メロア しょうくしゃ

We show that $(\forall \text{COL} \colon [13] \to [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart.

We show that $(\forall COL: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart. So $COL(1) \neq COL(13).$

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart. So $COL(1) \neq COL(13).$ Contradiction.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We determine n later.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We determine *n* later.

Assume not. We can assume COL(1) = 1.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

We determine *n* later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).

SOLUTION to *b* (Diagram)

This diagram shows that COL(1) = COL(55).

*ロト *昼 * * ミ * ミ * ミ * のへぐ

SOLUTION to b (Diagram)

This diagram shows that COL(1) = COL(55).

More generally, COL(x) = COL(x + 54).

Figure: COL(x) = COL(x + 54)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

 $(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

OH- lets take x = 27.

$$54k = 27 \times 28 = 54 \times 14$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

OH- lets take x = 27.

$$54k = 27 \times 28 = 54 \times 14$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Great! We take k = 14.

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

OH- lets take x = 27.

$$54k = 27 \times 28 = 54 \times 14$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Great! We take k = 14.

 $54 \times 14 = 27 \times 28$ is Liam. $54 \times 14 = 756$.

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

OH- lets take x = 27.

$$54k = 27 \times 28 = 54 \times 14$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Great! We take k = 14.

 $54 \times 14 = 27 \times 28$ is Liam. $54 \times 14 = 756$. SO $L(3) \le 757$.

$$(\forall x \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+55x)]$$

We need

$$54k = x^2 + x = x(x+1)$$

OH- lets take x = 27.

$$54k = 27 \times 28 = 54 \times 14$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Great! We take k = 14.

 $54 \times 14 = 27 \times 28$ is Liam. $54 \times 14 = 756$.

SO $L(3) \le 757$.

I suspect we can do much better.