
Some Solutions to Midterm Problems

William Gasarch-U of MD



Problem 2

Prove the following and fill in the f (k).
Thm For all k there exists n = f (k) such that the following holds.
For all pairs of colorings:

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]

(∃H ⊆ [n])(∃c1, c2 ∈ {1, 2}) such that

I H is of size k ,

I every element of H is colored c1, and

I every element of
(H
2

)
is colored c2.
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Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.

By 1-ary Ramsey (∃H1)[|H1| ≥ n
2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2 Solution

COL1 :
([n]
1

)
→ [2],

COL2 :
([n]
2

)
→ [2]. We do the following.

We determine n later.
By 1-ary Ramsey (∃H1)[|H1| ≥ n

2 ], COL1 on H1 is color c1.

We apply 2-ary Ramsey. We showed in class:

(∀COL :

(
22k

2

)
→ [2])(∃H)[H Homog |H| ≥ k].

We turn this around:

(∀COL :

(
m

2

)
→ [2])(∃H)[H Homog |H| ≥ 0.5 log2(m)].

Restrict COL to
(H1
2

)
. Get: |H| ≥ 0.5 log2(|H1|) = 0.5 log2(n2 ).

Need 0.5 log2(n2 ) ≥ k. Take n = 22k+1



Problem 2. Why Important?

In the lang of graphs (E (x , y)) the question:

Given an E∗A∗ statement φ, find spec(φ)
is decidable.
And spec(φ) is always finite or cofinite.

Key Make the set Y very homog by making every element in Y
have the same relation to every u ∈ U and to each other.

What if we added a unary predicate to the lang. So every element
is colored RED or BLUE. Then we would need to also make every
element of Y the same color.

This problem showed that YES we can do BOTH- make every
element of Y the same color AND make every pair of elements of
Y the same color.
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By iterating Ramsey to get the following theorem.

In the lang of any finite set of relations (E11(x), E12(x), . . .,
E1k1(x),
E21(x1, x2), Ek2(x1, x2), . . ., E2k2(x1, x2),
...
Em1(x1, . . . , xm), Em2(x1, . . . , xm), . . ., Emkm(x1, . . . , xm) )
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Given an E∗A∗ statement φ, find spec(φ)
is decidable.
And spec(φ) is always finite or cofinite.

This is what Ramsey proved in his paper.
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Problem 3

Let T be the set of trees and � be the minor ordering. Show that
(T ,�) is a wqo.

You may use any theorem that was PROVEN in class or on the
HW. (Note that we DID NOT prove the Graph Minor Theorem, so
you can’t use that.)
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Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.

Let T1 be the smallest tree that begins a bad seq. KILL.

Let T2 be the smallest tree that begins a bad seq that begins T1.
KILL.
...

T1,T2, . . .

is called a minimal bad seq.

(∀i) take Ti and rm root to get finite set of trees Ti1, . . . ,Tiki .

Let

X =
∞⋃
i=1

{Ti1, . . . ,Tiki}
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Problem 3. X is a WQO

X =
∞⋃
i=1

{Ti1, . . . ,Tiki}

Assume not. Then ∃ bad seq. Say it begins Ti1j1 .
We can assume i1 is smallest numb that appears as a 1st index.

Ti1j1 ,Ti2j2 , . . . (We have i1 ≤ i2, i3, . . .)

we PREPEND T1, . . . ,Ti1−1 to the seq to get

T1,T2, . . . ,Ti1−1,Ti1j1 ,Ti2j2 , . . . (i1 ≤ i2, i3, . . .)

For the rest goto the next slide.
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Claim This is a bad seq.
a) NO uptick within T1, . . . ,Ti1−1 since T1,T2, . . . is Bad Seq.
b) NO uptick within Ti1j1 , . . . since its a bad seq.
c) NO uptick Ti � Tik jk since Ti � Tik and i < ik .
End of Proof of Claim
(∗) is a bad seq that begins Ti1 , . . . ,Ti1−1 and then has Ti1j1 .
Ti1 is the smallest tree that is right after T1, . . . , ti1−1 in a bad seq.
Ti1j1 is smaller than Ti1 , so contradiction.
End of proof that X is wqo
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Problem 3. X is wqo so by HW. . .
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Assume (X ,�) is a wqo.
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Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X ,�) is a wqo.

Let PF(X ) be the set of finite subsets of X .

Let �′ be the following order on PF(X ).

Let Y ,Z ∈ PF(X ).

Y �′ Z iff (∃ injective f : Y → Z )(∀y ∈ Y )[y � f (y)].

Then (PF(X ),�′) is a wqo.

We will use this.



Problem 3. View the Min Bad Seq As. . .

The Original Min Bad Sequence is

T1,T2, . . . .

View this as a seq of finite sets of trees from wqo X .
{T11, . . . ,T1k1}, {T21, . . . ,T2k2}, · · ·
By HW there is an uptick in this seq. So there is

{Ti1, . . . ,Tiki} �
′ {Tj1, . . . ,Tjkj}.

Ti1 is a minor of SOME elt of {Tj1, . . . ,Tjkj}.
Ti2 is a minor of SOME other elt of {Tj1, . . . ,Tjkj}.
...
Tiki is a minor of SOME other elt of {Tj1, . . . ,Tjkj}.
You can put all this together to get Ti is a minor of Tj , which
contradicts T1, . . . , being a bad seq.
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Would the same proof show that the subgraph-ordering for trees is
a wqo?

I leave this for you to ponder.
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Problem 4: Another Afterthought

Let G be the set of all graphs and � be the subgraph ordering.

Vote
a) (G,�) is a wqo and this is known.
a) (G,�) is not a wqo and this is known.
c) The question “is (G,�) a wqo?” is unknown to science.
Answer on next slide.
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Graphs under Subgraph

Let Ci be the cycle on i vertices.

C3,C4,C5, . . .

is an infinite seq of incomparable elements, so graphs under
subgraph are NOT a wqo.
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Problem 4

Prove or Disprove:
For every COL : Q→ [100] there exists an H ⊆ Q such that

I H has the same order type as the rationals:

a) H is countable
b) H is dense: (∀x , y ∈ H)[x < y =⇒ (∃z)[x < z < y ].
c) H has no left endpoint: (∀y ∈ H)(∃x ∈ H)[x < y ].
d) H has no right endpoint: (∀x ∈ H)(∃y ∈ H)[x < y ].

I every number in H is the same color.

TRUE. We prove it TWO ways.

Advice You should understand both proofs.
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I every number in H is the same color.

TRUE. We prove it TWO ways.

Advice You should understand both proofs.
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We Actually Prove

Def Let L be a linear ordering.
a) L ≡ Q means L has same order type as Q. Hence L is
countable, dense, and has no endpoints.

b) Let COL :
(L
2

)
→ [c]. H is Q-homog if H is homog & H ≡ Q.

We will prove the following:

(∀c)(∀L ≡ Q)(∀COL : L→ [c])(∃H ⊆ L)[H Q-homog].

We use c instead of 100 since we can then do an induction on c .

We use L instead of Q since in the induction proof we will have a
coloring of (say) (a, b) and want to use the Ind Hyp on a COL
restricted to (a, b).
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(∀c)(∀COL : L→ [c])(∃H ⊆ L)H is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c .

IB c = 1. Obviously true.

IH Assume true for c − 1.
Continued on Next Slide.



(∀c)(∀COL : L→ [c])(∃H ⊆ L)H is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c .
IB c = 1. Obviously true.

IH Assume true for c − 1.
Continued on Next Slide.



(∀c)(∀COL : L→ [c])(∃H ⊆ L)H is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c .
IB c = 1. Obviously true.

IH Assume true for c − 1.

Continued on Next Slide.



(∀c)(∀COL : L→ [c])(∃H ⊆ L)H is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c .
IB c = 1. Obviously true.

IH Assume true for c − 1.
Continued on Next Slide.



Induction Step for Proof One.

Let COL : L→ [c].

Let

H = {x ∈ L : COL(x) = c}.

Case 1 H ≡ Q. DONE!

Case 2 H 6≡ Q. Three possibilities.

Case 2a H is not dense. So (∃x < y ∈ H)[(x , y) ∩ H = ∅].
Nothing in (x , y) is colored c .
Let COL′ be COL restricted to (x , y).
This is a c − 1 coloring on (x , y) ≡ Q. Done by IH.

Case 2b H has a left endpoint. So (∃y)[−∞, y) ∩ H = ∅]. Let
x ∈ L such that x < y . Let COL′ be COL restricted to (x , y).
This is a c − 1 coloring on (x , y) ≡ Q. Done by IH.

Case 2c H has a right endpoint. Similar to Case 2b.

End of Proof One
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Induction Step for Proof Two: Plan

We will try to construct a Q-homog set.

I We succeed! YEAH!

I We fail! Then we will have an open interval (x , y) where
COL is never color c . Use IH.
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Induction Step for Proof Two: Action

Let COL : L→ [c].

We define a seq q1, q2, . . . such that {q1, q2, . . .} is Q-homog OR
we fail.
Let q1 ∈ L such that COL(q1) = c . (If no such exists, use IH.)
Assume q1, . . . , qn have been defined and are all color c . Order
them to get p1 < · · · < pn.

I If (∃q < p1)[COL(q) = c] then let qn+1 be q.
If NOT then COL : (p1 − ε, p1)→ [c − 1]. STOP. Use IH.

I For 1 ≤ i ≤ n
If (∃pi < q < pi+1)[COL(q) = c] then let qn+i+1 be q.
If NOT then COL : (pi , pi+1)→ [c − 1]. STOP. Use IH.

I If (∃p1 < q)[COL(q) = c] then let q2n+2 be q.
If NOT then COL : (pn, pn + ε)→ [c − 1]. STOP. Use IH.

Case 1 Const never stops. {q1, q2, . . .} ≡ Q & homog. Done!

Case 2 Const stops . ∃a < b, COL : (a, b)→ [c − 1]. Use IH.
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we fail.
Let q1 ∈ L such that COL(q1) = c . (If no such exists, use IH.)
Assume q1, . . . , qn have been defined and are all color c . Order
them to get p1 < · · · < pn.

I If (∃q < p1)[COL(q) = c] then let qn+1 be q.
If NOT then COL : (p1 − ε, p1)→ [c − 1]. STOP. Use IH.

I For 1 ≤ i ≤ n
If (∃pi < q < pi+1)[COL(q) = c] then let qn+i+1 be q.
If NOT then COL : (pi , pi+1)→ [c − 1]. STOP. Use IH.

I If (∃p1 < q)[COL(q) = c] then let q2n+2 be q.
If NOT then COL : (pn, pn + ε)→ [c − 1]. STOP. Use IH.

Case 1 Const never stops. {q1, q2, . . .} ≡ Q & homog. Done!

Case 2 Const stops . ∃a < b, COL : (a, b)→ [c − 1]. Use IH.



Induction Step for Proof Two: Action

Let COL : L→ [c].
We define a seq q1, q2, . . . such that {q1, q2, . . .} is Q-homog OR
we fail.
Let q1 ∈ L such that COL(q1) = c . (If no such exists, use IH.)
Assume q1, . . . , qn have been defined and are all color c . Order
them to get p1 < · · · < pn.

I If (∃q < p1)[COL(q) = c] then let qn+1 be q.
If NOT then COL : (p1 − ε, p1)→ [c − 1]. STOP. Use IH.

I For 1 ≤ i ≤ n
If (∃pi < q < pi+1)[COL(q) = c] then let qn+i+1 be q.
If NOT then COL : (pi , pi+1)→ [c − 1]. STOP. Use IH.

I If (∃p1 < q)[COL(q) = c] then let q2n+2 be q.
If NOT then COL : (pn, pn + ε)→ [c − 1]. STOP. Use IH.

Case 1 Const never stops. {q1, q2, . . .} ≡ Q & homog. Done!

Case 2 Const stops . ∃a < b, COL : (a, b)→ [c − 1]. Use IH.


