Some Solutions to Midterm Problems

William Gasarch-U of MD
Problem 2

Prove the following and fill in the $f(k)$.

Thm For all k there exists $n = f(k)$ such that the following holds. For all pairs of colorings:

$\text{COL}_1 : ([n]_1) \rightarrow [2],$

$\text{COL}_2 : ([n]_2) \rightarrow [2]$

$(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1, 2\})$ such that
Problem 2

Prove the following and fill in the $f(k)$.

Thm For all k there exists $n = f(k)$ such that the following holds. For all pairs of colorings:

$\text{COL}_1 : ([n]_1) \to [2],$

$\text{COL}_2 : ([n]_2) \to [2]$

$(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1, 2\})$ such that

- H is of size $k,$
Problem 2

Prove the following and fill in the $f(k)$.

Thm For all k there exists $n = f(k)$ such that the following holds. For all pairs of colorings:

- $\text{COL}_1 : \binom{[n]}{1} \rightarrow [2],$
- $\text{COL}_2 : \binom{[n]}{2} \rightarrow [2]$

$(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1, 2\})$ such that

- H is of size k,
- every element of H is colored c_1, and
Problem 2

Prove the following and fill in the $f(k)$.

Thm For all k there exists $n = f(k)$ such that the following holds.

For all pairs of colorings:

- $\text{COL}_1 : ([n]^1) \rightarrow [2]$,
- $\text{COL}_2 : ([n]^2) \rightarrow [2]$

$(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1, 2\})$ such that

- H is of size k,
- every element of H is colored c_1, and
- every element of $^{n \choose 2}$ is colored c_2.

Problem 2 Solution

\[\text{COL}_1 : \binom{[n]}{1} \rightarrow [2], \]
\[\text{COL}_2 : \binom{[n]}{2} \rightarrow [2]. \] We do the following.
Problem 2 Solution

\[\text{COL}_1 : ([n]_1) \rightarrow [2], \]
\[\text{COL}_2 : ([n]_2) \rightarrow [2]. \]

We do the following. We determine \(n \) later.

We determine \(n \) later.
Problem 2 Solution

$$\text{COL}_1: \binom{[n]}{1} \to [2],$$
$$\text{COL}_2: \binom{[n]}{2} \to [2].$$ We do the following.

We determine n later.

By 1-ary Ramsey ($\exists H_1)[|H_1| \geq \frac{n}{2}]$, COL_1 on H_1 is color c_1. We turn this around:

$$\forall \text{COL}_1: \binom{m}{2} \to [2] \exists H \text{ Homog} \ |H| \geq 0.5 \log_2(m).$$

Restrict COL_2 to (H_1^2). Get:

$$|H| \geq 0.5 \log_2(|H_1|) = 0.5 \log_2(n^2) = 0.5 n^2.$$
Problem 2 Solution

\begin{align*}
\text{COL}_1 : (\binom{n}{1}) &\to [2], \\
\text{COL}_2 : (\binom{n}{2}) &\to [2]. \text{ We do the following.}
\end{align*}

We determine \(n \) later.

By 1-ary Ramsey (\(\exists H_1 \)[\(|H_1| \geq \frac{n}{2} \)], \(\text{COL}_1 \) on \(H_1 \) is color \(c_1 \).

We apply 2-ary Ramsey. We showed in class:
Problem 2 Solution

\[\text{COL}_1: \binom{[n]}{1} \rightarrow [2], \]
\[\text{COL}_2: \binom{[n]}{2} \rightarrow [2]. \] We do the following.

We determine \(n \) later.

By 1-ary Ramsey \((\exists H_1)[|H_1| \geq \frac{n}{2}], \) \(\text{COL}_1 \) on \(H_1 \) is color \(c_1 \).

We apply 2-ary Ramsey. We showed in class:

\[
(\forall \text{COL} : \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].
\]
Problem 2 Solution

COL₁: \([n]_1 \mapsto [2]\),

COL₂: \([n]_2 \mapsto [2]\). We do the following.

We determine \(n\) later.

By 1-ary Ramsey \((\exists H₁)[|H₁| \geq \frac{n}{2}], \) COL₁ on \(H₁\) is color \(c₁\).

We apply 2-ary Ramsey. We showed in class:

\[(\forall \text{COL} : \binom{2^{2k}}{2} \mapsto [2])(\exists H)[H \text{ Homog } |H| \geq k].\]

We turn this around:
Problem 2 Solution

\[\text{COL}_1 : \binom{[n]}{1} \to [2], \]
\[\text{COL}_2 : \binom{[n]}{2} \to [2]. \] We do the following.

We determine \(n \) later.

By 1-ary Ramsey \((\exists H_1)[|H_1| \geq n/2]\), \(\text{COL}_1 \) on \(H_1 \) is color \(c_1 \).

We apply 2-ary Ramsey. We showed in class:

\[
(\forall \text{COL} : \binom{2^k}{2} \to [2])(\exists H)[H \text{ Homog } |H| \geq k].
\]

We turn this around:

\[
(\forall \text{COL} : \binom{m}{2} \to [2])(\exists H)[H \text{ Homog } |H| \geq 0.5 \log_2(m)].
\]
Problem 2 Solution

$\text{COL}_1: ([n]_1) \to [2],$

$\text{COL}_2: ([n]_2) \to [2]$. We do the following.

We determine n later.

By 1-ary Ramsey ($\exists H_1[H_1 | \geq n_2]$), COL_1 on H_1 is color c_1.

We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL} : \binom{2^2k}{2} \to [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

We turn this around:

$$(\forall \text{COL} : \binom{m}{2} \to [2])(\exists H)[H \text{ Homog } |H| \geq 0.5 \log_2(m)].$$

Restrict COL_2 to $\binom{H_1}{2}$. Get: $|H| \geq 0.5 \log_2(|H_1|) = 0.5 \log_2\left(\frac{n}{2}\right)$.
Problem 2 Solution

\(\text{COL}_1 : ([n]_1) \rightarrow [2], \)
\(\text{COL}_2 : ([n]_2) \rightarrow [2]. \) We do the following.

We determine \(n \) later.

By 1-ary Ramsey \((\exists H_1)[|H_1| \geq \frac{n}{2}], \) \(\text{COL}_1 \) on \(H_1 \) is color \(c_1. \)

We apply 2-ary Ramsey. We showed in class:

\[
(\forall \text{COL} : \binom{2^2k}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].
\]

We turn this around:

\[
(\forall \text{COL} : \binom{m}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq 0.5 \log_2(m)].
\]

Restrict \(\text{COL}_2 \) to \(\binom{H_1}{2} \). Get: \(|H| \geq 0.5 \log_2(|H_1|) = 0.5 \log_2(\frac{n}{2}). \)

Need \(0.5 \log_2(\frac{n}{2}) \geq k. \) Take \(n = 2^{2k+1}. \)
Problem 2. Why Important?

In the lang of graphs \((E(x,y))\) the question:

\[
\text{Given an } E^* A^* \text{ statement } \phi, \text{ find } \text{spec}(\phi)
\]

is decidable. And \(\text{spec}(\phi)\) is always finite or cofinite.

Key: Make the set \(Y\) very homog by making every element in \(Y\) have the same relation to every \(u \in U\) and to each other.

What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to also make every element of \(Y\) the same color.

This problem showed that YES we can do BOTH—make every element of \(Y\) the same color AND make every pair of elements of \(Y\) the same color.
In the lang of graphs \((E(x, y))\) the question:

Given an \(E^* A^*\) statement \(\phi\), find \(\text{spec}(\phi)\)
is decidable.
Problem 2. Why Important?

In the lang of graphs \((E(x,y))\) the question:

Given an \(E^* A^*\) statement \(\phi\), find \(\text{spec}(\phi)\) is decidable.

And \(\text{spec}(\phi)\) is always finite or cofinite.
Problem 2. Why Important?

In the lang of graphs \((E(x, y))\) the question:

Given an \(E^* A^*\) **statement** \(\phi\), **find** \(\text{spec}(\phi)\) **is decidable.**

And \(\text{spec}(\phi)\) **is always finite or cofinite.**

Key Make the set \(Y\) **very homog** by making every element in \(Y\) have the same relation to every \(u \in U\) and to each other.
In the lang of graphs \((E(x, y))\) the question:

Given an \(E^* A^*\) **statement** \(\phi\), **find** \(\text{spec}(\phi)\) **is decidable.**

And \(\text{spec}(\phi)\) **is always finite or cofinite.**

Key Make the set \(Y\) **very homog** by making every element in \(Y\) have the same relation to every \(u \in U\) and to each other.

What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to **also** make every element of \(Y\) the same color.
Problem 2. Why Important?

In the lang of graphs \((E(x, y))\) the question:

Given an \(E^* A^*\) statement \(\phi\), find \(\text{spec}(\phi)\)

is decidable.

And \(\text{spec}(\phi)\) is always finite or cofinite.

Key Make the set \(Y\) very homog by making every element in \(Y\) have the same relation to every \(u \in U\) and to each other.

What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to **also** make every element of \(Y\) the same color.

This problem showed that YES we can do BOTH- make every element of \(Y\) the same color AND make every pair of elements of \(Y\) the same color.
Problem 2. Why Important?

We have the following:
Language is 2-col graphs ($E_1(x)$ and $E_2(x, y)$) the question:
Problem 2. Why Important?

We have the following:
Language is 2-col graphs ($E_1(x)$ and $E_2(x,y)$) the question:

Given an E^*A^* statement ϕ, find $\text{spec}(\phi)$ is decidable.
Problem 2. Why Important?

We have the following:
Language is 2-col graphs ($E_1(x)$ and $E_2(x, y)$) the question:

Given an E^*A^* statement ϕ, find $\text{spec}(\phi)$ is decidable.
And $\text{spec}(\phi)$ is always finite or cofinite.
Problem 2. Why Important?

By iterating Ramsey we get the following theorem.
By iterating Ramsey we get the following theorem. In the lang of any finite set of relations \((E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \ldots, E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m)\)
Problem 2. Why Important?

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations \((E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \ldots, E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m))\)

the question:

Given an \(E^*A^*\) statement \(\phi\), find \(\text{spec}(\phi)\)

is decidable.
Problem 2. Why Important?

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations \((E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \ldots, E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m))\) the question:

Given an \(E^*A^* \) statement \(\phi\), find \(\text{spec}(\phi)\) is decidable.

And \(\text{spec}(\phi)\) is always finite or cofinite.
Problem 2. Why Important?

By iterating Ramsey we get the following theorem. In the language of any finite set of relations \((E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \ldots, E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m))\), the question:

*Given an \(E^*A^*\) statement \(\phi\), find \(\text{spec}(\phi)\) is decidable.*

And \(\text{spec}(\phi)\) is always finite or cofinite.

This is what Ramsey proved in his paper.
Problem 3

Let T be the set of trees and \leq be the minor ordering. Show that (T, \leq) is a wqo.
Let T be the set of trees and \preceq be the minor ordering. Show that (T, \preceq) is a wqo.

You may use any theorem that was PROVEN in class or on the HW. (Note that we DID NOT prove the Graph Minor Theorem, so you can’t use that.)
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_1, T_2, \ldots is called a minimal bad seq.

Let $X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_1 be the smallest tree that begins a bad seq. KILL.
Let T_2 be the smallest tree that begins a bad seq that begins T_1. KILL.

\[
\text{\ldots}
\]
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_1 be the smallest tree that begins a bad seq. KILL.
Let T_2 be the smallest tree that begins a bad seq that begins T_1. KILL.
::

T_1, T_2, \ldots

is called a minimal bad seq.
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_1 be the smallest tree that begins a bad seq. KILL.
Let T_2 be the smallest tree that begins a bad seq that begins T_1. KILL.

\[T_1, T_2, \ldots \]

is called a minimal bad seq.

$(\forall i)$ take T_i and rm root to get finite set of trees T_{i_1}, \ldots, T_{i_k}.
Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.

Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_2 be the smallest tree that begins a bad seq that begins T_1. KILL.

\[T_1, T_2, \ldots \]

is called a minimal bad seq.

$(\forall i)$ take T_i and rm root to get finite set of trees T_{i1}, \ldots, T_{ik_i}.

Let

\[X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \} \]
Problem 3. X is a WQO

\[X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \} \]
Problem 3. X is a WQO

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

Assume not. Then \exists bad seq.
Problem 3. X is a WQO

\[X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \} \]

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is the smallest number that appears as a 1st index. $T_{i_1j_1}, T_{i_2j_2}, \ldots$ (we have $i_1 \leq i_2, i_3, \ldots$) we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get $T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots$ (we have $i_1 \leq i_2, i_3, \ldots$) For the rest goto the next slide.
Problem 3. \(X \) is a WQO

\[X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \} \]

Assume not. Then \(\exists \) bad seq. Say it begins \(T_{i_1 j_1} \).

We can assume \(i_1 \) is smallest numb that appears as a 1st index.
Problem 3. X is a WQO

$$X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik} \}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1 j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1 j_1}, T_{i_2 j_2}, \ldots \text{ (We have } i_1 \leq i_2, i_3, \ldots)$$
Problem 3. X is a WQO

$$X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \}$$

Assume not. Then \exists bad seq. Say it begins T_{i1j1}. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i1j1}, T_{i2j2}, \ldots \ (\text{We have } i_1 \leq i_2, i_3, \ldots)$$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get
Problem 3. X is a WQO

\[X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \} \]

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$.
We can assume i_1 is smallest numb that appears as a 1st index.

\[T_{i_1j_1}, T_{i_2j_2}, \ldots \ (\text{We have } i_1 \leq i_2, i_3, \ldots) \]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

\[T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots) \]

For the rest goto the next slide.
Problem 3. X is a WQO

$$X = \bigcup_{i=1}^{\infty} \{ T_{i1}, \ldots, T_{ik_i} \}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1j_1}, T_{i_2j_2}, \ldots \ (\text{We have } i_1 \leq i_2, i_3, \ldots)$$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots)$$

For the rest goto the next slide.
Problem 3. X is a WQO

\[(\ast) \quad T_{i_1 j_1}, T_{i_2 j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)\]
Problem 3. X is a WQO

\[(\ast) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get
Problem 3. X is a WQO

\[(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots) \]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

\[T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots) \]
Problem 3. X is a WQO

\[(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$

Claim This is a bad seq.
Problem 3. X is a WQO

\[
(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots \quad (i_1 \leq i_2, i_3, \ldots)
\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

\[
T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \quad (i_1 \leq i_2, i_3, \ldots)
\]

Claim This is a **bad seq**.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
Problem 3. X is a WQO

\[(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots) \]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

\[T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots) \]

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.

b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq.
Problem 3. X is a WQO

\[(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots) \]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

\[T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots) \]

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq.
c) NO uptick $T_i \preceq T_{i_kj_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$.
Problem 3. X is a WQO

\[(\ast) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a **bad seq**.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq.
c) NO uptick $T_i \preceq T_{i_kj_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$.

End of Proof of Claim
Problem 3. \(X \) is a WQO

\[(*) \quad T_{i_1j_1}, T_{i_2j_2}, \ldots \quad (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND \(T_1, \ldots, T_{i_1-1} \) to the seq to get

\[T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \quad (i_1 \leq i_2, i_3, \ldots)\]

Claim This is a *bad seq*.

a) NO uptick within \(T_1, \ldots, T_{i_1-1} \) since \(T_1, T_2, \ldots \) is Bad Seq.
b) NO uptick within \(T_{i_1j_1}, \ldots \) since its a bad seq.
c) NO uptick \(T_i \preceq T_{i_kj_k} \) since otherwise \(T_i \preceq T_{i_k} \) and \(i < i_k \).

End of Proof of Claim

\((*)\) is a bad seq that begins \(T_{i_1}, \ldots, T_{i_1-1} \) and then has \(T_{i_1j_1} \).
Problem 3. X is a WQO

\[(*) \quad T_{i_1 j_1}, T_{i_2 j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1 j_1}, T_{i_2 j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.
a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
b) NO uptick within $T_{i_1 j_1}, \ldots$ since its a bad seq.
c) NO uptick $T_i \preceq T_{i_k j_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$.

End of Proof of Claim

\[(*)\) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1 j_1}$. T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.
Problem 3. X is a WQO

\[(\ast) \quad T_{i_1 j_1}, T_{i_2 j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)\]

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1 j_1}, T_{i_2 j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.

b) NO uptick within $T_{i_1 j_1}, \ldots$ since its a bad seq.

c) NO uptick $T_i \preceq T_{i_k j_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$.

End of Proof of Claim

(\ast) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1 j_1}$. T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.

$T_{i_1 j_1}$ is smaller than T_{i_1}, so contradiction.
Problem 3. X is a WQO

\begin{align*}
(*) \quad & T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots) \\
\text{we PREPEND } & T_1, \ldots, T_{i_1-1} \text{ to the seq to get} \\
& T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots \ (i_1 \leq i_2, i_3, \ldots)
\end{align*}

Claim This is a bad seq.
a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq.
c) NO uptick $T_i \preceq T_{i_kj_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$.

End of Proof of Claim

$(*$) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1j_1}$.
T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.
$T_{i_1j_1}$ is smaller than T_{i_1}, so contradiction.

End of proof that X is wqo
Problem 3. X is wqo so by HW...

Recall HW04
Problem 3. X is wqo so by HW. . .

Recall HW04

Assume (X, \preceq) is a wqo.
Problem 3. X is wqo so by HW.

Recall HW04

Assume (X, \preceq) is a wqo.

Let $PF(X)$ be the set of finite subsets of X.
Recall HW04

Assume \((X, \preceq)\) is a wqo.

Let \(\text{PF}(X)\) be the set of finite subsets of \(X\).

Let \(\preceq'\) be the following order on \(\text{PF}(X)\).
Recall HW04

Assume \((X, \preceq)\) is a wqo.

Let \(PF(X)\) be the set of finite subsets of \(X\).

Let \(\preceq'\) be the following order on \(PF(X)\).

Let \(Y, Z \in PF(X)\).
Recall HW04

Assume \((X, \preceq)\) is a wqo.
Let \(PF(X)\) be the set of finite subsets of \(X\).
Let \(\preceq'\) be the following order on \(PF(X)\).
Let \(Y, Z \in PF(X)\).
\(Y \preceq' Z\) iff \((\exists\) injective \(f : Y \to Z)(\forall y \in Y)[y \preceq f(y)]\).
Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.

Let $PF(X)$ be the set of finite subsets of X.

Let \preceq' be the following order on $PF(X)$.

Let $Y, Z \in PF(X)$.

$Y \preceq' Z$ iff $(\exists$ injective $f : Y \to Z)(\forall y \in Y)[y \preceq f(y)]$.

Then $(PF(X), \preceq')$ is a wqo.
Recall HW04

Assume \((X, \preceq)\) is a wqo.
Let \(PF(X)\) be the set of finite subsets of \(X\).
Let \(\preceq'\) be the following order on \(PF(X)\).
Let \(Y, Z \in PF(X)\).
\(Y \preceq' Z\) iff \((\exists\) injective \(f : Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)]\).
Then \((PF(X), \preceq')\) is a wqo.
We will use this.
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X.

$$\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \ldots$$
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]

View this as a seq of finite sets of trees from wqo \(X \).
\[\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots \]

By HW there is an uptick in this seq. So there is
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]

View this as a seq of finite sets of trees from wqo \(X \).
\[\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots \]
By HW there is an uptick in this seq. So there is

\[\{ T_{i1}, \ldots, T_{ik_i} \} \preceq' \{ T_{j1}, \ldots, T_{jk_j} \}. \]
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]

View this as a seq of finite sets of trees from wqo \(X \).
\[\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots \]

By HW there is an uptick in this seq. So there is

\[\{ T_{i_1}, \ldots, T_{ik_i} \} \preceq' \{ T_{j_1}, \ldots, T_{jk_j} \}. \]

\(T_{i_1} \) is a minor of SOME elt of \(\{ T_{j_1}, \ldots, T_{jk_j} \} \).
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X.

$$\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots$$

By HW there is an uptick in this seq. So there is

$$\{ T_{i1}, \ldots, T_{ik_i} \} \preceq' \{ T_{j1}, \ldots, T_{jk_j} \}.$$

T_{i1} is a minor of SOME elt of $\{ T_{j1}, \ldots, T_{jk_j} \}$.

T_{i2} is a minor of SOME other elt of $\{ T_{j1}, \ldots, T_{jk_j} \}$.
Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X.

$$\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots$$

By HW there is an uptick in this seq. So there is

$$\{ T_{i1}, \ldots, T_{ik_i} \} \preceq' \{ T_{j1}, \ldots, T_{jk_j} \}.$$

T_{i1} is a minor of SOME elt of $\{ T_{j1}, \ldots, T_{jk_j} \}$.

T_{i2} is a minor of SOME other elt of $\{ T_{j1}, \ldots, T_{jk_j} \}$.

\vdots
Problem 3. View the Min Bad Seq As…

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]

View this as a seq of finite sets of trees from wqo \(X \).
\[\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots \]

By HW there is an uptick in this seq. So there is

\[\{ T_{i_1}, \ldots, T_{i_{k_i}} \} \preceq' \{ T_{j_1}, \ldots, T_{j_{k_j}} \}. \]

\(T_{i_1} \) is a minor of SOME elt of \(\{ T_{j_1}, \ldots, T_{j_{k_j}} \} \).
\(T_{i_2} \) is a minor of SOME other elt of \(\{ T_{j_1}, \ldots, T_{j_{k_j}} \} \).
\[\vdots \]
\(T_{i_{k_i}} \) is a minor of SOME other elt of \(\{ T_{j_1}, \ldots, T_{j_{k_j}} \} \).
Problem 3. View the Min Bad Seq As…

The Original Min Bad Sequence is

\[T_1, T_2, \ldots \]

View this as a seq of finite sets of trees from wqo \(X \).
\[\{ T_{11}, \ldots, T_{1k_1} \}, \{ T_{21}, \ldots, T_{2k_2} \}, \ldots \]

By HW there is an uptick in this seq. So there is

\[\{ T_{i1}, \ldots, T_{ik_i} \} \preceq' \{ T_{j1}, \ldots, T_{jk_j} \}. \]

\(T_{i1} \) is a minor of SOME elt of \(\{ T_{j1}, \ldots, T_{jk_j} \} \).
\(T_{i2} \) is a minor of SOME other elt of \(\{ T_{j1}, \ldots, T_{jk_j} \} \).
\[\vdots \]
\(T_{ik_i} \) is a minor of SOME other elt of \(\{ T_{j1}, \ldots, T_{jk_j} \} \).

You can put all this together to get \(T_i \) is a minor of \(T_j \), which
contradicts \(T_1, \ldots, \) being a bad seq.
Problem 3: Afterthought

What did we use about \textbf{minor} in the proof?
Problem 3: Afterthought

What did we use about *minor* in the proof?

Would the same proof show that the subgraph-ordering for trees is a wqo?
Problem 3: Afterthought

What did we use about minor in the proof?

Would the same proof show that the subgraph-ordering for trees is a wqo?

I leave this for you to ponder.
Problem 3: Another Afterthought

Let G be the set of all graphs and \leq be the subgraph ordering.
Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering.

Vote
Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering.

Vote

a) (\mathcal{G}, \preceq) is a wqo and this is known.
Problem 3: Another Afterthought

Let \(\mathcal{G} \) be the set of all graphs and \(\preceq \) be the subgraph ordering.

Vote

a) \((\mathcal{G}, \preceq) \) is a wqo and this is known.

a) \((\mathcal{G}, \preceq) \) is not a wqo and this is known.
Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering.

Vote

a) (\mathcal{G}, \preceq) is a wqo and this is known.

a) (\mathcal{G}, \preceq) is not a wqo and this is known.

a) The question “is (\mathcal{G}, \preceq) a wqo?” is **unknown to science**.
Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering.

Vote

a) (\mathcal{G}, \preceq) is a wqo and this is known.
a) (\mathcal{G}, \preceq) is not a wqo and this is known.
c) The question “is (\mathcal{G}, \preceq) a wqo?” is unknown to science.

Answer on next slide.
Graphs under Subgraph

Let C_i be the cycle on i vertices. $C_3, C_4, C_5, ...$ is an infinite seq of incomparable elements, so graphs under subgraph are NOT a wqo.
Graphs under Subgraph

Let C_i be the cycle on i vertices.

C_3, C_4, C_5, \ldots

is an infinite seq of incomparable elements, so graphs under subgraph are NOT a wqo.
Problem 4

Prove or Disprove:

For every $\text{COL}: \mathbb{Q} \to [100]$ there exists an $H \subseteq \mathbb{Q}$ such that

- H has the same order type as the rationals:

 - H is countable
 - H is dense: $(\forall x, y \in H) [x < y \Rightarrow (\exists z) x < z < y]$.
 - H has no left endpoint: $(\forall y \in H) (\exists x \in H) x < y$.
 - H has no right endpoint: $(\forall x \in H) (\exists y \in H) x < y$.

- every number in H is the same color.

TRUE. We prove it TWO ways.
Prove or Disprove:

For every $\text{COL} : \mathbb{Q} \rightarrow [100]$ there exists an $H \subseteq \mathbb{Q}$ such that

- H has the same order type as the rationals:
 - a) H is countable

TRUE. We prove it two ways.
Problem 4

Prove or Disprove:

For every $\text{COL} : \mathbb{Q} \to [100]$ there exists an $H \subseteq \mathbb{Q}$ such that

$\quad \nabla \ H \text{ has the same order type as the rationals:}$

$\quad a) \ H \text{ is countable}$

$\quad b) \ H \text{ is dense: } (\forall x, y \in H) [x < y \implies (\exists z)(x < z < y)].$
Problem 4

Prove or Disprove:

For every \(\text{COL} : \mathbb{Q} \to [100] \) there exists an \(H \subseteq \mathbb{Q} \) such that

- \(H \) has the same order type as the rationals:
 - a) \(H \) is countable
 - b) \(H \) is dense: \((\forall x, y \in H)[x < y \implies (\exists z)[x < z < y]]. \)
 - c) \(H \) has no left endpoint: \((\forall y \in H)(\exists x \in H)[x < y]. \)

\(\triangleright \) every number in \(H \) is the same color.

TRUE. We prove it TWO ways.

Advice

You should understand both proofs.
Problem 4

Prove or Disprove:

For every $\text{COL}: \mathbb{Q} \rightarrow [100]$ there exists an $H \subseteq \mathbb{Q}$ such that

\triangleright H has the same order type as the rationals:
 a) H is countable
 b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y]].$
 c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y].$
 d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y].$
Problem 4

Prove or Disprove:

For every COL: Q → [100] there exists an H ⊆ Q such that

- H has the same order type as the rationals:
 a) H is countable
 b) H is dense: \((\forall x, y \in H)[x < y \implies (\exists z)[x < z < y]].\)
 c) H has no left endpoint: \((\forall y \in H)(\exists x \in H)[x < y].\)
 d) H has no right endpoint: \((\forall x \in H)(\exists y \in H)[x < y].\)

- every number in H is the same color.
Problem 4

Prove or Disprove:

For every $\text{COL}: \mathbb{Q} \rightarrow [100]$ there exists an $H \subseteq \mathbb{Q}$ such that

- H has the same order type as the rationals:
 - a) H is countable
 - b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y]].$
 - c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y].$
 - d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y].$

- every number in H is the same color.

TRUE. We prove it TWO ways.
Problem 4

Prove or Disprove:
For every \(\text{COL} : \mathbb{Q} \rightarrow [100] \) there exists an \(H \subseteq \mathbb{Q} \) such that

- \(H \) has the same order type as the rationals:
 a) \(H \) is countable
 b) \(H \) is dense: \((\forall x, y \in H)[x < y \implies (\exists z)[x < z < y]]\).
 c) \(H \) has no left endpoint: \((\forall y \in H)(\exists x \in H)[x < y]\).
 d) \(H \) has no right endpoint: \((\forall x \in H)(\exists y \in H)[x < y]\).
- every number in \(H \) is the same color.

TRUE. We prove it TWO ways.

Advice You should understand both proofs.
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let $\text{COL}: L \rightarrow [c]$. H is $\textbf{Q-homog}$ if H is homog & $H \equiv Q$.

We use c instead of 100 since we can then do an induction on c.

We use L instead of Q since in the induction proof we will have a coloring of (say) (a, b) and want to use the Ind Hyp on a COL restricted to (a, b).
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let $\text{COL}: L \to [c]$. H is **Q-homog** if H is homog & $H \equiv Q$.

We will prove the following:
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let $\text{COL}: L \rightarrow [c]$. H is $\textbf{Q-homog}$ if H is homog & $H \equiv Q$.

We will prove the following:

$$(\forall c)(\forall L \equiv Q)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)[H \text{ Q-homog}].$$
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let $\text{COL}: L \rightarrow [c]$. H is **Q-homog** if H is homog & $H \equiv Q$.

We will prove the following:

$$(\forall c)(\forall L \equiv Q)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)[H \text{ Q-homog}].$$

We use c instead of 100 since we can then do an induction on c.
We Actually Prove

Def Let L be a linear ordering.

a) $L \equiv Q$ means L has the same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let $\text{COL}: L \to [c]$. H is **Q-homog** if H is homog & $H \equiv Q$.

We will prove the following:

$$(\forall c)(\forall L \equiv Q)(\forall \text{COL}: L \to [c])(\exists H \subseteq L)[H \text{ Q-homog}].$$

We use c instead of 100 since we can then do an induction on c. We use L instead of Q since in the induction proof we will have a coloring of (say) (a, b) and want to use the Ind Hyp on a COL restricted to (a, b).
\[(\forall c)(\forall \text{COL}: L \to [c])(\exists H \subseteq L) H \text{ is Q-homog}\]

Proof One and Proof Two Begin the Same Way

We prove this by induction on \(c\).
\[(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H \text{ is Q-homog}\]

Proof One and Proof Two Begin the Same Way

We prove this by induction on \(c\).

IB \(c = 1\). Obviously true.
Proof One and Proof Two Begin the Same Way
We prove this by induction on c.

IB $c = 1$. Obviously true.

IH Assume true for $c - 1$.

$(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H$ is Q-homog
(∀c)(∀COL: L → [c])(∃H ⊆ L)H is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c.
IB c = 1. Obviously true.
IH Assume true for c − 1.
Continued on Next Slide.
Induction Step for Proof One.

Let \(\text{COL} : L \rightarrow [c] \).
Induction Step for Proof One.

Let \(\text{COL} : L \rightarrow [c] \).
Let

\[H = \{ x \in L : \text{COL}(x) = c \}. \]
Induction Step for Proof One.

Let \(\text{COL} : L \rightarrow [c] \).

Let \(H = \{ x \in L : \text{COL}(x) = c \} \).

Case 1 \(H \equiv Q \). DONE!
Induction Step for Proof One.

Let \(\text{COL} : L \rightarrow [c] \).

Let

\[
H = \{ x \in L : \text{COL}(x) = c \}.
\]

Case 1 \(H \equiv Q \). DONE!

Case 2 \(H \not\equiv Q \). Three possibilities.

Case 2a \(H \) is not dense. So \(\exists x < y \in H \) such that \((x, y) \cap H = \emptyset \). Nothing in \((x, y) \) is colored \(c \).

Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y) \). This is a \(c-1 \) coloring on \((x, y) \) \(\equiv Q \). Done by IH.

Case 2b \(H \) has a left endpoint. So \(\exists y \) such that \((-\infty, y) \cap H = \emptyset \). Let \(x \in L \) such that \(x < y \). Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y) \). This is a \(c-1 \) coloring on \((x, y) \) \(\equiv Q \). Done by IH.

Case 2c \(H \) has a right endpoint. Similar to Case 2b.

End of Proof One.
Induction Step for Proof One.

Let COL: \(L \to [c] \).

Let

\[
H = \{ x \in L : \text{COL}(x) = c \}.
\]

Case 1 \(H \equiv Q \). DONE!

Case 2 \(H \not\equiv Q \). Three possibilities.

Case 2a \(H \) is not dense. So \((\exists x < y \in H)[(x, y) \cap H = \emptyset] \).
Induction Step for Proof One.

Let $\text{COL}: L \to [c]$.
Let

$$H = \{x \in L: \text{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \not\equiv Q$. Three possibilities.

Case 2a H is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored c.

End of Proof One
Induction Step for Proof One.

Let \(\text{COL}: L \rightarrow [c] \).

Let

\[
H = \{x \in L: \text{COL}(x) = c\}.
\]

Case 1 \(H \equiv Q \). DONE!

Case 2 \(H \not\equiv Q \). Three possibilities.

Case 2a \(H \) is not dense. So \((\exists x < y \in H)[(x, y) \cap H = \emptyset]\).

Nothing in \((x, y)\) is colored \(c \).

Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y)\).

Case 2b \(H \) has a left endpoint. So \((\exists y)[(\neg \infty, y) \cap H = \emptyset]\).

Let \(x \in L \) such that \(x < y \).

Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y)\).

Case 2c \(H \) has a right endpoint. Similar to Case 2b.

End of Proof One
Induction Step for Proof One.

Let $\text{COL} : L \rightarrow [c]$.
Let

$$H = \{x \in L : \text{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \not\equiv Q$. Three possibilities.

Case 2a H is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$.
Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).
This is a $c - 1$ coloring on $(x, y) \equiv Q$. Done by IH.

Case 2b H has a left endpoint. So $(\exists y)[(-\infty, y) \cap H = \emptyset]$.
Let $x \in L$ such that $x < y$.
Let COL' be COL restricted to (x, y).
This is a $c - 1$ coloring on $(x, y) \equiv Q$. Done by IH.

Case 2c H has a right endpoint. Similar to Case 2b.

End of Proof One.
Induction Step for Proof One.

Let $\text{COL}: L \rightarrow [c]$. Let

$$H = \{x \in L: \text{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \not\equiv Q$. Three possibilities.

Case 2a H is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored c.

Let COL' be COL restricted to (x, y).

This is a $c - 1$ coloring on $(x, y) \equiv Q$. Done by IH.

Case 2b H has a left endpoint. So $(\exists y)[(-\infty, y) \cap H = \emptyset]$. Let $x \in L$ such that $x < y$. Let COL' be COL restricted to (x, y).

This is a $c - 1$ coloring on $(x, y) \equiv Q$. Done by IH.

Case 2c H has a right endpoint. Similar to Case 2b.

End of Proof One.
Induction Step for Proof One.

Let \(\text{COL}: L \rightarrow [c] \).

Let

\[
H = \{ x \in L : \text{COL}(x) = c \}.
\]

Case 1 \(H \equiv Q \). \(\text{DONE!} \)

Case 2 \(H \not\equiv Q \). Three possibilities.

Case 2a \(H \) is not dense. So \((\exists x < y \in H)[(x, y) \cap H = \emptyset] \).
Nothing in \((x, y) \) is colored \(c \).
Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y) \).
This is a \(c - 1 \) coloring on \((x, y) \equiv Q \). Done by IH.

Case 2b \(H \) has a left endpoint. So \((\exists y)[(-\infty, y) \cap H = \emptyset] \). Let \(x \in L \) such that \(x < y \). Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y) \).
This is a \(c - 1 \) coloring on \((x, y) \equiv Q \). Done by IH.

Case 2c \(H \) has a right endpoint. Similar to Case 2b.
Induction Step for Proof One.

Let \(\text{COL} : L \rightarrow [c] \).
Let

\[
H = \{ x \in L : \text{COL}(x) = c \}.
\]

Case 1 \(H \equiv Q \). DONE!

Case 2 \(H \not\equiv Q \). Three possibilities.

Case 2a \(H \) is not dense. So \((\exists x < y \in H)[(x, y) \cap H = \emptyset] \).
Nothing in \((x, y)\) is colored \(c \).
Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y)\).
This is a \(c-1 \) coloring on \((x, y) \equiv Q\). Done by IH.

Case 2b \(H \) has a left endpoint. So \((\exists y)[(-\infty, y) \cap H = \emptyset] \). Let \(x \in L \) such that \(x < y \). Let \(\text{COL}' \) be \(\text{COL} \) restricted to \((x, y)\).
This is a \(c-1 \) coloring on \((x, y) \equiv Q\). Done by IH.

Case 2c \(H \) has a right endpoint. Similar to Case 2b.

End of Proof One
Induction Step for Proof Two: Plan

We will try to **construct** a Q-homog set.

► We succeed! YEAH!
Induction Step for Proof Two: Plan

We will try to \textbf{construct} a Q-homog set.

- We succeed! YEAH!
- We fail! Then we will have an open interval \((x, y)\) where \textsc{COL} is never color \(c\). Use IH.
Induction Step for Proof Two: Action

Let $\text{COL} : L \to [c]$.
Induction Step for Proof Two: Action

Let $\text{COL}: L \to [c]$.

We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.
Induction Step for Proof Two: Action

Let $\text{COL} : L \rightarrow [c]$.

We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $\text{COL}(q_1) = c$. (If no such exists, use IH.)
Induction Step for Proof Two: Action

Let \(\text{COL}: L \rightarrow [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).
Induction Step for Proof Two: Action

Let \(\text{COL}: L \to [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).

- If \((\exists q < p_1)[\text{COL}(q) = c] \) then let \(q_{n+1} \) be \(q \).
Induction Step for Proof Two: Action

Let \(\text{COL} : L \rightarrow [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).

- If \((\exists q < p_1)[\text{COL}(q) = c] \) then let \(q_{n+1} \) be \(q \).
 If NOT then \(\text{COL} : (p_1 - \epsilon, p_1) \rightarrow [c - 1] \). STOP. Use IH.
- For \(1 \leq i \leq n \)
Induction Step for Proof Two: Action

Let $\text{COL}: L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $\text{COL}(q_1) = c$. (If no such exists, use IH.)

Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

- If $(\exists q < p_1)[\text{COL}(q) = c]$ then let q_{n+1} be q. If NOT then $\text{COL}: (p_1 - \epsilon, p_1) \to [c - 1]$. STOP. Use IH.

- For $1 \leq i \leq n$
 - If $(\exists p_i < q < p_{i+1})[\text{COL}(q) = c]$ then let q_{n+i+1} be q.

Case 1 Const never stops. $\{q_1, q_2, \ldots\} \equiv \text{Q-homog}$. Done!

Case 2 Const stops. $\exists a < b, \text{COL}: (a, b) \to [c - 1]$. Use IH.
Induction Step for Proof Two: Action

Let \(\text{COL}: L \rightarrow [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).

- If \((\exists q < p_1)[\text{COL}(q) = c] \) then let \(q_{n+1} \) be \(q \).
 If NOT then \(\text{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1] \). STOP. Use IH.

- For \(1 \leq i \leq n \)
 If \((\exists p_i < q < p_{i+1})[\text{COL}(q) = c] \) then let \(q_{n+i+1} \) be \(q \).
 If NOT then \(\text{COL}: (p_i, p_{i+1}) \rightarrow [c - 1] \). STOP. Use IH.

- If \((\exists p_1 < q)[\text{COL}(q) = c] \) then let \(q_{2n+2} \) be \(q \).
Induction Step for Proof Two: Action

Let \(\text{COL} : L \rightarrow [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).

- If \((\exists q < p_1)[\text{COL}(q) = c] \) then let \(q_{n+1} \) be \(q \).
 If NOT then \(\text{COL} : (p_1 - \epsilon, p_1) \rightarrow [c - 1] \). STOP. Use IH.

- For \(1 \leq i \leq n \)
 If \((\exists p_i < q < p_{i+1})[\text{COL}(q) = c] \) then let \(q_{n+i+1} \) be \(q \).
 If NOT then \(\text{COL} : (p_i, p_{i+1}) \rightarrow [c - 1] \). STOP. Use IH.

- If \((\exists p_1 < q)[\text{COL}(q) = c] \) then let \(q_{2n+2} \) be \(q \).
 If NOT then \(\text{COL} : (p_n, p_n + \epsilon) \rightarrow [c - 1] \). STOP. Use IH.

Case 1
Cons never stops.
\(\{q_1, q_2, \ldots\} \equiv Q \) & homog. Done!

Case 2
Cons stops.
\(\exists a < b, \text{COL} : (a, b) \rightarrow [c - 1] \). Use IH.
Induction Step for Proof Two: Action

Let \(\text{COL}: L \to [c] \).
We define a seq \(q_1, q_2, \ldots \) such that \(\{q_1, q_2, \ldots\} \) is Q-homog OR we fail.
Let \(q_1 \in L \) such that \(\text{COL}(q_1) = c \). (If no such exists, use IH.)
Assume \(q_1, \ldots, q_n \) have been defined and are all color \(c \). Order them to get \(p_1 < \cdots < p_n \).

- If \((\exists q < p_1)[\text{COL}(q) = c] \) then let \(q_{n+1} \) be \(q \).
 If NOT then \(\text{COL}: (p_1 - \epsilon, p_1) \to [c - 1] \). STOP. Use IH.

- For \(1 \leq i \leq n \)
 If \((\exists p_i < q < p_{i+1})[\text{COL}(q) = c] \) then let \(q_{n+i+1} \) be \(q \).
 If NOT then \(\text{COL}: (p_i, p_{i+1}) \to [c - 1] \). STOP. Use IH.

- If \((\exists p_1 < q)[\text{COL}(q) = c] \) then let \(q_{2n+2} \) be \(q \).
 If NOT then \(\text{COL}: (p_n, p_n + \epsilon) \to [c - 1] \). STOP. Use IH.

Case 1 Const never stops. \(\{q_1, q_2, \ldots\} \equiv Q & \text{homog}. \) Done!
Induction Step for Proof Two: Action

Let $\text{COL}: L \rightarrow [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $\text{COL}(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

- If $(\exists q < p_1)[\text{COL}(q) = c]$ then let q_{n+1} be q.
 - If NOT then $\text{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

- For $1 \leq i \leq n$
 - If $(\exists p_i < q < p_{i+1})[\text{COL}(q) = c]$ then let q_{n+i+1} be q.
 - If NOT then $\text{COL}: (p_i, p_{i+1}) \rightarrow [c - 1]$. STOP. Use IH.

- If $(\exists p_1 < q)[\text{COL}(q) = c]$ then let q_{2n+2} be q.
 - If NOT then $\text{COL}: (p_n, p_n + \epsilon) \rightarrow [c - 1]$. STOP. Use IH.

Case 1 Const never stops. $\{q_1, q_2, \ldots\} \equiv Q \& \text{homog. Done!}$

Case 2 Const stops. $\exists a < b$, $\text{COL}: (a, b) \rightarrow [c - 1]$. Use IH.