Whenever I write a, d or a, d_1 or anything of that sort we are assuming $a, d \in \mathbb{N}$ and $a, d \geq 1$.
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL} : [W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$

Why the functions $d, 2d, \ldots, (k - 1)d$?
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$

Why the functions $d, 2d, \ldots, (k - 1)d$?

Can we generalize and use $f_1(d), \ldots, f_k(d)$ for some f_1, \ldots, f_k?
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$

Why the functions $d, 2d, \ldots, (k - 1)d$?

Can we generalize and use $f_1(d), \ldots, f_k(d)$ for some f_1, \ldots, f_k?

Notation $\mathbb{Z}[x]$ is set of polynomials with coefficients in \mathbb{Z}.

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$

True? or is Bill lying to us? Try to find counterexamples.
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all COL: $[W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d$$

same col.

Why the functions $d, 2d, \ldots, (k - 1)d$?

Can we generalize and use $f_1(d), \ldots, f_k(d)$ for some f_1, \ldots, f_k?

Notation $\mathbb{Z}[x]$ is set of polynomials with coefficients in \mathbb{Z}.

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all COL: $[W] \rightarrow [c]$ there exists a a, d, such that

$$a, a + p_1(d), \ldots, a + p_k(d)$$

same col.

True? or is Bill lying to us?

Try to find counterexamples.
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$

Why the functions $d, 2d, \ldots, (k - 1)d$?

Can we generalize and use $f_1(d), \ldots, f_k(d)$ for some f_1, \ldots, f_k?

Notation $\mathbb{Z}[x]$ is set of polynomials with coefficients in \mathbb{Z}.

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a a, d, such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$

True? or is Bill lying to us?
Recall VDW’s Theorem

VDW’s Theorem For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a, d such that

$$a, a + d, \ldots, a + (k - 1)d \text{ same col.}$$

Why the functions $d, 2d, \ldots, (k - 1)d$?

Can we generalize and use $f_1(d), \ldots, f_k(d)$ for some f_1, \ldots, f_k?

Notation $\mathbb{Z}[x]$ is set of polynomials with coefficients in \mathbb{Z}.

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a a, d, such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$

True? or is Bill lying to us? Try to find counterexamples.
Counterexample and Reformulation

Poly VDW Theorem.

For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a, d such that $a, a+p_1(d), \ldots, a+p_k(d)$ same col.

Stupid Counterexample.

$p_1(d) = 1, c = 2$.

The coloring $RBRBRB \cdots$ has no two naturals 1-apart that have same color.
Counterexample and Reformulation

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a a, d such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$
Poly VDW Theorem For all \(p_1, \ldots, p_k \in \mathbb{Z}[x] \) and \(c \in \mathbb{N} \) there exists \(W = W(p_1, \ldots, p_k; c) \) such that for all \(\text{COL} : [W] \rightarrow [c] \) there exists a \(a, d \) such that

\[
a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}
\]

Stupid Counterexample \(p_1(d) = 1, \ c = 2 \).
The coloring \(RBRBRB \cdots \) has no two naturals 1-apart that have same color.
Counterexample and Reformulation

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ and $c \in \mathbb{N}$ there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a a, d such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$

Stupid Counterexample $p_1(d) = 1, c = 2$. The coloring $RBRBRB \cdots$ has no two naturals 1-apart that have the same color.

Poly VDW Theorem For all $p_1, \ldots, p_k \in \mathbb{Z}[x]$ with $(\forall i)[p_i(0) = 0]$, and $c \in \mathbb{N}$, there exists $W = W(p_1, \ldots, p_k; c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a a, d such that

$$a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.}$$

Used hard math and did not give bounds on PVDW numbers.

PVDW\((p_1(x), \ldots, p_k(x); c)\) means
There exists \(W = W(p_1, \ldots, p_k; c)\) such that for all
\(\text{COL}: [W] \rightarrow [c]\) there exists a \(a, d\) such that
\[a, a + p_1(d), \ldots, a + p_k(d)\] same col.
Notation

\(\text{PVDW}(p_1(x), \ldots, p_k(x); c) \) means
There exists \(W = W(p_1, \ldots, p_k; c) \) such that for all \(\text{COL}: [W] \rightarrow [c] \) there exists a \(a, d \) such that

\[a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.} \]

\(\text{PVDW}(p_1(x), \ldots, p_k(x)) \) means
For all \(c \) there exists \(W = W(p_1, \ldots, p_k; c) \) st for all \(\text{COL}: [W] \rightarrow [c] \) there exists a \(a, d \) st

\[a, a + p_1(d), \ldots, a + p_k(d) \text{ same col.} \]
Easy Cases

\[\text{PVDW}(x, 2x, 3x, \ldots, (k - 1)x) \]. This is VDW's Thm.
Easy Cases

PVDW(x, 2x, 3x, ..., (k − 1)x)). This is VDW’s Thm.

Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k-1)x)\). This is VDW’s Thm.

GKKZ: \(\text{https://www.cs.umd.edu/~gasarch/GKKZP/paper.pdf}\)

PVDW\((x^2; 2)\): \(W(x^2; 2)\)
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW's Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.
Easy Cases

PVDW(x, 2x, 3x, \ldots, (k - 1)x)). This is VDW's Thm.

PVDW(x^2; 2): W(x^2; 2) = 5. Booktalk/GKKZ.
PVDW(x^2 + x; 2): W(x^2 + x; 2)
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW’s Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.
PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k-1)x)\). This is VDW's Thm.

GKKZ: \url{https://www.cs.umd.edu/~gasarch/GKKZP/paper.pdf}

\(PVDW(x^2; 2): W(x^2; 2) = 5\). Booktalk/GKKZ.

\(PVDW(x^2 + x; 2): W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).

\(PVDW(ax^2 + bx; 2): W(ax^2 + bx; 2)\)
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW’s Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.

PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).

PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW's Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.

PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).

PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.

PVDW\((x^2; 3)\): \(W(x^2; 3)\)
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k-1)x)\). This is VDW's Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.
PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).
PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.
PVDW\((x^2; 3)\): \(W(x^2; 3) \leq 59\). Booktalk/GKKZ.
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW's Thm.

\[\text{PVDW}(x^2; 2): W(x^2; 2) = 5. \text{ Booktalk/GKKZ.} \]
\[\text{PVDW}(x^2 + x; 2): W(x^2 + x; 2) \leq 13. \text{ HW 8. (Liam Numbs).} \]
\[\text{PVDW}(ax^2 + bx; 2): W(ax^2 + bx; 2) \leq 12|a| + 6|b|. \text{ GKKZ.} \]

\[\text{PVDW}(x^2; 3): W(x^2; 3) \leq 59. \text{ Booktalk/GKKZ.} \]
\[\text{PVDW}(ax^2 + bx; 3): W(ax^2 + bx; 3) \]

A few bds known. GKKZ.

First hard case: PVDW\((x^2; 5)\).
Easy Cases

PVDW($x, 2x, 3x, \ldots, (k - 1)x$). This is VDW’s Thm.

PVDW($x^2; 2$): $W(x^2; 2) = 5$. Booktalk/GKKZ.

PVDW($x^2 + x; 2$): $W(x^2 + x; 2) \leq 13$. HW 8. (Liam Numbs).

PVDW($ax^2 + bx; 2$): $W(ax^2 + bx; 2) \leq 12|a| + 6|b|$. GKKZ.

PVDW($x^2; 3$): $W(x^2; 3) \leq 59$. Booktalk/GKKZ.

PVDW($ax^2 + bx; 3$): $W(ax^2 + bx; 3) \leq O(|a^5b^2|)$. GKKZ.

A few bds known. GKKZ.

First hard case: PVDW($x^2; 5$).
Easy Cases

PVDW(x, 2x, 3x, \ldots, (k - 1)x)). This is VDW's Thm.

PVDW(x^2; 2): W(x^2; 2) = 5. Booktalk/GKKZ.
PVDW(x^2 + x; 2): W(x^2 + x; 2) \leq 13. HW 8. (Liam Numbs).
PVDW(ax^2 + bx; 2): W(ax^2 + bx; 2) \leq 12|a| + 6|b|. GKKZ.
PVDW(x^2; 3): W(x^2; 3) \leq 59. Booktalk/GKKZ.
PVDW(ax^2 + bx; 3): W(ax^2 + bx; 3) \leq O(|a^5b^2|). GKKZ.
PVDW(x^2 + x; 3): W(x^2 + x; 3)
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW's Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.

PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).

PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.

PVDW\((x^2; 3)\): \(W(x^2; 3) \leq 59\). Booktalk/GKKZ.

PVDW\((ax^2 + bx; 3)\): \(W(ax^2 + bx; 3) \leq O(|a^5b^2|)\). GKKZ.

PVDW\((x^2 + x; 3)\): \(W(x^2 + x; 3) \leq 73\). HW 8. (Liam Numbs).

PVDW\((x^2; 4)\): \(W(x^2; 4) \leq 1 + 290,085,289^2\). Booktalk/GKKZ.

PVDW\((ax^2 + bx; 4)\): \(W(ax^2 + bx; 4)\) a few bds known. GKKZ.

First hard case: PVDW\((x^2; 5)\).
Easy Cases

PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW’s Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.
PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).
PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.

PVDW\((x^2; 3)\): \(W(x^2; 3) \leq 59\). Booktalk/GKKZ.
PVDW\((ax^2 + bx; 3)\): \(W(ax^2 + bx; 3) \leq O(|a^5b^2|)\). GKKZ.
PVDW\((x^2 + x; 3)\): \(W(x^2 + x; 3) \leq 73\). HW 8. (Liam Numbs).

PVDW\((x^2; 4)\): \(W(x^2; 4) \leq \)
PVDW\((x, 2x, 3x, \ldots, (k - 1)x)\). This is VDW’s Thm.

PVDW\((x^2; 2)\): \(W(x^2; 2) = 5\). Booktalk/GKKZ.

PVDW\((x^2 + x; 2)\): \(W(x^2 + x; 2) \leq 13\). HW 8. (Liam Numbs).

PVDW\((ax^2 + bx; 2)\): \(W(ax^2 + bx; 2) \leq 12|a| + 6|b|\). GKKZ.

PVDW\((x^2; 3)\): \(W(x^2; 3) \leq 59\). Booktalk/GKKZ.

PVDW\((ax^2 + bx; 3)\): \(W(ax^2 + bx; 3) \leq O(|a^5 b^2|)\). GKKZ.

PVDW\((x^2 + x; 3)\): \(W(x^2 + x; 3) \leq 73\). HW 8. (Liam Nums) .

PVDW\((x^2; 4)\): \(W(x^2; 4) \leq 1 + 290,085,289^2\). Booktalk/GKKZ.
Easy Cases

PVDW($x, 2x, 3x, \ldots, (k-1)x$)). This is VDW's Thm.

PVDW($x^2; 2$): $W(x^2; 2) = 5$. Booktalk/GKKZ.
PVDW($x^2 + x; 2$): $W(x^2 + x; 2) \leq 13$. HW 8. (Liam Numbs).
PVDW($ax^2 + bx; 2$): $W(ax^2 + bx; 2) \leq 12|a| + 6|b|$. GKKZ.
PVDW($x^2; 3$): $W(x^2; 3) \leq 59$. Booktalk/GKKZ.
PVDW($ax^2 + bx; 3$): $W(ax^2 + bx; 3) \leq O(|a^5b^2|)$. GKKZ.
PVDW($x^2 + x; 3$): $W(x^2 + x; 3) \leq 73$. HW 8. (Liam Nums).
PVDW($x^2; 4$): $W(x^2; 4) \leq 1 + 290,085,289^2$. Booktalk/GKKZ.
PVDW($ax^2 + bx; 4$): $W(ax^2 + bx; 4)$
PVDW($x, 2x, 3x, \ldots, (k - 1)x$). This is VDW’s Thm.

PVDW($x^2; 2$): $W(x^2; 2) = 5$. Booktalk/GKKZ.
PVDW($x^2 + x; 2$): $W(x^2 + x; 2) \leq 13$. HW 8. (Liam Numbs).
PVDW($ax^2 + bx; 2$): $W(ax^2 + bx; 2) \leq 12|a| + 6|b|$. GKKZ.

PVDW($x^2; 3$): $W(x^2; 3) \leq 59$. Booktalk/GKKZ.
PVDW($ax^2 + bx; 3$): $W(ax^2 + bx; 3) \leq O(|a^5b^2|)$. GKKZ.
PVDW($x^2 + x; 3$): $W(x^2 + x; 3) \leq 73$. HW 8. (Liam Nums).

PVDW($x^2; 4$): $W(x^2; 4) \leq 1 + 290,085,289^2$. Booktalk/GKKZ.
PVDW($ax^2 + bx; 4$): $W(ax^2 + bx; 4) A \ few \ bds \ known$. GKKZ.
Easy Cases

$\text{PVDW}(x, 2x, 3x, \ldots, (k-1)x)).$ This is VDW’s Thm.

$\text{PVDW}(x^2; 2): W(x^2; 2) = 5$. Booktalk/GKKZ.

$\text{PVDW}(x^2 + x; 2): W(x^2 + x; 2) \leq 13$. HW 8. (Liam Numbs).

$\text{PVDW}(ax^2 + bx; 2): W(ax^2 + bx; 2) \leq 12|a| + 6|b|$. GKKZ.

$\text{PVDW}(x^2; 3): W(x^2; 3) \leq 59$. Booktalk/GKKZ.

$\text{PVDW}(ax^2 + bx; 3): W(ax^2 + bx; 3) \leq O(|a^5b^2|)$. GKKZ.

$\text{PVDW}(x^2 + x; 3): W(x^2 + x; 3) \leq 73$. HW 8. (Liam Numbs).

$\text{PVDW}(x^2; 4): W(x^2; 4) \leq 1 + 290,085,289^2$. Booktalk/GKKZ.

$\text{PVDW}(ax^2 + bx; 4): W(ax^2 + bx; 4)$ A few bds known. GKKZ.

First hard case: $\text{PVDW}(x^2; 5)$.
Poly Van Der Warden’s (PVDW) Theorem: \(PVDW(x^2) \)

Exposition by William Gasarch

May 4, 2022
We Begin Proof of $\text{PVDW}(x^2)$

$W(x^2; 5)$: The low value of 5 does not help us. We will prove $\text{PVDW}(x^2)$.
We Begin Proof of $PVDW(x^2)$

$W(x^2; 5)$: The low value of 5 does not help us.
We will prove $PVDW(x^2)$.
Recall that this is:
We Begin Proof of PVDW(x^2)

$W(x^2; 5)$: The low value of 5 does not help us. We will prove PVDW(x^2).

Recall that this is:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ such that for all $\text{COL}: [W] \rightarrow [c]$, there exists a, d such that

$$ a, a + d^2 \text{ are same color.} $$

Note None of the results or techniques for $W(ax^2 + bx; c)$ for $c \leq 4$ will help at all. Oh well.
We Begin Proof of $\text{PVDW}(x^2)$

$W(x^2; 5)$: The low value of 5 does not help us.

We will prove $\text{PVDW}(x^2)$.

Recall that this is:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ such that for all $\text{COL}: [W] \to [c]$, there exists a, d such that

$$a, a + d^2 \text{ are same color.}$$

Note None of the results or techniques for $W(ax^2 + bx; c)$ for $c \leq 4$ will help at all. Oh well.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ st for all $\text{COL}: [W] \rightarrow [c]$
$(\exists a, d)[a, a + d^2 \text{ same color}]$.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ st for all $\text{COL} : [W] \rightarrow [c]$

$(\exists a, d)[a, a + d^2 \text{ same color}]$.

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL} : [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d^2 \text{ same color}]$, OR

ii) $(\exists a, d_1, \ldots, d_r)[a, a + d_2^2, \ldots, a + d_r^2 \text{ all diff cols}]$.

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ st for all COLORED W:

$(\exists a, d) [a, a + d^2$ same color].

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all COLORED U:

1) $(\exists a, d)[a, a + d^2$ same color], OR
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2; c)$ st for all $
\text{COL}: [W] \to [c]$
$(\exists a, d)[a, a + d^2 \text{ same color}].$

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $
\text{COL}: [U] \to [c]$ EITHER

- **i)** $(\exists a, d)[a, a + d^2 \text{ same color}], \text{ OR}$
- **ii)** $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2, \ldots, a + d_r^2 \text{ all diff cols}].$

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all \(c \in \mathbb{N} \) there exists \(W = W(x^2; c) \) st for all \(\text{COL}: [W] \rightarrow [c] \)
\((\exists a, d)[a, a + d^2 \text{ same color}].\)

Will prove:

Lemma Fix \(c \in \mathbb{N} \). For all \(r \) there exists \(U = U(r) \) st for all \(\text{COL}: [U] \rightarrow [c] \) EITHER

\(i) \quad (\exists a, d)[a, a + d^2 \text{ same color}], \) OR

\(ii) \quad (\exists a, d_1, \ldots, d_r)[a, a + d_1^2, \ldots, a + d_r^2 \text{ all diff cols}].\)

Lemma proves Theorem by taking \(r = c \). Second part can't happen, so first part does.
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

\[(\exists a, d) [a], [a]+d \text{ same color} \] OR

\[(\exists a, d_1) [a], [a]+d_2 \text{ diff cols} \].

$U(1) = 2$. Take $a = d = d_1 = 1$. $a = 1$ $a + d_2 = 1 + 1 = 2$. So they have the same color.

If a, d same col have \(i \). If a, d diff col have \(ii \).
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

$i)$ $(\exists a, d)[a, a + d^2 \text{ same color}]$ OR

$ii)$ $(\exists a, d)[a, a + d^2 \text{ different colors}]$.

$U(1) = 2$. Take $a = d = d_1 = 1$.

$a = 1, a + d_2 = 1 + 1 = 2$.

So they have the same color.

If a, d same color have i. If a, d different color have ii.
Proof of Base Case of Lemma

Proof of Lemma is by induction on \(r \).

\(r = 1 \) For all \(\text{COL} : [U] \rightarrow [c] \) EITHER

\(i \) (\(\exists a, d \))[a, a + d^2 \text{ same color}] \text{ OR}

\(ii \) (\(\exists a, d_1 \))[a, a + d_1^2 \text{ diff cols}].
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d^2 \text{ same color}]$ OR

ii) $(\exists a, d_1)[a, a + d_1^2 \text{ diff cols}]$.

$U(1) = 2$. Take $a = d = d_1 = 1$.

$a + d^2 = 1 + 1^2 = 2$.
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all COL: $[U] \rightarrow [c]$ EITHER

i) \((\exists a, d)[a, a + d^2 \text{ same color}] \text{ OR}\)

ii) \((\exists a, d_1)[a, a + d_1^2 \text{ diff cols}]\).

$U(1) = 2$. Take $a = d = d_1 = 1$.

$a = 1$

$a + d^2 = 1 + 1^2 = 2$.

So they have the same color.
Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d^2 \text{ same color}]$ OR

ii) $(\exists a, d_1)[a, a + d_1^2 \text{ diff cols}]$.

$U(1) = 2$. Take $a = d = d_1 = 1$.

$a = 1$

$a + d^2 = 1 + 1^2 = 2$.

So they have the same color.

If a, d same col have i. If a, d diff col have ii.
Assume that there exists $U = U(r)$ st
\[(\exists a, d)[a, a + d^2 \text{ same color}], \text{ OR} \]
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st

- $(\exists a, d)[a, a + d^2$ same color], OR
- $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2, \ldots, a + d_r^2$ all diff cols].
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st

- $(\exists a, d)[a, a + d^2 \text{ same color}]$, OR
- $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2, \ldots, a + d_r^2 \text{ all diff cols}]$.

We need to prove $U(r + 1)$ exists.

GOTO WHITE BOARD to prove

$$U(r + 1) \leq (U(r)W(2U(r), c^{U(r)}))^2 + U(r)W(2U(r), c^{U(r)}).$$
We used VDW to prove $PVDW(x^2)$.

We denote that informally as:

$$PVDW(x, 2x, 3x, \ldots) = \Rightarrow PVDW(x^2).$$

(This is not quite right since we only use a FINITE VDW theorem, and in fact the infinite one is false.)

Keep that in mind.
Note What we Used

We used VDW to prove $PVDW(x^2)$.

We denote that informally as:
$PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2)$.
(This is not quite right since we only use a FINITE VDW theorem, and in fact the infinite one is false.)
Note What we Used

We used VDW to prove $PVDW(x^2)$.

We denote that informally as:

$PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2)$.

(This is not quite right since we only use a FINITE VDW theorem, and in fact the infinite one is false.)

Keep that in mind.
Poly Van Der Warden’s (PVDW) Theorem: $PVDW(x^2 + x)$

Exposition by William Gasarch

May 4, 2022
We Begin Proof of $\text{PVDW}(x^2 + x)$

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2 + x; c)$ st, for all $\text{COL}: [W] \rightarrow [c]$, there exists a, d st

$$a, a + d^2 + d \text{ are same color.}$$
We Prove a Lemma Which Implies Theorem

Want:

Thm For all \(c \in \mathbb{N} \) there exists \(W = W(x^2 + x; c) \) st for all \(\text{COL} : [W] \rightarrow [c] \),

\[(\exists a, d)[a, a + d^2 + d \text{ same color }].\]
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2 + x; c)$ st for all $\text{COL}: [W] \rightarrow [c], \\
(\exists a, d)[a, a + d^2 + d \text{ same color }].$

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

\[(\exists a, d)[a, a + d^2 + d \text{ same color }], \]

\[(\exists a_1, d_1, \ldots, a_r, d_r)[a_1, a_1 + d_1^2 + d_1, \ldots, a_r, a_r + d_r^2 + d_r \text{ diff cols}]. \]

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2 + x; c)$ st for all
$\text{COL} : [W] \rightarrow [c],$
$(\exists a, d)[a, a + d^2 + d \text{ same color }].$

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all
$\text{COL} : [U] \rightarrow [c]$ EITHER

 i) $(\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}$
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2 + x; c)$ st for all $\text{COL}: [W] \rightarrow [c]$,
$(\exists a, d)[a, a + d^2 + d \text{ same color }].$

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

1) $(\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}$
2) $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2 + d_1, \ldots, a + d_r^2 + d_r \text{ diff cols}].$

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2 + x; c)$ st for all $\text{COL}: [W] \rightarrow [c]$,
$(\exists a, d)[a, a + d^2 + d \text{ same color}].$

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

\begin{enumerate}
 \item $(\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}$
 \item $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2 + d_1, \ldots, a + d_r^2 + d_r \text{ diff cols}].$
\end{enumerate}

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
Proof of Base Case of Lemma

Proof of Lemma is by induction on \(r \).

\(r = 1 \) For all \(\text{COL}: [U] \rightarrow [c] \) EITHER

i) \(\exists a, d \)[\(a, a+d \) same color], OR

ii) \(\exists a, d \)[\(a, a+d \) different colors].

\(U(1) = 3. \) Take \(a = d = d_1 = 1 \).

\(a = 1 \quad a+d_2+d = 1+1+1 = 3. \)

If they are the same col, have i), else have ii).
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all \textsc{col} : $[U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}$
Proof of Base Case of Lemma

Proof of Lemma is by induction on \(r \).

\(r = 1 \) For all COL: \([U] \rightarrow [c]\) EITHER

i) \((\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}\)

ii) \((\exists a, d_1)[a, a + d_1^2 + d_1 \text{ diff colors}]\).
Proof of Lemma is by induction on r.

$r = 1$ For all COL: $[U] \rightarrow [c]$ EITHER

$i)$ $(\exists a, d)[a, a + d^2 + d$ same color], OR
$ii)$ $(\exists a, d_1)[a, a + d_1^2 + d_1$ diff colors].

$U(1) = 3$. Take $a = d = d_1 = 1$.

$a = 1$
$\ a + d^2 + d = 1 + 1^2 + 1 = 3$.
If they are the same col, have i, else have ii.
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all $\text{COL}: \{U\} \rightarrow \{c\}$ EITHER

i) $(\exists a, d) \in \mathbb{R}^2 \mid a, a+d \text{ same color}$,

ii) $(\exists a, d_1, \ldots, d_r) \in \mathbb{R}^{2r} \mid a, a+d_1 + \ldots + d_r \text{ diff cols}$.
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all COL: $[U] \rightarrow [c]$ EITHER

1) $(\exists a, d)[a, a + d^2 + d$ same color], OR
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d^2 + d \text{ same color}], \text{ OR}$

ii) $(\exists a, d_1, \ldots, d_r)[a, a + d_1^2 + d_1, \ldots, a + d_r^2 + d_r \text{ diff cols}]$.

GOTO WHITE BOARD
We showed

$$PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2 + x)$$
We showed

\[PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2 + x) \]

Note that \(PVDW(x^2) \) did not help get \(PVDW(x^2 + x) \).
Note What we Used

We showed

\[PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2 + x) \]

Note that \(PVDW(x^2) \) did not help get \(PVDW(x^2 + x) \).

Keep that in mind.
This Generalizes

Thm Let $A, B \in \mathbb{Z}$. For all $c \in \mathbb{N}$ there exists $W = W(Ax^2 + Bx; c)$ st for all $\text{COL} : [W] \rightarrow [c]$, $(\exists a, d)[a, a + Ad^2 + Bd \text{ same color}].$
This Generalizes

Thm Let $A, B \in \mathbb{Z}$. For all $c \in \mathbb{N}$ there exists $W = W(Ax^2 + Bx; c)$ st for all $\text{COL}: [W] \rightarrow [c]$, $(\exists a, d)[a, a + Ad^2 + Bd \text{ same color}]$.

$$PVDW(x, 2x, 3x, \ldots) \implies PVDW(Ax^2 + Bx).$$
This Generalizes

Thm Let $A, B \in \mathbb{Z}$. For all $c \in \mathbb{N}$ there exists $W = W(Ax^2 + Bx; c)$ st for all $\text{COL} : [W] \rightarrow [c]$, $(\exists a, d)[a, a + Ad^2 + Bd \text{ same color}]$.

$PVDW(x, 2x, 3x, \ldots) \implies PVDW(Ax^2 + Bx)$.

Proof is similar to
This Generalizes

Thm Let $A, B \in \mathbb{Z}$. For all $c \in \mathbb{N}$ there exists $W = W(Ax^2 + Bx; c)$ st for all $\text{COL}: [W] \rightarrow [c]$, $(\exists a, d)[a, a + Ad^2 + Bd$ same color].

$$PVDW(x, 2x, 3x, \ldots) \implies PVDW(Ax^2 + Bx).$$

Proof is similar to

$$PVDW(x, 2x, 3x, \ldots) \implies PVDW(x^2 + x).$$
Poly Van Der Warden’s (PVDW) Theorem:
\[PVDW(x^2, x^2 + x) \]

Exposition by William Gasarch

May 4, 2022
We Begin Proof of $PVDW(x^2, x^2 + x)$

Thm For all $c \in \mathbb{N}$ there exists $W = W(x^2, x^2 + x; c)$ such that, for all $\text{COL}: [W] \to [c]$, there exists a, d such that

$$a, a + d^2, a + d^2 + d$$ are same col.
We Prove a Lemma Which Implies Theorem

Want:

\[\textbf{Thm} \quad (\forall c \in \mathbb{N})(\exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL}: [W] \rightarrow [c] \quad (\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}]. \]
We Prove a Lemma Which Implies Theorem

Want:

\[\textbf{Thm} \quad \forall c \in \mathbb{N} \exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL}: [W] \to [c] \]

\[\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}] . \]

Think about what the lemma will be with your neighbor.
We Prove a Lemma Which Implies Theorem

Want:
\[
\textbf{Thm} \ (\forall c \in \mathbb{N})(\exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL}: [W] \to [c] (\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}].
\]

Think about what the lemma will be with your neighbor.

\textbf{Lemma} Fix \(c \in \mathbb{N} \). For all \(r \) there exists \(U = U(r) \) st for all \(\text{COL}: [U] \to [c] \) EITHER

\(i \): \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}]. \)

\(ii \): \((\exists a, d_1, \ldots, d_r)[a, \{a + d_2, a + d_2 + d_1\}, \ldots, \{a + d_2, a + d_2 + d_1\} \text{ diff colors}] \). (The pair in \(\{\} \) are same col.)

The lemma proves Theorem by taking \(r = c \). Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

\[\textbf{Thm} \quad (\forall c \in \mathbb{N})(\exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL} : [W] \rightarrow [c] \]

\[(\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}] \].

Think about what the lemma will be with your neighbor.

\textbf{Lemma} Fix \(c \in \mathbb{N} \). For all \(r \) there exists \(U = U(r) \) st for all \(\text{COL} : [U] \rightarrow [c] \) EITHER

\(i) \quad (\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR} \)
We Prove a Lemma Which Implies Theorem

Want:

Thm \((\forall c \in \mathbb{N})(\exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL}: [W] \rightarrow [c])\)

\((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}].\)

Think about what the lemma will be with your neighbor.

Lemma Fix \(c \in \mathbb{N}\). For all \(r\) there exists \(U = U(r)\) st for all \(\text{COL}: [U] \rightarrow [c]\) EITHER

i) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR}\)

ii) \((\exists a, d_1, \ldots, d_r)\)

\([a, \{a + d_1^2, a + d_1^2 + d_1\}, \ldots, \{a + d_r^2, a + d_r^2 + d_r\} \text{ diff colors}].\)

(The pair in \(\{}\) are same col.)
We Prove a Lemma Which Implies Theorem

Want:

Thm \((\forall c \in \mathbb{N})(\exists W = W(x^2, x^2 + x; c) \text{ st for all } \text{COL}: [W] \rightarrow [c])
(\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}]. \)

Think about what the lemma will be with your neighbor.

Lemma Fix \(c \in \mathbb{N} \). For all \(r \) there exists \(U = U(r) \) st for all \(\text{COL}: [U] \rightarrow [c] \) EITHER

1) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR} \)

2) \((\exists a, d_1, \ldots, d_r)
[a, \{a + d_1^2, a + d_1^2 + d_1\}, \ldots, \{a + d_r^2, a + d_r^2 + d_r\} \text{ diff colors}.
(The pair in } \{ \text{ are same col.}) \)

Lemma proves Theorem by taking \(r = c \). Second part can’t happen, so first part does.
Proof of Base Case of Lemma

Proof of Lemma is by Induction.

\(r = 1 \) For all \(\text{COL} : [U] \rightarrow [c] \) EITHER

\[\exists a, d \]

\[a, a + d, a + d + d \] same col, OR

\[\exists a, d \]

\[a, \{ a + d, a + d + d \} \] diff colors.

\(U(1) = W(2, c) \).

Will get \(a', d_1 \)st \(a', a' + d_1 \) are same col.

Rewrite:

\[a' = (a' - d_1) + d_1 \]. Let \(a = a' - d_1 \).

\[a + d_1 = a' + d_1 \] So they have the same color.

If \(a \) is that col, have i. If \(a \) is diff col, have ii.

There is one thing wrong with this proof. Can you tell?
Proof of Lemma is by Induction.

\(r = 1 \) For all \(\text{COL} : [U] \rightarrow [c] \) EITHER

i) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \) OR
Proof of Base Case of Lemma

Proof of Lemma is by Induction.

\[r = 1 \] For all COL: \([U] \rightarrow [c]\) EITHER

i) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR} \)

ii) \((\exists a, d_1)[a, \{a + d_1^2, a + d_1^2 + d_1\} \text{ diff colors}]. \)
Proof of Lemma is by Induction.

$r = 1$ For all $\text{COL}: \left[U \right] \rightarrow \left[c \right]$ EITHER

i) $(\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR}$

ii) $(\exists a, d_1)[a, \{a + d_1^2, a + d_1^2 + d_1\} \text{ diff colors}].$

$U(1) = W(2, c).$

Will get a', d_1 st $a', a' + d_1$ are same col.

Rewrite: $a' = (a' - d_1^2) + d_1^2$. Let $a = a' - d_1^2$.

Proof of Base Case of Lemma

Proof of Lemma is by Induction.

\(r = 1 \quad \) For all \(\text{COL} : [U] \to [c] \) EITHER

i) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \) OR

ii) \((\exists a, d_1)[a, \{a + d_1^2, a + d_1^2 + d_1\} \text{ diff colors}].\)

\(U(1) = W(2, c). \)

Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2. \) Let \(a = a' - d_1^2. \)

\[a + d_1^2 = a' \]

\[a + d_1^2 + d_1 = a' + d_1 \]
Proof of Base Case of Lemma

Proof of Lemma is by Induction.

\[r = 1 \quad \text{For all COL:} \quad [U] \rightarrow [c] \quad \text{EITHER} \]

\[i) \quad (\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR} \]

\[ii) \quad (\exists a, d_1)[a, \{a + d_1^2, a + d_1^2 + d_1\} \text{ diff colors}]. \]

\[U(1) = W(2, c). \]

Will get \(a', d_1\) st \(a', a' + d_1\) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2\). Let \(a = a' - d_1^2\).

\(a + d_1^2 = a'\)

\(a + d_1^2 + d_1 = a' + d_1\)

So they have the same color.

If \(a\) is that col, have \(i\). If \(a\) is diff col, have \(ii\).

There is one thing wrong with this proof. Can you tell?
Proof of Base Case of Lemma

Proof of Lemma is by Induction.

For all COL: \([U] \rightarrow [c]\) EITHER

i) \((\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR}\)

ii) \((\exists a, d_1)[a, \{a + d_1^2, a + d_1^2 + d_1\} \text{ diff colors}].\)

\[U(1) = W(2, c).\]

Will get \(a', d_1\) st \(a', a' + d_1\) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2\). Let \(a = a' - d_1^2\).

\[a + d_1^2 = a';\]

\[a + d_1^2 + d_1 = a' + d_1;\]

So they have the same color.

If \(a\) is that col, have i. If \(a\) is diff col, have ii.
Proof of Lemma is by Induction.

\[r = 1 \] For all \(\text{COL} : [U] \rightarrow [c] \) EITHER

1) \(\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}], \) OR

2) \(\exists a, d_1)[a, \{ a + d_1^2, a + d_1^2 + d_1 \} \text{ diff colors}] \).

\(U(1) = W(2, c) \).
Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).
\(a + d_1^2 = a' \)
\(a + d_1^2 + d_1 = a' + d_1 \)

So they have the same color.
If \(a \) is that col, have 1. If \(a \) is diff col, have 2.

There is one thing wrong with this proof. Can you tell?
The Issue and Our Convention

\[U(1) = W(2, c). \]
The Issue and Our Convention

\[U(1) = W(2, c). \] Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2. \) Let \(a = a' - d_1^2. \)
The Issue and Our Convention

\[U(1) = W(2, c) \]. Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.
Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).
\[a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1 \]

There is one thing wrong with this proof. Can you tell?
What if \(a' - d_1^2 < 0 \)? Then \(a < 0 \). Can you fix this?
Fix:
\[U(1) = W(2, c) + W(2, c') \]. Do the above in \(W(2, c) \) part.

Convention
We ignore this issue since we know how to fix it.
Hence our bds are a byte lower than bds in real proof.
The bounds are so big that we don't care.
The Issue and Our Convention

\[U(1) = W(2, c). \] Will get \(a' \), \(d_1 \) st \(a' \), \(a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).

\[a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1 \]

So they have the same color.
The Issue and Our Convention

\[U(1) = W(2, c) \]. Will get \(a' \), \(d_1 \) st \(a' \), \(a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).

\[a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1 \]

So they have the same color.

If \(a \) is that col, have \(i \). If \(a \) is diff col, have \(ii \).
The Issue and Our Convention

\[U(1) = W(2, c) \]. Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).

\[a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1 \]

So they have the same color.

If \(a \) is that col, have \(i \). If \(a \) is diff col, have \(ii \).

There is one thing wrong with this proof. Can you tell?
$U(1) = W(2, c)$. Will get a', d_1 st a', $a' + d_1$ are same col.

Rewrite: $a' = (a' - d_1^2) + d_1^2$. Let $a = a' - d_1^2$.

$a + d_1^2 = a'$

$a + d_1^2 + d_1 = a' + d_1$

So they have the same color.

If a is that col, have i. If a is diff col, have ii.

There is one thing wrong with this proof. Can you tell?

What if $a' - d_1^2 < 0$? Then $a < 0$.

Convention

We ignore this issue since we know how to fix it.

Hence our bds are a byte lower than bds in real proof.

The bounds are so big that we don't care.
$U(1) = W(2, c)$. Will get a', d_1 st $a', a' + d_1$ are same col.
Rewrite: $a' = (a' - d_1^2) + d_1^2$. Let $a = a' - d_1^2$.
$a + d_1^2 = a'$ $a + d_1^2 + d_1 = a' + d_1$
So they have the same color.
If a is that col, have i. If a is diff col, have ii.
There is one thing wrong with this proof. Can you tell?

What if $a' - d_1^2 < 0$? Then $a < 0$.
Can you fix this?
$U(1) = W(2, c)$. Will get a', d_1 st a', $a' + d_1$ are same col.

Rewrite: $a' = (a' - d_1^2) + d_1^2$. Let $a = a' - d_1^2$.

$a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1$

So they have the same color.

If a is that col, have i. If a is diff col, have ii.

There is one thing wrong with this proof. Can you tell?

What if $a' - d_1^2 < 0$? Then $a < 0$.

Can you fix this?

Fix: $U(1) = W(2; c)^2 + W(2; c)$. Do the above in $W(2; c)$ part.
The Issue and Our Convention

\[U(1) = W(2, c) \]. Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col. Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).
\[
a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1
\]
So they have the same color.

If \(a \) is that col, have \(i \). If \(a \) is diff col, have \(ii \).

There is one thing wrong with this proof. Can you tell?

What if \(a' - d_1^2 < 0 \)? Then \(a < 0 \).

Can you fix this?

Fix: \(U(1) = W(2; c)^2 + W(2; c) \). Do the above in \(W(2; c) \) part.

Convention We ignore this issue since we know how to fix it.
The Issue and Our Convention

\[U(1) = W(2, c) \]

Will get \(a' \), \(d_1 \) st \(a' \), \(a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).

\[
\begin{align*}
 a + d_1^2 &= a' \\
 a + d_1^2 + d_1 &= a' + d_1
\end{align*}
\]

So they have the same color.

If \(a \) is that col, have \(i \). If \(a \) is diff col, have \(ii \).

There is one thing wrong with this proof. Can you tell?

What if \(a' - d_1^2 < 0 \)? Then \(a < 0 \).

Can you fix this?

Fix: \(U(1) = W(2; c)^2 + W(2; c) \). Do the above in \(W(2; c) \) part.

Convention We ignore this issue since we know how to fix it.

Hence our bds are a byte lower than bds in real proof.
The Issue and Our Convention

\[U(1) = W(2, c) \]. Will get \(a', d_1 \) st \(a', a' + d_1 \) are same col.

Rewrite: \(a' = (a' - d_1^2) + d_1^2 \). Let \(a = a' - d_1^2 \).

\[a + d_1^2 = a' \quad a + d_1^2 + d_1 = a' + d_1 \]

So they have the same color.

If \(a \) is that col, have \(i \). If \(a \) is diff col, have \(ii \).

There is one thing wrong with this proof. Can you tell?

What if \(a' - d_1^2 < 0 \)? Then \(a < 0 \).

Can you fix this?

Fix: \(U(1) = W(2; c)^2 + W(2; c) \). Do the above in \(W(2; c) \) part.

Convention We ignore this issue since we know how to fix it.

Hence our bds are a byte lower than bds in real proof.

The bounds are so big that we don’t care.
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all COL: $[U] \rightarrow [c]$ EITHER

\(i \) \exists a, d \\{ a, a+d^2 \}, \{ a+d^2, a+d^2+d \} same col, OR

\(ii \) \exists a, d_1, \ldots, d_r \\{ a, \{ a+d_1, a+d_1+d_2 \}, \ldots, \{ a+d_r, a+d_r+d_r \} \} diff colors

GOTO WHITE BOARD
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all COL: $[U] \rightarrow [c]$ EITHER

\begin{itemize}
 \item[i)] $(\exists a, d)[a, a + d^2, a + d^2 + d \text{ same col}]$, OR
\end{itemize}
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all COL: $[U] \rightarrow [c]$ EITHER

\(i\) (\(\exists a, d\))[a, a + d^2, a + d^2 + d \text{ same col}], \text{ OR}\)

\(ii\) (\(\exists a, d_1, \ldots, d_r\))
\[a, \{a + d_1^2, a + d_1 + d\}, \ldots, \{a + d_r^2, a + d_r^2 + d_r\} \text{ diff colors}]\.

GOTO WHITE BOARD
Poly Van Der Warden’s (PVDW) Theorem: PVDW(x^2, x)

Exposition by William Gasarch

May 4, 2022
We Begin Proof of PVDW(x^2, x)

Thm For all $c \in \mathbb{N}$ there exists $W = W(x, x^2; c)$ st, for all \(\text{COL} : [W] \rightarrow [c] \), there exists a, d st

\[
a, a + d, a + d^2 \text{ are same col.}
\]
We Prove a Lemma Which Implies Theorem

Want:

Thm For all \(c \in \mathbb{N} \) there exists \(W = W(x, x^2; c) \) st for all \(\text{COL} : [W] \rightarrow [c] \),

\[(\exists a, d)[a, a + d, a + d^2 \text{ same col }].\]
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x, x^2; c)$ st for all $\text{COL : } [W] \rightarrow [c], (\exists a, d)[a, a + d, a + d^2 \text{ same col }].$

Think about what the lemma will be with your neighbor.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x, x^2; c)$ st for all $\text{COL: } [W] \rightarrow [c], (\exists a, d)[a, a + d, a + d^2 \text{ same col }].$

Think about what the lemma will be with your neighbor.

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL: } [U] \rightarrow [c]$ EITHER

(The pair in $\{\}$ are same col.)

Lemma proves Theorem by taking $r = c$. Second part can't happen, so first part does.
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x, x^2; c)$ st for all $\text{COL}: [W] \rightarrow [c]$

$(\exists a, d)[a, a + d, a + d^2 \text{ same col }].$

Think about what the lemma will be with your neighbor.

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d, a + d^2 \text{ same col }], \text{ OR}$

ii) $(\exists a, d_1, \ldots, d_r)[a, \{a + d_1, \ldots, a + d_r\} \text{ diff cols}].$
We Prove a Lemma Which Implies Theorem

Want:

Thm For all $c \in \mathbb{N}$ there exists $W = W(x, x^2; c)$ st for all
COL: $[W] \rightarrow [c]$

$(\exists a, d)[a, a + d, a + d^2 \text{ same col}].$

Think about what the lemma will be with your neighbor.

Will prove:

Lemma Fix $c \in \mathbb{N}$. For all r there exists $U = U(r)$ st for all
COL: $[U] \rightarrow [c]$ EITHER

1) $(\exists a, d)[a, a + d, a + d^2 \text{ same col}], \text{ OR}$

2) $(\exists a, d_1, \ldots, d_r)[a, \{a+d_1, a+d_1^2\}, \ldots, \{a+d_r, a+d_r^2\} \text{ diff cols}].$

(The pair in $\{}$ are same col.)
We Prove a Lemma Which Implies Theorem

Want:
Thm For all \(c \in \mathbb{N} \) there exists \(W = W(x, x^2; c) \) st for all
\(\text{COL}: [W] \rightarrow [c], \)
\((\exists a, d)[a, a + d, a + d^2 \text{ same col }].\)

Think about what the lemma will be with your neighbor.

Will prove:
Lemma Fix \(c \in \mathbb{N} \). For all \(r \) there exists \(U = U(r) \) st for all
\(\text{COL}: [U] \rightarrow [c] \) EITHER

i) \((\exists a, d)[a, a + d, a + d^2 \text{ same col}]\), OR

ii) \((\exists a, d_1, \ldots, d_r)[a, \{a+d_1, a+d_1^2\}, \ldots, \{a+d_r, a+d_r^2\} \text{ diff cols}]\).

(The pair in \(\{} \) are same col.)

Lemma proves Theorem by taking \(r = c \). Second part can’t happen, so first part does.
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

Let $U(1) = W(x_2 - x; c)$. For a c-colorings of $[U(1)]$ get a', d_1 st $a', a' + d_1 - d_2$ are same col.

Rewrite: $a' = (a' - d_1) + d_1$. Let $a = a' - d_1$.

$a' = a + d_1$ $a' + d_2 - d_1 = a + d_2$.

So they have the same color. If a is that col, have i. If a is diff col, have ii.
Proof of Base Case of Lemma

Proof of Lemma is by induction on \(r \).

\(r = 1 \) For all \(\text{COL}: [U] \rightarrow [c] \) EITHER

i) \((\exists a, d)[a, a + d, a + d^2 \text{ same color}], \) OR
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d, a + d^2$ same color], OR

ii) $(\exists a, d_1)[a, \{a + d_1, a + d_1^2\}$ diff colors].
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

For all $\text{COL} : [U] \rightarrow [c]$ EITHER

1) $(\exists a, d)[a, a + d, a + d^2$ same color], OR

2) $(\exists a, d_1)[a, \{a + d_1, a + d_1^2\}$ diff colors].

Let $U(1) = W(x^2 - x; c)$. For a c-colorings of $[U(1)]$ get a', d_1 st $a', a' + d_1^2 - d_1$ are same col.

Rewrite: $a' = (a' - d_1) + d_1$. Let $a = a' - d_1$.

Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL} : [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d, a + d^2 \text{ same color}]$, OR

ii) $(\exists a, d_1)[a, \{a + d_1, a + d_1^2\} \text{ diff colors}]$.

Let $U(1) = W(x^2 - x; c)$. For a c-colorings of $[U(1)]$ get a', d_1 st $a', a' + d_1^2 - d_1$ are same col.

Rewrite: $a' = (a' - d_1) + d_1$. Let $a = a' - d_1$.

$a' = a + d_1$

$a' + d_1^2 - d_1 = a + d_1^2$.

\therefore they have the same color.

If a is that col, have i. If a is diff col, have ii.
Proof of Base Case of Lemma

Proof of Lemma is by induction on r.

$r = 1$ For all $\text{COL}: [U] \rightarrow [c]$ EITHER

i) $(\exists a, d)[a, a + d, a + d^2 \text{ same color}]$, OR

ii) $(\exists a, d_1)[a, \{a + d_1, a + d_1^2\} \text{ diff colors}]$.

Let $U(1) = W(x^2 - x; c)$. For a c-colorings of $[U(1)]$ get a', d_1 st $a', a' + d_1^2 - d_1$ are same col.

Rewrite: $a' = (a' - d_1) + d_1$. Let $a = a' - d_1$.

$a' = a + d_1$

$a' + d_1^2 - d_1 = a + d_1^2$.

So they have the same color.
Proof of Lemma is by induction on r.

$r = 1$ For all COL : $[U] \rightarrow [c]$ EITHER

 i) $(\exists a, d)[a, a + d, a + d^2$ same color], OR

 ii) $(\exists a, d_1)[a, \{a + d_1, a + d_1^2\}$ diff colors].

Let $U(1) = W(x^2 - x; c)$. For a c-colorings of $[U(1)]$ get a', d_1 st $a', a' + d_1^2 - d_1$ are same col. Rewrite: $a' = (a' - d_1) + d_1$. Let $a = a' - d_1$.

$a' = a + d_1$

$a' + d_1^2 - d_1 = a + d_1^2$.

So they have the same color.

If a is that col, have i. If a is diff col, have ii.
Proof of Ind Step of Lemma

Assume that there exists $U = U(r)$ st for all $\text{COL}: [U] \rightarrow [c]$ EITHER

$\exists (a, d) \in a, a + d^2 + d$ same col, OR

$\exists (a, d_1, \ldots, d_r) \in a, \{a + d_1, a + d_2\}, \ldots, \{a + d_r, a + d_2r\}$ diff cols.
Assume that there exists $U = U(r)$ st for all \text{COL}: [U] \rightarrow [c] \text{ EITHER}

$\quad (\exists a, d)[a, a + d, a + d^2 + d \text{ same col}], \text{ OR}$

\text{GOTO WHITE BOARD}
Proof of Ind Step of Lemma

Assume that there exists \(U = U(r) \) st for all \(\text{COL} : [U] \rightarrow [c] \) EITHER

- \((\exists a, d)[a, a + d, a + d^2 + d \text{ same col}], \text{ OR}\)
- \((\exists a, d_1, \ldots, d_r)[a, \{a+d_1, a+d_1^2\}, \ldots, \{a+d_r, a+d_r^2\} \text{ diff cols}]\).

GOTO WHITE BOARD
A Powerful Notation and a General Approach

Exposition by William Gasarch

May 4, 2022
Which Proofs were Similar?

Proofs of all $PVDW(x^2 - \Box x \ldots, x^2, \ldots, x^2 + \Box x)$ are similar.
Which Proofs were Similar?

Proofs of all $PVDW(x^2 - \square x \ldots, x^2, \ldots, x^2 + \square x)$ are similar.
Proof used VDW for Base and for Ind.
Which Proofs were Similar?

Proofs of all $PVDW(x^2 - □x \ldots, x^2, \ldots, x^2 + □x)$ are similar.

Proof used VDW for Base and for Ind.

Key There is one lead coefficient and its for quadratic-degree 2. We will denote this $(1, 0)$: 1 quad lead coeff, 0 linear lead coeffs.
Which Proofs were Similar?

Proofs of all $PVDW(x^2 - □x \ldots, x^2, \ldots, x^2 + □x)$ are similar.

Proof used VDW for Base and for Ind.

Key There is one lead coefficient and its for quadratic-degree 2. We will denote this $(1, 0)$: 1 quad lead coeff, 0 linear lead coeffs.

Proofs of all $PVDW(x, x^2 - □x, \ldots, x^2, \ldots, x^2 + □x)$ are similar.
Which Proofs were Similar?

Proofs of all $PVDW(x^2 - \Box x \ldots, x^2, \ldots, x^2 + \Box x)$ are similar. Proof used VDW for Base and for Ind.

Key There is one lead coefficient and its for quadratic-degree 2. We will denote this $(1, 0)$: 1 quad lead coeff, 0 linear lead coeffs.

Proofs of all $PVDW(x, x^2 - \Box x \ldots, x^2, \ldots, x^2 + \Box x)$ are similar. Proofs used $PVDW(x^2 - \Box x \ldots, x^2, \ldots, x^2 + \Box x)$ for Base and Ind.

Key There are two lead coefficients and they are for quadratic-degree 2 and linear-degree 1. We will denote this $(1, 1)$: 1 quad lead coeff, 1 linear lead coeffs.
Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of $\mathbb{Z}[x]$ such that $(\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i.
Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of $\mathbb{Z}[x]$ such that $(\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i. The **index** of P is $(n_d, n_{d-1}, \ldots, n_1)$.

Examples

- $\{x^3, x^3 + \square x^2 + \square x, x^2 + \square x, 3x, 4x, 10x\}$ has index $(1, 1, 3)$.
- $\{x^4, 2x^4 + \square x^3, x^2, 2x^2, 100x^2, x, 100000x\}$ has index $(2, 0, 3, 2)$.

Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of $\mathbb{Z}[x]$ such that $\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i. The **index** of P is $(n_d, n_{d-1}, \ldots, n_1)$.

Examples
Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of $\mathbb{Z}[x]$ such that $(\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i.

The index of P is $(n_d, n_{d-1}, \ldots, n_1)$.

Examples
\{ x^3, $x^3 + \Box x^2 + \Box x$, $x^2 + \Box x$, $3x$, $4x$, $10x$ \} has index $(1, 1, 3)$.
Associate to Each Set of Poly’s an Index

Notation Let P be a finite subset of $\mathbb{Z}[x]$ such that $(\forall p \in P)[p(0) = 0]$. Assume the max degree of a poly is d. For $1 \leq i \leq d$ let n_i be the number of lead coefficients of polys in P of degree i.

The **index** of P is $(n_d, n_{d-1}, \ldots, n_1)$.

Examples

$\{x^3, x^3 + \square x^2 + \square x, x^2 + \square x, 3x, 4x, 10x\}$ has index $(1, 1, 3)$.

$\{x^4, 2x^4 + \square x^3, x^2, 2x^2, 100x^2, x, 100000x\}$ has index $(2, 0, 3, 2)$.
A Powerful Notation

PVDW(1, 0) means
(\forall P \subseteq \mathbb{Z}[x]), P of index (1, 0), PVDW(P) is true.
A Powerful Notation

PVDW(1, 0) means
$(\forall P \subseteq \mathbb{Z}[x]), P$ of index $(1, 0)$, PVDW(P) is true. From what we did you could easily prove $P(1, 0)$. But what about PVDW(1, 0)? That was proven by VDW.
A Powerful Notation

PVDW(1, 0) means
$$(\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (1, 0), \ PVDW(P) \text{ is true.}$$
From what we did you could easily prove $P(1, 0)$.

PVDW(n_d, \ldots, n_1) means
$$(\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (n_d, \ldots, n_1), \ PVDW(P) \text{ is true.}$$
A Powerful Notation

$\text{PVDW}(1, 0)$ means
$(\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (1, 0), \ \text{PVDW}(P) \text{ is true.}$
From what we did you could easily prove $P(1, 0)$.

$\text{PVDW}(n_d, \ldots, n_1)$ means
$(\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (n_d, \ldots, n_1), \ \text{PVDW}(P) \text{ is true.}$

We showed $\text{PVDW}(1, 0) \implies \text{PVDW}(1, 1)$.
A Powerful Notation

\[PVDW(1, 0) \text{ means } (\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (1, 0), \ PVDW(P) \text{ is true.} \]

From what we did you could easily prove \(P(1, 0) \).

\[PVDW(n_d, \ldots, n_1) \text{ means } (\forall P \subseteq \mathbb{Z}[x]), \ P \text{ of index } (n_d, \ldots, n_1), \ PVDW(P) \text{ is true.} \]

We showed \(PVDW(1, 0) \Rightarrow PVDW(1, 1) \).

But what about \(PVDW(1, 0) \)? That was proven by VDW.
Can we Express VDW in our Powerful Notation?

PVDW(4) would include PVDW(x, 2x, 3x, 4x) which is $(\forall c)[VDW(5,c)]$.

Our notation is not so powerful after all! It cannot express VDW!

We extend our notation. We want $(\forall k)[PVDW(k)]$.

We use $PVDW(\omega)$. Example $PVDW(7, \omega, 12)$ means $(\forall k)[PVDW(7,k,12)]$.

Notation Let \mathbb{N}^+ be $\mathbb{N} \cup \{\omega\}$.
PVDW(4) would include PVDW(x, 2x, 3x, 4x) which is $(\forall c)[VDW(5, c)]$.

Our notation is not so powerful after all! It cannot express VDW!
Can we Express VDW in our Powerful Notation?

PVDW(4) would include PVDW(x, 2x, 3x, 4x) which is $(\forall c)[VDW(5, c)]$.

Our notation is not so powerful after all! It cannot express VDW!

We extend our notation. We want $(\forall k)[PVDW(k)]$.

We use PVDW(ω).
Can we Express VDW in our Powerful Notation?

PVDW(4) would include PVDW(x, 2x, 3x, 4x) which is $(\forall c)[VDW(5, c)]$.

Our notation is not so powerful after all! It cannot express VDW!

We extend our notation. We want $(\forall k)[PVDW(k)]$.

We use PVDW(ω).

Example

PVDW(7, ω, 12) means $(\forall k)[PVDW(7, k, 12)]$.

Notation

Let \mathbb{N}^+ be $\mathbb{N} \cup \{\omega\}$.

Let $n_d, \ldots, n_1 \in \mathbb{N}^+$ is defined in the obvious way.
Can we Express VDW in our Powerful Notation?

PVDW(4) would include PVDW(x, 2x, 3x, 4x) which is $(\forall c)[VDW(5, c)]$. Our notation is not so powerful after all! It cannot express VDW!

We extend our notation. We want $(\forall k)[PVDW(k)]$. We use PVDW(ω).

Example
PVDW(7, ω, 12) means $(\forall k)[PVDW(7, k, 12)]$.

Notation Let \mathbb{N}^+ be $\mathbb{N} \cup \{\omega\}$. Let $n_d, \ldots, n_1 \in \mathbb{N}^+$ is defined in the obvious way.
What Did We Prove?

Our proof of $PVDW(x^2)$ has all the ideas to prove $PVDW(\omega) \implies PVDW(1,0)$.
What Did We Prove?

Our proof of $\text{PVDW}(x^2)$ has all the ideas to prove $\text{PVDW}(\omega) \implies \text{PVDW}(1, 0)$.

Our proof of $\text{PVDW}(x, x^2)$ has all the ideas to prove $\text{PVDW}(1, 0) \implies \text{PVDW}(1, 1)$.
Actual Proof of Poly VDW Theorem

Poly VDW thm proven by ind on the indexes of sets. Ordering:

$(1) \prec (2) \prec \cdots \prec (\omega) \prec (1, 0) \prec (1, 1) \prec \cdots \prec (1, \omega)$

$\prec (2, 0) \prec (2, 1) \prec \cdots (2, \omega) \cdots \prec (1, 0, 0) \prec \cdots \cdots$

This is an ω^ω ind. **Contrast** VDW was a ω^2 ind.

We do this in two parts.
Actual Proof of Poly VDW Theorem

Poly VDW thm proven by ind on the indexes of sets. Ordering:

\[(1) \preceq (2) \preceq \cdots \preceq (\omega) \preceq (1, 0) \preceq (1, 1) \preceq \cdots \preceq (1, \omega)\]

\[\preceq (2, 0) \preceq (2, 1) \preceq \cdots (2, \omega) \cdots \preceq (1, 0, 0) \preceq \cdots \cdots\]

This is an ω^ω ind. **Contrast** VDW was a ω^2 ind.

We do this in two parts.

1. Let $0 \leq i \leq d$. Let $n_d, \ldots, n_i \in \mathbb{N}^+$ with $n_i \in \mathbb{N}$.

\[\text{PVDW}(n_d, \ldots, n_i, \omega, \ldots, \omega) \implies \text{PVDW}(n_d, \ldots, n_i+1, \omega, \ldots, \omega).\]
Actual Proof of Poly VDW Theorem

Poly VDW thm proven by ind on the indexes of sets. Ordering:

\[(1) \prec (2) \prec \cdots \prec (\omega) \prec (1, 0) \prec (1, 1) \prec \cdots \prec (1, \omega)\]

\[\prec (2, 0) \prec (2, 1) \prec \cdots (2, \omega) \cdots \prec (1, 0, 0) \prec \cdots \cdots\]

This is an ω^ω ind. **Contrast** VDW was a ω^2 ind.

We do this in two parts.

1. Let $0 \leq i \leq d$. Let $n_d, \ldots, n_i \in \mathbb{N}^+$ with $n_i \in \mathbb{N}$.

 \[\text{PVDW}(n_d, \ldots, n_i, \omega, \ldots, \omega) \implies \text{PVDW}(n_d, \ldots, n_i + 1, \omega, \ldots, \omega).\]

2. \text{PVDW}(\omega, \ldots, \omega) \implies \text{PVDW}(1, 0, \ldots, 0).

$d \omega$'s in the 1st part; d 0's in the 2nd part.
Bounds on Poly VDW Numbers

1. The bounds given by this proof are not primitive recursive.
2. The bounds given by this proof are bigger than those for VDW's Theorem. The Prim Rec hierarchy had functions of levels 1, 2, 3, \ldots. The bounds from proof of VDW theorem are at level ω. The bounds from proof of POLVDW theorem are at level ω^ω.
3. Are better bounds known? See next slide.
Bounds on Poly VDW Numbers

1. The bounds given by this proof are not primitive recursive.
1. The bounds given by this proof are not primitive recursive.
2. The bounds given by this proof are bigger than those for VDW’s Theorem.
 The Prim Rec hierarchy had functions of levels 1, 2, 3,
 The bounds from proof of VDW theorem are at level ω^2.
 The bounds from proof of POLVDW theorem are at level ω^ω.
Bounds on Poly VDW Numbers

1. The bounds given by this proof are not primitive recursive.
2. The bounds given by this proof are bigger than those for VDW’s Theorem.
 The Prim Rec hierarchy had functions of levels 1, 2, 3,
 The bounds from proof of VDW theorem are at level ω^2.
 The bounds from proof of POLVDW theorem are at level ω^ω.
3. Are better bounds known? See next slide.
A False Prediction
In 1999 there were two thoughts in the air

1. $\text{PVDW}(\vec{n})$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $\text{PVDW}(\vec{n})$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no thoughts in the air. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved $\text{PVDW}(\vec{n})$ prim rec: clever!

▶ Proof is elementary. Can be in this class but won't.
▶ Bounds still large. Not able to write down.
▶ Proof badly needs someone to write it up better.
▶ Bill—remember to tell them how you learned of Shelah's result.
A False Prediction

In 1999 there were two thoughts in the air

1. \(\text{PVDW}(\vec{n}) \) is not prim rec and a \textbf{logician} will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.
A False Prediction

In 1999 there were two thoughts in the air

1. $\text{PVDW}(\vec{n})$ is not prim rec and a \textbf{logician} will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $\text{PVDW}(\vec{n})$ is surely prim rec and a \textbf{combinatorist} will prove this perhaps with a clever elementary technique.
A False Prediction

In 1999 there were two thoughts in the air

1. $PVDW(\vec{n})$ is not prim rec and a **logician** will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $PVDW(\vec{n})$ is surely prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no **thoughts in the air**. (More on that Later.)
A False Prediction

In 1999 there were two thoughts in the air

1. PVDW(\vec{n}) is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. PVDW(\vec{n}) is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no thoughts in the air. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.
A False Prediction

In 1999 there were two thoughts in the air

1. $PVDW(\vec{n})$ is not prim rec and a **logician** will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $PVDW(\vec{n})$ is surely prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no **thoughts in the air**. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved $PVDW(\vec{n})$ prim rec: clever!
A False Prediction

In 1999 there were two thoughts in the air

1. PVDW(\(\vec{n}\)) is not prim rec and a **logician** will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. PVDW(\(\vec{n}\)) is surely prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no **thoughts in the air**. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved PVDW(\(\vec{n}\)) **prim rec: clever!**

- Proof is elementary. Can be in this class but won’t.
A False Prediction

In 1999 there were two thoughts in the air

1. $\text{PVDW}(\vec{n})$ is not prim rec and a **logician** will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $\text{PVDW}(\vec{n})$ is surely prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no **thoughts in the air**. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved $\text{PVDW}(\vec{n})$ prim rec: clever!

- Proof is elementary. Can be in this class but won’t.
- Bounds still large. Not able to write down.
A False Prediction

In 1999 there were two thoughts in the air

1. $\text{PVDW}(\vec{n})$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $\text{PVDW}(\vec{n})$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no thoughts in the air. (More on that Later.)

Even so, are there better bounds? VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.

Logician (Shelah) proved $\text{PVDW}(\vec{n})$ prim rec: clever!

- Proof is elementary. Can be in this class but won’t.
- Bounds still large. Not able to write down.
- Proof badly needs someone to write it up better.
A False Prediction

In 1999 there were two thoughts in the air

1. $\text{PVDW}(\vec{n})$ is not prim rec and a **logician** will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

2. $\text{PVDW}(\vec{n})$ is surely prim rec and a **combinatorist** will prove this perhaps with a clever elementary technique.

The above dichotomy is false. The Poly VDW theorem is just not that well known, even now. So there were no **thoughts in the air**. (More on that Later.)

Even so, are there better bounds? **VOTE: BETTER BOUNDS KNOWN, BETTER BOUNDS UNKNOWN.**

Logician (Shelah) proved $\text{PVDW}(\vec{n})$ prim rec: clever!

- Proof is elementary. Can be in this class but won’t.
- Bounds still large. Not able to write down.
- Proof badly needs someone to write it up better.
- Bill- remember to tell them how you learned of Shelah’s result.
We showed

\[PVDW(\omega) \implies PVDW(1, 0). \]
\[PVDW(1, 0) \implies PVDW(1, 1). \]
Looking Back to VDW Theorem

We showed
\[PVDW(\omega) \implies PVDW(1, 0). \]
\[PVDW(1, 0) \implies PVDW(1, 1). \]

Using these same technique we can get a clean proof of
\[PVDW(k) \implies PVDW(k + 1). \]
We showed
\[PVDW(\omega) \implies PVDW(1, 0). \]
\[PVDW(1, 0) \implies PVDW(1, 1). \]

Using these same technique we can get a **clean** proof of
\[PVDW(k) \implies PVDW(k + 1). \]

So we can obtain a proof of VDW that you can write down nicely.
We showed
\[\text{PVDW}(\omega) \implies \text{PVDW}(1, 0). \]
\[\text{PVDW}(1, 0) \implies \text{PVDW}(1, 1). \]

Using these same technique we can get a \textbf{clean} proof of
\[\text{PVDW}(k) \implies \text{PVDW}(k + 1). \]

So we can obtain a proof of VDW that you can write down nicely.

1. The proof really is the proof I already showed you.
2. While one \textbf{COULD} obtain a clean proof of VDW nobody has
 bothered writing this up (except me).