VDW’s Thm

Def Let $W, k, c \in \mathbb{N}$. Let $\text{COL} : [W] \to [c]$. A \textbf{mono k-AP} is an arithmetic progression of length k where every element has the same color. We often say

$$a, a + d, \ldots, a + (k - 1)d \text{ are all the same color}$$
VDW’s Thm

Def Let W, k, $c \in \mathbb{N}$. Let $\text{COL} : [W] \to [c]$. A **mono k-AP** is an arithmetic progression of length k where every element has the same color. We often say

$$a, a + d, \ldots, a + (k - 1)d$$

are all the same color.

VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL} : [W] \to [c]$ there exists a mono k-AP.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a mono k-AP.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) =$

Hmmm, this is the first non-trivial one.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$.

$W(2, c) = c + 1$.

By Pigeon Hole Principle.

$W(k, 1) = k$.

The mono k-AP is $1, 2, \ldots, k$.

Hmmm, this is the first non-trivial one.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: \{W\} \rightarrow \{c\}$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) =$
VDW's Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \to [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) = c + 1$.

By Pigeon Hole Principle.

$W(k, 1) = k$. The mono k-AP is $1, 2, \ldots, k$.

$W(3, 2) = \text{Hmmm, this is the first non-trivial one.}$
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) = c + 1$. By Pigeon Hole Principle.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.
$W(2, c) = c + 1$. By Pigeon Hole Principle.
$W(k, 1) =$
VDW’s Thm For all \(k, c \) there exists \(W = W(k, c) \) such that for all \(\text{COL}: [W] \rightarrow [c] \) there exists a mono \(k \)-AP.

\(W(1, c) = 1 \). A mono 1-AP is just 1 number.

\(W(2, c) = c + 1 \). By Pigeon Hole Principle.

\(W(k, 1) = k \).
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL}: [W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) = c + 1$. By Pigeon Hole Principle.

$W(k, 1) = k$. The mono k-AP is $1, 2, \ldots, k$.
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all $\text{COL} : [W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) = c + 1$. By Pigeon Hole Principle.

$W(k, 1) = k$. The mono k-AP is 1, 2, ..., k.

$W(3, 2) =$
VDW’s Thm For all \(k, c \) there exists \(W = W(k, c) \) such that for all \(\text{COL} : [W] \rightarrow [c] \) there exists a mono \(k \)-AP.

\(W(1, c) = 1. \) A mono 1-AP is just 1 number.

\(W(2, c) = c + 1. \) By Pigeon Hole Principle.

\(W(k, 1) = k. \) The mono \(k \)-AP is 1, 2, \ldots, \(k \).

\(W(3, 2) = \text{Hmmm}, \)
VDW’s Thm For all k, c there exists $W = W(k, c)$ such that for all COL: $[W] \rightarrow [c]$ there exists a mono k-AP.

$W(1, c) = 1$. A mono 1-AP is just 1 number.

$W(2, c) = c + 1$. By Pigeon Hole Principle.

$W(k, 1) = k$. The mono k-AP is $1, 2, \ldots, k$.

$W(3, 2) =$Hmmm, this is the first non-trivial one.
We will determine W later.

$W(3, 2)$ exists
We will determine W later.

We break $[W]$ into blocks of 5: $B_1, \ldots, B_{|W|/5}$.
We will determine W later.

We break $[W]$ into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of $[W]$ as a 2^5-coloring of the B_i’s.

The next two slides are about what happens
$W(3, 2)$ exists

We will determine W later.

We break $[W]$ into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of $[W]$ as a 2^5-coloring of the B_i’s

The next two slides are about what happens

1. Within one block.
$W(3, 2)$ exists

We will determine W later.

We break $[W]$ into blocks of 5: $B_1, \ldots, B_{|W|/5}$.

We view the 2-coloring of $[W]$ as a 2^5-coloring of the B_i’s

The next two slides are about what happens

1. Within one block.
2. If we take enough blocks, how they relate.
Within a Block

Def: $a, a + d, a + 2d$ is an almost mono 3AP if $\text{COL}(a) = \text{COL}(a + d) \neq \text{COL}(a + 2d)$. The color of an almost mono 3AP is $\text{COL}(a) = \text{COL}(a + d)$.
Within a Block

Def: $a, a + d, a + 2d$ is an **almost mono 3AP** if $\text{COL}(a) = \text{COL}(a + d) \neq \text{COL}(a + 2d)$. The **color of an almost mono 3AP** is $\text{COL}(a) = \text{COL}(a + d)$.

Look at the first three elements of a block of 5:

1. **RRR** or **BBB**. 1-2-3 is mono 3AP.
2. **RBR** or **BRB**. 1-3-5 is mono 3AP or almost mono 3AP.
3. **RBB** or **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.
4. **BBR** or **RRB**. 1-2-3 is almost mono 3AP.
5. **BRB**. 1-3-5 is a mono 3AP or an almost mono 3AP.
6. **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.
Within a Block

Def: $a, a + d, a + 2d$ is an **almost mono 3AP** if $\text{COL}(a) = \text{COL}(a + d) \neq \text{COL}(a + 2d)$. The **color of an almost mono 3AP** is $\text{COL}(a) = \text{COL}(a + d)$.

Look at the first three elements of a block of 5:

1. **RRR** or **BBB**. 1-2-3 is mono 3AP.
2. **RBR** or **BRB**. 1-3-5 is mono 3AP or almost mono 3AP.
3. **RBB** or **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.
4. **BBR** or **RRB**. 1-2-3 is almost mono 3AP.
5. **BRB**. 1-3-5 is a mono 3AP or an almost mono 3AP.
6. **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.

So always get a mono 3AP or an almost mono 3AP. Can assume its almost mono 3AP and its **R**.
Within a Block

Def: \(a, a + d, a + 2d \) is an almost mono 3AP if
\[\text{COL}(a) = \text{COL}(a + d) \neq \text{COL}(a + 2d). \]
The color of an almost mono 3AP is \(\text{COL}(a) = \text{COL}(a + d) \).

Look at the first three elements of a block of 5:

1. **RRR** or **BBB**. 1-2-3 is mono 3AP.
2. **RBR** or **BRB**. 1-3-5 is mono 3AP or almost mono 3AP.
3. **RBB** or **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.
4. **BBR** or **RRB**. 1-2-3 is almost mono 3AP.
5. **BRB**. 1-3-5 is a mono 3AP or an almost mono 3AP.
6. **BRR**. 2-3-4 is mono 3AP or almost mono 3AP.

So always get a mono 3AP or an almost mono 3AP. Can assume its almost mono 3AP and its R.
If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
- $\exists k$ $B_i - B_j - B_k$ is either mono 3AP or almost mono 3AP.

If there are 33 blocks then 2 are the same color. Worst Case B_1 and B_{33} same color. So need B_{65} to exist. Hence need to take $W = 5 \times 65 = 365$.

We can get by with LESS blocks - we will consider this point after the proof.
If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
- $\exists k$ B_i-B_j-B_k is either mono 3AP or almost mono 3AP.
We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
- $\exists k$ $B_i - B_j - B_k$ is either mono 3AP or almost mono 3AP.

If there are 33 blocks then 2 are the same color.
If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
- $\exists k$ B_i-B_j-B_k is either mono 3AP or almost mono 3AP.

If there are 33 blocks then 2 are the same color. **Worst Case** B_1 and B_{33} same color. So need B_{65} to exist. Hence need to take $W = 5 \times 65 = 365$.
If have A Lot of Blocks Then . . .

We take enough blocks so that for all 2-colorings:

- Two of the blocks are the same color, say B_i and B_j.
- $\exists k$ B_i-B_j-B_k is either mono $3AP$ or almost mono $3AP$.

If there are 33 blocks then 2 are the same color.
Worst Case B_1 and B_{33} same color. So need B_{65} to exist.
Hence need to take $W = 5 \times 65 = 365$.
We can get by with LESS blocks- we will consider this point after the proof.
$W(3, 2) \leq 365$

$\begin{array}{cccc}
R & R & B & d \\
R & R & B & d \\
D & D & d & d \\
\end{array}$

If $?$ is B then get B 3-AP.
If $?$ is R then get R 3-AP.
Done!
W(3, 2) ≤ 365

Let \(COL: [W] \rightarrow [2] \).

Break \([W]\) into 65 blocks of size 5 which we think of as being 32-colored.
$W(3, 2) \leq 365$

Break $[W]$ into 65 blocks of size 5 which we think of as being 32-colored.

- $\exists i, j, k$ such that $B_i - B_j - B_k$ form mono 3AP or almost mono 3AP.
$W(3, 2) \leq 365$

Break $[W]$ into 65 blocks of size 5 which we think of as being 32-colored.

- $\exists i, j, k$ such that $B_i - B_j - B_k$ form mono 3AP or almost mono 3AP.

- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)
$W(3, 2) \leq 365$

Break $[W]$ into 65 blocks of size 5 which we think of as being 32-colored.

- $\exists i, j, k$ such that $B_i-B_j-B_k$ form mono 3AP or almost mono 3AP.

- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

```
<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d</td>
<td>D</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d</td>
<td>D</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>R</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d</td>
<td>?</td>
</tr>
</tbody>
</table>
```
\[W(3, 2) \leq 365 \]

Let \(COL : [W] \rightarrow [2] \).

Break \([W]\) into 65 blocks of size 5 which we think of as being 32-colored.

- \(\exists i, j, k \) such that \(B_i - B_j - B_k \) form mono 3AP or almost mono 3AP.

- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

If ? is B then get B 3-AP.
\[W(3, 2) \leq 365 \]

Let \(COL: [W] \to [2] \).

Break \([W]\) into 65 blocks of size 5 which we think of as being 32-colored.

- \(\exists i, j, k \) such that \(B_i - B_j - B_k \) form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

If ? is B then get B 3-AP.
If ? is R then get R 3-AP.
\(W(3,2) \leq 365 \)

Let \(COL : [W] \to [2] \).
Break \([W]\) into 65 blocks of size 5 which we think of as being 32-colored.

- \(\exists i, j, k \) such that \(B_i - B_j - B_k \) form mono 3AP or almost mono 3AP.
- In each block there is a mono 3AP or an almost mono 3AP. (This is why blocks-of-5.)

\[
\begin{array}{cccccc}
 & & d & & d & D \\
 & d & & d & & D \\
R & R & B & & & \\
\end{array}
\begin{array}{cccccc}
 & & d & & d & D \\
 & d & & d & & D \\
R & R & B & & & \\
\end{array}
\begin{array}{cccc}
 & & & \\
 & & d & d \\
\end{array}
\]

If ? is \(B \) then get \(B \) 3-AP.
If ? is \(R \) then get \(R \) 3-AP.
Done!
Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important. However, whenever I give this talk someone bring it up.
Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up. So I will be proactive.
Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important. However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored **RRRBB** we are done.
Warning This Slide is NOT important. However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored \texttt{RRRBBB} we are done.

So we don’t really have to look at 32 colorings.
Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important. However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored **RRRBBB** we are done.

So we don’t really have to look at 32 colorings.

How many colorings of a block already have a mono 3AP.
RRRXY with $X, Y \in \{R, B\}$. 4 colorings.

BBBXY with $X, Y \in \{R, B\}$. 4 colorings.

RBRRR

RBRBR

BRBBB

BRBRB

RBBBBX with $X \in \{R, B\}$. 2 colorings.

BRRRX with $X \in \{R, B\}$. 2 colorings.

RRBBB

BBRRR

There are 16 blocks which already have a mono 3AP. Hence can use $32 - 16 = 16$ blocks. I really do not care.
Side Note: Can Get By With Less Blocks (cont)

$RRRXY$ with $X, Y \in \{R, B\}$. 4 colorings.

$BBBXY$ with $X, Y \in \{R, B\}$. 4 colorings.

$RBRRR$

$RBRBR$

$BRBBB$

$BRBRB$

$RBBBBX$ with $X \in \{R, B\}$. 2 colorings.

$BRRRX$ with $X \in \{R, B\}$. 2 colorings.

$RRBBB$

$BBRRR$

There are 16 blocks which already have a mono 3AP. Hence can use $32 - 16 = 16$ blocks.
There are 16 blocks which already have a mono 3AP. Hence can use $32 - 16 = 16$ blocks.
I really do not care.
Is $W(3, 2) = 365$?

No

What is $W(3, 2)$?

One can work out by hand that $W(3, 2) = 9$.

We will later say which VDW numbers are known and how they compare to the bounds given by the proof of VDW's Thm.

Spoiler Alert The few known VDW numbers are much smaller than the bounds given by the proof of VDW's Thm.
Is $W(3, 2) = 365$?

No
What is $W(3, 2)$?

One can work out by hand that

$$W(3, 2) = 9.$$

We will later say which VDW numbers are known and how they compare to the bounds given by the proof of VDW’s Thm.
Is $W(3, 2) = 365$?

No

What is $W(3, 2)$?

One can work out by hand that

$$W(3, 2) = 9.$$

We will later say which VDW numbers are know and how they compare to the bounds given by the proof of VDW’s Thm.

Spoiler Alert The few known VDW numbers are much smaller than the bounds given by the proof of VDW’s Thm.
$W(3, 3)$

$\text{COL} : \mathcal{W} \rightarrow [3]$.

Darn. Now what? Discuss. We have 2 almost mono 3APs of different colors that share the same last element.
$W(3, 3)$

How big should the blocks be?
$W(3, 3)$

How big should the blocks be? 7.
$W(3, 3)$

\[\text{COL: } [W] \rightarrow [3]. \]

How big should the blocks be? 7.

Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP.
$W(3, 3)$

How big should the blocks be? 7.
Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP.

The 3-coloring of $[W]$ is a 3^7-coloring of the B_i's.
$W(3, 3)$

How big should the blocks be? 7.

Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP.

The 3-coloring of $[W]$ is a 37-coloring of the B_i’s

Need for all 37 colorings of blocks get a mono 3AP or an almost mono 3AP.

Need $2 \times 3^+1$ blocks.

How big should the blocks be? 7.
Then \forall 3-coloring of block \exists mono 3AP or almost mono 3AP.

The 3-coloring of $[W]$ is a 3^7-coloring of the B_i's

Need for all 3^7 colorings of blocks get a mono 3AP or an almost mono 3AP.
Need $2 \times 3^+1$ blocks.
W(3, 3)

COL: \([W] \rightarrow [3]\).

How big should the blocks be? 7.

Then \(\forall\) 3-coloring of block \(\exists\) mono 3AP or almost mono 3AP.

The 3-coloring of \([W]\) is a \(3^7\)-coloring of the \(B_i\)'s

Need for all \(3^7\) colorings of blocks get a mono 3AP or an almost mono 3AP.

Need \(2 \times 3^1 + 1\) blocks.

Darn. Now what? Discuss
W(3, 3)

COL: \([W] \rightarrow [3]\).

How big should the blocks be? 7.
Then \(\forall\) 3-coloring of block \(\exists\) mono 3AP or almost mono 3AP.

The 3-coloring of \([W]\) is a \(3^7\)-coloring of the \(B_i\)'s

Need for all \(3^7\) colorings of blocks get a mono 3AP or an almost mono 3AP.
Need \(2 \times 3^+1\) blocks.

Darn. Now what? Discuss
We have 2 almost mono 3APs of diff colors that same last element.
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$.
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.
2. \exists either a mono 3AP or an almost mono 3AP of blocks.
Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

If $?$ is G get G 3AP.
If $?$ is B get B 3AP.
If $?$ is R get R 3AP.
Done!
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

If $?$ is G get G 3AP.

If $?$ is B get B 3AP.

If $?$ is R get R 3AP.

Done!
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

If $?$ is G get G 3AP.
If $?$ is B get B 3AP.
I Like Big Blocks and I Cannot Lie!

Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

If ? is G get G 3AP.
If ? is B get B 3AP.
If ? is R get R 3AP.
Let W be LOTS of blocks of size $7 \times 2 \times (3^7 + 1)$. For any 2-coloring of $[W]$ the following happens:

1. Each block has a mono 3AP OR 2 almost mono 3AP of diff colors that have same last elt.

2. \exists either a mono 3AP or an almost mono 3AP of blocks.

If $?$ is G get G 3AP.
If $?$ is B get B 3AP.
If $?$ is R get R 3AP.

Done!
From what you have seen:

$W(3, c)$
From what you have seen:

- You COULD do a proof that $W(3, 4)$ exists. You would need to iterate what I did twice.
$W(3, c)$

From what you have seen:

- You **COULD** do a proof that $W(3, 4)$ exists. You would need to iterate what I did twice.
- You can **BELIEVE** that $W(3, c)$ exists though might wonder how to prove it formally.
$W(3, c)$

From what you have seen:

- You **COULD** do a proof that $W(3, 4)$ exists. You would need to iterate what I did twice.
- You can **BELIEVE** that $W(3, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.
From what you have seen:

- You **COULD** do a proof that $W(3, 4)$ exists. You would need to iterate what I did twice.
- You can **BELIEVE** that $W(3, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.
- The Hales-Jewitt Thm is a general theorem from which VDW is a corollary. We won’t be doing that.
What Did We Use to Prove $W(3, c)$?

$W(2, c) = c + 1$ is just PHP.
What Did We Use to Prove $W(3, c)$?

$W(2, c) = c + 1$ is just PHP.

$W(2, 2^5) \implies W(3, 2)$
What Did We Use to Prove $W(3, c)$?

$W(2, c) = c + 1$ is just PHP.

$W(2, 2^5) \implies W(3, 2)$

$W(2, 3^{2 \times 3^7} + 1) \implies W(3, 3)$.

What Did We Use to Prove $W(3, c)$?

$W(2, c) = c + 1$ is just PHP.

$W(2, 2^5) \implies W(3, 2)$

$W(2, 3^{2 \times 7} + 1) \implies W(3, 3)$.

$W(2, X) \implies W(3, 4)$ where X is very large.
What Did We Use to Prove $W(3, c)$?

$W(2, c) = c + 1$ is just PHP.

$W(2, 2^5) \implies W(3, 2)$

$W(2, 3^{2 \times 3^7} + 1) \implies W(3, 3)$.

$W(2, X) \implies W(3, 4)$ where X is very large.

Note that we do not do $W(3, 2) \implies W(3, 3)$.

\(W(4, 2) \)

\[\text{COL: } [W] \rightarrow [4]. \]
$W(4, 2)$

Key Take blocks of size $2W(3, 2)$.
$W(4, 2)$

COL: $[\mathcal{W}] \rightarrow [4]$.

Key Take blocks of size $2W(3, 2)$.
Within a block is mono 4AP or almost mono 4AP.
\(W(4, 2) \)

COL: \([W] \rightarrow [4] \).

Key Take blocks of size \(2W(3, 2) \).
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size \(2W(3, 2) \).
W(4, 2)

COL: $[\mathcal{W}] \to [4]$.

Key Take blocks of size $2\mathcal{W}(3, 2)$.
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size $2\mathcal{W}(3, 2)$.
How many blocks?
$W(4, 2)$

COL: \([W] \rightarrow [4]\).

Key Take blocks of size $2W(3, 2)$.

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size $2W(3, 2)$.

How many blocks? Want mono 3AP or almost mono 3AP of blocks.
$W(4, 2)$

Key Take blocks of size $2W(3, 2)$.
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size $2W(3, 2)$.

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^{2W(3, 2)})$.

R R R B
d d d
R R R B
d d d
R R R B
d d d
? d d d
D D D
\[W(4, 2) \]

COL: \([W] \rightarrow [4]\).

Key Take blocks of size \(2W(3, 2)\).

Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size \(2W(3, 2)\).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. \(2W(3, 2^{W(3, 2)})\).

\[
\begin{array}{cccc}
\text{R} & \text{R} & \text{R} & \text{B} & \cdots & \text{R} & \text{R} & \text{R} & \text{B} & \cdots & \text{R} & \text{R} & \text{R} & \text{B} & \cdots & \text{?} \\
\text{d} & \text{?} \\
\end{array}
\]

If ? is B get mono 4AP.

If ? is R get mono 4AP.

Done!
$W(4, 2)$

Key Take blocks of size $2W(3, 2)$. Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size $2W(3, 2)$.

How many blocks? Want mono 3AP or almost mono 3AP of blocks. $2W(3, 2^W(3, 2))$.

If ? is B get mono 4AP.
\[W(4, 2) \]

COL: \([W] \rightarrow [4] \).

Key Take blocks of size \(2W(3, 2)\).
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size \(2W(3, 2)\).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. \(2W(3, 2^{W(3, 2)})\).

If ? is B get mono 4AP.
If ? is R get mono 4AP.
W(4, 2)

COL: \([W] \rightarrow [4].\)

Key Take blocks of size \(2W(3, 2)\).
Within a block is mono 4AP or almost mono 4AP.

Key Take blocks of size \(2W(3, 2)\).

How many blocks? Want mono 3AP or almost mono 3AP of blocks. \(2W(3, 2^{W(3, 2)})\).

If \(?\) is B get mono 4AP.
If \(?\) is R get mono 4AP.
Done!
You COULD do a proof that $W(k, c)$. You would need to iterate what I did a lot.

You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.

There are ways to formalize the proof; however, the are not enlightening.

The Hales-Jewitt Thm is a general theorem from which VDW is a corollary. We won't be doing that.
\(W(k, c) \)

- You COULD do a proof that \(W(k, c) \). You would need to iterate what I did . . . a lot.
$W(k, c)$

- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.
$W(k, c)$

- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.
You COULD do a proof that $W(k, c)$. You would need to iterate what I did . . . a lot.

You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.

There are ways to formalize the proof; however, the are not enlightening.

The Hales-Jewitt Thm is a general theorem from which VDW is a corollary. We won’t be doing that.
Induction, But On What?

\[(2, 2) \prec (2, 3) \prec \cdots \prec (3, 2) \prec (3, 3) \prec \cdots \prec (4, 2) \cdots\]

This is an ω^2 induction. The ordering is well-founded so you can do induction. This is an ω^2 induction. That's why the numbers are so large. How large? That takes another entire slide-deck to explain. (Unless you've already seen my slide packet on Primitive Recursive Functions, in which case just know that the proof given gives bounds that are NOT prim rec.)
Induction, But On What?

\[(2, 2) \prec (2, 3) \prec \cdots \prec (3, 2) \prec (3, 3) \prec \cdots \prec (4, 2) \cdots\]

This is an \(\omega^2\) induction. The ordering is well-founded so you can do induction.
Induction, But On What?

\[(2, 2) \prec (2, 3) \prec \cdots \prec (3, 2) \prec (3, 3) \prec \cdots \prec (4, 2) \cdots\]

This is an \(\omega^2\) induction. The ordering is well-founded so you can do induction.

This is an \(\omega^2\) induction. That's why the numbers are so large.
This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. That's why the numbers are so large.

How large?
This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. That's why the numbers are so large.

How large? That takes another entire slide-deck to explain. (Unless you've already seen my slide packet on Primitive Recursive Functions,
Induction, But On What?

(2, 2)≺(2, 3)≺⋯≺(3, 2)≺(3, 3)≺⋯≺(4, 2)⋯

This is an ω^2 induction. The ordering is well-founded so you can do induction.

This is an ω^2 induction. That's why the numbers are so large.

How large? That takes another entire slide-deck to explain. (Unless you’ve already seen my slide packet on Primitive Recursive Functions, in which case just know that the proof given gives bounds that are NOT prim rec.)