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Let K be a configuration, a set of  points  in some finite dimensional  Euclidean 
space. Let n and k be positive integerS. The notat ion R(K, n, r) is an abbreviation 
for the following statement:  For  every r-coloring of  the points of  n-dimensional  
Euclidean space, R", there exists a monochromat ic  configuration L which is con- 
gruent  to K. In this paper, it is shown that  when K is a square of s ide / ,  it can be 
proved that R(K, 4, 2) holds. "When K consists of  two points  at unit distance, it is 
also proved that  R(K, 4, 6) and R(K, 5, 8) hold. © 1996 Academic Press. Inc. 

1. INTRODUCTION 

In [5], Erd6s et al. proved the following theorem: 

THEOREM 1.1 [5]. I f  R 6 is 2-colored, then a monochromatic unit square 
is formed. 

Later a trivial change in the proof gave that if R 5 is 2-colored a 
monochromatic unit square is formed. 

In this paper, we prove the following result in finite Ramsey theory. 

1. If R 4 is 2-colored, a monochromatic unit square occurs (Theorem 2.10). 

The chromatic number of R" is the least number k so that R" can be 
divided into k subsets with none of the subsets containing two points at 
unit distance. 

THEOREM 1.2 [ 23 ]. For n = 2, 3, 4 and 5, the chromatic number o f  R" is 
known to. have lower bounds 4, 5, 6 and 8 respectively. 

An asymptotic upper bound of the form (3 +o(1))" for the chromatic 
number of R" was given by Larman and Rodgers [23]. A loiver bound 
given by Frankl and Wilson [13] is (1 +o(1))(1.2)". 
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We will give improved bounds for n = 4 and 5 by geometric methods. 
The new lower bounds when n = 4  and n = 5  will be 7 (Theorem 3.1) and 
9 (Theorem 4.1 ), respectively. The proof in the case n = 4 will use the result 
that a 2-coloring of 4-dimengional space gives a monochromatic square. 

2. ANY 2-COLORING OF 4-DIMENSIONAL SPACE MUST CONTAIN A 
MONOCHROMATIC SQUARE OF SIDE a 

Erd6s et al. [5]  have shown that: 

THEOREM 2.1 [5] .  For any b, i f  R 6 is 2-colored, a monochromatic square 
of  side b results. 

Proof. We include their proof, as it is relevant to our own. They use the 
fact that if the complete graph on 6 points is two-colored, it must contain 
a monochromatic four cycle (we are assuming an edge coloring). They then 
look at all 15 six dimensional points that have two coordinates equal to 
b/(2~/2), and the rest of the coordinates equal to zero. They induce a color- 
ing of the complete graph on six points from the coloring of these points 
by assigning the edge ac the color of the point with non-zero coordinates 
at positions a and c. Then an easy set of computations reveals than the 
resultant monochromatic four cycle corresponds to a monochromatic 
square whose side is b. Later, it was realized this actually proved that a 
two-coloring of 5-dimensional space must result in a monochromatic 
square; as the set of 15 points all lie in a hyperplane. 

Call the set of points in 5-dimensional space with two coordinates equal 
t o  some constant b/(21/2) and the rest of the coordinates equal to 0 the 
standard coJ~guration of side b. This configuration can be embedded in 
four dimensional space because all its points lie in a hyperplane-the sum 
of the coordinates is always (2~/2)b. Form an induced coloring of the com- 
plete graph on 5 points as follows: the edge ij is given the color of the point 
of the standard configuration of side b with non-zero coordinates i and j. 
We note some correspondences for future reference: 

LEMMA 2.2. Define mapping p as sending the edge ij of  the complete 
graph on 5 points to the point of  the standard colfiguration of side b with 
non-zero coordinates at i and j. S#ice p is one to one, we can extend to a 
mapping of sets of  edges to sets of  points by sending a set of  edges, { Ei} , to 
the set of  images, {p(Ei)}. We say that a set of  edges corresponds to a set 
of  points i f  p sends the set of  edges to the set of  points. Note that all the 
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( l )  
(2) 
(3) 
(4) 

angle; 

(5) 
(6) 

geometric shapes below have sides of length b and when we speak of a 
geometric configuration we mean its vertices. 

Four edges adjacent to a point correspond to a regular tetrahedron; 

A 4-cycle corresponds to a square; 

A 3-cycle corresponds to an equilateral triangle; 

Three edges adjacent to one point corresponds to an equilateral tri- 

The complete graph on 4 points corresponds to an octahedron; and 

The complete graph on 4 pohlts with one edge missing corresponds 
to the square-based pyramid. 

LEMMA 2.3. There are only two subgraphs of the complete graph on 5 
points which have the property that neither they nor their complement contain 
a four cycle: These two subgraphs are the 5 cycle, and the graph with 5 
edges: 12, 23, 13, 24 and 35. 

LEMMA 2.4. I f  4-dimensional space is 2-colored in a manner so that it 
does not contain a monochromatic square of side b, then it also does not con- 
tain a monochromatic tetrahedron of side b. 

Proof If the 4-dimensional space contains a monochromatic  
tetrahedron K of side b, then place a congruent copy of the standard con- 
figuration with side b so four vertices adjacent to one point correspond to 
the vertices of K. Then since the graph is not one of the two types described 
in Lemma 2.3, it will contain a monochromatic  four cycle which will 
correspond to a square of side b, resulting in a contradiction. 

LEMMA 2.5. Consider a 2-colorOTg of 4-space which does not contain a 
monochromatic square with side of length b. In that 2-coloring, let T I and T z 
be two monochromatic equilateral triangles with different colors. I f  the planes 
determ#Ted by Tl and T 2 are parallel and perpendicular to the line segment 
L their centroids, then the length of L is greater than 2(21/2/3 l/z)b = c. 

Proof The two triangles both have circles of radius c/2 corresponding 
to those points which together with the triangles form a tetrahedron of side 
b (c/2 is" the altitude of a tetrahedron of side b). If the conclusion of the 
lemma does not hold, these circles intersect at a point and if this point is 
either color, it forms a monochromatic  tetrahedron of side b with one of 
the triangles. This yields a contradiction by Lemma 2.4. 
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LEMMA 2.6. The radius of  the circle of  points which are distance b 
away from each of the endpoints of  the two segments which are translates 
of each other by a vector orthogonal to the lines which contain the line 
segments is a continuous function ((3/4)b 2 -  (1/4)d2) 1/2 of the length of  the 
translating vector. So is the magnitude in radians of the angle O= 
2 sin-I(b/(2((3/4)b 2 -  (1/4)d2)]/2)) on the circle between two points on the 
circle distance b apart. 

Proof We note that on the plane containing the two line segments the 
midpoint, m, of the centers of the segments is the only point equidistant 
from all the endpoints of the segments. Its distance from each of the four 
points is easily seen to be (d2+b2)]/2/2. Now assume we have a point, p, 
distance b from each of the endpoints. Then p and the four endpoints deter- 
mine a three-space in the four-space. In three-space we know that the set 
of points equidistant from the vertices of a rectangle is the line through the 
centroid of the rectangle perpendicular to the plane of the rectangle. In this 
case the centroid of the rectangle is m. Using the Pythagorean theorem we 
see the distance from p to m must be ( (3 /4)b2- (1 /4)d2)  ]/2. In 4-space it 
can easily be seen that the set of points a fixed distance from a point and 
having the property that the line they form with that point is perpendicular 
to a certain plane form a circle. Clearly the radius of that circle must be 
((3/4) b z -  (1/4)d2) m and we have proven the first part of the theorem. 

To prove the second part, recall that the formula for the length of a 
chord whose angle is 0 is 2r sin(0/2). So let us set b = 2 r  r sin(0/2) then 
b/2r=rsin(O/2) and 2 sin-](b/2r)=O. Finally, substituting ((3/4) b 2 -  
(1/4) d2) I/2 for r we get 0 = 2  sin- l( b/( ( 2( ( 3/4 ) b 2 -  (1/4) d2)1/2)). 

LEMMA 2.7. Consider a 2-coloring of 4-dimensional space which does not 
contain a monochromatic square of  side b. h7 such a coloring, there is a dense 
set S of  distances between 0 and (21/2) b such that whenever two parallel l&e 
segments of length b in the color&g have monochromatic endpoints with dis- 
tinct colors and the perpendicular bisector of  both segments coincide, then the 
distance between the centroids of the two segments is not a member of S. 

Proof If the above conditions hold, there is a circle of points which are 
distance b away from each of the endpoints of the two segments. From the 
previous lemma, the radius of the circle is a continuous function 
((3/4) b 2 -  (1/4)d2) 1/2 of the distance between the line segments. We note 
that within the range of values between 0 and (2 ]/2) b the diameter is > b. 
This means it is meaningful to talk in this range of the magnitude in 
radians of the angle on the circle between two points on the circle distance 
b apart. This magnitude, 0 = 2 s in-  ](b/(2((3/4) b 2 -  (1/4) d 2) ]/2)). Then the 
set of distances that cause such an arc length of the form 2re(d/e) where d 
and e are odd integers, is dense within the range of values between 0 and 
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(21/2) b. In a circle where this occurs, there is an odd set of points which 
can be numbered from 1 to 2 n +  1 such that i and i +  1 are distance b 
apart, and 1 and 2n + 1 are distance b apart. Given any 2-coloring, there 
will be two points in this set at distance b apart and having the same color. 
These points together with one of the segments will form a monochromatic  
tethrahedron. This is a contradiction. 

COROLLARY 2.8. Consider a 2-coloring o f  4-dimensional space which 
does not contain a monochromatic square with side length b. Let s I be a 
member o f  S, the set in Theorem 3.1.7. In this 2-coloring, there is no 
monochromatic equilateral triangle Rl with side b which is a translate in a 
direction perpendicular to its plane by vector o f  length s~ from an equilateral 
triangle R 2 o f  side b, with two vertices the opposite color from the color o f  R 1 . 

Proof  We obtain a contradiction by considering the two vertices of 
opposite color in R2 and the corresponding two vertices of R~. These 4 
points satisfy the hypothesis of the preceding lemma. 

LEMMA 2.9. I f  a color#~g does not contain a monochromatic square o f  
side b, and i f  A l and A 2 are two monochromatic equilateral triangles o f  side 
b in that coloring o f  the same color rvhich are translates o f  each other in a 
direction perpendicular to their planes, then the distance o f  the translating 
vector must be greater than (21/2) b. 

Proof We will construct a plane P consisting of points which 
correspond to translates of the original triangle, in a direction per- 
pendicular to the plane of the original triangle as follows: We let the cen- 
troid of each triangle represent it. Call the two centroids corresponding to 
the original two triangles al and a2. Call the set of circles in P centered at 
a, with radius a member of S, `4. Because S is dense, there will be a circle 
6 in .4 which will be intersected by the circle 2 of points in P distance b 
from A2. We need density of S in case a2 is very close to al .  Then we use 
it to find a member of S, w such that b < w < b + [a I a 21. Then the circle 
with radius w about a 1 will intersect 2. 

Let q denote a point of intersection of ~ with 2. Then the triangle Q 
associated with q is a translate of the triangle A2 by vector aq which has 
length b. So if Q has two vertices the color of the original triangle, A2, they 
will form., together with the corresponding vertices in A2 a monochromatic  
square of side b. So Q must have at least two points of opposite color of 
A2. But these two points together with the corresponding points in A I will 
form two segments which are translates by a vector of length w. Since w is 
a member of S, this contradicts Lemma 2.7. 
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Before proceeding any further let us note that a four dimensional cross 
polytope is the four dimensional analog of the octahedron and can be 
realized by the points ( _ 1 , 0 , 0 , 0 ) ,  ( 0 , _ 1 , 0 , 0 ) ,  (0,0, ___1,0) and 
(o, o, o, +1). 

LEMMA 2.10. I f  a coloring does not contain a square of  side b, then in 
that coloring, each four dimensional cross polytope of  side b, then in that 
coloring, each four dimensional cross polytope of side b must have exactly 4 
monochromatic triangles among the 32 equilateral triangles of  side b its ver- 
tices form. 

Proof. Consider the four pairs of points which are (2 ~/2) b apart from 
each other. If 3 pairs or more are dichromatic, then they form two 
monochromatic equilateral triangles of side b which are of opposite colors 
and satisfying the conditions of Lemma 2.5. Then by Lemma 2.5 a 
monochromatic square of side b is formed and we get a contradiction. 

If one or less pair is dichromatic, we will have 3 or more monochromatic 
pairs. Then two of the three or more monochromatic pairs form a 
monochromatic square of side b which results in a contradiction. 

So exactly two of the pairs are dichromatic. If both remaining pairs are 
the same color, a monochromatic square is formed which again results in 
a contradiction. So the remaining two pairs are monochromatic of opposite 
colors, and hence we have fixed one coloring for all four pairs. Thus we 
have fixed a coloring for the 4-dimensional cross polytope. This coloring 
will result in exactly four of the 32 equilateral triangles formed by the ver- 
tices being monochromatic. 

THEOREM 2.11. I f  4-dimensional space is 2-colored, then a mono- 
chromatic square with side b is formed. 

Proof. Consider all four dimensional cross polytopes with side of length 
b, with centers at (nl/mlOOOOO, n2/mlOOOOO, n3/mlOOOOO, n4/mlO0000) 
with all ni between 0 and m whose vertices consist of the center translated 
by a distance equal to b/(2 l/a) b in each of the 8 directions parallel to one 
of the coordinate axes. Now for each of the 32 possible triangles in a four 
dimensional cross polytope of this type there are at most m 3 
monochromatic triangles: 

For each triangle, there is at least one coordinate whose direction is 
orthogonal to the plane of the triangle. We note that we have a set of 32 
equivalence classes of triangles each class containing triangles which are 
translates of each other. Then for each two triangles which are translates 
of each other with the three coordinates equal whose axes are non- 
orthogonal to the plane of the triangles, both of them cannot be 



FINITE EUCLIDEAN RAMSEY THEORY 279 

monochromatic  or there will be a contradiction with Lemma 2.5 or 
Lemma 2.8. 

Hence we have at most 32m 3 monochromatic  triangles. By Lemma 2.9 
there must be 4m 4 monochromatic  triangles (4 for each octahedron). This 
results in a contradiction if m > 1000. So we must have a monochromatic  
square with side b and we are done. 

3. THE CHROMATIC NUMBER OF 4-DIMENSIONAL SPACE IS AT LEAST 7 

Recall that the chromatic number of n-space is the least positive integer 
t such that the points of R" can be partitioned into t subsets with no two 
points in any subset at unit distance. Clearly, this definition does not 
depend on "unit" distance, and we may instead insist that no two points 
are in any subset at distance b, where b is any fixed positive number. 

The primary goal of this section will be to prove the following lower 
bound. 

THEOREM 3.1. The chromatic number of 4-space is at least 7. 

Proof The proof  of this theorem will require a series of lemmas. 
Throughout  this section we assume that we have a fixed 6-coloring, of 4- 
space and that no two points of the same color are at distance 1. We argue 
to a contradiction. First, we combine the six colors into two groups of 
three. 

LEMMA 3.2. I f  under the resultant 2-coloring, there is no resultant 
monochromatic pyramid of side b, there is a regrouping of the six colors into 
two new groups of three, such that one of the two new groups contains a 
monochromatic pyramid. 

Proof Assume we have a 2 coloring resulting from two groups of three 
colors each. By the result of the previous section, we have a 
monochromatic  square of one color of side b. We now imbed this 
monochromatic  square of side b in a monochromatic  cross polytope of side 
b. Each vertex of the cross polytope outside the square forms a pyramid 
with the square. Then since there is no monochromatic  pyramid, the four 
vertices of the cross polytope besides the square must be opposite color to 
the square. Hence the cross polytope consists of two monochromatic  
squares of opposite colors. 

Now since each group contains three colors, each square must contain 
two points of the same color. Call the points in the first square of the same 
color c~ and c2, and the points in the second square of the same color dl 
and d2. Now cl and c2 cannot be distance b apart because they are the 
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same color. So they must be distance (2 I/2) b apart. By a similar proof, d~ 
and d2 must be (2 ~/2) b apart. Using this information we can easily see c~, 
ca, d~, and d2 form a square of side b. Together with a third point from the 
cross polytope, they form a pyramid with at most three original colors. 
Form a new grouping with this group of three in one group (if it is a group 
of two add an original color at random) and let the other group contain 
the other colors. Thus we have a new set of two groups each containing 
three colors such that one group forms a monochromatic pyramid of side b. 

We use Lemma 3.2 to find a division of the 6-colors into two groups of 
three colors each such that one group contains the points of a pyramid of 
side b. This division into two groups will be the 2-coloring referred to in 
what follows. We say a configuration is monochromatic if all its points are 
in the same group. We divide the proof into two cases depending on 
whether or not one color contains the vertices of an octahedron of side b. 

Case I. A monochromatic octahedron of side b is formed. 

Without loss of generality, let the octahedron be red. We imbed it in a 
standard configuration (defined in Section 2) so that it can be put into a 
correspondence with the complete graph on 4 points. From now on when 
we refer to the color of an edge we mean the color of the point it 
corresponds to under the correspondence of Lemma 3.2. Recall that under 
this correspondence the complete graph on 5 points corresponds to the 
standard configuration. Then note that none of the edges which connect 
the fifth point to any of the four points in the complete graph can be red, 
or we would have four red edges adjacent to the same point. This would give 
us a red tethrahedron of side b. In this case, two of the four points of the 
tetrahedron would have to be of the same original color, and we would get 
two points of the same original color distance b apart. This is a contradic- 
tion. So all the edges connecting the fifth point to the four points must be 
blue. We then obtain four blue edges adjacent to one point. This yields a 
blue tetrahedron of side b, which results in the same contradiction as above. 

Case 2. There is no monochromatic octahedron of side b. 

By Lemma 3.2 we have a monochromatic pyramid. Without loss of 
generality let it be red. Recall the correspondence between the complete 
graph on 5 points and the standard configuration. Imbed the pyramid in 
the standard configuration so that it forms a complete graph on four points 
with one edge removed. Label the points with the edge removed between 
them 1 and 4. Label the other two points in the complete graph 2 and 3. 
Label the remaining point 5. The edges 52 and 53 cannot be red, or we 
would get four edges of the same color at one point. This implies a 
monochromatic tethrahedron, and the same contradiction reached in 
Case 1. So edge 52 and 53 must be blue. 
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If edge 54 were blue then the complete graph on the points 2, 3, 4 and 
5 would correspond to an octahedron of side b with all 3 pairs of its 
opposite points dichromatic. If edge 51 were blue then the complete graph 
on the points I, 2, 3 and 5 would correspond to an octahedron of side b 
with all 3 pairs of its opposite points dichromatic. We have shown in Sec- 
tion 2 that an octahedron of side b with all 3 pairs of its opposite points 
dichromatic leads to a monochromatic tetrahedron of side b. But this leads 
to a contradiction as noted earlier. So both edges 54 and 51 must be red. 
Now we have obtained a coloring of all the edges of the complete graph 
on 5 points. 

The resultant set of red edges, when three colored must contain two 
adjacent edges. To see this, let the three colors be purple, blue, and green. 
Now without loss of generality let edge 23 be purple. Then edges 24, 43, 31, 
and 12 are all adjacent to 23 and hence must be blue or green. Since edges 
24 and 43 are adjacent one must be blue and one must be green. Since 54 
is adjacent to both 24 and 43 it must be purple. Since 31 and 12 are adja- 
cent one must be blue and one must be green. Since 51 is adjacent to both 
31 and 12 it must be purple. But 54 and 51 cannot both be purple because 
they are adjacent. This gives us a contradiction. 

So we must have two adjacent edges with the same color. These edges 
correspond to points distance b apart that have the same original color. 
This contradiction completes the proof of Theorem 3.1. 

4. THE CHROMATIC NUMBER OF R s Is AT LEAST 9 

In this section, we prove the following lower bound. 

THEOREM 4.1. The chromatic number o f  5-space is at least 9. 

Again, because it is central to our approach we begin with the proof of 
a weaker result. 

THEOREM 4.2 [21]. The chromatic number of  R 5 is at least 8. 

Proof If we wish to show that the distance (2 ~/2) must occur in any 
7-coloring, we look at the configuration consisting of all points having an 
even number of coordinates equal to 1 and the rest of the coordinates equal 
to zero. This configuration, called the half cube, contains 16 points: One 
with all zero's, 10 with 2 non-zero coordinates, and 5 with 4 non-zero coor- 
dinates. Now all distances between the points of the half cube are 2 and 
(2~/2). Moreover no 3 points can have distances all equal to 2 as then the 
minimum sphere they could lie in would have radius equal to 2/(3 ~/2) but 
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the entire half cube can be imbedded in a sphere of radius (5 t/z)~2, centered 
about the point with all coordinates equal to 1/2 which gives a contradic- 
tion. So we have there must be at most two elements of each color in the 
half cube. Since we have 16"elements, we need at least 8 colors. 

We further note that in any 8 coloring of R 5, the half cube must have 
exactly two elements of each color. 

DEFINITION 4.3. Call the configuration consisting of all points whose 
coordinates are the sum of the coordinates of any two points of the half 
cube the half cube sum. 

To illustrate what this is, let us look at its points: First, since the origin 
is in the half cube the original half cube is in the half cube sum. Any point 
in the half cube added to itself gives the original point with its coordinates 
multiplied by 2. It also contains 30 points with two 0 coordinates, two 1 
coordinates, and one 2 coordinate; 30 points with two 2 coordinates two 
2 l's and one 0; 10 points with two l's and three 2's, and 5 points with one 
2 and four l's. 

DEFINITION 4.4. The half cube sum contains configurations isomorphic 
to the half cube. For each element of the half cube, there is a configuration 
consisting of the sum of each element of the half cube with that element. 
For each element a, we designate this configuration as the a-half cube. 
Thus the original half cube would be designated the 0-half cube. From the 
above discussion in an 8-coloring with no two monochromatic points dis- 
tance (2 m) apart, each a-halfcube must contain exactly two elements of 
each color class. 

LEMMA 4.5. h7 a 8-coloring with no two monochromatic points at dis- 
tance (2 l/z) apart when the points (0, O, O, O, O) and (1, 1, 1, 1, 2) are the 
same color, then (1, 1, 1, 1, 0) is that color. 

Proof We must have another point that color in the (0, 0, 0, 0, 0)-half 
cube. However, that second point cannot have two l's or a pair of points 
distance (21/2) apart is formed. So it must have four l's but if it is not 
(1, I, 1, 1,0) it is at distance (2 ~/2) from (1, 1, 1, 1,2). Hence it must be 
(1, 1, 1, 1, 0). 

LEMMA 4.6. I f  we have an 8-coloring with no monochromatic points dis- 
tance (2 m) apart, two points c and d o f  the same color cannot be distance 
2(2 m) apart. 

Proof If they were, the set of points S at distance 2 from c and d must 
be the same color as c and d. This follows from Lemma 4.5 for a suitable 
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half cube. But then the points in S would form a monochromatic  4-dimen- 
sional sphere of radius (21/2), which would contain 2 points of the same 
color at distance (21/2). 

COROLLARY 4.7. Given an 8-coloring with no monochromatic points dis- 
tance (21/2) apart, i f  two points with two coordinates equal to 2 and the rest 
equal to 0 are the same color, then they cannot both have a 2 in the same 
coordinate position. 

Proof  If they do, the distance between them is 2(21/2), and we have a 
contradiction by Lemma 4.6. 

COROLLARY 4.8. Given an 8-coloring with no monochromatic points dis- 
tance (21/2) apart, i f  a point x with one coordinate equal to 2 and the rest 
equal to one is the same color as a point y with two coordinates equal to 2 
and the rest equal to zero, then the coordinate o f  x which is 2 is it the same 
as the coordinate o f  y which is 2. 

Proof  If not, then the distance between the two points is 2(21/2), and 
we get a contradiction by Lemma 4.6. 

COROLLARY 4.9. Given an 8-coloring with no monochromatic points dis- 
tance  (2u2), apart there cannot be three points o f  the same color with two 
coordinates equal to 2 and the rest O. 

Proof  The three points would have six coordinates equal to 2 between 
them. Hence, for one coordinate position there must be two different points 
with the value 2. This leads to a contradiction with Corollary 4.7. 

Proof  o f  Theorem 4.1. Assume that we have an 8-coloring of 5-space 
and no two points of the same color are at unit distance. We argue to a 
contradiction. The five points with four l's and one 2 and the point with 
all coordinates equal to 0 must be six different colors. If two are the same 
color, then the distance between them is either 2(21/2) or (21/2), and in 
either case we get a contradiction. 

We have 10 points G with two coordinates equal to 2 and the rest equal 
to 0. None of these points can be the same color as point (0, 0, 0, 0, 0), 
because they would be distance 2(21/2) apart. For  each point with four l's 
and one 2, there can only be one point in this group with the same color 
by Lemma 4.8. Only five points of G can be in the six colors mentioned in 
the above paragraph. This gives a total of at most five points in these six 
groups. Then we must have at least 5 points of this type in the remaining 
2 colors. Then we must have three points in one color, but that gives a con- 
tradiction by Lemma 4.9 and we are done. 
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