BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

(4日) (個) (目) (目) (目) (1000)

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

Known For every *c* there exists a finite number of grids G_1, \ldots, G_L such that $[a] \times [b]$ is *c*-colorable iff none of G_i are contained in $[a] \times [b]$.

ション ふぼう メリン メリン しょうくしゃ

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

Known For every *c* there exists a finite number of grids G_1, \ldots, G_L such that $[a] \times [b]$ is *c*-colorable iff none of G_i are contained in $[a] \times [b]$. The set of grids is called **The obstruction set for** *c*-coloring

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

Known For every *c* there exists a finite number of grids G_1, \ldots, G_L such that $[a] \times [b]$ is *c*-colorable iff none of G_i are contained in $[a] \times [b]$. The set of grids is called **The obstruction set for** *c*-coloring

Known The obstruction set for 2-coloring is $\{3 \times 7, 5 \times 5, 7 \times 3\}$.

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

Known For every *c* there exists a finite number of grids G_1, \ldots, G_L such that $[a] \times [b]$ is *c*-colorable iff none of G_i are contained in $[a] \times [b]$. The set of grids is called **The obstruction set for** *c*-coloring

Known The obstruction set for 2-coloring is $\{3 \times 7, 5 \times 5, 7 \times 3\}$.

Known The obs set for 3-coloring and 4-coloring are known.

Recall A grid $a \times b$ is *c*-colorable if there is COL: $[a] \times [b] \rightarrow [c]$ such that there are no mono rectangles.

Known For every *c* there exists a finite number of grids G_1, \ldots, G_L such that $[a] \times [b]$ is *c*-colorable iff none of G_i are contained in $[a] \times [b]$. The set of grids is called **The obstruction set for** *c*-coloring

Known The obstruction set for 2-coloring is $\{3 \times 7, 5 \times 5, 7 \times 3\}$.

Known The obs set for 3-coloring and 4-coloring are known.

Project Re-derive the known obs sets with a SAT Solver and (try to) find the obs set for 5-coloring.

Ramsey Games

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

Ramsey Games

Every Ramsey Theorem can be viewed as a game.

Every Ramsey Theorem can be viewed as a game. Example: R(3) = 6 is the game where BILL- EXPLAIN AND PLAY IT

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Every Ramsey Theorem can be viewed as a game. **Example:** R(3) = 6 is the game where BILL- EXPLAIN AND PLAY IT Use AI to determine a winning strategy for these games.

Every Ramsey Theorem can be viewed as a game. **Example:** R(3) = 6 is the game where BILL- EXPLAIN AND PLAY IT Use AI to determine a winning strategy for these games. Game Ramsey Numbers (example): Least *n* such that player I wins the game on K_n where both players want a K_3 .

ション ふぼう メリン メリン しょうくしゃ

Every Ramsey Theorem can be viewed as a game. **Example:** R(3) = 6 is the game where BILL- EXPLAIN AND PLAY IT Use AI to determine a winning strategy for these games. Game Ramsey Numbers (example): Least *n* such that player I wins the game on K_n where both players want a K_3 . Look at avoidance game- try to NOT get K_3 .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Recall that the Prob method was used to show $R(k) \ge k2^{k/2}$ (or so).

(ロト (個) (E) (E) (E) (E) のへの

Recall that the Prob method was used to show $R(k) \ge k2^{k/2}$ (or so).

Take Probability Seriously! Example: find the least *n* so that a random coloring (empirically) of the edges of K_n , with prob 0.99, has a mono K_4 .

ション ふぼう メリン メリン しょうくしゃ

Recall that the Prob method was used to show $R(k) \ge k2^{k/2}$ (or so).

Take Probability Seriously! Example: find the least *n* so that a random coloring (empirically) of the edges of K_n , with prob 0.99, has a mono K_4 .

Caveat I've had some HS students do this before for Graphs. Might want to do it for VDW's Theorem, Poly VDW, Square-Thm, Grid-Thms.

<ロト < 個 ト < 目 ト < 目 ト 目 の < @</p>

Known For all finite colorings of \mathbb{N} there exists x, y, z same color such that x + y - z = 0.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Known For all finite colorings of \mathbb{N} there exists x, y, z same color such that x + y - z = 0.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rado's Theorem $a_1, \ldots, a_n \in \mathbb{Z}$. TFAE

Known For all finite colorings of \mathbb{N} there exists x, y, z same color such that x + y - z = 0.

Rado's Theorem $a_1, \ldots, a_n \in \mathbb{Z}$. TFAE For all finite colorings of \mathbb{N} there is a mono sol to $\sum_{i=1}^n a_i x_i = 0$. (We take \mathbb{N} to not include 0.)

Known For all finite colorings of \mathbb{N} there exists x, y, z same color such that x + y - z = 0.

Rado's Theorem $a_1, \ldots, a_n \in \mathbb{Z}$. TFAE For all finite colorings of \mathbb{N} there is a mono sol to $\sum_{i=1}^n a_i x_i = 0$. (We take \mathbb{N} to not include 0.)

Some subset of $\{a_1, \ldots, a_n\}$ sums to 0.

Known For all finite colorings of \mathbb{N} there exists x, y, z same color such that x + y - z = 0.

Rado's Theorem $a_1, \ldots, a_n \in \mathbb{Z}$. TFAE For all finite colorings of \mathbb{N} there is a mono sol to $\sum_{i=1}^n a_i x_i = 0$. (We take \mathbb{N} to not include 0.)

Some subset of $\{a_1, \ldots, a_n\}$ sums to 0.

See next page for variants.

<ロト < 置 > < 置 > < 置 > < 置 > の < @</p>

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Demand that the mono sol be all distinct numbers (I think I did this and its not hard).

ション ふぼう メリン メリン しょうくしゃ

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Demand that the mono sol be all distinct numbers (I think I did this and its not hard).

Example: x + y - 3z does not have any subset sum to 0. But every 1-coloring has a mono sol. What about 2-coloring?

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Demand that the mono sol be all distinct numbers (I think I did this and its not hard).

Example: x + y - 3z does not have any subset sum to 0. But every 1-coloring has a mono sol. What about 2-coloring?

Coloring over the reals? (The first theorem about this may be a lemma in the Thursday talk.)

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Demand that the mono sol be all distinct numbers (I think I did this and its not hard).

Example: x + y - 3z does not have any subset sum to 0. But every 1-coloring has a mono sol. What about 2-coloring?

Coloring over the reals? (The first theorem about this may be a lemma in the Thursday talk.)

Non-linear equations (a few are known).

Caveat I have found very little on the following variants but a more careful search of the literature is needed.

 $\sum_{i=1}^{n} a_i x_i = d$ where d is a constant.

What about a set of linear equations? (This is known but I would like a good writuep.)

Demand that the mono sol be all distinct numbers (I think I did this and its not hard).

Example: x + y - 3z does not have any subset sum to 0. But every 1-coloring has a mono sol. What about 2-coloring?

Coloring over the reals? (The first theorem about this may be a lemma in the Thursday talk.)

Non-linear equations (a few are known).

Combinations of the above. Empirical studies of the above.

Can Versions of VDW, Rado, Can PolyVDW

- イロト イロト イヨト イヨト ヨー のへぐ

Can Versions of VDW, Rado, Can PolyVDW

Can VDW for all k there exists n = CVDW(k) such that for all colorings of [n] there is either a mono k-AP or a rainbow k-AP.

ション ふぼう メリン メリン しょうくしゃ

Can Versions of VDW, Rado, Can PolyVDW

Can VDW for all k there exists n = CVDW(k) such that for all colorings of [n] there is either a mono k-AP or a rainbow k-AP.

Can Rado and **Can PolyVDW** I won't state but if you know Rado and PolyVDW you can figure out the statements.

ション ふぼう メリン メリン しょうくしゃ

Can VDW for all k there exists n = CVDW(k) such that for all colorings of [n] there is either a mono k-AP or a rainbow k-AP.

Can Rado and **Can PolyVDW** I won't state but if you know Rado and PolyVDW you can figure out the statements.

Projects Good writeup of the known proof(s) of this, perhaps better bound on the numbers. Possibly empirical results.

<□▶ <□▶ <□▶ < □▶ < □▶ < □▶ = - つへぐ

What happens if you color \mathbb{R}^2 with a countable number of colors?

What happens if you color \mathbb{R}^2 with a countable number of colors?

There are only two papers on this that I know: https://www.cs.umd.edu/~gasarch/TOPICS/ramseyrect/ ramseyrect.html

What happens if you color \mathbb{R}^2 with a countable number of colors?

There are only two papers on this that I know: https://www.cs.umd.edu/~gasarch/TOPICS/ramseyrect/ ramseyrect.html

Project Read, undestand, and write up these results. Then see if you can extend.

Euclidean Ramsey

See next lecture

