

The First Anti-Ramsey Theorem
An Exposition by
William Gasarch and
Katherine Krotkov

1 Introduction

Definition 1.1 If $n \in \mathbb{N}$ then $[n] = \{1, \dots, n\}$.

The following is Schur's Theorem which is an early result (1916) in Ramsey theory:

Theorem 1.2 For all $c \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that, for all $\text{COL}: [n] \rightarrow [c]$ there exists x, y, z all the same color such that $x + y = z$.

In Schur's theorem the goal is a solution to $x + y = z$ where x, y, z are *the same* color. What if you want a solution where x, y, z are *different colors*?

Definition 1.3 Let $c, n \in \mathbb{N}$ and $\text{COL}: [n] \rightarrow [c]$. A triple $x, y, z \in [n]$ is *rainbow* if x, y, z are all different colors.

If COL colors all the numbers R then there is no rainbow solution. Our main theorem deals with this issue.

2 The Main Theorem

The following theorem was proven in 1987 by V. Alekseev and S. Savchev. The paper is in Russian and is here:

<https://www.kvant.digital/problems/m1040/>

Theorem 2.1 Let $n \in \mathbb{N}$. Let $\text{COL}: [3n] \rightarrow [3]$. Assume that every color appears in the image n times. Then there exists rainbow $x, y, z \in [3n]$ such $x + y = z$

Proof:

We let the colors be R,B,G. We can assume $\text{COL}(1) = \text{R}$. Let k be such that

$$\text{COL}(1) = \dots = \text{COL}(k-1) \neq \text{COL}(k).$$

We can assume $\text{COL}(k) = \text{B}$.

We do an example: $n = 7$, $k = 5$, and $\text{COL}(13) = \text{G}$. (When we generalize the example we will have a instead of 13). So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B								G								

We will show that either we get our rainbow solution or $\text{COL}(12) = \text{R}$. When we generalize this example (1) we will have $a - 1$ instead of 12, and (2) we will see how getting $\text{COL}(a - 1) = \text{R}$ helps prove the theorem.

Case 1: $\text{COL}(12) = \text{B}$. So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B							B	G								

Then $(1, 12, 13)$ is a rainbow solution. (In generalization, 12 is replaced with $a - 1$.)

Case 2: $\text{COL}(12) = \text{G}$. So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B							G	G								

Case 2.1: $\text{COL}(8) = \text{R}$. So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B			R				G	G								

Then $(5, 8, 13)$ is a rainbow solution. (This case did not use $\text{COL}(12) = \text{G}$.) (In generalization, 8 is replaced with $a - k$.)

Case 2.2: $\text{COL}(8) = \text{B}$. So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B			B				G	G								

Then $(4, 8, 12)$ is a rainbow solution.

Case 2.3: $\text{COL}(8) = \text{G}$. (We will go through cases that look odd; however, they are similar to what happens when we generalize this example.) So we have:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
R	R	R	R	B			G				G	G								

Case 2.3.1: $\text{COL}(3) = \text{B}$. NOT TRUE. (When we generalize this example we will have $a - 2k$ instead of 3.)

Case 2.3.2: $\text{COL}(3) = \text{R}$. TRUE. Rainbow solution $(3, 5, 8)$.

Case 2.3.2.1: $\text{COL}(3) = \text{G}$. NOT TRUE.

Case 3: $\text{COL}(12) = \text{R}$. This must be what happens.

We generalize this example.

Case 1: $\exists a \geq k + 1$, $\text{COL}(a) = \text{G}$ and $\text{COL}(a - 1) = \text{B}$. Then $(1, a - 1, a)$ is a rainbow solution.

Case 2: $\exists a \geq k + 1$, $\text{COL}(a) = \text{G}$ and $\text{COL}(a - 1) = \text{G}$.

Case 2.1: $\text{COL}(a - k) = \text{R}$. ($a - k \in [n]$ since $a \geq k + 1$.)

Then $(k, a - k, a)$ is a rainbow solution. (This case did not use that $\text{COL}(a - 1) = \text{G}$.)

Case 2.2: $\text{COL}(a - k) = \text{B}$.

Then $(k - 1, a - k, a - 1)$ is a rainbow solution.

Case 2.3: $\text{COL}(a - k) = \text{G}$. Replicate the reasoning from Case 1,2,2.1,2.2 with a replaced by $a - k$. There is either a rainbow solution or $\text{COL}(a - 2k) = \text{G}$. If $\text{COL}(a - 2k) = \text{G}$ then (1) $a - 2k \in [k]$: contradiction, or (2) repeat the argument again. Keep doing this. Eventually there is a rainbow solution since otherwise $\exists i$, $a - ik \in [k]$ and hence cannot be green.

Case 3: $\forall a$ if $\text{COL}(a) = \text{G}$ then $\text{COL}(a - 1) = \text{R}$. We map every green number a to $a - 1$. This is an injection and everything in the image is red. The number 1 is not in the image since either $\text{COL}(2) = \text{R}$ or $\text{COL}(2) = \text{B}$. Hence there is at least one more green number than red number. But the number of green numbers is the same as the number of red numbers (both numbers are n). Hence this case cannot occur.

■

3 What Else is Known?

Theorem 2.1 raises some questions:

1. View the hypothesis Theorem 2.1 each colors appears $\geq n$ times. Can we loosen the requirement? Yes. Schonheim [2] showed
2. What if we have a different equation? Fox, Mahdian, and Radoicic [1] showed the following:
For all n , for all $\text{COL}: [n] \rightarrow [4]$ where every color appears $\geq \frac{n+1}{6}$ times, there is a rainbow solution to $x + y = z + w$. The lower bound on the number of times a color can appear is tight.

We are sure that other equations have been studied. We will add those later.

References

- [1] Jacob Fox, Mohammad Mahdian, and Rados Radoicic. Rainbow solution to the Sidon equation. *Discrete Mathematics*, 308:4773–4778, 2008.
<https://mfeapp.baruch.cuny.edu/math/wp-content/uploads/2015/10/20.pdf>.
- [2] J. Schonehiem. On partitions of the positive integers with no x, y, z belonging to distinct classes satisfying $x + y = z$. In *Proceedings of the First Conference of the Canadian Number Theory Association*, 1988.
<https://www.cs.umd.edu/~gasarch/BLOGPAPERS/rainbow-xyz.pdf>.