
Homework 3, Morally Due Tue Feb 20, 2018
COURSE WEBSITE: http://www.cs.umd.edu/̃gasarch/858/S18.html
(The symbol before gasarch is a tilde.)

1. (0 points) What is your name? Write it clearly. Staple your HW.
When is the midterm tentatively scheduled (give Date and Time)? If
you cannot make it in that day/time see me ASAP.

2. (50 points) You may assume the 2-ary can ramsey theory. Recall the
statement of the 3-ary Can Ramsey Theorem:

For all ω-colorings of
(
N
3

)
there exists a set I ⊆ {1, 2, 3} such that

COL(x1, x2, x3) = COL(y1, y2, y3) iff (∀i ∈ I)[xi = yi].

(We assume x1 < x2 < x3 and y1 < y2 < y3.)

Prove the 3-ary can Ramsey theory using a proof similar to Mileti’s
of 2-ary can Ramsey. (the one that DOES NOT use 4-ary or 3-ary
hypergraph Ramsey).

SOLUTION TO PROBLEM TWO

We just sketch this.

Let COL be an ω-coloring of
(
N
3

)
.

CONSTRUCTION PART ONE

We construct an infinite sequence

X = {x1 < x2 < · · · }
and an ω-coloring COL′ of

(
X
2

)
. We will then apply The infinite 2-can

Ramsey to COL′.

The colors for COL′ are (H, c) where c is a color and (R, i) where i ∈ N.

Assume that after stage n− 1, we have

• Xn−1 = {x1, x2, . . . , xn−1}.
• An ω-coloring of

(
Xn−1

2

)
.

• An infinite set Vn−1 of numbers > xn−1 that are still in play (have
not been killed).
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Let xn be the least element of Vn−1.

Assume that COL′(x1, xn), . . ., COL′(xi−1, xn) have been defined. We
now define COL′(xi, xn).

Case 1: If there exists c and infinitely many y ∈ Vn−1 such that
COL(xi, xn, y) = c then COL′(xi, xn) = (H, c). Vn−1 is redefined (we
are not going to bother renaming it) by, you guessed it, kill all those
that disagree. Formally

Vn−1 = {y : COL(xi, xn, y) = c}

Case 2: For all c the set {y : COL(xi, xn, y) = c} is finite. Hence
(formally by inf 1-can Ramsey) there exists a subset of Vn−1 where
each col appears once. Formally:

Vn−1 = {y ∈ Vn−1 : COL(xi, xn, y) /∈ {COL(xi, xn, z) : z ∈ Vn−1∧xn < z < y}}

Case 2a: If there exists 1 ≤ j1 < j2 ≤ n− 1 such that

COL′(j1, j2) = (R, k) for some k, and

{y ∈ Vn−1 : COL(xj1 , xj2 , y) = COL(xi, xn, y)} is infinite

then let

Vn = {y ∈ Vn−1 : COL(xj1 , xj2 , y) = COL(xi, xn, y)}
COL(xi, xn) = (R, k).

Case 2b: For all 1 ≤ j1 < j2 ≤ n− 1 such that

COL′(j1, j2) = (R, k) for some k, and

{y ∈ Vn−1 : COL(xj1 , xj2 , y) = COL(xi, xn, y)} is finite.

By removing a finite number of vertices we can make, for all j1, j2 as
above,

{y ∈ Vn−1 : COL(xj1 , xj2 , y) = COL(xi, xn, y)} empty.

Let k be the least number such that no edge has color (R, k).

Let COL′(xi, xn) = (R, k).

END OF CONSTRUCTION PART ONE
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SO, we have an ω-coloring of
(
X
2

)
. Apply the infinite 2-can Ramsey

Theorem to this coloring Let A be the infinite set we get. Renumber
so that A = N.

Case 1: Suppose A is homogenous under COL′. If every edge in
(
A
2

)
has color (H, c) for some fixed c, then A also homogenous under COL.
Otherwise every edge has color (R, k) for some fixed k. Then if I = {3},
A is I−homogenous.

Case 2: Suppose that A is min-homogenous under COL′. By Ram-
sey’s theorem, there is a subset A′ ⊆ A such that either all the edges
in A′ have type H, or all the edges have type R. In the first case,
A′ is {1}-homogenous. In the latter case, for all x1 < x2 < x3 in
A, COL(x1, x2, x3) is determined entirely by x1 and x3. So define
COL′′(x1, x3) to be that color and let A′′ be the subset of A′ consisting
of only the elements with odd indices. By the 2-ary canonical ram-
sey theorem, there is a min/max/homog/rainbow subset of A′′ under
COL′′. Then it is also {1}/{3}/{}/{1, 3}-homogenous set under COL.

Case 3: Suppose that A is max-homogenous under COL′. By Ram-
sey’s theorem, there is a subset A′ ⊆ A such that either all the edges
in A′ have type H, or all the edges have type R. In the first case,
A′ is {2}-homogenous. In the latter case, for all x1 < x2 < x3 in
A, COL(x1, x2, x3) is determined entirely by x2 and x3. So define
COL′′(x2, x3) to be that color. By the 2-ary canonical ramsey theo-
rem, there is a min/max/homog/rainbow subset of A′ under COL′′.
That set is also a {2}/{3}/{}/{2, 3}-homogenous set under COL.

Case 4: Suppose that A is rainbow under COL′. By Ramsey’s theorem,
there is a subset A′ ⊆ such that either all the edges of A′ are of type
H or all of the edges of A′ are of type R. In the first case, A′ is {1, 2}-
homogenous. In the latter case, we can construct an infinite rainbow
set. Suppose B = {x1 < x2 < · · · < xk} ⊆ A′ is a maximal rainbow
set. Consider xk + 1. Since B is maximal, we know that there are
xi, xj, xp, xq, xr ∈ B such that COL(xi, xj, xk + 1) = COL(xp, xq, xr).
Since COL′(xi, xj) is of type R, and there are only finitely many pos-
sible colors of COL(xp, xq, xr), the pair (xi, xj) can only be used in
a counterexample of this form finitely many times. Since there are
finitely many possible pairs (xi, xj), the must be some integer M such
that xk+M can be safely added to B. Thus there is an infinite rainbow

3



set.

3. (50 points) This problem is a proof technique in search of a theorem.

Let X be a countable set of points in the plane. Color each pair by the
slope of the line they form. Apply the Canonical Ramsey Theorem to
this coloring.

(a) Use the idea in the last paragraph to formulate a theorem.

(b) Try to make an assumption about the points that leads to a more
interesting theorem.

SOLUTION TO PROBLEM THREE

Theorem: For all X an infinite set of points in the plane either (1)
there exists infinite Y ⊆ X such that no four sets in X form a trapezoid
OR (2) there exists infinite Y ⊆ X such that all points in Y lie on the
same line.

Proof: Let X be a countable set of points in the plane. Color each
pair by the slope of the line they form. Apply the Canonical Ramsey
Theorem to this coloring. There are four possibilities.

• There is an infinite homog set H. All of these points are on a line.

• There is an infinite min-homog set H. Let the points in H be
p1 = (x1, y1), p2 = (x2, y2), . . .. The slope of (p1, p2), p1, p3, etc
are all the same. Hence p1, p2, . . . are all on the same line. Hence
all the points are on a line, so this is actually a homogenous set,
and a min-homog set is not actually possible.

• There is an infinite max-homog set H. Let the points in H be
p1 = (x1, y1), p2 = (x2, y2), . . .. Let n ≥ 3 ∈ N. The slope of
(p1, p2), p1, pn, are the same. Hence p1, p2, pn are all on the same
line, and indeed all of the points in H are on the same line. So
this is actually a homogenous set, and a max-homog set is not
actually possible.

• There is an infinite rainbow set H. NO two pairs of points in H
have the same slope. Hence no four points form a trapezoid.
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MORE INTERESTING THEOREM: The line stuff is stupid. We could
assume ahead of time that there is a limit to how many points are on
a line. But that seems awkward. We will assume something stronger,
but a more common assumption:

Theorem: For all X an infinite set of points in the plane in general
position (meaning that no three are colinear) there exists infinite Y ⊆ X
such that no four sets in X form a trapezoid.

Proof: Similar to the proof of the theorem above, except that cases
1,2,3 can’t happen. ENDOF SOLUTION TO PROBLEMTHREE

4. (0 points but please do as I’ll ask about it in class). What did you think
of the song A finite simple group of order two by the Klein Flour? (Link
is on the website). Compare and Contrast to the BW-Rap in terms of
both lyrics and singing ability.

SOLUTION OF PROBLEM FOUR

Lyrics: If you understand every reference you know a large cardinal
amount of mathematics. They are awesome even though I don’t un-
derstand them.

Singing: They CAN sing but still they should not quit their day job.
OH- they are grad students so they don’t have day jobs!

Comparison: Clearly The Klein Four are better at singing then the
BW-guy is at rapping. Lyrics: Hard to compare as BW is about one
theorem, while the Klein Four hit lots of parts of math.

END OF SOLUTION OF PROBLEM FOUR
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