
Small Ramsey Numbers, Lower Bounds On
Ramsey Numbers: An Exposition by

William Gasarch



Better Upper Bounds on R(a, b)

Definition: R(a, b) is the least n such that for all 2-colorings of
Kn there is either a RED Ka or a BLUE Kb.

Easy Theorem: R(2, b) = b and R(a, 2) = a.

Theorem: For all a, b ≥ 3 R(a, b) ≤ R(a− 1, b) + R(a, b − 1)

Theorem: For all a, b ≥ 3 R(a, b) ≤
(a+b−2

a−1
)

Corollary: R(k) ≤ 22k√
k

.



Slight Improvement

Theorem: For all a, b ≥ 3, if R(a− 1, b) and R(a, b − 1) are both
EVEN then R(a, b) ≤ R(a− 1, b) + R(a, b − 1)− 1

1) If ∃ node v , degR(v) ≥ R(a− 1, b) then done.
2) If ∃ node v , degB(v) ≥ R(a, b − 1) then done.
3) (∀v)[degR(v) ≤ R(a− 1, b)− 1 ∧ degB(v) ≤ R(a, b − 1)]
Hence the Red-Edge Graph has:
R(a− 1, b) + R(a, b − 1)− 1 nodes: ODD
Every node has degree R(a− 1, b)− 1 ODD.

Recap: Odd number of vertices, all odd deg.
Contradiction:

∑
v∈V deg(v) = 2e



Actual Numbers:

R(3, 3) ≤ R(2, 3) + R(3, 2) ≤ 3 + 3 = 6.
R(3, 4) ≤ R(2, 4) + R(3, 3) ≤ 4 + 6 = 10. BOTH EVEN:
R(3, 4) ≤ 9.
R(3, 5) ≤ R(2, 5) + R(3, 4) ≤ 5 + 9 = 14
R(4, 4) ≤ R(3, 4) + R(4, 3) ≤ 9 + 9 = 18
R(4, 5) ≤ R(3, 5) + R(4, 4) ≤ 14 + 18 ≤ 32. BOTH EVEN:
R(4, 5) ≤ 31.
R(5, 5) ≤ R(4, 5) + R(5, 4) ≤ 31 + 31 ≤ 62.
NEED MATCHING LOWER BOUNDS.



R(3, 3) ≥ 6: We need a coloring of K5 with NO mono K3.
Vertices are {0, 1, 2, 3, 4}.
COL(a, b) = RED if a− b ≡ SQ (mod 5), BLUE OW.

I −1 ≡ SQ (mod 5): a− b ≡ SQ iff b − a ≡ SQ. COL is sym.

I Squares mod 5: 1,4.

I If there is a RED triangle then a− b, b − c , c − a all SQ’s.
SUM is 0. So

x2 + y2 + z2 ≡ 0 (mod 5)

Can show this is impossible.

I If there is a BLUE triangle then a− b, b − c , c − a all
non-SQ’s. Product of nonsq’s is a sq. So
2(a− b), 2(b − c), 2(c − a) all squares. SUM to zero- same
proof.

UPSHOT: R(3, 3) = 6.



R(4, 4) = 18.

Vertices are {0, . . . , 16}.
Use
COL(a, b) = RED if a− b ≡ SQ (mod 17), BLUE OW.
Same idea as above, but more cases.



R(3, 5) = 14.

Vertices are {0, . . . , 12}.
Use
COL(a, b) = RED if a− b ≡ CUBE (mod 13), BLUE OW.
Same idea as above, but more cases.



R(3, 4) = 9.
Subgraph of the above graph.



Can we extend this? Are there patterns?

R(4, 5) = 25, also used Number Theory.
Hope: We an use more number theory to get more lower bounds
on R(a, b).

This hope was crashed and burned
No other R(a, b) are known using Number Theory.
Very few R(a, b) are known at all.
Good News: R(5, 5): I have a 10-page survey of the results leading
up to the proof that R(5) = 43.
Caveat: This was part of an April Fools Day Post.
Temptation: Publish my bogus article in a bogus journal.

But seriously:
The Law of Small Numbers: Patterns that you see for small
values vanish when the numbers get to large to compute.
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Lower Bound on Ramsey Numbers
PROBLEM FOUR: LOWER BOUNDS ON RAMSEY NUMBERS

The following is due to
Erdos (1940) and
Gasarch (1980) and
Gauss (1810).
All independently.
R(k) ≥ (k − 1)2:

1. Take k − 1 disjoint RED cliques.

2. Color all of the edges between these RED cliques BLUE.

Clearly:

1) The graph has (k − 1)2 vertices.
2) The graph has no homog set of size k
3) If Bill had a rock band it would be called The Red Cliques
We have:

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?



Lower Bound on Ramsey Numbers
PROBLEM FOUR: LOWER BOUNDS ON RAMSEY NUMBERS

The following is due to
Erdos (1940) and
Gasarch (1980) and
Gauss (1810).
All independently.
R(k) ≥ (k − 1)2:

1. Take k − 1 disjoint RED cliques.

2. Color all of the edges between these RED cliques BLUE.

Clearly:
1) The graph has (k − 1)2 vertices.

2) The graph has no homog set of size k
3) If Bill had a rock band it would be called The Red Cliques
We have:

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?



Lower Bound on Ramsey Numbers
PROBLEM FOUR: LOWER BOUNDS ON RAMSEY NUMBERS

The following is due to
Erdos (1940) and
Gasarch (1980) and
Gauss (1810).
All independently.
R(k) ≥ (k − 1)2:

1. Take k − 1 disjoint RED cliques.

2. Color all of the edges between these RED cliques BLUE.

Clearly:
1) The graph has (k − 1)2 vertices.
2) The graph has no homog set of size k

3) If Bill had a rock band it would be called The Red Cliques
We have:

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?



Lower Bound on Ramsey Numbers
PROBLEM FOUR: LOWER BOUNDS ON RAMSEY NUMBERS

The following is due to
Erdos (1940) and
Gasarch (1980) and
Gauss (1810).
All independently.
R(k) ≥ (k − 1)2:

1. Take k − 1 disjoint RED cliques.

2. Color all of the edges between these RED cliques BLUE.

Clearly:
1) The graph has (k − 1)2 vertices.
2) The graph has no homog set of size k
3) If Bill had a rock band it would be called The Red Cliques

We have:

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?



Lower Bound on Ramsey Numbers
PROBLEM FOUR: LOWER BOUNDS ON RAMSEY NUMBERS

The following is due to
Erdos (1940) and
Gasarch (1980) and
Gauss (1810).
All independently.
R(k) ≥ (k − 1)2:

1. Take k − 1 disjoint RED cliques.

2. Color all of the edges between these RED cliques BLUE.

Clearly:
1) The graph has (k − 1)2 vertices.
2) The graph has no homog set of size k
3) If Bill had a rock band it would be called The Red Cliques
We have:

(k − 1)2 ≤ R(k) ≤ 22k−1

Can we do better?



Lower Bound on Ramsey Numbers- Can We Do
Better?

PROBLEM: We want to find a coloring of
([n]
2

)
without a k-homog

set for some n = f (k).

WRONG!- I want to just show that such exists!
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Pick a coloring at Random!

Number of colorings: 2(n2).
Number of colorings: that HAVE a homog set of size k is bounded
by (

n

k

)
× 2× 2(n2)−(k2)

Prob that a random 2-coloring HAS a homog set is bounded by(n
k

)
× 2× 2(n2)−(k2)

2(n2)
≤
(n
k

)
× 2

2(k2)
≤ nk

k!2k2/2

Want n large and nk

k!2k
2/2

< 1. Take n = 2k/2.

UPSHOT: R(k) ≥ 2k/2.
SUMMARY OF WHAT WE KNOW: 2k/2 ≤ R(k) ≤ 22k−1.



A Nice Problem

PROBLEM ONE: DISTINCT DIFF SETS
Given n try to find a set A ⊆ {1, . . . , n} such that ALL of the
differences of elements of A are DISTINCT.

Try to make A as big as possible.

STUDENTS break into small groups and try to do this.
VOTE:

1. There is a all-diff-dist set of size roughly n/3.

2. There is a all-diff-dist set of size roughly n1/4.

3. There is a all-diff dist set of size roughly log n.



An Approach

Let a be a number to be determined.

Pick a RANDOM subset A {1, . . . , n} of size a.

What is the probability that all of the diffs in A are distinct?

We hope the prob is strictly greater than 0.

KEY: If the prob is strictly greater than 0 then there must be
SOME set of a elements where all of the diffs are distinct.



Determining the Prob

If you pick a RANDOM A ⊆ {1, . . . , n} of size a what is the
probability that all of the diffs in A are distinct?

WRONG QUESTION!

If you pick a RANDOM A ⊆ {1, . . . , n} of size a what is the
probability that all of the diffs in A are NOT distinct?

We hope that it is NOT 1.
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Review a Little Bit of Combinatorics

The number of ways to CHOOSE y elements out of x elements is(
x

y

)
=

x!

y !(x − y)!
.



Determining the Prob I

If a RAND A ⊆ {1, . . . , n}, size a, want bound on prob all of the
diffs in A are NOT distinct. Numb of ways to choose a elements
out of {1, . . . , n} is

(n
a

)
.

Two ways to create a set with a diff repeated:
Way One:

I Pick x < y . There are
(n
2

)
≤ n2 ways to do that.

I Pick diff d such that x + d 6= y , x + d ≤ n, y + d ≤ n. Can
do ≤ n ways. Put x , y , x + d , y + d into A.

I Pick a− 4 more elements out of the n − 4 left.

Number of ways to do this is ≤ n3 ×
(n−4
a−4
)
.

Way Two: Pick x < y . Let d = y − x (so we do NOT pick d).
Put x , y = x + d , y + d into A. Pick a− 3 more elements out of
the n − 3 left.
Number of ways to do this is ≤ n2 ×

(n−3
a−3
)
.



Determining the Prob II

If you pick a RANDOM A ⊆ {1, . . . , n} of size a then a bound on
the probability that all of the diffs in A are NOT distinct is

n3 ×
(n−4
a−4
)

+ n2 ×
(n−3
a−3
)(n

a

) =
n3 ×

(n−4
a−4
)(n

a

) +
n2 ×

(n−3
a−3
)(n

a

)
=

n3a(a− 1)(a− 2)(a− 3)

n(n − 1)(n − 2)(n − 3)
+

n2a(a− 1)(a− 2)

n(n − 1)(n − 2)

≤ 32a4

n
Need some Elem Algebra and uses n ≥ 5.



ANSWER

RECAP: If pick a RANDOM A ⊆ {1, . . . ,m} then the prob that

there IS a repeated difference is ≤ 32a4

n .
So WANT

32a4

n
< 1

Take

a =

(
n

33

)1/4

.

UPSHOT: For all n ≥ 5 there exists a all-diff-distinct subset of
{1, . . . , n} of size roughly n1/4.



GENERAL UPSHOT

We proved an object existed by showing that the Prob that it
exists is NONZERO!



SUM FREE SET PROBLEM

PROBLEM TWO: SUM FREE SETS
(A More Sophisticated Use of Prob Method.)
Definition: A set of numbers A is sum free if there is NO
x , y , z ∈ A such that x + y = z .

Example: Let y1, . . . , ym ∈ (1/3, 2/3) (so they are all between 1/3
and 2/3). Note that yi + yj > 2/3, hence yi + yj /∈ {y1, . . . , ym}.



ANOTHER EXAMPLE

Def: frac(x) is the fractional part of x . E.g., frac(1.414) = .414.
Lemma: If y1, y2, y3 are such that
frac(y1), frac(y2), frac(y3) ∈ (1/3, 2/3) then y1 + y2 6= y3.
Proof: STUDENTS DO THIS. ITS EASY.
Example: Let A = {y1, . . . , ym} all have fractional part in
(1/3, 2/3). A is sum free by above Lemma.



QUESTION

Given x1, . . . , xn ∈ R does there exist a LARGE sum-free subset?
How Large?

STUDENTS - WORK ON THIS IN GROUPS.
VOTE:

1. There is a sumfree set of size roughly n/3.

2. There is a sumfree set of size roughly
√
n.

3. There is a sumfree set of size roughly log n.



QUESTION

Given x1, . . . , xn ∈ R does there exist a LARGE sum-free subset?
How Large?
STUDENTS - WORK ON THIS IN GROUPS.

VOTE:

1. There is a sumfree set of size roughly n/3.

2. There is a sumfree set of size roughly
√
n.

3. There is a sumfree set of size roughly log n.



QUESTION

Given x1, . . . , xn ∈ R does there exist a LARGE sum-free subset?
How Large?
STUDENTS - WORK ON THIS IN GROUPS.
VOTE:

1. There is a sumfree set of size roughly n/3.

2. There is a sumfree set of size roughly
√
n.

3. There is a sumfree set of size roughly log n.



SUM SET PROBLEM

Theorem For all ε > 0, for all A is a set of n real numbers, there is
a sum-free subset of size (1/3− ε)n.
Proof: Let L be LESS than everything in A and U be BIGGER
than everything in A. We will make U − L LARGE later.
For a ∈ [L,R] let

Ba = {x ∈ A : frac(ax) ∈ (1/3, 2/3)}.

For all a, Ba is sum-free by Lemma above.
SO we need an a such that Ba is LARGE.



HOW BIG IS Ba?

What is the EXPECTED VALUE of |Ba|?
Let x ∈ A.

Pra∈[L,U](ax ∈ (1/3, 2/3))

We take U − L large enough so that this prob is ≥ (1/3− ε).

E (|Ba|) =
∑
x∈A

Pra∈[L,U](ax ∈ (1/3, 2/3)) =
∑
x∈A

(1/3−ε) = (1/3−ε)n.

So THERE EXISTS an a such that |Ba| ≥ (1/3− ε)n.
What is a? I DON”T KNOW AND I DON”T CARE!
End of Proof



Graphs and Ind Sets

PROBLEM THREE: IND SETS IN GRAPHS
Notation:

1. A Graph is (V ,E ) where V is the set of vertices and E is a
set of pairs of vertices. Easy to draw!

2. An Ind Set in a graph (V ,E ) is a set V ′ ⊆ V such that there
are NO edges between elements of V ′.

3. If (V ,E ) is a graph and v ∈ V then the degree of v , denoted
dv , is the number of edges coming out of it.

DO EXAMPLES ON BOARD



Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size at least

n
2e
n + 1

.

We proof this using Probability, but first need a lemma.



Lemma

Lemma If G = (V ,E ) is a graph. Then∑
v∈V

deg(v) = 2e.

Proof: Try to count the edges by summing the degrees at each
vertex. This counts every edge TWICE.



Proof of Turan’s Theorem

Theorem If G = (V ,E ) is a graph, |V | = n, and |E | = e, then G
has an ind set of size

≥ n
2e
n + 1

.

Proof: Take the graph and RANDOMLY permute the vertices.

(DO EXAMPLE ON BOARD.) The set of vertices that have NO
edges coming out on the right form an Ind Set. Call this set I .



How Big is I?

How big is I

WRONG QUESTION!
What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)



How Big is I?

How big is I
WRONG QUESTION!

What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)



How Big is I?

How big is I
WRONG QUESTION!
What is the EXPECTED VALUE of the size of I .
(NOTE- we permuted the vertices RANDOMLY)



What is Prob v ∈ I

Let v ∈ V . What is prob that v ∈ I DRAW PICTURE OF v . v
has degree dv . How many ways can v and its vertices be laid out:
(dv + 1)!. In how many of them is v on the right? dv !.

Pr(v ∈ I ) =
dv !

(dv + 1)!
=

1

dv + 1
.

Hence

E (|I |) =
∑
v∈V

1

dv + 1
.



How Big is this Sum?

Need to find lower bound on∑
v∈V

1

dv + 1
.



Rephrase

NEW PROBLEM:
Minimize ∑

v∈V

1

xv + 1

relative to the constraint: ∑
v∈V

xv = 2e.

KNOWN: This sum is minimized when all of the x are 2e
|V | = 2e

n .
So the min the sum can be is∑

v∈V

1
2e
n + 1

=
n

2e
n + 1

.



DONE!

∑
v∈V

1

xv + 1
≥
∑
v∈V

1
2e
n + 1

=
n

2e
n + 1

.



END OF THIS TALK/TAKEAWAY

END OF THIS TALK
TAKEAWAY: There are TWO ways (probably more) to show that
an object exists using probability.

1. Show that the probability that it exists is NONZERO. Hence
there must be some set of random choices that makes it exist.
We did this for the distinct-sums problem.

2. You want to show that an object of a size ≥ s exists. Show
that if you do a probabilistic experiment then you (a) always
get the object of the type you want, and (b) the expected size
is ≥ s. Hence again SOME set of random choices produces an
object of size ≥ s.


