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1 Introduction

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [4]
and used to obtain lower bounds on branching programs. Since then it has been used to
get additional lower bounds and tradeoffs for branching programs [1, 2], lower bounds on
problems in data structures [2], time-space tradeoffs for restricted Turing machines [1], and
unconditional pseudorandom generators for logspace [1].

All results in this paper are from [4] or can be easily derived from their techniques unless
otherwise specified.

Def 1.1 Let f : {{0, 1}n}k → X. Assume, for 1 ≤ i ≤ k, Pi has all of the inputs except xi.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f .
At the end of the protocol all parties must know the answer. This is called the multiparty
communication complexity of f . The scenario is called the forehead model.

Note 1.2 Note that there is always the n + 1-bit protocol of (1) P1 broadcasts x2, (2) P2

computes and broadcasts f(x1, . . . , xk). The cases of interest are when d(f)� n.

We will need the following lemmas about multiparty protocols. The first one is the k = 3
case of the second one. We leave it for an exercise.

Lemma 1.3 Let P be a multiparty protocol for a function f : {0, 1}n×{0, 1}n×{0, 1}n → X.

1. Let TRAN be a possible transcript of the protocol P . There exists A1, A2, A3 ⊆ {0, 1}n
such that, for all x1, x2, x3 ∈ {0, 1}n the following holds: The protocol P on input
(x1, x2, x3) produces transcript TRAN iff (x1, x2, x3) ∈ A1 × A2 × A3.

2. Let x1, x2, x3 ∈ {0, 1}n, σ1, σ2, σ3 ∈ {{0, 1}n}3, TRAN be a transcript. Assume that
σ1 has x1 as its first element, σ2 has x2 as its second element, σ3 has x3 as its third
element. (In symbols, if ∗ means we don’t care about the element, then

σ1 = (x1, ∗, ∗)
σ2 = (∗, x2, ∗)
σ3 = (∗, ∗, x3).

) Further assume that σ1, σ2, σ3 all produces transcript TRAN . Then (x1, x2, x3) pro-
duces transcript TRAN .

Lemma 1.4 Let P be a multiparty protocol for a function f : {{0, 1}n}k → X.
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1. Let TRAN be a possible transcript of the protocol P . There exists A1, . . . , Ak ⊆ {0, 1}n
such that, for all x1, . . . , xk ∈ {0, 1}n the following holds: The protocol P on input
(x1, . . . , xk) produces transcript TRAN iff (x1, . . . , xk) ∈ A1 × · · · × Ak.

2. Let x1, . . . , xk ∈ {0, 1}n, σ1, . . . , σk ∈ {{0, 1}n}k, TRAN be a transcript. Assume that
σi has xi as its ith element. Further assume that each σi produces transcript TRAN .
Then (x1, . . . , xk) produces transcript TRAN .

We will study the following function.

Def 1.5 Let n ∈ N. We define EQ2n

n : {0, 1}n×{0, 1}n×{0, 1}n as follows (interpreting the
three inputs as numbers in binary):

EQ2n

n (x, y, z) =

{
Y ES if x+ y + z = 2n

NO if x+ y + z 6= 2n
(1)

We will first establish a connection between d(EQ2n

n ) and some concepts in Ramsey
Theory. We will then use results from Ramsey Theory to obtain upper and lower bounds on
d(EQ2n

n ). The lower bounds will be applied to obtain lower bounds on branching programs.
Here is what we will show.

1. d(EQ2n

n ) ≤
√

log(2n) =
√
n (First proven by Chandra, Furst, Lipton [4].) (This is

somewhat surprising since it would seem the best you could do is have Alice yell to
Bob what her bits are.)

2. d(EQ2n

n ) ≥ ω(1) (First proven by Chandra, Furst, Lipton [4].)

3. d(EQ2n

n ) ≥ log log log 2n + Ω(1) = log log n + Ω(1) (First proven by Beigel, Gasarch,
Glenn [3].)

2 Connections Between Multiparty Comm. Comp. and

Ramsey Theory

In this section we review the connections between the multiparty communication complexity
of f and Ramsey Theory that was first established in [4].

Def 2.1 Let c, T ∈ N.

1. A proper c-coloring of [T ] × [T ] is a function COL : [T ] × [T ] → [c] such that there
do not exist x, y ∈ [T ] and λ ∈ [T − 1] such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ)

Another way to look at this: In a proper coloring there cannot be three vertices that
(a) are the same color, and (b) are the corners of a right isosceles triangle with legs
parallel to the axes and hypotenuse parallel to the line y = −x.)
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2. Let χ(T ) be the least c such that there is a proper c-coloring of [T ]× [T ].

Theorem 2.2 Let 2n : N→ N.

1. d(EQ2n

n ) ≤ 2 lg(χ(2n)) +O(1).

2. d(EQ2n

n ) ≥ lg(χ(2n) + Ω(1).

Proof:
1) Let COL be a proper c-coloring of [2n]× [2n]. We represent elements of [c] by lg(χ(2n))+
O(1) bit strings. P1, P2, P3 will all know COL ahead of time. We present a protocol for
this problem for which the communication is 2 lg(χ(2n)) + O(1). We will then show that it
is correct.

1. P1 has y, z. P2 has x, z. P3 has x, y.

2. P1 calculates x′ such that x′ + y + z = 2n. (If no such x′ exists then output NO and
thats the end of the protocol.) P1 broadcasts σ1 = COL (x′, y).

3. P2 calculates y′ such that x + y′ + z = 2n. (If no such y′ exists then output NO and
thats the end of the protocol.) P2 broadcasts σ2 = COL (x, y′).

4. P3 looks up σ3 = COL (x, y). P3 broadcasts YES if σ1 = σ2 = σ3 and NO otherwise.
(We will prove later that these answers are correct.)

Claim 1: If EQ2n

n (x, y, z) = Y ES then P1, P2, P3 will all think EQ2n

n (x, y, z) = Y ES.

Proof: If EQ2n

n (x, y, z) = Y ES then x′1 = x1, x
′
2 = x2, and x′3 = x3. Hence σ1 = σ2 = σ3

Therefore P1, P2, P3 all think EQ2n

n (x, y, z) = Y ES.
End of proof of Claim 1.

Claim 2: If P1, P2, P3 all think that EQ2n

n (x, y, z) = Y ES then EQ2n

n (x, y, z) = Y ES.

Proof: Assume that P1, P2, P3 all think EQ2n

n (x, y, z) = Y ES.
Hence

COL (x1, x2) = COL (x′1, x2) = COL (x1, x
′
2).

We call this The Coloring Equation.
Assume

x1 + x2 + x3 = λ.

We show that λ = 2n.
By the definition of x′1
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x′1 + x2 + x3 = 2n.

Hence

x′1 + (x1 + x2 + x3)− x1 = 2n.

x′1 + λ− x1 = 2n.

x′1 − x1 = 2n − λ

x′1 = x1 + 2n − λ

By the same reasoning

x′2 = x2 + 2n − λ.

Hence we can rewrite The Coloring Equation as

COL (x1, x2) = COL (x1 + 2n − λ, x2) = COL (x1, x2 + 2n − λ).

Since COL is a proper coloring, 2n − λ = 0, so λ = 2n.
End of proof of Claim 2.

2) Let P be a protocol for EQ2n

n . Let d be the maximum number of bits communicated. Note
that the number of transcripts is bounded by 2d. We use this protocol to create a proper
2d-coloring of [2n]× [2n].

We define COL (x, y) as follows. First find z such that x + y + z = 2n. Then run the
protocol on (x, y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of [2n]× [2n].
Proof: Let λ ∈ [2n] be such that

COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

We denote this value TRAN (for Transcript). We show that λ = 0.
Let z be such that

x+ y + z = 2n.

Since
COL (x, y) = COL (x+ λ, y) = COL (x, y + λ).

We know that the following tuples produce the same transcript TRAN :
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• (x, y, z).

• (x+ λ, y, z − λ).

• (x, y + λ, z − λ).

All of these input produce the same transcript TRAN and this transcript ends with a
YES. By Lemma 1.3.2 the tuple (x, y, z− λ) also goes to TRAN . Hence x+ y+ z− λ = 2n.
Since x+ y + z = 2n we have λ = 0.
End of Proof of Claim 3

We now have a really odd situation. We have d(EQ2n

n ) = Θ(lg(χ(2n)))
YEAH: We we have upper and lower bounds that match up to a multiplicative constant!
BOO: We don’t know that the function IS.
In the next two sections we get upper bounds and lower bounds on lg(χ(2n)).

3 Upper Bounds

We need to properly color [2n] × [2n] and keep the number of colors down. We will prove
lower bounds on W (3, c) on the way there.

Def 3.1 A 3-free set is a set with no 3-AP’s.

If X is a 3-free set and X ⊆ [T ] then X could be a color in a c-coloring of [T ] that has
no mono 3-AP’s. How can we get the other colors?

4 Lower Bounds

4.1 An ω(1) Lower Bound for d(EQ2n

n )

We will need the following theorem from Ramsey Theory.

Theorem 4.1 For all c there exists T such that, there are no proper c-colorings of [T ]× [T ].

Theorem 4.1 can be proven several ways. We enumerate them:

1. This can be proven from van der Waerden’s theorem.

2. This can be proven by the same techniques as van der Waerden’s theorem.

3. This follows from the Galai-Witt Theorem. This generalizes to coloring [T ]k.

4. We will give a concrete lower bound (rather than ω(1)) and is in Section 4.2. Other
ways generalize to k variables.
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Theorem 4.2 If limn→∞ 2n =∞ then d(EQ2n

n ) = ω(1).

Proof: By Theorem 2.2
d(EQ2n

n ) ≥ lg(χ(2n)) + Ω(1).

Hence we need to show that χ(T ) is not bounded by a constant (as T goes to infinity).
Assume, by way of contradiction, that there exists c such that, for all T , there is a proper

c-coloring of [T ]× [T ]. This contradicts Theorem 4.1.

We will need to look at k-party protocols for the following function.
MOD2n

n,k : ({0, 1}n)k → {0, 1}

MOD2n

n,k(x1, . . . , xk) =

{
1 if

∑k
i=1 xi = 2n

0 otherwise.
(2)

The following can be proven in a manner similar to the k = 3 case.

Theorem 4.3 Fix k. If limn→∞ 2n =∞ then d(MOD2n

n,k) = ω(1).

4.2 An Ω(log log log 2n) Lower Bound for d(EQ2n

n )

The following combinatorial lemma will allow us to prove a lower bound on d(EQ2n

n ). This
lemma is a reworking of a theorem of Graham and Solymosi [5].

Lemma 4.4

1. χ(2n) ≥ Ω(log log 2n).

2. d(EQ2n

n ) ≥ log log log 2n + Ω(1). (This follows from part 1 and Theorem 2.2.)

Proof: Assume that COL is a proper c-coloring of [2n] × [2n]. We find sets X1, Y1 ⊆
[2n]× [2n] such that COL restricted to X1×Y1 uses c−1 colors. We will iterate this process
to obtain Xc, Yc such that COL restricted to Xc × Yc uses 0 colors. Hence |Xc| = 0 which
will yield c = Ω(log log log 2n) = Ω(log log n).

For 0 ≤ s ≤ c we define Xs, Ys, hs, USED-COLs.

1. X0 = Y0 = [2n]. h0 = |X0| = |Y0| = 2n. USED-COL0 = [c].

2. Assume Xs, Ys, hs are defined and inductively USED-COLs = [c − s] (we will be
renumbering to achieve this). Also assume that Partition Xs× Ys (which is of size h2s)
into sets Pa indexed by a ∈ [2n] defined by

Pa = {(x, y) ∈ Xs × Ys | x+ y = a}.

(Pa is the ath anti-diagonal.) There exists an a such that |Pa| ≥ dh2s/2ne. There exists
a color, which we will take to be c− s by renumbering, such that at least ddh2s/2ne /ce
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of the elements of Pa are colored c − s. (We could use c − s in the denominator but
we do not need to.) Let m = ddh2s/2ne /ce. Let {(x1, y1), . . . , (xm, ym)} be m elements
of Pa such that, for 1 ≤ i ≤ m, COL (xi, yi) = c− s. We will later show that, for all
i 6= j, COL (xi, yj) 6= c− s.

3. Let
hs+1 = m′ = dm/3e
Xs+1 = {x1, x2, . . . , xm′}
Ys+1 = {ym+1−m′ , . . . , ym}

USED-COLs+1 = [c− (s+ 1)]

Note that for all (xi, yj) ∈ Xs+1×yj ∈ Ys+1, i < j hence i 6= j. Since we will show that
for all i 6= j, COL (xi, yj) 6= c− s, we will have that, for all (x, y) ∈ Xs+1× yj ∈ Ys+1,
COL (x, y) 6= c− s.

Claim 1: For all i 6= j, xi 6= xj and yi 6= yj.

Proof: If xi = xj then

xj + yj = a = xi + yi = xj + yi.

Hence yj = yi. Therefore (xi, yi) = (xj, yj). This contradicts Pa having m distinct points.
The proof that yi 6= yj is similar.

End of Proof of Claim 1
Claim 2: For all i 6= j, COL (xi, yj) 6= c− s.

Proof: Assume, by way of contradiction, that COL (xi, yj) = c− s. Note that

COL (xi, yj) = COL (xi, yi) = COL (xj, yj) = c− s.

We want a λ 6= 0 such that yi = yj + λ and xj = xi + λ. Using that xi + yi = xj + yj = a we
can take λ = (xj + yi − a). The element λ 6= 0: if λ = 0 then one can show yi = yj, which
contradicts Claim 1.

We now have

COL (xi, yj) = COL (xi + λ, yj) = COL (xi, yj + λ).

This violates COL being a proper coloring.

End of Proof of Claim 2
Note that, by Claim 2 above

{ COL (x, y) | x ∈ Xs+1, y ∈ Ys+1} ⊆ USED-COLs+1.

Look at what happens at stage c. |Xc| = |Yc| = hc and COL restricted to Xc × Yc
uses 0 colors. The only way this is possible is if hc = 0. We will see that this implies
c = Ω(log log 2n).
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We have h0 = 2n and

hs+1 =

⌈⌈⌈
h2s
2n

⌉
/c

⌉
/3

⌉
≥ h2s

3c2n
.

We show that for s ∈ N, hs ≥ 2n

(3c)2s−1 .

Claim 3: (∀s)[hs ≥ 2n

(3c)2s−1 ].

Base Case: h0 = 2n ≥ 2n

(3c)0
= 2n.

Induction Step: Assume hs ≥ 2n

(3c)2
s−1 . Since hs+1 ≥ (hs)

2/3c2n we have, by the induction

hypothesis

hs+1 ≥ (hs)
2/3c2n ≥

(2n)2

(3c)2s+1−2

3c2n
≥ 2n

(3c)2s+1−1 .

End of proof of Claim 3
Taking s = c we obtain hc ≥ 2n

(3c)2c−1 . Hence there is a set of h2c points that are 0-colored.

Therefore hc < 1. This yields c = Ω(log log 2n).
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