An Application of Ramsey Theory to in Multiparty Communication Complexity
Exposition By William Gasarch

1 Introduction

Multiparty communication complexity was first defined by Chandra, Furst, and Lipton [4]
and used to obtain lower bounds on branching programs. Since then it has been used to
get additional lower bounds and tradeoffs for branching programs [1, 2], lower bounds on
problems in data structures [2], time-space tradeoffs for restricted Turing machines [1], and
unconditional pseudorandom generators for logspace [1].

All results in this paper are from [4] or can be easily derived from their techniques unless
otherwise specified.

Def 1.1 Let f: {{0,1}"}F — X. Assume, for 1 <i < k, P, has all of the inputs except z;.
Let d(f) be the total number of bits broadcast in the optimal deterministic protocol for f.
At the end of the protocol all parties must know the answer. This is called the multiparty
communication complexity of f. The scenario is called the forehead model.

Note 1.2 Note that there is always the n + 1-bit protocol of (1) P, broadcasts x2, (2) Py
computes and broadcasts f(x1,...,x;). The cases of interest are when d(f) < n.

We will need the following lemmas about multiparty protocols. The first one is the k£ = 3
case of the second one. We leave it for an exercise.

Lemma 1.3 Let P be a multiparty protocol for a function f : {0,1}"x{0,1}*x{0,1}" — X.

1. Let TRAN be a possible transcript of the protocol P. There exists Ay, As, A3 C {0,1}"
such that, for all x1,x9,23 € {0,1}" the following holds: The protocol P on input
(21, T2, x3) produces transcript TRAN iff (1,22, 23) € Ay X Ag X As.

2. Let x1, 39,23 € {0,1}", 01,09,03 € {{0,1}"}3, TRAN be a transcript. Assume that
o1 has x1 as its first element, oo has w9 as its second element, o3 has x3 as its third
element. (In symbols, if x means we don’t care about the element, then

o1 = (xq, %, %)
09 = (*7$27*)
g3 = (*,*,1'3).

) Further assume that o1, 09,03 all produces transcript TRAN. Then (x1,xa, x3) pro-
duces transcript TRAN.

Lemma 1.4 Let P be a multiparty protocol for a function f : {{0,1}"}* — X.
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1. Let TRAN be a possible transcript of the protocol P. There exists Ay, ..., A C {0,1}"
such that, for all x1,...,x, € {0,1}" the following holds: The protocol P on input
(x1,...,xk) produces transcript TRAN iff (z1,...,x) € Ay X -+ X Ag.

2. Let xy,...,2, € {0,1}", 01, ...,04 € {{0,1}"}*, TRAN be a transcript. Assume that
o; has x; as its ith element. Further assume that each o; produces transcript TRAN.
Then (z1,...,xy) produces transcript TRAN.

We will study the following function.
Def 1.5 Let n € N. We define EQ?" : {0, 1}" x {0,1}" x {0,1}" as follows (interpreting the

three inputs as numbers in binary):
YES ifx+y+2=2"

. n (1)
NO ifx+y+2z#2

EQY (z,y,2) = {

We will first establish a connection between d(EQ?") and some concepts in Ramsey
Theory. We will then use results from Ramsey Theory to obtain upper and lower bounds on
d(EQin). The lower bounds will be applied to obtain lower bounds on branching programs.

Here is what we will show.

1. d(EQY) < /log(2") = v/n (First proven by Chandra, Furst, Lipton [4].) (This is
somewhat surprising since it would seem the best you could do is have Alice yell to
Bob what her bits are.)

2. d(EQ2") > w(1) (First proven by Chandra, Furst, Lipton [4].)

3. d(EQ*") > logloglog2™ + Q(1) = loglogn + Q(1) (First proven by Beigel, Gasarch,
Glenn [3].)

2 Connections Between Multiparty Comm. Comp. and
Ramsey Theory

In this section we review the connections between the multiparty communication complexity
of f and Ramsey Theory that was first established in [4].

Def 2.1 Let ¢,T € N.

1. A proper c-coloring of [T'] x [T] is a function COL : [T] x [T] — [¢] such that there
do not exist z,y € [T] and A € [T — 1] such that

COL (z,y) = COL (z+ A,y) = COL (z,y + )

Another way to look at this: In a proper coloring there cannot be three vertices that
(a) are the same color, and (b) are the corners of a right isosceles triangle with legs
parallel to the axes and hypotenuse parallel to the line y = —z.)

2



2. Let x(T) be the least ¢ such that there is a proper c-coloring of [T'] x [T7].

Theorem 2.2 Let 2" : N — N.
1. d(BEQY) < 21g(x(2") + O(1).
2. d(BEQY) > lg(x(2") + Q(1).

Proof:

1) Let COL be a proper c-coloring of [2"] x [2"]. We represent elements of [¢] by lg(x(2")) +
O(1) bit strings. Py, P, P3 will all know COL ahead of time. We present a protocol for
this problem for which the communication is 21g(x(2")) + O(1). We will then show that it
1s correct.

1. P, hasy,z. P, has x,z. P; has z,v.

2. Py calculates 2’ such that 2’ +y + 2z = 2". (If no such 2’ exists then output NO and
thats the end of the protocol.) P, broadcasts oy = COL (2, y).

3. P calculates y' such that x 4+ 3 + z = 2". (If no such ¢ exists then output NO and
thats the end of the protocol.) P, broadcasts oo = COL (z,7/).

4. Py looks up 03 = COL (z,y). Ps broadcasts YES if 01 = 09 = 03 and NO otherwise.
(We will prove later that these answers are correct.)

Claim 1: If EQ* (x,y, 2) = YES then Py, Py, Py will all think EQ*" (x,y, 2) = YES.

Proof: If EQ2"(z,y,2) = YES then 2} = xy, 2, = x5, and x5 = x3. Hence 0y = 0y = 03
Therefore Py, Py, Ps all think EQ?" (2,y, 2) = YES.
End of proof of Claim 1.

Claim 2: If Py, Py, Py all think that EQ?" (z,y, 2) = YES then EQ?" (z,v, 2) = YES.

Proof: Assume that Py, Py, Py all think EQ*" (,y,2) = YES.
Hence

COL (z1,72) = COL (27, 22) = COL (z1,5).

We call this The Coloring Equation.
Assume

$1+$2+$3:)\.

We show that A = 2™.
By the definition of



JI/1+.T2+I3:2”.

Hence

o+ (v + 20+ x3) — 21 = 27,
T+ AN —x =2"
Ty —r =2"— )\

=1 +2" =\

By the same reasoning

Th =19+ 2" — \.

Hence we can rewrite The Coloring Equation as

COL (33'1, l’g) = COL (%1 -+ 2" — )\, LCQ) = COL (561,.%2 -+ 2" — )\)
Since COL is a proper coloring, 2" — A =0, so A = 2".
End of proof of Claim 2.

2) Let P be a protocol for EQ?". Let d be the maximum number of bits communicated. Note
that the number of transcripts is bounded by 2¢. We use this protocol to create a proper
2%-coloring of [2"] x [2"].

We define COL (z,y) as follows. First find z such that z +y + z = 2". Then run the
protocol on (z,y, z). The color is the transcript produced.

Claim 3: COL is a proper coloring of [2"] x [2"].
Proof: Let A € [2"] be such that
COL (z,y) = COL (z+ A\,y) = COL (z,y + A).
We denote this value TRAN (for Transcript). We show that A = 0.
Let z be such that
r+y+z=2"

Since

COL (z,y) = COL (x+ A,y) = COL (z,y + A).
We know that the following tuples produce the same transcript TRAN:



o (z,y,2).
o (z+ ANy, z—\).
o (myy+ A z—\).

All of these input produce the same transcript TRAN and this transcript ends with a
YES. By Lemma 1.3.2 the tuple (x,y, z — \) also goes to TRAN. Hence z+y+ 2z — A = 2"
Since x +y + z = 2" we have A = 0.

End of Proof of Claim 3 1

We now have a really odd situation. We have d(EQ?") = O(lg(x(2")))

YEAH: We we have upper and lower bounds that match up to a multiplicative constant!
BOO: We don’t know that the function IS.

In the next two sections we get upper bounds and lower bounds on lg(x(2")).

3 Upper Bounds

We need to properly color [2"] x [2"] and keep the number of colors down. We will prove
lower bounds on W (3, ¢) on the way there.

Def 3.1 A 3-free set is a set with no 3-AP’s.

If X is a 3-free set and X C [T] then X could be a color in a c-coloring of [T] that has
no mono 3-AP’s. How can we get the other colors?

4 Lower Bounds

4.1 An w(1) Lower Bound for d(EQ?")

We will need the following theorem from Ramsey Theory.
Theorem 4.1 For all ¢ there exists T' such that, there are no proper c-colorings of [T| x [T].
Theorem 4.1 can be proven several ways. We enumerate them:
1. This can be proven from van der Waerden’s theorem.
2. This can be proven by the same techniques as van der Waerden’s theorem.
3. This follows from the Galai-Witt Theorem. This generalizes to coloring [T

4. We will give a concrete lower bound (rather than w(1)) and is in Section 4.2. Other
ways generalize to k variables.



Theorem 4.2 If lim, ., 2" = oo then d(EQ?") = w(1).

Proof: By Theorem 2.2
d(EQ;") > 1g(x(2")) + (D).
Hence we need to show that y(7') is not bounded by a constant (as T goes to infinity).

Assume, by way of contradiction, that there exists ¢ such that, for all T, there is a proper
c-coloring of [T'] x [T']. This contradicts Theorem 4.1. 1

We will need to look at k-party protocols for the following function.
MOD?, : ({0,1}")F — {0,1}

. 1 if S g =on
MOD?' (z1,. .., z3) = ' ZZ,‘lx 2)
’ 0 otherwise.

The following can be proven in a manner similar to the £ = 3 case.

Theorem 4.3 Fiz k. If lim,,_,o 2" = oo then d(MOD? ) = w(1).

4.2  An Q(logloglog 2") Lower Bound for d(EQ?>")

The following combinatorial lemma will allow us to prove a lower bound on d(EQ?"). This
lemma is a reworking of a theorem of Graham and Solymosi [5].

Lemma 4.4
1. x(2™) > Q(loglog 2™).
2. d(EQ*") > logloglog 2™ + Q(1). (This follows from part 1 and Theorem 2.2.)

Proof:  Assume that COL is a proper c-coloring of [2"] x [2"]. We find sets X;,Y; C
[27] % [2"] such that COL restricted to X; x Y] uses ¢ —1 colors. We will iterate this process
to obtain X, Y, such that COL restricted to X, x Y. uses 0 colors. Hence | X.| = 0 which
will yield ¢ = Q(logloglog 2") = Q(loglogn).

For 0 < s < ¢ we define X,, Y}, h,, USED-COL;.

1. Xo=Yy=[2"]. ho = | Xo| = |Yo| = 2". USED-COLq = [d].

2. Assume X, Y;, h, are defined and inductively USED-COL, = [¢ — s] (we will be
renumbering to achieve this). Also assume that Partition X, x Y, (which is of size h?)
into sets P, indexed by a € [2"] defined by

Pa:{(xay>€XsX}/;|x+y:a}'

(P, is the ath anti-diagonal.) There exists an a such that |P,| > [h?/2"]. There exists
a color, which we will take to be ¢ — s by renumbering, such that at least [[h2/2"] /c]
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of the elements of P, are colored ¢ — s. (We could use ¢ — s in the denominator but
we do not need to.) Let m = [[h2/2"] /c]. Let {(z1,41), -, (Zm,ym)} be m elements
of P, such that, for 1 <i <m, COL (z;,y;) = ¢ —s. We will later show that, for all
i # j, COL (x;,y;) #c—s.
3. Let

hsy1 = m' = [m/3]

Xs+1 = {ZL’l,ZEQ, e ,l’m/}

Ys—i—l = {ym—i-l—m/a s 7ym}

USED-COLgy1 = [c— (s+1)]

Note that for all (z;,y;) € Xs41 X y; € Ysi1, ¢ < j hence i # j. Since we will show that
for all i # j, COL (z;,y;) # ¢ — s, we will have that, for all (z,y) € X1 X y; € Yii,
COL (z,y) # ¢ — s.

Claim 1: For all ¢ # j, x; # x; and y; # y;.

Proof: If x; = x; then

rity,=a=x;+y =x;+Yy.

Hence y; = y;. Therefore (z;,v;) = (z;,y;). This contradicts P, having m distinct points.
The proof that y; # y; is similar.

End of Proof of Claim 1

Claim 2: For all i # j, COL (z;,y;) # ¢ —s.

Proof: Assume, by way of contradiction, that COL (x;,y;) = ¢ — s. Note that
COL (z,y;) = COL (x;,4;) = COL (z;,y;) = ¢ — s.

We want a A # 0 such that y; = y; + A and z; = ; + \. Using that z; +y;, = z; +y; = a we
can take A = (z; + y; — a). The element A # 0: if A = 0 then one can show y; = y;, which
contradicts Claim 1.

We now have

This violates COL being a proper coloring.

End of Proof of Claim 2
Note that, by Claim 2 above

{ COL (z,y) |z € Xys1,y € Yor1} € USED-COL, ..

Look at what happens at stage c. |X.| = |Y.| = h. and COL restricted to X. x Y,
uses 0 colors. The only way this is possible is if h, = 0. We will see that this implies
¢ = Q(loglog 2™).



We have hg = 2" and

= [[[E] ] 5

We show that for s E N, hg > (36)2%

Base Case ho = 2” > ( )0 = 2",

Induction Step: Assume hg > —)29 . Since hgyy 1 > (h)?/3¢2™ we have, by the induction
hypothesis

on 2
G on

3c2n T (3¢)r U

hs+1 2 (hs>2/302n 2

End of proof of Claim 3
Taking s = ¢ we obtain h, > € )2C -. Hence there is a set of h? points that are 0-colored.

Therefore h, < 1. This yields ¢ = Q(loglog2™). 1
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