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1 Introduction

Definition 1.1 Let Σ be a finite alphabet.

1. Let w ∈ Σ∗. SUBSEQ(w) is the set of all strings you get by replacing some of the symbols
in w with the empty string.

2. Let L ⊆ Σ∗. SUBSEQ(L) =
⋃

w∈L SUBSEQ(w).

The following are easy to show:

1. If L is regular than SUBSEQ(L) is regular.

2. If L is context free than SUBSEQ(L) is context free.

3. If L is c.e. than SUBSEQ(L) is c.e.

Note that one of the obvious suspects is missing. Is the following true:

If L is decidable then SUBSEQ(L) is decidable.

We will show something far stronger. We will show that

If L is ANY subset of Σ∗ WHATSOEVER then SUBSEQ(L) is regular.

Higman [?] first proved this theorem. His proof is the one we give here; however, he used
different terminology.

The proofs that if L is regular (context free, c.e.) then SUBSEQ(L) is regular (context free,
c.e.) are constructive. That is, given the DFA (CFG, TM) for L you could produce the DFA (CFG,
TM) for SUBSEQ(L). (In the case of c.e. you are given M such that L = DOM(M) and you
can produce a TM M ′ such that SUBSEQ(L) = DOM(M ′)). The proof that if L is any language
whatsoever then SUBSEQ(L) is regular will be nonconstructive. We will discuss this later.

Definition 1.2 A set together with an ordering (X,�) is a well quasi ordering (wqo) if for any
sequence x1, x2, . . . there exists i, j such that i < j and xi�xj . We call this i, j an uptick

Note 1.3 If (X,�) is a wqo then its both well founded and has no infinite antichains.

Lemma 1.4 Let (X,�) be a wqo. For any sequence x1, x2, . . . there exists an infinite ascending
subsequence.

Proof: Let x1, x2, . . . , be an infinite sequence. Define the following coloring:
COL(i, j) =
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• UP if xi�xj .

• DOWN if xj ≺ xj .

• INC if xi and xj are incomparable.

By Ramsey’s theorem there is either an infinite homog UP-set, an infinite homog DOWN-set
or an infinite homog INC-set. We show the last two cannot occur.

If there is an infinite homog DOWN-set then take that infinite subsequence. That subsequence
violates the definition of well quasi ordering.

If there is an infinite homog INC-set then take that infinite subsequence. That subsequence
violates the definition of well quasi ordering.

We now redefine wqo.

Definition 1.5 A set together with an ordering (X,�). is a well quasi ordering (wqo) if one of
the following equivalent conditions holds.

• For any sequence x1, x2, . . . there exists i, j such that i < j and xi�xj .

• For any sequence x1, x2, . . . there exists an infinite ascending subsequence.

Definition 1.6 If (X,�1) and (Y,�2) are wqo then we define � on X × Y as (x, y)�(x′, y′) if
x�1y and x′�2y

′.

Lemma 1.7 If (X,�1) and (Y,�2) are wqo then (X × Y,�) is a wqo (� defined as in the above
definition).

Proof: Let (x1, y1), (x2, y2), (x3, y3), . . . be an infinite sequence of elements from A×B.
Define the following coloring:

COL(i, j) =

• UP-UP if xi�xj and yi�yj .

• UP-DOWN if xi�xj and yj�yi.

• UP-INC if xi�xj and yj , yi are incomparable.

• DOWN-UP, DOWN-DOWN, DOWN-INC, INC-UP, INC-DOWN, INC-INC are defined sim-
ilarly.

By Ramsey’s theorem there is a homog set in one of those colors. If the color has a DOWN in
it then there is an infinite descending sequence within either x1, x2, . . ., or y1, y2, . . . which violates
either X or Y being a wqo. If the color has an INC in it then there is an infinite antichain within
either x1, x2, . . ., or y1, y2, . . . which violates either X or Y being a wqo. Hence the color must be
UP-UP. This shows that there is an infinite ascending sequence.
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2 Subsets of Well Quasi Orders that are Closed Downward

Lemma 2.1 Let (X,�) be a countable wqo and let Y ⊆ X. Assume that Y is closed downward
under �. Then there exists a finite set of elements {z1, . . . , zk} ⊆ X − Y such that

y ∈ Y iff (∀i)[zi 6�y].

(The set {z1, . . . , zk} is called an obstruction set.)

Proof: Let OBS be the set of elements z such that

1. z /∈ Y .

2. Every y�z is in Y .

Claim 1: OBS is finite
Proof: We first show that every z, z′ ∈ OBS are incomparable. Assume, by way of contradiction,
that z�z′. Then z ∈ Y by part 2 of the definition of OBS. But if z ∈ Y then z /∈ OBS.
Contradiction.

Assume that OBS is infinite. Then the elements of OBS (in any order) form an infinite anti-
chain. This violates the property of � being a wqo. Contradiction.
End of Proof

Let OBS = {z1, z2, . . .}. The order I put the elements in is arbitrary.
Claim 2: For all y:

y ∈ Y iff (∀i)[zi 6�y].

Proof of Claim 2:
We prove the contrapositive

y /∈ Y iff (∃i)[zi�y].

Assume y /∈ Y . If y ∈ OBS then we are done. If y /∈ OBS then, by the definition of OBS there
must be some z such that z /∈ Y and z ≺ y. If z ∈ OBS then we are done. If not then repeat the
process with z. The process cannot go on forever since then we would have an infinite descending
sequence, violating the wqo property. Hence, after a finite number of steps, we arive at an element
of OBS. Therefore there is a z ∈ OBS with z�y.

Assume (∃i)[zi�y]. Since Y is closed downward under � and zi /∈ Y , this implies that y /∈ Y .

3 (Σ∗,�subseq) is a Well Quasi Ordering

Definition 3.1 The subsequence order, which we denote �subseq, is defined as x�subseq‘y if x is a
subsequence of y.

IDEA: We will show that (Σ∗,�subseq) is a wqo. Note that if A ⊆ Σ∗ then SUBSEQ(A) is
closed under�subseq. Hence by the Lemma ?? there exists strings z1, . . . , zn such that

x ∈ SUBSEQ(A) iff (∀i)[zi 6�x]
For fixed z the set {x | z 6�x} is regular. Hence SUBSEQ(A) is the intersection of a finite

number of regular sets and is hence regular.
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Theorem 3.2 (Σ∗,�) is a wqo.

Proof: Assume not. Then there exists (perhaps many) sequences x1, x2, . . . such that for all
i < j, xi 6�xj . We call such these bad sequences.

Look at ALL of the bad sequences. Look at ALL of the first elements of those bad sequences.
Let y1 be the shortest such element (if there is a tie then pick one of them arbitrarily).

Assume that y1, y2, . . . , yn have been picked. Look at ALL of the bad sequences that begin
y1, . . . , yn (there will be at least one). Look at ALL of the n+ 1st elements of those sequences. Let
yn+1 be the shortest such element (if there is a tie then pick one of them arbitrarily). We have a
sequence

y1, y2, . . .

This is refered to as a minimal bad sequence.
Let yi = y′iσi where σi ∈ Σ. (note that none of the yi are empty since if they were they would

not be part of any bad sequence).
Let Y = {y′1, y′2, . . .}.

Claim: Y is a wqo.
Proof of Claim:

Assume not. Then there is a bad sequence y′k1 , y
′
k2
, . . . We know that yki = y′kiσki . Lets say the

bad sequence is

y′84, y
′
12, y

′
4, y
′
1001, y

′
32, . . . (no pattern is intended).

Lets say that y′1, y
′
2, y
′
3 never appear. So y′4 is the least indexed element. We will remove all the

elements before y′4. Hence we can assume that the sequence starts with y′4.
More generally, we will start the sequence at the least indexed element. We just assume this,

so we assume that k1 ≤ {k2, k3, . . .}. Consider the following sequence:

y1, y2, . . . , yk1−1, y
′
k1 , y

′
k2 , . . . .

We show this is a BAD sequence.
There cannot be an i < j ≤ k1− 1 such that yi�yj since that would mean that y1, y2, . . . is not

a bad sequence.
There cannot be an i < j with y′ki�y

′
kj

since that would mean that y′k1 , y
′
k2
, . . . is not a bad

sequence.
And now for the interesting case. There cannot be an i ≤ k1 − 1 and a kj such that yi�y′kj . If

we had this then we would have
yi�y′kj�y

′
kjσkj = ykj .

But we made sure that i < kj , so this would imply that y1, y2, . . . is not a bad sequence.
OKAY, so this is a bad sequence. So what? Well look— its a bad sequence that begins

y1, y2, . . . , yk1−1 but its k1th element is y′k1 which is SHORTER than yk1 . This contradicts y1, y2, . . . ,
being a MINIMAL bad sequence.
End of Proof of Claim

So we know that Y is a wqo. We also know that Σ with any ordering is a wqo. By Lemma ??
Y × Σ is a wqo.
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Look at the sequence

(y′1, σ1), (y
′
2, σ2), . . . .

where yi = y′iσi.
Since Y is a wqo there exists i < j such that

(y′i, σi)�subseq(y′j , σj), . . . .

Clearly yi�subseqyj .

4 Main Result

Theorem 4.1 Let Σ be a finite alphabet. If L ⊆ Σ∗ then SUBSEQ(L) is regular.

Proof: Let L ⊆ Σ∗. The set SUBSEQ(L) is closed under the �subseq ordering. By Theorem ??
�subseq is a wqo. By Lemma ?? SUBSEQ(L) has a finite obstruction set. From this it is easy to
show that SUBSEQ(L) is regular.

5 Nonconstructive?

One can ask: Given a DFA, CFG, P-machine, NP-machine, TM (decidable), TM (c.e.) for a
language L, can one actually obtain a DFA for SUBSEQ(L). For that matter, can you obtain a
CFG, etc for SUBSEQ(L).

SUBSEQ(REG) SUBSEQ(CFGP SUBSEQ(P ) SUBSEQ(DEC) SUBSEQ(C.E.)

REG CON CON CON CON CON
CFG CON CON CON CON CON
P NONCON NONCON NONCON NONCON CON
NP NONCON NONCON NONCON NONCON CON
DEC NONCON NONCON NONCON NONCON CON
C.E. NONCON NONCON NONCON NONCON CON

Gasarch, Fenner, Postow [?] showed all of the NONCON results. Leeuwen [?] showed that,
given a CFG for L, you can obtain a DFA for SUBSEQ(L) (it also appears in [?] which is online).
All the rest of the results are easy.
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