
Algorithmic Lower Bounds - Assignment 1

Professor: Mohammad T. Hajiaghayi

Problem 1. For each of the following problems, either show that the problem is in P by
giving a polynomial-time algorithm or show that the problem is NP-hard by reducing from
3-Partition, its variants 3-Dimensional Matching1, or Numerical 3-Dimensional Matching2.

(a) Given a set of numbers A = {a1, · · · , a2n} that sum to t · n, find a partition of A into
n sets S1, · · · , Sn of size 2 such that each set sums to t.

(b) Given a set of numbers A = {a1, · · · , a2n} that sum to t · n, find a partition of A into
n sets S1, · · · , Sn of any size such that each set sums to t.

(c) Given a set of numbers A = {a1, · · · , a2n} and a sequence of target numbers 〈t1, · · · , tn〉,
find a partition of A into n sets S1, · · · , Sn of size 2 such that for each i ∈ {1, · · · , n},
the sum of the elements in Si is ti.

Solution. (a) Create a graph with one vertex for each input number. For each pair of
numbers ai, aj check whether ai + aj = t. If so, add an edge to the graph. Otherwise,
there should be no edge between ai and aj. Hence, each edge represents a possible
group in the partition. Next, run a matching algorithm. If the result is a perfect
matching, we can construct the corresponding partition by creating one group for each
edge in the matching. Because we start with a matching, each ai can belong to at
most one group in the corresponding partition. And because the matching that we
start with is perfect, we are guaranteed to haven groups of size 2. The converse is also
true. Suppose that we have a partition satisfying the problem constraints. For each
group {ai, aj} in the partition, we are guaranteed that ai+aj = t, so the corresponding
edge (ai, aj) must exist. Hence, we can add it to the matching. Because we started
with a partition, no two edges in the matching share an endpoint. And because the
number of groups is n while the number of vertices is 2n, we know that the matching
constructed in this fashion must be perfect.

(b) Reduce from standard 3-Partition (the variant where any number of numbers is allowed
to belong to a single group). Let a1, . . . , a3n be the groups of input numbers. Define a
new sequence of numbers b1, . . . , b4n as follows:

bi =

{
ai if i ≤ 3n

t otherwise

1see https://en.wikipedia.org/wiki/3-dimensional_matching
2see https://en.wikipedia.org/wiki/Numerical_3-dimensional_matching

1

https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/Numerical_3-dimensional_matching

Suppose that we are given a partition of these numbers into 2n groups that sum to
t. Clearly, b3n+1, . . . , b4n = t, so any group containing one of those nnumbers cannot
contain any other numbers. Hence, the remaining n groups must contain all 3n numbers
from the original 3-Partition instance. Furthermore, each group must sum to t. Hence,
the assignment of those numbers to the remaining n groups tells us how to solve the
original 3-Partition problem.

(c) Reduction from Numerical 3-Dimensional Matching. Given A = {a1, . . . , an}, B =
{b1, . . . , bn}, and C = {c1, . . . , cn}, with target sum t, we define the new numbers as
follows:

d2(i−1)+1 = 2ai + 0

d2(i−1)+2 = 2bi + 1

And the target values are:
qi = 2(t− ci) + 1

Suppose that we have a sequence of groups S1, . . . , Sn satisfying the desired constraints.
By examining the targets modulo 2, we can see that each group must contain ex-
actly one number that is equivalent to 1 mod 2. By construction, only the num-
bers d2(i−1)+2 ≡ 1 mod 2. Therefore, each group must contain exactly one number
d2(i−1)+2 = 2bi+1, and the other number in each group must be some d2(j−1)+1 = 2aj+0.
So for the kth group, we must have:

d2(i−1)+2 + d2(j−1)+1 = qk ⇒ 2bi + 1 + 2aj + 0 = 2(t− ck) + 1⇒ aj + bi + ck = t

Which is precisely what we wanted.

Conversely, suppose that we have a solution to the original Numerical 3-Dimensional
Matching instance. Then for each group {ai, bj, ck}, we set Sk = {d2(i−1)+1, d2(j−1)+2}.
We are guaranteed that ai + bj + ck = t, so we have:∑

x∈Sk

x = 2ai + 0 + 2bj + 1 = 2(ai + bj) + 1 = 2(t− ck) + 1 = qk

2

Problem 2. Give a direct reduction from 3-Partition to Partition.3

Solution. Let a1, . . . , a3n be the multiset of numbers to partition, and let T be the target
sum for each group. For each number ai and each possible group k ∈ {0, . . . , n− 1}, we add
the following number to our Subset-sum instance:

xi,k = 1 · (Tn)n+i + ai · (Tn)k

The target number we aim for in a Subset-Sum problem would be:

T ′ =
3n∑
i=1

1 · (Tn)n+i +
n−1∑
k=0

T · (Tn)k

Consider the values mod (Tn). Clearly, T ′ mod (Tn) = T , and for k 6= 0, xi,k mod (Tn) = 0.
So in order to get our target sum, we need to use a subset of the numbers x1,0, . . . , xn,0 that
sums to T mod (Tn). By construction, this is equivalent to finding a subset of the numbers
a1, . . . , a3n that sums to T , and then using the corresponding numbers xi,0 in our Subset-
Sum problem. A similar argument shows that, for any k ∈ {0, . . . , n − 1}, we must pick
numbers xi1,k, . . . , xiq ,k such that ai1 + ...+aiq = T . Furthermore, if we examine the sum mod
(Tn)n+i+1 for each i ∈ {1, . . . , 3n}, it is clear to see that for each number i ∈ {1, . . . , 3n},
we can pick only one xi,k to belong to our subset sum. Hence, if we can find a subset of
numbers that sums to the target, we know that there must exist a partition of a1, . . . , a3n
into n groups, each of which sums to T .

Next, we wish to convert our reduction to Subset-Sum into a reduction to Partition. The
sum of all numbers in our problem is

Q =
3n∑
i=1

n−1∑
k=0

xi,k

=
3n∑
i=1

n−1∑
k=0

(1 · (Tn)n+i + ai · (Tn)k)

=
3n∑
i=1

n · (Tn)n+i +
n−1∑
k=0

(Tn) · (Tn)k

To ensure that we find a subset that sums to T ′, we add one extra number Q−2T ′. (Note that
because Q is very large in comparison to T ′, this new number will not be negative.) With
this extra number, the new total becomes 2Q− 2T ′, so a solution to the Partition problem
must make both halves sum to Q− T ′. One of those halves must contain the extra number
Q− 2T ′, so the set of all other numbers in that half must sum to (Q−T ′)− (Q− 2T ′) = T ′,
which is precisely what we wanted.

3Hint: First reduce directly from 3-Partition to Subset-Sum, then modify the proof to work with Partition.

3

Problem 3. In the connected bisection problem, given a graph G = (V,E) with n vertices,
one needs to decide if V can be partitioned into two sets, each of size n/2 such that each
part induces a connected subgraph. Show that this problem is NP-hard.

Solution. We give a reduction from 3-dimensional matching to the connected bisection
problem. Consider an instance of the 3-dimensional matching problem that we are given
sets X, Y, Z each of size n, and a set T ⊆ X × Y × Z of triplets, and we want to decide
whether or not, there is a matching M ⊆ T , i.e., |M | = n and each element of X, Y, Z occurs
in exactly one triple of M . A bipartite view of the 3-dimensional matching problem is as
follows: We construct a graph G = (A,B,E) where we have a vertex in A for each of the
elements in X ∪ Y ∪ Z and we also have a vertex in B for each of the triplets in T , and for
each triplet t = (x, y, z), we connect its vertex in B to the vertices of x, y and z in A. The
goal is to pick a matching which is a subset M of vertices in B such that each vertex in A is
neighbor to exactly one vertex in M . Given this instance, we construct graph G′ as follows:

We add two vertices a and b and connect them to each vertex in B. Let

na = (3n + 1)n3 + 5n− |T | ,

and
nb = n3 .

We add a path of length na and connect it to the vertex a. Also, for each vertex v ∈ {b}∪A,
we add a path of length nb and connect it to v. The total number of vertices in graph G′ is

n′ = 2 + 3n + |T |+ na + (1 + 3n)nb = 2(na + 1 + |T | − n)

We show that G′ can be partitioned into 2 connected subgraphs G[S], G[S ′] where |S| =
|S ′| = n′/2 if and only if B contains a matching.

First suppose that B contains a matching M . Let S = {a} ∪ Pa ∪ (B −M) (and S ′ be
other vertices) where Pa is the path of length na which is connected to a. It is straightforward
to check that |S| = n′/2 and that G[S], G[S ′] are both connected.

Conversely if such an S exists we can assume a ∈ S. It follows that Pa ⊆ S. Now
|S − (P ∪ {a})| = |T | − n < nb. Now if a vertex v ∈ {b} ∪A is in S, then it implies that the
path of length nb which is connected to this vertex is also in S. However, |S−(P ∪{a})| < nb

and it implies that none of the vertices in {b} ∪ A are in S. Thus S − (P ∪ {a}) ⊆ B. Let
M = B−S. Now |M | = n and M must be a matching as A ⊆ S ′ means that M “covers” A.

4

Problem 4. Let a, b, c ∈ Z such that a 6= b, a 6= c, and b 6= c. Prove that for not all-equal
(a, a3), (b, b3) and (c, c3) are collinear if and only if a + b + c = 0.

Solution. We need to show that the three points (a, a3), (b, b3) and (c, c3) are collinear if
and only if a + b + c = 0. Let us assume that the three points are collinear. Then the point
(c, c3) satisfies the equation of the line that passes through the points (a, a3) and (b, b3), i.e.,
we have:

c− a

b− a
=

c3 − a3

b3 − a3

⇒ c− a

b− a
=

(c− a)(c2 + ac + a2)

(b− a)(b2 + ab + a2)

⇒ b2 + ab + a2 = c2 + ac + a2

⇒ b2 − c2 = −a(b− c)

⇒ b + c = −a
⇒ a + b + c = 0

Assuming a + b + c = 0 and following the same chain of equations in the opposite direction,
we get that the required points are collinear.

5

Problem 5. Let f : N → R be a function, with f(n) ≥ n. Prove that NSPACE(f(n)) ⊆
SPACE(f(n)2).
Note that above proves NPSPACE = PSPACE.

Solution. We first show that given a directed graph of n vertices and two special vertices
s and t in the graph, we can determine if t is reachable from s using only O(log2 n) space.
Consider the following algorithm: Let reach(u, v, k) be a boolean function that is true (= 1) if
and only if there is a path from vertex u to v of length ≤ k. We need to evaluate reach(s, t, n).
Note that reach(u, v, k) = ∃w s.t. reach(u,w, dk/2e) ∧ reach(w, v, bk/2c). This formulation
leads to an easy recursive algorithm. As the length of the path reduces by a factor of 2 at
each step, the recursion depth is O(log n). At each level of the recursion, we only need to
space for the “guessed” vertex w that requires O(log n) bits. This leads to a total space
complexity of O(log2 n). Hence, we can determine if t is reachable from s in an n-node
directed graph in O(log2 n) space.
Now, for any language L ∈ NSPACE(f(n)), we can construct a directed graph with O(2f(n))
vertices (one vertex for each configuration of the turing machine) such that for any input x,
the graph has a path from the starting configuration on input x to an accepting configuration
if and only if x ∈ L. Hence, determining connectivity is sufficient to determine if x ∈ L.
Now, using the above algorithm, we can determine s-t connectivity in SPACE(log2(2f(n))) =
SPACE(f(n)2).

6

Problem 6. Give a sub-cubic reduction from Negative-Triangle to Median.

Solution. Let (G = (V,E), w) be the given instance of Negative Triangle. Consider the
directed case, the proof for the undirected case is similar. Create a weighted directed graph
(G′, w′). Graph G′ contains five copies A,B,B′, C, C ′ of V . With the usual notation, vA
is the copy of v in A and similarly for the other sets. Let Q = Θ(M) be a large enough
integer. For any pair of nodes u, v, we add the edges uAvB of weight Q + w(uv), uAvB′ , of
weight Q − w(uv), uAvC of weight 2Q − w(uv), uAvC′ , of weight 2Q + w(uv), and uBvC of
weight Q+w(uv). In this construction, when uv /∈ E (including the special case u = v), we
simply assume w(uv) = 2M . Furthermore, we add a dummy node r, and edges rvA and vAr
of weight Q/4 for any v ∈ V .

In this graph we compute the median value M∗, and output YES to the input instance
of Negative triangle iff M∗ < Q/4 + (n− 1)Q/2 + 6nQ. The running time of the algorithm
is Õ(m + T (O(n), O(M))) = Õ(T (n,M)). Let us show its correctness. Next d(.) denotes
distances in G′. Observe that the median node has to be in A ∪ {r} since the remaining
nodes cannot reach r. Note that

Med(r) ≥ nQ/4 + 2n(Q/4 + 2Q− 2M) + 2n(Q/4 + Q−M) > Q/4 + (n− 1)Q/2 + 6nQ

On the other hand, for any node va,

Med(vA) = d(vA, r) +
∑
u∈V

d(vA, uA) +
∑
u∈V

(d(vA, uB) + d(vA, uB′))

+
∑
u∈V

(d(vA, uC) + d(vA, uC′))

= Q/4 + (n− 1)Q/2 +
∑
u∈V

(Q + w(vu) + Q− w(vu)) +
∑
u∈V

(d(vA, uC) + 2Q + w(vu))

= Q/4 + (n− 1)Q/2 + 2nQ +
∑
u∈V

(d(vA, uC) + 2Q + w(vu))

≤ Q/4 + (n− 1)Q/2 + 6nQ

Therefore the median is in A. In the last inequality we upper bounded d(vA, uC) with
w′(vAuC) = 2Q − w(vu). Observe that a strict inequality holds if there exists a third
node zB such that w′(vAzB) + w′(zBuC) < w′(vAuC). Note that this can happen only if
vu ∈ E, since otherwise w′(vAuC) = 2Q − 2M ≤ w′(vAzB) + w′(zBuC). Note also that, if
either vz /∈ E or zu /∈ E, w′(vAzB) + w′(zBuC) ≥ 2Q + M ≥ w′(vAuc). Therefore we can
conclude that the strict inequality holds iff there exists a triangle {v, z, u) in G such that
Q + w(vz) + Q + w(zu) < 2Q− w(vu), i.e. a negative triangle. The claim follows.

7

