
1 Basic Lower Bounds on Approximability

Via PCP and Gap Reductions

2 Introduction

In this chapter we will show that some problems are NP-hard to approximate.
These are basic problems, like SAT, that will later be used to show other
problems are hard to approximate. We can’t use other hard-to-approximate
problems in our reductions. The problems we discuss are those basic hard-
to-approximate problems.

We use TSP as a running example. Recall that TSP is the following:

• Input: a weighted graph G and a number k.

• Determine if there is a Hamiltonian cycle of weight ≤ k.

For most of this book we have looked at decision problems where every
instance has a yes or no answer. For example, TSP is a YES-NO question.

In the real world TSP is not a decision problem; indeed, in the real world
one wants to find the optimal (minimum weight) cycle. This is the function
version of TSP. We touched on this distinction in Chapter ?? and concluded
(correctly) that, with regard to polynomial time, the decision problem and
the function problem are equivalent. But let’s get back to the real world.
One way to cope with a problem being NP-hard is to approximate it. This
concept only makes sense if we are talking about a function, not a set. In
this chapter we will look at functions that are naturally associated to NP-
complete problems and show that they are NP-hard to approximate. In
this chapter we will show how to use Gap Reductions to get lower bounds
on approximations contingent on P 6= NP. We will then touch upon the
Unique Games Conjecture, a point of great debate in modern times. There
are lower bounds contingent on the Unique Games Conjecture (UGC) being
true; however, the evidence for UGC is not as compelling as the evidence
that P 6= NP.

Def 2.1 An optimization problem consists of the following:

• The set of instances of the problem (e.g., the set of weighted graphs for
TSP, the set of 3CNF formulas for MAX3SAT).
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• For each instance: the set of possible solutions (e.g., the set of Hamil-
tonian cycles in that weighted graph, the set of truth assignments for
the formula).

• For each solution: a nonnegative cost or benefit (e.g., the cost of the
Hamiltonian cycle, the number of clauses that are satisfied).

• An objective: either min or max (e.g., min cost of a Hamiltonian cycle,
max the number of clauses that are satisfied).

The goal of an optimization problem is to find a solution which achieves
the objective: either minimize a cost or maximize a benefit.

Notation 2.2

1. Let A be a min-problem. Then OPTA(x) is the cost of an optimal
solution for instance x.

2. Let A be a max-problem. Then OPTA(x) is the benefit of an optimal
solution for the instance x.

Now we can define an NP-optimization problem. The class of all NP-
optimization problems is called NPO; it is the optimization analog of NP.

Def 2.3 An NP-optimization problem is an optimization problem with the
following additional requirements:

• All instances and solutions can be recognized in polynomial time (e.g.,
you can tell if a proposed cycle is Hamiltonian).

• All solutions are of length polynomial in the length of the instance
which they solve (e.g., a Hamiltonian cycle is clearly of length polyno-
mial in the size of the graph—it’s actually shorter).

• The cost or benefit of a solution can be computed in polynomial time
(given a Hamiltonian cycle in a weighted graph, one can easily find the
weight of the cycle).

We can convert any NPO problem into an analogous decision problem
in NP. For a min problem we ask Is OPT(x) ≤ q? and for a maximization
problem we ask Is OPT(x) ≥ q? The optimal solution can serve as a short
easily verified certificate of a “yes” answer, and so these analogous decision
problems are in NP.

This means that NPO is, in some sense, a generalization of NP problems.
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Convention 2.4 For the rest of this chapter problem means NPO problem.
When A and B are mentioned they are NPO problems. We will often say
whether A is a min-problem or a max-problem.

Note that when we speak of solving an NPO problem we only mean
finding OPT(x) which is the cost or benefit of the optimal solution. So we
are not quite in the real world: for us a solution to the TSP problem is just
to say how much the min Ham cycle costs, not to find it. However, this will
suit our purposes:

• We will show that it’s hard to approximate OPT up to certain factors.
Hence clearly it will be hard to find an approximate solution.

• All of the algorithms in the literature for approximation problems ac-
tually do find an approximate solution.

3 Approximation Algorithms

Let’s say you are trying to solve TSP. Let TSP be the function that returns
the cost of the optimal Hamiltonian cycle. Lets say you have an algorithm
that will, on input G, output a Hamiltonian cycle of weight ≤ 2TSP(G).
So it’s at worst twice-the-optimal. Is that good? Can you prove that no
algorithm is better unless P = NP? Before asking these questions we need
to define our terms.

Def 3.1 In the two definitions below, ALG is a polynomial time algorithm
and c ≥ 1 is a constant. (We will later generalize to the case where c is a
function.)

• Let A be a min-problem. ALG is a c-approximation algorithm for A
if, for all valid instances x,

ALG(x) ≤ cOPT(x).

• Let A be a max-problem. ALG is a c-approximation algorithm for A
if, for all valid instances x,

OPT(x) ≤ cALG(x).
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(Note that if there is an algorithm that, on input a 3CNF formula
outputs a number that is ≤ 7

8
MAX3SAT(φ), then this is called an 8

7
-

approximation. We personally do not like this notation and will avoid
using it.)

In some sense an approximation algorithm is doing pretty well if it is
a c-approximation algorithm with some constant value c. But sometimes,
we can do even better! There are cases where, for all ε > 0, there is a
(1 + ε)-approximation.

Def 3.2

1. Let A be a min-problem. A polynomial time approximation scheme
(PTAS) for A is an algorithm that takes as input (x, ε) (x an instance
of A and ε > 0) and outputs a solution that is ≤ (1 + ε)OPT(x). The
only runtime constraint is that if we fix ε, the PTAS must run in time
polynomial in the size of the remaining input. Note that this allows
very bad runtimes in terms of ε. For example, a PTAS can run in time
n1/ε2 because for any given value of ε this is a polynomial runtime.

2. Let A be a max-problem. A polynomial time approximation scheme
(PTAS) for A is an algorithm that takes as input (x, ε) (x an instance
of A and ε > 0) and outputs a solution that is ≥ (1 − ε)OPT(x). We
have the same runtime constraint as in part 1.

We can now define several complexity classes:

Def 3.3

1. The class PTAS is the set of all problems for which a PTAS exists.
We use the term PTAS for both the type of an approximation algo-
rithm and the set of all problems that have that type of approximation
algorithm.

2. Let A be a min-problem. A ∈ APX if there is a constant c ≥ 1 and
an algorithm M such that M(x) is ≤ c × OPT(x). (This is just a c-
approximation; however, we phrase it this way so that you will see the
other classes are variants of it.)

3. Let A be a max-problem. A ∈ APX if there is a constant c ≥ 1 and an
algorithm M such that M(x) is ≥ 1

c
×OPT(x).
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4. Let A be a min-problem. A ∈ log-APX if there is a constant c ≥ 1
and an algorithm M such that M(x) is ≤ c× log x×OPT(x).

5. Let A be a max-problem. A ∈ log-APX if there is a constant c and
an algorithm M such that M(x) is ≥ 1

c log x
×OPT(x).

6. Let A be a min-problem. A ∈ poly-APX if there is a polynomial p
and an algorithm M such that M(x) is ≤ p(x)×OPT(x).

7. Let A be a max-problem. A ∈ poly-APX if there is a polynomial p
and an algorithm M such that M(x) is ≥ 1

p(x)
×OPT(x).

The following examples are known.

Example 3.4 All of our examples are variants of TSP.

1. The metric TSP problem is the TSP problem restricted to weighted
graphs that are symmetric and satisfy the triangle inequality: w(x, y)+
w(y, z) ≥ w(x, z). There is an algorithm discovered independently by
Christofides [7] (in 1976) and Serdyukov [30] (in 1978) that gives a
3
2
-approximation to the metric TSP problem. Hence the metric TSP

problem is in APX.

2. Karlan, Klein, Oveis-Gharan [17], in 2020, obtained the first improve-
ment over the 3

2
-approx. They showed that there is a (3

2
−ε)-approximation

to the metric TSP problem where ε > 10−36. This does not improve
the class that metric TSP is in—it is still in APX— but it is interesting
that one can do better than 3

2
which was, until this result, a plausible

limit on approximation.

3. The Euclidean TSP problem is the TSP problem when the graph is a
set of points in the plane and the weights are the Euclidean distances.
Arora [3] and Mitchell [27], in 1998, independently showed a PTAS for
the Euclidean TSP problem. Both of their algorithms will, on input n
points in the plane (which defines the weighted graph) and ε, produce
a (1 + ε)-approximation in time O(n(log n)O(1/ε)).

4. Arora and Mitchell actually have an algorithm that works on n points
in Rd that runs in time O(n(log n)O(

√
d/ε)d−1

).
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4 The Basic Hard-to-Approximate Problem

The following are basic hard-to-approximate problems. We include both the
upper and the lower bounds. We will show the lower bounds, or weaker
versions of them, by using the PCP characterization of NP (to be discussed
later). All of the lower bounds are under the assumption P 6= NP.

1. TSP /∈ poly-APX.

2. CLIQ ∈ poly-APX− log-APX.

3. SETCOVER ∈ log-APX− APX.

4. MAX3SAT ∈ APX−PTAS.

From the results enumerated above we have the following.

Theorem 4.1 If P 6= NP then

PTAS ⊂ APX ⊂ log-APX ⊂ poly-APX.

We will discuss all four of the results in the order given above. There will
several sections between the TSP lower bound and the CLIQ lower bound
since CLIQ uses the PCP machinery. MAX3SAT also uses it. SETCOVER
uses a different machinery and will be discussed only briefly.

5 Lower Bounds on Approximating TSP

Recall that, by Example 3.4, the metric TSP problem (where w(a, b) +
w(b, c) ≤ w(a, c)) is in APX. What about TSP problems without that
condition? We show that if TSP ∈ poly-APX, then P = NP. Informally,
we will map instances G of HAM CYCLE to instances G′ of TSP such that

If G ∈ HAM CYCLE then G′ has a very cheap Hamiltonian Cycle.
If G /∈ HAM CYCLE then G′’s cheapest Hamiltonian Cycle is quite

costly.
We will then use the alleged approximation algorithm for TSP to deter-

mine which is the case. This is called a Gap Reduction because of the large
gap between the optimal routes.

Theorem 5.1 If TSP ∈ poly-APX then P = NP.

6



Proof:
Assume, by way of contradiction, that TSP ∈ poly-APX with polyno-

mial p(n). To avoid notational clutter we call this the approx alg. We use
this assumption to show that HAM CYCLE ∈ P.

Let c(n) be a polynomial to be named later. We give a reduction that (1)
maps Hamiltonian graphs to instances G′ of TSP with TSP(G′) = n, and (2)
maps non-Hamiltonian graphs to instances G′ of TSP with TSP(G′) ≥ c(n).

Here is an algorithm for HAM CYCLE.

1. Input G = (V,E), an unweighted graph.

2. Create an instance G′ of TSP as follows: (1) if e /∈ E then give e weight
c(n), (2) if e ∈ E then give e weight 1.

3. (This is a comment, not part of the algorithm.)

(a) If G ∈ HAM CYCLE then TSP(G′) ≤ n since you can just use
the Hamiltonian cycle.

(b) If G /∈ HAM CYCLE then TSP(G′) ≥ c(n) since any cycle
in G′ will have to use at least one edge of cost c(n) (actually
TSP(G′) ≥ c(n) + n− 1 but this is not needed).

4. Run the approx algorithm on G′.

5. (This is a comment, not part of the algorithm.)

(a) If G ∈ HAM CYCLE then the approx alg run on G′ returns a
route of size ≤ np(n).

(b) If G /∈ HAM CYCLE then the approx alg run on G′ returns a
route of size ≥ c(n).

To ensure these cases do not overlap we pick c(n) > np(n).

6. If the approx alg outputs a number ≤ np(n) then output YES. If the
approx alg outputs a number > c(n) then output NO. By the commen-
tary in the algorithm, no other case will occur.

The proof of Theorem 5.1 took G and produced a gap. We actually showed
the following:
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Theorem 5.2 Let c(n) = np(n) where p(n) is a polynomial of degree ≥
1. Let c(n)-GAP-TSP be defined as follows. Given a TSP problem G =
(V,E,w) where you are promised that exactly one of the following occurs:

• There is a solution of cost n.

• All solutions have cost ≥ c(n).

Then, for all c(n), HAM CYCLE reduces to c(n)-GAP-TSP.

6 The Gap Lemmas

In this section we prove two easy lemmas that show how to use a reduction
that causes a gap (like the one in Theorem 5.1) to obtain a lower bound on
approximation algorithms. This first lemma is for max-problems, and the
second one is for min-problems. The proofs are similar, hence the proof of
the second one is omitted.

Convention 6.1 We will often use the notation |y|. This is the size of y;
however, we will use size in a different way for different inputs.

1. If y is a string then |y| is the length of y.

2. If y is a graph then y is the number of vertices.

3. If y is a 3CNF formula then y might be either the number of variables
or the number of clauses depending on our application.

Def 6.2 Let g be a max-problem (e.g., CLIQ). Let a(n) and b(n) be func-

tions from N to N such that b(n)
a(n)

< 1. Then GAP(g, a(n), b(n)) is the follow-
ing problem.

Problem 6.3
INSTANCE: y for which you are promised that either g(y) ≥ a(|y|) or

g(y) ≤ b(|y|).
QUESTION: Determine which is the case.

8



Lemma 6.4 Let A be an NP-hard set. Let g be a max-problem. Let a(n) and

b(n) be functions from N to N such that (1) b(n)
a(n)

< 1, and (2) b is computable
in time polynomial in n. Assume there exists a polynomial time reduction
that maps x to y such that the following occurs:

• If x ∈ A then g(y) ≥ a(|y|).

• If x /∈ A then g(y) ≤ b(|y|).

Then:

1. GAP(g, a(n), b(n)) is NP-hard (this follows from the premise).

2. If there is an approximation algorithm for g that, on input y, returns
a number > b(|y|)

a(|y|)g(y), then P = NP.

Proof: We just prove part 2.
We use the reduction and the approximation algorithm to obtain A ∈ P.

Since A is NP-hard we obtain P = NP.
Algorithm for A

1. Input x.

2. Run the reduction on x to get y.

3. Run the approximation algorithm on y.

4. (This is a comment and not part of the algorithm.)

x ∈ A→ g(y) ≥ a(|y|)→ approx on y returns > b(|y|)
a(|y|)a(|y|) = b(|y|).

x /∈ A → g(y) ≤ b(|y|) → approx on y returns ≤ b(|y|).

5. If the approx returns a number > b(|y|) then output YES. Otherwise
output NO. (This is the step where we need b(|y|) to be computable in
time polynomial in |y|.)

We now look at min-problems.

Def 6.5 Let g be a min-problem (e.g., TSP). Let a(n) and b(n) be functions

from N to N such that b(n)
a(n)

> 1. Then GAP(g, a(n), b(n)) is the following
problem.
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Problem 6.6
INSTANCE: y for which you are promised that either g(y) ≤ a(|y|) or

g(y) ≥ b(|y|).
QUESTION: Determine which is the case.

We now state a lemma that is useful for obtaining lower bounds on ap-
proximation min-problems. The proof is similar to that of Lemma 6.4 and
hence is omitted.

Lemma 6.7 Let A be an NP-complete set. Let g be a min-problem. Let
a(n) and b(n) be functions from N to N such that (1) b(n)

a(n)
> 1, and (2) b is

computable in time polynomial in n. Assume there exists a polynomial time
reduction that maps x to y such that the following occurs:

• If x ∈ A then g(y) ≤ a(|y|).

• If x /∈ A then g(y) ≥ b(|y|).

Then:

1. GAP(g, a(n), b(n)) is NP-hard (this follows from the premise).

2. If there is an approximation algorithm for g that, on input y, returns
a number < b(|y|)

a(|y|)g(y), then P = NP.

Def 6.8 We will refer to reductions like the ones in Lemma 6.4 and 6.7 as
Gap Reductions with ratio b(n)

a(n)
.

7 The PCP Machinery

In this section we discuss a characterization of NP in terms of Probabilistically
Checkable Proofs. This characterization has a rather long proof that we will
omit. However, once we have the characterization we will use it to construct
gap reductions which will show some approximations are NP-hard.

Recall the following notation and definition.

Notation 7.1 Let ∃py mean there exists y such that |y| is of length polyno-
mial in |x|, where x is understood. Let ∀py mean for all y such that |y| is of
length polynomial in |x|, where x is understood.
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Def 7.2 A ∈ NP if there exists a polynomial predicate B such that

A = {x : (∃py)[B(x, y)]}.

We want to rewrite this and modify it.

Def 7.3

1. An Oracle Turing Machine–bit access (henceforth OTM-BA) is an Or-
acle Turing Machine where (1) the oracle is a string of bits, and (2) the
requests for the bits is made by writing down the address of the bit.
By convention, if the string is s long and a query is made for bit t > s
then the answer is NO.

2. We denote an oracle Turing machine by M (). If M () is an Oracle Turing
Machine and y is the string being used for the oracle, and x is an input,
we denote the computation of M () on x with oracle y by My(x).

3. A Polynomial OTM-BA (POTM-BA) is an OTM-BA that runs in poly-
nomial time. Note that a POTM-BA can use an oracle string of length
2poly since it can write down that it wants bit position (say) 2n

2
with

n2 bits.

4. We give two equivalent definitions of a Randomized POTM-BA (RPOTM-
BA). One is intuitive and the other is better for proofs.

(a) A Randomized POTM-BA (RPOTM-BA) is a POTM-BA that is
allowed to flip coins. So there will be times where, rather than do
STEP A it will do STEP A with probability (say) 1/3 and STEP
B with probability 2/3. Hence we cannot say The machine accepts
x using oracle bit string y but we can say The machine will accept
x using oracle bit string y with probability ≥ 0.65.

(b) Note that for a RPOTM-BA computation many coins are flipped
and are used. We can instead think of the string of coin flips
as being part of the input, and then asking what fraction of the
inputs accept. Formally, a Randomized POTM-BA (RPOTM-BA)
is a POTM-BA that has 2 inputs x, τ . We will be concerned with
the fraction of τ ’s (|τ | will be a function of |x|) for which My(x, τ)
accepts. We will refer to this as the probability that x with oracle
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bit string y is accepted since we think in terms of the string τ
being chosen at random. We will refer to τ as a string of coin
flips.

The following is an alternative definition of NP.

Def 7.4 A ∈ NP if there exists a POTM-BA M () such that:
x ∈ A→ (∃py)[My(x) = 1]
x /∈ A→ (∀py)[My(x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A. This
evidence is short (only p(|x|) long) and checkable in poly time. Note that
the computation of My(x) may certainly use all of the bits of y. What if we
(1) restrict the number of bits of the oracle that the computation can look
at, and (2) use an RPOTM-BA?

Def 7.5 Let q(n) and r(n) be monotone increasing functions from N to N.
A r(n)-random q(n)-query RPOTM-BA M () is a RPOTM-BA where, for all
y and for all x of length n, My(x) flips r(n) coins and makes q(n) queries.

Def 7.6 Let r(n) and q(n) be monotone increasing functions from N to N and
ε(n) be a monotone decreasing function from N to [0, 1]. A ∈ PCP(r(n), q(n), ε(n))
if there exists an r(n)-random, q(n)-query RPOTM-BA M () such that, for
all n, for all x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with |τ | = r(n), My(x, τ)
accepts. In other words, the probability of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n) make
My(x, τ) accept. In other words, the probability of acceptance is ≤
ε(n).

3. (This item is not formally needed.) One of the two cases above must
happen. That is, there will never be a case where (say) ε(n) < 1

2
and

the probability of acceptance is 2ε(n).

We are only going to be concerned with r(n) = O(log n) and q(n) = O(1)
or O(log n). We will see below that we can assume |y| = 2q(n)+r(n), which is
poly in n.
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Note 7.7 The queries are made adaptively. This means that the second
question asked might depend on the answer to the first. Hence if My(x, τ)
asks O(q(n)) questions then the total number of questions possible to ask is
2O(q(n)) − 1. Since there are 2O(r(n)) values of z there are a total of roughly
2O(q(n)+r(n)) queries that can be asked. Hence we can take |y| = 2q(n)+r(n).

Example 7.8

1. SAT ∈ PCP(0, n, 0). The y value is the satisfying assignment. M ()

makes all n queries and does not use random bits.

2. If φ is a formula let C be the number of clauses in it. 3-SAT ∈
PCP(lg(C), 3, C−1

C
). The y value is the satisfying assignment. M picks

a random clause and queries the 3 truth assignments. If they satisfy
the clause, output YES, else NO. If φ ∈ 3-SAT then the algorithm will
return YES. If φ /∈ 3-SAT then the worst case is if y satisfies all but
one of the clauses, hence the probability of error is ≤ C−1

C
.

3. Let L ∈ N. 3-SAT ∈ PCP(L lg(C) +O(1), 3L, C−L
C

). Iterate the proof
in part 2 L times.

Arora et. al [5], building on the work of Arora et. al [6], proved the
following Theorem.

We omit the proof which is difficult.

Theorem 7.9

1. SAT ∈ PCP(O(log n), O(1), 1
2
).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(log n), O(1), ε). (This is
easily obtained by iterating the protocol from Part 1.)

3. SAT ∈ PCP(O(log2 n), O(log n), 1
n
). (This is easily obtained by iterat-

ing the protocol from Part 1.)

The result SAT ∈ PCP(O(log2 n), O(log n), 1
n
) is not good enough for

proving problems hard to approximate. Ajtai-Komlós-Szemerédi [1] and
Impagliazzo-Zuckerman [16] improved it by using a technique to reuse ran-
dom bits by doing a random walk on an expander graph. The next theorem
is not in their papers; however, one can obtain it from their papers.

See Vazirani [32] (Theorem 29.18).

Theorem 7.10 SAT ∈ PCP(O(log n), O(log n), 1
n
).
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8 CLIQ is Hard to Approximate

Arora et. al [5], building on the work of Feige et. al [12], proved that CLIQ
is hard to approximate. We will recognize the proof as a gap reduction.

Notation 8.1 If G is a graph then ω(G) is the size of the largest clique in
G.

We state both the upper and lower bound in this proof; however, we only
prove the lower bound.

In the following theorem, the size of a graph is the number of vertices.

Theorem 8.2

1. There is an algorithm that, on input graph G with N vertices, out-

puts a clique of size Ω( log3N
N(log logN)2

ω(G)). Hence CLIQ ∈ poly-APX.

(Feige [11] proved this. We omit the proof. We use N for the number
of vertices since n will be the length of a string in an NP-set A.)

2. Let A be an NP-complete problem. Let c, d be such that there A ∈
PCP(c lg n, d lg n, 1

n
) (such a c, d exists by Theorem 7.10). There is a

reduction that maps x ∈ Σ∗ (|x| = n) to a graph G on N = nc+d

vertices such that:

• If x ∈ A then ω(G) ≥ nc = N c/(c+d).

• If x /∈ A then ω(G) ≤ nc−1 = N (c−1)/(c+d).

3. GAP(CLIQ, N c/(c+d), N (c−1)/(c+d)) is NP-hard. (This follows from Part
2 and Lemma 6.4.)

4. If there is an approximation algorithm for CLIQ that, on input G, where
G has N vertices, returns a number > 1

N1/(c+d)ω(G), then P = NP.
(This follows from Part 2 and Lemma 6.4.)

5. Assuming P 6= NP, CLIQ ∈ poly-APX − log-APX. (This follows
from parts 1,4.)

Proof:
We just prove part 2.
Let A, c, d be as in the statement of the theorem. To avoid notational

clutter we say run the PCP on (x, τ) rather than give the RPOTM-BA for
A a name.
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1. Input x of length n.

2. Form a graph G = (V,E) as follows:

(a) V = {0, 1}c lgn+d lgn. Note that there are N = nc+d vertices.

(b) This step will help us determine the edges. For each vertex write
it as τσ where |τ | = c lg n and |σ| = d lg n. Run the PCP on (x, τ)
and answer the ith query made with the ith bit of σ. Keep track
of which queries were made, what the answers were, and if the
computation accepted.

(c) We now determine the edges. Let τσ and τ ′σ′ be two vertices.
We know both the queries and the answers made when running
PCP(x, τ) using σ for the answers, and running PCP(x, τ ′) using
σ′ for the answers. Connect the two vertices τσ and τ ′σ′ if (1)
both represent computations that accept, (2) τ 6= τ ′, and (3) the
answers to queries do not contradict.

3. Output the graph.

Note the following:

1. If x ∈ A then there exists a consistent way to answer the bit-queries
such that, for all τ ∈ {0, 1}c lgn, the PCP on (x, τ) accepts. Hence
ω(G) ≥ 2c lgn = nc = N c/(c+d).

2. If x /∈ A then any consistent way to answer the bit-queries will make
≤ 1

n
of the τ ∈ {0, 1}c lgn accept. Hence ω(G) ≤ nc−1 = N (c−1)/(c+d).

Note 8.3 Theorem 8.2 showed that, for δ = 1
c+d

, if there is an algorithm

that returns a number > 1
nδ
ω(G) then P = NP. Better results are known:

1. Hastad [14] showed that, for all 0 ≤ δ < 1, if there is an algorithm that
returns a number ≥ 1

nδ
ω(G) then ZPP = NP.

2. Zuckerman [34] showed that, for all 0 ≤ δ < 1, if there is an algorithm
that returns a number ≥ 1

nδ
ω(G) then P = NP.
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9 SETCOVER is Hard to Approximate

Problem 9.1 SETCOVER
INSTANCE: n and Sets S1, . . . , Sm ⊆ {1, . . . , n}. QUESTION: What

is the smallest size of a subset of Si’s that covers all of the elements in
{1, . . . , n}?

Notation 9.2 An algorithm approximates SETCOVER within a factor of
f(n) if it outputs a number that is ≤ f(n) times the optimal.

The following are known.

Theorem 9.3

1. Chvatal [8] showed that a simple greedy algorithm approximates SETCOVER
within a factor of ln(n).

2. Slav́ık [31] gave a slight improvement by replacing the lnn with

lnn− ln(lnn)−O(1).

3. Lund and Yannakakis [26] showed that, for any 0 < c < 1/4, if
SETCOVER can be approximated within a factor of c lnn then NP ⊆
DTIME(npolylog(n)).

4. Raz and Safra [29] showed that there is a constant c such that if SETCOVER
can be approximated within a factor of c lnn then P = NP. The con-
stant is not explicit in the paper.

5. Alon et. al [2] showed that there is a constant c such that if SETCOVER
can be approximated within a factor of c lnn then P = NP.

6. Dinur and Steurer [10] showed that if SETCOVER can be approxi-
mated within a (1− o(1)) lnn then P = NP.

Note 9.4 How does m, the number of sets, impact these results? The lower
bound proofs apply for m very small, like n0.0001. Hence, when we later do
reductions of SETCOVER to other problems we can assume m is small.

The lower bound papers do not use PCP’s. They instead use a close
cousin: 2-prover-1-round interactive proof systems.
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10 MAX3SAT is Hard to Approximate

Arora et. al [5] proved that MAX3SAT is hard to approximate. We will
recognize the proof as a gap reduction.

Notation 10.1 If φ is a 3CNF formula (so every clause has ≤ 3 literals)
then MAX3SAT(φ) is the max number of clauses that can be satisfied si-
multaneously.

We state both the upper and lower bound in this proof. We prove one of
the upper bounds; however, our main interest is in the lower bound.

Notation 10.2 Let q ∈ N. Then C(q) is the the maximum number of
clauses in a 3CNF formula on 2q variables. Note that C(q) = O(23q). Since
q is constant, C(q) is constant.

In the following theorem, the size of a 3CNF formula is the number of
clauses.

Theorem 10.3

1. Restrict MAX3SAT to formulas that have exactly three literals per
clause. There is an algorithm that, given such a φ, returns a number
that is ≥ 0.875MAX3SAT(φ).

2. Karloff and Zwick [18] have a randomized polynomial time algorithm for
MAX3SAT (note–clauses can have 1,2, or 3 literals) that, on input φ,
does the following: (1) if φ ∈ SAT returns an assignment that satisfies
≥ 0.875MAX3SAT(φ) of the clauses, (2) if φ /∈ SAT then there is good
evidence that the algorithm still returns an assignment that satisfies at
least 0.875MAX3SAT(φ).

3. Let A be NP-complete. Let c, q ∈ N such that A ∈ PCP(c lg n, q, 0.25)
(such a c, q exists by Theorem 7.9). There is a reduction that maps
x ∈ Σ∗ to a 3CNF formula φ such that:

(a) If x ∈ A then MAX3SAT(φ) = |φ|. (φ ∈ 3-SAT so all |φ|
clauses are satisfied.)

(b) If x /∈ A then MAX3SAT(φ) ≤
(
1− 3

4C(q)

)
|φ|.
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(c) The output φ has exactly 3 literals per clause.

4. GAP(MAX3SAT,m,
(
1− 3

4C(q)

)
m) is NP-hard (where m is the num-

ber of clauses). This holds even if φ is restricted to having exactly 3
literals per clause. (This follows from Part 3 and Lemma 6.4.)

5. If there is an approximation algorithm for MAX3SAT that, on input
φ, returns a number >

(
1− 3

4C(q)

)
MAX3SAT(φ) then P = NP. (This

follows from Part 3 and Lemma 6.4.)

6. Assuming P 6= NP, MAX3SAT ∈ APX− PTAS. (The problem that
separates them is MAX3SAT restricted to formulas that have exactly
3 literals per clause. This Part follows from Parts 1 and 4.)

Proof:
We just prove parts 1,3.

1) We first give a randomized algorithm: Assign each variable to TRUE
or FALSE at random. The probability of a particular clause being satis-
fied is 7

8
= 0.875, so by linearity of expectation we expect 7

8
of the clauses

to be satisfied. This gives a randomized algorithm that outputs a num-
ber ≥ 0.875MAX3SAT(φ). This algorithm can be derandomized using the
method of conditional probabilities. Details can be found in either Vazirani’s
book [32] or Shmoys-Williamson’s book [33].

3) Let A, c, q be as in the statement of the theorem. To avoid notational
clutter we say run the PCP on (x, τ) rather than give the RPOTM-BA for
A a name.

1. Input x.

2. Form a 3CNF formula ψ as follows:

(a) The PCP for A can only make 2q+c lgn = 2qnc possible bit-queries.
There are 2qnd variables, one for each possible bit-query.

(b) For every τ ∈ {0, 1}c lgn do the following. For every σ ∈ {0, 1}q run
the PCP(x, τ) using σ for the query answers. Keep track of which
ones accepted and which ones rejected. From this information
form a formula on ≤ 2q variables that is T iff the PCP accepts
with those answers (using τ for the coin flips). Constructing the
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formula takes poly time since q (and hence 2q) is constant. Convert
this formula to 3CNF (this easily takes poly time). Call the result
ψτ . Note that ψτ has between 1 and C(q) clauses.

(c) ψ is the AND of the nc formulas from the last step. Note that ψ
is in 3CNF form.

Note the following.

1. Assume x ∈ A. Then there exists a consistent way to answer the bit-
queries such that, for all τ ∈ {0, 1}c lgn, the PCP on (x, τ) accepts.
Hence every ψτ can be satisfied simultaneously. Therefore the fraction
of clauses of ψ that can be satisfied is 1. Hence MAX3SAT(φ) = |φ|.

2. Assume x /∈ A. Then every consistent way to answer the bit-queries
will make ≤ 1

4
of the τ ∈ {0, 1}c lgn accept. We need to estimate the

fraction of clauses of ψ that are satisfied. This fraction is maximized
when the following occurs: (1) all nc of the ψτ have C(q) clauses, (2)
there is an assignment that satisfies all C(q) clauses in 1/4 of the ψτ ,
and C(q) − 1 clauses in 3/4 of the ψτ . Hence the fraction of clauses
satisfied is

(nc/4)C(q) + (3nc/4)(C(q)− 1)

ncC(q)
=
ncC(q)− (3nc/4)

ncC(q)
= 1− 3

4C(q)

Hence MAX3SAT(φ) ≤
(
1− 3

4C(q)

)
|φ|.

Theorem 10.3 shows that if there is an algorithm that returns a number
> (1− 3

4(q)
)MAX3SAT(φ) then P = NP. Hastad [15] proved the strongest

result possible, which we prove (assuming some other hard results) in Theo-
rem 12.6.

11 The Gap Lemmas On Gap Problems

In Theorem 8.2 we did not just prove that CLIQ was NP-hard to approxi-
mate, we proved that GAP(CLIQ, N c/(c+d), N (c−1)/(c+d)) is NP-hard. In fact,
all of the approximation results had as a byproduct of the proof that some
GAP problem was hard.
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Lemmas 6.4 and 6.7 (the Gap Lemmas) showed how a reduction from
an NP-hard set A to a function g implies that the function g is hard to
approximate. We rework the Gap Lemmas so that they start with an NP-
hard Gap Function. We omit proofs since they are similar to those of the
original Gap Lemmas.

Lemma 11.1 Let a(n), b(n) be functions from N to N such that b(n)
a(n)

< 1.

Let a′(n), b′(n) be functions from N to N such that b′(n)
a′(n)

< 1. Let f be a max-

problem such that GAP(f, a′(n), b′(n)) is NP-hard. Let g be a max-problem.

Let a(n) and b(n) be functions from N to N such that (1) b(n)
a(n)

< 1, and (2)
b is computable in time polynomial in n. Assume there exists a polynomial
time reduction that maps x to y such that the following occurs:

• If f(x) ≥ a′(|x|) then g(y) ≥ a(|y|).

• If f(x) ≤ b′(|x|) then g(y) ≤ b(|y|).

Then:

1. GAP(g, a(n), b(n)) is NP-hard (this follows from the premise).

2. If there is an approximation algorithm for g that, on input y, returns
a number > b(|y|)

a(|y|)g(y), then P = NP.

Lemma 11.2 Let a(n), b(n) be functions from N to N such that b(n)
a(n)

< 1.

Let a′(n), b′(n) be functions from N to N such that b′(n)
a′(n)

< 1. Let f be a min-

problem such that GAP(f, a′(n), b′(n)) is NP-hard. Let g be a min-problem.

Let a(n) and b(n) be functions from N to N such that (1) b(n)
a(n)

< 1, and (2)
b is computable in time polynomial in n. Assume there exists a polynomial
time reduction that maps x to y such that the following occurs:

• If f(x) ≥ a′(|x|) then g(y) ≥ a(|y|).

• If f(x) ≤ b′(|x|) then g(y) ≤ b(|y|).

Then:

1. GAP(g, a(n), b(n)) is NP-hard (this follows from the premise).
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2. If there is an approximation algorithm for g that, on input y, returns
a number > b(|y|)

a(|y|)g(y), then P = NP.

Def 11.3 We will refer to reductions like the ones in Lemma 11.1 and 11.2
as Gap Reductions with ratio b(n)

a(n)
. This is the same terminology we use for

reductions like those in Lemma 6.4 and 6.7; however, the meaning will be
clear from context.

12 MAX3LIN and MAX3SAT

Everything in this section is due to Hastad [15].

Problem 12.1 MAX3LIN
INSTANCE: A set of linear equations E = E1, . . . , Em in Z2 where each

Ei has 3 variables.
QUESTION: Find an assignment (of 0’s and 1’s) to the variables to max-

imize the number of equations that are true.

The decision problem associated to MAX3LIN, is there some assignment
that satisfies all clauses, is in P by Gaussian Elimination. We now define a
Gap version of MAX3LIN which we will later state is NP-hard.

Problem 12.2 ε-GAP-MAX3LINT
INSTANCE: A set of linear equations E = E1, . . . , Em in Z2 where each

Ei has 3 variables and we are promised that one of the following occurs.

1. MAX3LIN(E) ≤ (1
2

+ ε)m.

2. MAX3LIN(E) ≥ (1− ε)m.

QUESTION: Determine which is the case.

Theorem 12.3

1. There is a randomized algorithm that, given an instance E of MAX3LIN,
returns a number ≥ 0.5MAX3LIN(E).

2. There is an algorithm that, given an instance E of MAX3LIN, returns
a number ≥ 0.5MAX3LIN(E).
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Exercise 12.4 Prove Theorem 12.3.

The following theorem is proven using the PCP machinery. We omit the
rather difficult proof.

Theorem 12.5

1. If there exists ε so that ε-GAP-MAX3LINT is in P then P = NP.

2. If there exists ε so that MAX3LIN is (0.5 + ε)-approx then P = NP.
(This follows from Part 1.)

Proof sketch: This is not a sketch of the proof. This is just two of the
many ideas that went into the proof. We warn the reader that we are giving
a simplified version of these ideas.
Idea One PCP was defined with 1-sided error. Recall that the definition of
PCP is

1. If x ∈ A then there exists y such that, for all τ with |τ | = r(n), My(x, τ)
accepts. In other words, the probability of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n) make
My(x, τ) accept. In other words, the probability of acceptance is ≤
ε(n).

Idea One is to define PCP more generally so that if x ∈ A there will be
a small probability of error. Hence there is 2-sided error.

Idea Two Imagine the following scenario.

1. There are 6 bit queries.

2. If the first three are answered 110 then if the next three bits are 001
the machine will accept, but on any other 3-sequence of answers the
machine will reject.

3. If the first three are answered 000 then if the next three bits are 101
the machine will accept, but on any other 3-sequence of answers the
machine will reject.

4. On any other sequence of the first three answers, the machine will
reject.
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In the proof of Theorem 8.2 and 10.3 we would consider the relevant
sequences to be 110001 and 000101. But the last three bits are irrelevant.
Hence we can consider {000, 110} as the only possible answer-bit sequences.
If we use this PCP in Theorem 8.2 then the graph we get out of a reduction
is smaller. If we use this PCP in Theorem 10.3 then the formula we get out
of a reduction is smaller. This allows for better and more precise results.

We use Theorem 12.5 to prove a lower bound on MAX3SAT.

Theorem 12.6

1. Let 0 < ε < 1. Let our formulas have 4m clauses. Then

GAP(MAX3SAT, 4(1− ε)m, 3.5(1 + ε)m)

is NP-hard.

2. Let 0 < ε < 1. Let our formulas have m clauses. Then

GAP(MAX3SAT, (1− ε)m, 0.875(1 + ε)m)

is NP-hard. (This follows from Part 1.) This result holds when MAX3SAT
is restricted to having exactly 3 literals per clause. Hence this result is
a lower bound that matches the upper bound in Theorem 10.3.1.

3. Let 0 < δ < 1. If there is an approximation algorithm for MAX3SAT
that, on input φ, returns a number >

(
0.875 + δ

)
MAX3SAT(φ) then

P = NP. (This follows from Part 2.)

Proof:
We do a reduction from

GAP(MAX3LIN(1− ε)m, (0.5 + ε)m)

to

GAP(MAX3SAT(4(1− ε)m, (3.5 + ε)m).

Lemma 11.1 then gives the result (for part 2 we need to take ε small
enough).

1. Input a set of equations E = E1, . . . , Em over Z2.
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2. We will form a 3CNF-formula by replacing every equation by a set of
clauses and then taking the AND of all of those clauses.

3. For each 1 ≤ i ≤ m do the following.

(a) If Ei is of the form x+ y+ z ≡ 0 (mod 2) then replace it with the
following set of clauses.

¬x ∨ ¬y ∨ ¬z
¬x ∨ y ∨ z
x ∨ ¬y ∨ z
x ∨ y ∨ ¬z.

(b) If Ei is of the form x+ y+ z ≡ 1 (mod 2) then replace it with the
following set of clauses.

x ∨ y ∨ z
¬x ∨ ¬y ∨ z
¬x ∨ y ∨ ¬z
x ∨ ¬y ∨ ¬z

4. We call the resulting formula φ. Output φ.

Note that φ has 4m clauses.
Note the following:

1. Think of φ as being a set of clauses in groups of 4, called a 4-group, as
the construction indicates. Every assignment will satisfy (1) for some
4-groups, all 4 clauses, and (2) for some 4-groups, 3 clauses. That is,
it is impossible to satisfy 0 or 1 or 2 clauses in a 4-group.

2. If MAX3LIN(E) ≥ (1− ε)m then MAX3SAT(φ) ≥ 4(1− ε)m+ 3ε =
(4− ε)m.

3. If MAX3LIN(E) ≤ (0.5 + ε)m then MAX3SAT(φ) ≤ 4(0.5 + ε)m +
3(0.5− ε)m = (2 + 4ε)m+ (1.5− 3ε)m = (3.5 + ε)m.
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13 Vertex Cover

We show a lower bound on how well VC can be approximated by using a stan-
dard reduction of 3-SAT to VC and using it on a GAP version MAX3SAT.

We first state the upper bound whose proof is folklore and omitted.

Theorem 13.1 There is an algorithm that will, given a graph G, output a
number that is ≤ 2VC(G).

Theorem 13.2 Let δ > 0. If there is an algorithm that, on input a graph
G, returns a number ≤ (1.0625− δ)VC(G), then P = NP.

Proof:
We will use the fact that, if G has n vertices, then IS(G) = n−VC(G).
Let ε be such that 2.125−ε

2+ε
> 1.0625 + δ. By Theorem 12.6

GAP(MAX3SAT, (1− ε)m, 0.875(1 + ε)m)

is NP-hard. We give a gap reduction from this GAP problem to VC with
ratio 2.125−ε

2+ε
> 1.0625− δ. The lower bound on approximating VC will then

follow from Lemma 11.1.

1. Input φ = C1 ∧ · · · ∧ Cm, a formula in 3CNF where every clause has
exactly 3 literals. We are promised that either

(1) MAX3SAT(φ) ≥ (1− ε)m, or

(2) MAX3SAT(φ) ≤ (0.875 + ε)m.

2. Create a graph G as follows.

(a) For each Ci we have a vertex for each literal. Hence G has 3m
vertices.

(b) Put an edge between every pair of vertices in the same Ci. Put an
edge between vertices from different Ci’s if they contradict each
other.

3. (This is commentary, not part of the algorithm).

Note the following two cases.

(1) MAX3SAT(φ) ≥ (1− ε)m, so IS(G) ≥ (1− ε)m:
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VC(G) = 3m− IS(G) ≤ 3m− (1− ε)m = (2 + ε)m.

(2) MAX3SAT(φ) ≤ (0.875 + ε)m, so IS(G) ≤ (0.875 + ε)m:

VC(G) = 3m− IS ≥ 3m− (0.875 + ε)m = (2.125− ε)m.

4. Output G.

Are better lower bounds for approximating VC known? Yes. We state
two results.

Theorem 13.3 Let δ > 0.

1. If there is an algorithm that, on input a graph G, returns a number
≤ (1.166 . . . − δ)VC(G), then P = NP (the number is actually 7

6
).

Hastad [15] showed this.

2. If there is an algorithm that, on input a graph G, returns a number
≤ (1.3606 . . .−δ)VC(G), then P = NP (the number is actually 10

√
5−

21). Dinur and Safra [9] showed this.

Are better lower bounds for approximating VC known? Maybe. There
are no NP-hardness result known. However, in Section 17 we will state the
Unique Games Conjecture from which several lower bounds can be proven,
including a lower bound of 2− δ for approximating VC.

14 Simple example: Tetris

Sidebar 14.1 BILL TO ERIK AND M: I DO NOT UNDERSTAND THIS
TETRIS THING. WE SHOULD EITHER DELETE IT OR EXPAND ON
IT

In Tetris, we can create a gap with c = n1−ε for some ε > 0. If we let
OPT be the number of lines that can be cleared, then this gap is generated
with the YES instance as solving the puzzle correctly, and the NO instance
as a maximum-optimization for how many lines can be cleared. Letting ε
be our tolerance for error, as we increase ε, our gap widens, and our related
maximum bound for the NO instance decreases.

26



15 Label Cover, Max Rep, and Min Rep

We define two gap problems, state that they are NP-hard, and then use them
to show lower bounds on other problems. The problems are not natural; they
are a means to an end.

Def 15.1 Let G = (A,B,E) be a bipartite graph. We assume the following.

1. |A| = |B| = n.

2. There is a partition of A into sets A1, . . . , Ak where |Ai| = n
k
.

3. There is a partition of B into sets B1, . . . , Bk where |Bi| = n
k
.

4. We create a new bipartite graph as follows.

(a) The vertices on the left are the Ai’s.

(b) The vertices on the right are the Bi’s.

(c) There is an edge from Ai to Bj if there exists a ∈ Ai and b ∈ Bj

such that (a, b) ∈ E (the original edges). These new edges are
called superedges.

5. A label cover is two subsets A′ ⊆ A and B′ ⊆ B.

6. Given a label cover we say that a superedge (Ai, Bj) is covered if there
exists a ∈ Ai ∩A′, b ∈ Bj ∩B′ such that (a, b) ∈ E. Notice that so far
we have not demanded anything of our label covering.

We will put two kinds of demands on our label covering. We state them
here informally since the actual problem we use will involve approximations.

Problem 15.2

• The MAX REP problem will insist (1) the label covering picks exactly
one vertex from each Ai and from each Bj, (2) The number of covered
superedges is maximized.

• The MIN REP problem will insist that (1) every superedge be covered,
(2) the number |A′|+ |B′| is minimized.
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Problem 15.3
ε-GAP-MAXR.
INSTANCE: A bipartite G = (A,B,E) as in Definition 15.1.
QUESTION: We only look at label covers which take exactly one element

from each Ai and each Bj.
We are promised that one of the following occurs.

• There is such a label covering which covers all superedges.

• Every such label covering covers at most an ε fraction of the superedges.

The question is to determine which case happens.

Raz [28] showed the following. The proof uses the PCP machinery and
is omitted.

Sidebar 15.4 BILL TO ERIK AND M: I looked at Raz’s paper and I just
don’t see this theorem there. I am also trying to find an analogous theorem
for MIN REP, which is why I looked there. I have not found that anywhere
either.

Theorem 15.5 Let 0 < ε < 1.

1. If ε-GAP-MAXR is in P then P = NP.

2. If there is an algorithm that on input an instance G of MIN REP
returns a number ≥ εMAX REP(G) then P = NP. (This follows
from Part 1 and Lemma 6.4.

3. If 1

2log1−ε
-GAP-MAXR is in P then NP ⊆ DTIME(npolylog(n)).

4. If there is an algorithm that on input an instance G of MIN REP re-
turns a number ≥ 1

2log1−ε
MAX REP(G) then NP ⊆ DTIME(npolylog(n)).

(This follows from Part 3 and a variant of Lemma 6.4.

We define the dual problem, MIN REP.

Problem 15.6
ε-GAP-MINR.
INSTANCE: A bipartite G = (A,B,E) as in Definition 15.1, and ε.
QUESTION: We only look at label covers which cover every superedge.

We are promised that one of the following occurs. Let S be the number of
superedges.
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• There is label covering of size 2S that covers every superedge (this is
optimal).

• Every label covering that covers every superedge has at least 1
ε

nodes.

The question is to determine which case happens.

Sidebar 15.7 BILL TO ERIK AND M: I assume the theorem below is true
but I do not know a reference.

Theorem 15.8 Let 0 < ε < 1.

1. If ε-GAP-MINR is in P then P = NP.

2. If there is an algorithm that on input an instance G of MIN REP
returns a number ≤ 1

ε
MIN REP(G) then P = NP. (This follows

from Part 1 and Lemma 6.7.

3. If 1

2log1−ε
-GAP-MINR is in P then NP ⊆ DTIME(npolylog(n)).

4. If there is an algorithm that on input an instance G of MIN REP re-
turns a number ≤ 2log1−ε

MIN REP(G) then NP ⊆ DTIME(npolylog(n)).
(This follows from Part 3 and a variant of Lemma 6.7.)

16 A Reduction from MIN REP

We show that the Directed Steiner Forest problem is hard by reducing
MIN REP to it.

Problem 16.1 Directed Steiner Forest (DSF).
INSTANCE: A weighted directed graph G and a set of ordered pairs of

vertices {(ai, bi)}.
QUESTION: Find a subgraph G that has, for all i, a path from ai to bi

of minimal weight. Note that this subset will be a forest.

Theorem 16.2 Let c ≥ 1. If there is an algorithm that, on input an instance
of DSF, outputs a number that is ≤ c×DSF(G), then P = NP.
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Proof: Let ε be such that 1
ε

= c. We give a gap reduction from ε-
GAP-MINR to DSF and then apply Lemma 11.2.

1. Input is a bipartite graph G = (A,B,E), |A| = |B| = n, a partition of
A into sets A1, . . . , Ak where |Ai| = n

k
, and a partition of B into sets

B1, . . . , Bk where |Bi| = n
k
. Let S be the number of superedges. We

are told that either (1) there is a label cover of size 2S that covers all
superedges, or (2) any label cover that covers all the superedges has
≥ 1

ε
2S vertices.

2. Create a directed graph G′ as follows.

(a) All of the vertices and edges of G are present. All of the edges
have weight 0.

(b) For each Ai there is a new vertex ai. For all v ∈ Ai there is an
edge (ai, v) of weight 1.

(c) For each Bi there is a new vertex bi. For all v ∈ Bi there is an
edge (v, bi) of weight 1.

(d) There is also an edge from ai to bi of weight w to be determined
later.

(e) The set of ordered pairs is all {(ai, bj) : (Ai, Bj) is a superedge}.

3. (This is not part of the algorithm. This is commentary.) Let S be the
number of superedges. It is easy to see that there is a label cover of
size L iff there is a Directed Steiner Forest of weight L. Hence

• If there is a label cover of size 2S that covers all the superedges
then there is a Directed Steiner Forest of weight 2S which implies
that there is a DSF of weight 2S.

• If the minimum sized label cover is of size ≥ 1
ε
2S then the optimal

DSF has weight ≥ 1
ε
2S.

4. Output the instance of MIN REP that you created.
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17 The Unique Games Conjecture

Recall that in our definitions of GAP-MAXR the promise is that either
(1) there is a label covering with one vertex per Ai and Bj which covers all
superedges, or (2) every such label covering covers at most an ε fraction of
the superedges. What if we relaxed the promise of part (1)? Consider the
following gap problem.

Def 17.1 ε-2-sided-GAP-MAXR.
INSTANCE: A bipartite G = (A,B,E) that has the vertices partitioned

as in Definition 15.1.
QUESTION: We only look at label cover which takes exactly one element

from each Ai and each Bj. We are promised that one of the following occurs.

• There is such a label covering which covers fraction (1 − ε) of the
superedges.

• Every such label covering covers at most an ε fraction of the superedges.

The question is to determine which case happens.

Khot [19] made the following conjecture.

Conjecture 17.2 The Unique Games Conjecture (UGC) is that, for all
ε > 0, ε-2-sided-GAP-MAXR is NP-hard. (The name Unique Games Con-
jecture comes from another formulation of it.)

For more on UGC see Khot’s survey [20] and Klarreich’s exposition [24].
Is the conjecture true? We give two thoughts.
Argument for UGC

1. UGC has great explanatory power. We give some examples.

• As noted in Theorem 13.1 and 13.3, (1) there is a poly algorithm
that will, given a graph G, return a number ≤ 2VC(G), and
(2) if P 6= NP then there is no poly algorithm that returns ≥
1.306 . . .VC(G). Khot and Regev [23] showed the following: If
UGC then there is no poly algorithm that returns ≥ (2−ε)VC(G),
which matches the upper bound.
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• Recall that the MAXCUT problem is as follows: given a weighted
graph G, find a partition of the vertices into 2 parts that maxi-
mizes the sum of the weights of the edges between the parts. Goe-
mans and Williamson [13] showed that there is an algorithm that
will, given a graph G, return a number ≥ 0.878 · · ·MAXCUT(G).
The actual number is

α = min
0≤Θ≤π

2θ

π(1− cos(θ))
.

Hastad [15] showed that if P 6= NP then there is no poly algorithm
that returns ≥ 0.941 · · ·MAXCUT(G). (The actual number is
16
17

.) Khot et al. [21] showed the following: If UGC then there is
no poly algorithm that returns ≥ (0.9439 . . .+ δ)MAX2SAT(G).
This does not match the upper bound; however, it is closer to it
than the result obtained by assuming P 6= NP.

In both the case of Vertex Cover and MAXCUT the proofs of the
upper and lower bounds use very different techniques. Hence the fact
that from UGC we get a lower bound that just happens to match the
lower bound is evidence for UGC. The proofs of the upper and lower
bound for MAX2SAT also use very different techniques.

2. Khot et al. [22] proved a weaker version of UGC, called the 2-2 games
conjectures. See also the exposition by Klarreich [25].

An argument for why it is false

1. It is possible we will obtain that explanatory power from the assump-
tion P 6= NP.

2. Arora et al. [4] obtained a subexponential algorithm for ε-2-sided-
GAP-MAXR. Note that the algorithm is not polynomial and has
not been improved on since 2010.

Unlike P vs NP and many other conjectures, the community is truly split
on this conjecture.
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