
BILL AND NATHAN, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

PCP

Review NP

Def A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.

We want to rewrite this and modify it.

Intuition
All powerful Alice is trying to convince Poly-Bob that x ∈ A.

1. If x ∈ A then Alice can send Bob y and Bob can verify it.
NOTE- he is sure that x ∈ A.

2. If x /∈ A then whatever y Alice sends Bob, Bob is NOT
convinced. Not even a little.

Review NP

Def A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.

We want to rewrite this and modify it.

Intuition
All powerful Alice is trying to convince Poly-Bob that x ∈ A.

1. If x ∈ A then Alice can send Bob y and Bob can verify it.
NOTE- he is sure that x ∈ A.

2. If x /∈ A then whatever y Alice sends Bob, Bob is NOT
convinced. Not even a little.

Review NP

Def A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.

We want to rewrite this and modify it.

Intuition
All powerful Alice is trying to convince Poly-Bob that x ∈ A.

1. If x ∈ A then Alice can send Bob y and Bob can verify it.
NOTE- he is sure that x ∈ A.

2. If x /∈ A then whatever y Alice sends Bob, Bob is NOT
convinced. Not even a little.

Review NP

Def A ∈ NP if there exists B ∈ P such that

A = {x : (∃py)[(x , y) ∈ B]}.

We want to rewrite this and modify it.

Intuition
All powerful Alice is trying to convince Poly-Bob that x ∈ A.

1. If x ∈ A then Alice can send Bob y and Bob can verify it.
NOTE- he is sure that x ∈ A.

2. If x /∈ A then whatever y Alice sends Bob, Bob is NOT
convinced. Not even a little.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Modify NP

A = {x : (∃py)[(x , y) ∈ B]}.

Note that:

1. Bob gets to read the entire string y .

2. Bob uses a deterministic algorithm.

3. Bob is never wrong.

Imagine if:

1. Bob only got to read some of y .

2. Bob uses a randized algorithm.

3. Bob is wrong a small fraction of the time.

Examples

Alice wants to convince Bob that

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck ∈ 3SAT

1. Alice send Bob a truth assignment ~b ∈ {0, 1}n.

2. Bob randly picks lg n clauses (≤ 3 lg n vars).
Bob looks at partial truth assignment ~p on ≤ 3 lg n vars.

3. 3.1 If ~p satisfies all lg n clauses, Bob thinks that φ is prob SAT,
and says YES. (He might be wrong.)

3.2 If there is ≥ 1 clause that ~p does NOT satisfy then Bob
KNOWS φ is not satisfied, and says NO. (He is right.)

Examples

Alice wants to convince Bob that

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck ∈ 3SAT

1. Alice send Bob a truth assignment ~b ∈ {0, 1}n.

2. Bob randly picks lg n clauses (≤ 3 lg n vars).
Bob looks at partial truth assignment ~p on ≤ 3 lg n vars.

3. 3.1 If ~p satisfies all lg n clauses, Bob thinks that φ is prob SAT,
and says YES. (He might be wrong.)

3.2 If there is ≥ 1 clause that ~p does NOT satisfy then Bob
KNOWS φ is not satisfied, and says NO. (He is right.)

Examples

Alice wants to convince Bob that

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck ∈ 3SAT

1. Alice send Bob a truth assignment ~b ∈ {0, 1}n.

2. Bob randly picks lg n clauses (≤ 3 lg n vars).
Bob looks at partial truth assignment ~p on ≤ 3 lg n vars.

3. 3.1 If ~p satisfies all lg n clauses, Bob thinks that φ is prob SAT,
and says YES. (He might be wrong.)

3.2 If there is ≥ 1 clause that ~p does NOT satisfy then Bob
KNOWS φ is not satisfied, and says NO. (He is right.)

Examples

Alice wants to convince Bob that

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck ∈ 3SAT

1. Alice send Bob a truth assignment ~b ∈ {0, 1}n.

2. Bob randly picks lg n clauses (≤ 3 lg n vars).
Bob looks at partial truth assignment ~p on ≤ 3 lg n vars.

3. 3.1 If ~p satisfies all lg n clauses, Bob thinks that φ is prob SAT,
and says YES. (He might be wrong.)

3.2 If there is ≥ 1 clause that ~p does NOT satisfy then Bob
KNOWS φ is not satisfied, and says NO. (He is right.)

Examples

Alice wants to convince Bob that

φ(x1, . . . , xn) = C1 ∧ · · · ∧ Ck ∈ 3SAT

1. Alice send Bob a truth assignment ~b ∈ {0, 1}n.

2. Bob randly picks lg n clauses (≤ 3 lg n vars).
Bob looks at partial truth assignment ~p on ≤ 3 lg n vars.

3. 3.1 If ~p satisfies all lg n clauses, Bob thinks that φ is prob SAT,
and says YES. (He might be wrong.)

3.2 If there is ≥ 1 clause that ~p does NOT satisfy then Bob
KNOWS φ is not satisfied, and says NO. (He is right.)

How Good is the 3SAT Protocol

If φ ∈ 3SAT then the protocol works fine.

If φ /∈ 3SAT but there is a way to satisfy all but 1 clause then this
will almost surely fool Bob :-(

If φ /∈ 3SAT but the max number of clauses that can be satisfied is
≤ some fraction of the clauses then this protocol works well.

BREAKOUT ROOMS Get a similar protocol for 3COL.

How Good is the 3SAT Protocol

If φ ∈ 3SAT then the protocol works fine.

If φ /∈ 3SAT but there is a way to satisfy all but 1 clause then this
will almost surely fool Bob :-(

If φ /∈ 3SAT but the max number of clauses that can be satisfied is
≤ some fraction of the clauses then this protocol works well.

BREAKOUT ROOMS Get a similar protocol for 3COL.

How Good is the 3SAT Protocol

If φ ∈ 3SAT then the protocol works fine.

If φ /∈ 3SAT but there is a way to satisfy all but 1 clause then this
will almost surely fool Bob :-(

If φ /∈ 3SAT but the max number of clauses that can be satisfied is
≤ some fraction of the clauses then this protocol works well.

BREAKOUT ROOMS Get a similar protocol for 3COL.

How Good is the 3SAT Protocol

If φ ∈ 3SAT then the protocol works fine.

If φ /∈ 3SAT but there is a way to satisfy all but 1 clause then this
will almost surely fool Bob :-(

If φ /∈ 3SAT but the max number of clauses that can be satisfied is
≤ some fraction of the clauses then this protocol works well.

BREAKOUT ROOMS Get a similar protocol for 3COL.

3COL With Just a Few Bits

Alice wants to convince Bob G is 3-Colorable.

1. Alice send Bob ρ, a 3-coloring of G .

2. Bob randly picks lg n edges.
He looks at ρ′ which is ρ restricted to the endpoints of the
edges.

3. 3.1 If ρ′ is a proper 3-coloring of the subgraph it colors then Bob
things G is prob 3-colorable, and says YES. (He might be
wrong.)

3.2 If ρ′ is not a proper 3-coloring of the subgraph it colors then
then Bob KNOWS G is not 3-colorable and says NO (He is
right.)

3COL With Just a Few Bits

Alice wants to convince Bob G is 3-Colorable.

1. Alice send Bob ρ, a 3-coloring of G .

2. Bob randly picks lg n edges.
He looks at ρ′ which is ρ restricted to the endpoints of the
edges.

3. 3.1 If ρ′ is a proper 3-coloring of the subgraph it colors then Bob
things G is prob 3-colorable, and says YES. (He might be
wrong.)

3.2 If ρ′ is not a proper 3-coloring of the subgraph it colors then
then Bob KNOWS G is not 3-colorable and says NO (He is
right.)

3COL With Just a Few Bits

Alice wants to convince Bob G is 3-Colorable.

1. Alice send Bob ρ, a 3-coloring of G .

2. Bob randly picks lg n edges.
He looks at ρ′ which is ρ restricted to the endpoints of the
edges.

3. 3.1 If ρ′ is a proper 3-coloring of the subgraph it colors then Bob
things G is prob 3-colorable, and says YES. (He might be
wrong.)

3.2 If ρ′ is not a proper 3-coloring of the subgraph it colors then
then Bob KNOWS G is not 3-colorable and says NO (He is
right.)

3COL With Just a Few Bits

Alice wants to convince Bob G is 3-Colorable.

1. Alice send Bob ρ, a 3-coloring of G .

2. Bob randly picks lg n edges.
He looks at ρ′ which is ρ restricted to the endpoints of the
edges.

3. 3.1 If ρ′ is a proper 3-coloring of the subgraph it colors then Bob
things G is prob 3-colorable, and says YES. (He might be
wrong.)

3.2 If ρ′ is not a proper 3-coloring of the subgraph it colors then
then Bob KNOWS G is not 3-colorable and says NO (He is
right.)

3COL With Just a Few Bits

Alice wants to convince Bob G is 3-Colorable.

1. Alice send Bob ρ, a 3-coloring of G .

2. Bob randly picks lg n edges.
He looks at ρ′ which is ρ restricted to the endpoints of the
edges.

3. 3.1 If ρ′ is a proper 3-coloring of the subgraph it colors then Bob
things G is prob 3-colorable, and says YES. (He might be
wrong.)

3.2 If ρ′ is not a proper 3-coloring of the subgraph it colors then
then Bob KNOWS G is not 3-colorable and says NO (He is
right.)

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().

Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:

Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.

We will not need this formality but it is good to know that our
concepts can be made formal.

Polynomial Oracle Turing Machines-Bit Access

Def A Poly Oracle Turing Machine–bit access (henceforth
POTM-BA) is a poly time TM which has

1. A state QUERY.

2. A tape called the QUERY TAPE.

3. A tape called THE ANSWER TAPE.

We denote such a device by M().
Given a string y (called an oracle) and an input x we can compute
My (x) as follows:
Simulate the machine. When it goes into state QUERY then
there is a number written on the query tape, say i . Then the ith
bit of y magically appears on the answer tape.
We will not need this formality but it is good to know that our
concepts can be made formal.

Randomized POTM-BA

We give two equivalent definitions of a Randomized POTM-BA
(RPOTM-BA). One is intuitive and the other is better for proofs.

Def One A RPOTM-BA is a POTM-BA that is allowed to flip
coins. We care about prob My(x) accepts.

Def Two (Coin flips are part of the input.) A RPOTM-BA is a
POTM-BA that has 2 inputs x , τ . Given an oracle y we care about
the fraction of τ ’s for which My (x , τ) accepts. We will refer to τ
as a string of coin flips.

Randomized POTM-BA

We give two equivalent definitions of a Randomized POTM-BA
(RPOTM-BA). One is intuitive and the other is better for proofs.

Def One A RPOTM-BA is a POTM-BA that is allowed to flip
coins. We care about prob My(x) accepts.

Def Two (Coin flips are part of the input.) A RPOTM-BA is a
POTM-BA that has 2 inputs x , τ . Given an oracle y we care about
the fraction of τ ’s for which My (x , τ) accepts. We will refer to τ
as a string of coin flips.

Randomized POTM-BA

We give two equivalent definitions of a Randomized POTM-BA
(RPOTM-BA). One is intuitive and the other is better for proofs.

Def One A RPOTM-BA is a POTM-BA that is allowed to flip
coins. We care about prob My(x) accepts.

Def Two (Coin flips are part of the input.) A RPOTM-BA is a
POTM-BA that has 2 inputs x , τ . Given an oracle y we care about
the fraction of τ ’s for which My (x , τ) accepts. We will refer to τ
as a string of coin flips.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:

x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]

x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Alternative definition of NP

Def A ∈ NP if there exists a POTM-BA M() such that:
x ∈ A→ (∃py)[My (x) = 1]
x /∈ A→ (∀py)[My (x) 6= 1]

If x ∈ A then we think of y as being the EVIDENCE that x ∈ A.
This evidence is short (only p(|x |) long) and checkable in poly
time. The computation My (x) may look at all bits of y .

To formalize our prior discussion about modifying NP we will:

1. Restrict the number of bits of the oracle that M can look at.

2. Use a RPOTM-BA.

Parametrizing RPOTM-BA

Def Let q(n) and r(n) be mono increasing functions from N to N.

A q(n)-query, r(n)-rand RPOTM-BA M() is a RPOTM-BA
where, for all y and for all x , |x | = n:

1. My (x) makes q(n) bit queries

2. My (x) flips r(n) coins.

Parametrizing RPOTM-BA

Def Let q(n) and r(n) be mono increasing functions from N to N.

A q(n)-query, r(n)-rand RPOTM-BA M() is a RPOTM-BA
where, for all y and for all x , |x | = n:

1. My (x) makes q(n) bit queries

2. My (x) flips r(n) coins.

Parametrizing RPOTM-BA

Def Let q(n) and r(n) be mono increasing functions from N to N.

A q(n)-query, r(n)-rand RPOTM-BA M() is a RPOTM-BA
where, for all y and for all x , |x | = n:

1. My (x) makes q(n) bit queries

2. My (x) flips r(n) coins.

Parametrizing RPOTM-BA

Def Let q(n) and r(n) be mono increasing functions from N to N.

A q(n)-query, r(n)-rand RPOTM-BA M() is a RPOTM-BA
where, for all y and for all x , |x | = n:

1. My (x) makes q(n) bit queries

2. My (x) flips r(n) coins.

PCP

Def Let q(n) and r(n) be mono increasing functions from N to N
and ε(n) be a mono decreasing function from N to [0, 1].

A ∈ PCP(q(n), r(n), ε(n)) if there exists
a q(n)-query, r(n)-rand RPOTM-BA M()

such that, for all n, for all x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with
|τ | = r(n), My (x , τ) accepts. In other words, the probability
of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n)
make My (x , τ) accept. In other words, the probability of
acceptance is ≤ ε(n).

PCP

Def Let q(n) and r(n) be mono increasing functions from N to N
and ε(n) be a mono decreasing function from N to [0, 1].

A ∈ PCP(q(n), r(n), ε(n)) if there exists
a q(n)-query, r(n)-rand RPOTM-BA M()

such that, for all n, for all x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with
|τ | = r(n), My (x , τ) accepts. In other words, the probability
of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n)
make My (x , τ) accept. In other words, the probability of
acceptance is ≤ ε(n).

PCP

Def Let q(n) and r(n) be mono increasing functions from N to N
and ε(n) be a mono decreasing function from N to [0, 1].

A ∈ PCP(q(n), r(n), ε(n)) if there exists
a q(n)-query, r(n)-rand RPOTM-BA M()

such that, for all n, for all x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with
|τ | = r(n), My (x , τ) accepts. In other words, the probability
of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n)
make My (x , τ) accept. In other words, the probability of
acceptance is ≤ ε(n).

PCP

Def Let q(n) and r(n) be mono increasing functions from N to N
and ε(n) be a mono decreasing function from N to [0, 1].

A ∈ PCP(q(n), r(n), ε(n)) if there exists
a q(n)-query, r(n)-rand RPOTM-BA M()

such that, for all n, for all x ∈ {0, 1}n, the following holds.

1. If x ∈ A then there exists y such that, for all τ with
|τ | = r(n), My (x , τ) accepts. In other words, the probability
of acceptance is 1.

2. If x /∈ A then for all y at most ε(n) of the τ ’s with |τ | = r(n)
make My (x , τ) accept. In other words, the probability of
acceptance is ≤ ε(n).

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?

Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.

Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.

Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).

We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Adaptive Queries and the Length of y

Let A ∈ PCP(q(n), r(n), ε(n)).

1. In the My (x) calculation the queries are made adaptively.
E.g., the 2nd question may depend on the answer to the 1st
question.

2. How many questions could be asked?
Draw out the tree of all computations. This will branch two
ways for every query and for every rand bit.
Hence there are 2q(n)+r(n) possible questions.
Hence we can take |y | = 2q(n)+r(n).
We will always have q(n), r(n) = O(log n) so |y | is poly in n.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)?

No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:

1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?

2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.

If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.

Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).

We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.

Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).

We will do this in our proof that MAX3SAT is hard to approx.

Simulating a PCP

Let A ∈ PCP(q(n), r(n), ε(n)) via M().

Can we simulate M()(x)? No:
1) How do you simulate a rand computation?
2) What about the queries? We don’t have y .

There are two ways to look at this.

1) ∀ rand τ and ∀ bit answers σ do a simulation.
If we do this we will need to also keep track of what bit-queries
were asked and how they were answered.
Will need r(n) = O(log n) and q(n) = O(log n).
We will do this in our proof that CLIQ is hard to approx.

2) ∀ rand τ find Bool fml of bit-answers that leads to accept.
Need r(n) = O(log n) and q(n) = O(1).
We will do this in our proof that MAX3SAT is hard to approx.

The PCP Theorem and Some Additions to it

We state but do not proof (hard!) PCP theorem and some
variants.
Thm

1. SAT ∈ PCP(O(1),O(log n), 12).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(1),O(log n), ε).
(Iterating Part 1.)

3. SAT ∈ PCP(O(log n),O(log2 n), 1n). (Iterating Part 1.)

4. For all 0 < ε < 1, SAT ∈ PCP(O(log n),O(log n), 1n). (Hard!
Reuse Random Bits..)

The PCP Theorem and Some Additions to it

We state but do not proof (hard!) PCP theorem and some
variants.
Thm

1. SAT ∈ PCP(O(1),O(log n), 12).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(1),O(log n), ε).
(Iterating Part 1.)

3. SAT ∈ PCP(O(log n),O(log2 n), 1n). (Iterating Part 1.)

4. For all 0 < ε < 1, SAT ∈ PCP(O(log n),O(log n), 1n). (Hard!
Reuse Random Bits..)

The PCP Theorem and Some Additions to it

We state but do not proof (hard!) PCP theorem and some
variants.
Thm

1. SAT ∈ PCP(O(1),O(log n), 12).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(1),O(log n), ε).
(Iterating Part 1.)

3. SAT ∈ PCP(O(log n),O(log2 n), 1n). (Iterating Part 1.)

4. For all 0 < ε < 1, SAT ∈ PCP(O(log n),O(log n), 1n). (Hard!
Reuse Random Bits..)

The PCP Theorem and Some Additions to it

We state but do not proof (hard!) PCP theorem and some
variants.
Thm

1. SAT ∈ PCP(O(1),O(log n), 12).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(1),O(log n), ε).
(Iterating Part 1.)

3. SAT ∈ PCP(O(log n),O(log2 n), 1n). (Iterating Part 1.)

4. For all 0 < ε < 1, SAT ∈ PCP(O(log n),O(log n), 1n). (Hard!
Reuse Random Bits..)

The PCP Theorem and Some Additions to it

We state but do not proof (hard!) PCP theorem and some
variants.
Thm

1. SAT ∈ PCP(O(1),O(log n), 12).

2. For all constants 0 < ε < 1, SAT ∈ PCP(O(1),O(log n), ε).
(Iterating Part 1.)

3. SAT ∈ PCP(O(log n),O(log2 n), 1n). (Iterating Part 1.)

4. For all 0 < ε < 1, SAT ∈ PCP(O(log n),O(log n), 1n). (Hard!
Reuse Random Bits..)

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).
Number of rand bits is d5 lg ne = L(n).
x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).

Number of rand bits is d5 lg ne = L(n).
x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).
Number of rand bits is d5 lg ne = L(n).

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).
Number of rand bits is d5 lg ne = L(n).
x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).
Number of rand bits is d5 lg ne = L(n).
x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

I will make up number here to avoid to much notation. A ∈ NP.

A ∈ PCP(4, 5 log n, 0.1).

Number of possible queries is 24+5 log n = 24n5 = p(n).
Number of rand bits is d5 lg ne = L(n).
x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = 1| ≤ 0.1× 2L(n)].

Idea One Try all y . There are 2p(n) y ’s, to many.

Idea Two Try all 38-long bit sequenes for answers. Next Slide.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.

Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.

Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Why does PCP Theorem NOT Imply P = NP?

x ∈ A =⇒ (∃py)(∀Lτ)[My (x , τ).
x /∈ A =⇒ (∀py)[|τ : My (x , τ) = Y | ≤ 0.1× 2L(n)].

Idea Two Try all 5-bit sequenes for answers.
Lets see what happens. We make up the following scenario. Take
n such that L(n) = 8.

Look at answer sequene 00000. So, for all τ ∈ {0, 1}8 run M(x , τ)
and answer all queries NO.

If use query answers 00000 and rand bits 00000000 then queries
were to the 23rd, 32nd, 38th, 40th, 74th bit. Say anwer is NO.

If use query answers 00000 and rand bits 0000001 then queries
were to the 8th, 15th, 21st, 47th, 98th bit. Say answer is YES.
Do the same for all query answers length 5, rand bits length 8.

Put the YES entries in a table. See next page.

Make a Table

Only put the YES’s on the table.
Bit Ans Rand Bits Queries

00001 00000001 23,32,38,40,74
00001 01000001 13,12,18,19,20
00001 01000001 3,10,32,29,29

00011 00000001 23,30,35,40,80
00011 01000101 13,12,18,19,20
00011 01100001 3,10,32,29,29
00011 01000101 23,37,38,41,75

...
...

...

Is there a y such that for all τ ∈ {0, 1}8 there is a sequence of 5
query bits that is consistent with y? If so then x ∈ A, else not.

Example 1st and 7th row consistent with a y that has
23rd bit-0, 32nd bit-0, 37th bit-0, 38th bit-0, 40th bit-0,
41st bit-1, 74th bit-1, 75th bit-1

Make a Table

Only put the YES’s on the table.
Bit Ans Rand Bits Queries

00001 00000001 23,32,38,40,74
00001 01000001 13,12,18,19,20
00001 01000001 3,10,32,29,29

00011 00000001 23,30,35,40,80
00011 01000101 13,12,18,19,20
00011 01100001 3,10,32,29,29
00011 01000101 23,37,38,41,75

...
...

...

Is there a y such that for all τ ∈ {0, 1}8 there is a sequence of 5
query bits that is consistent with y? If so then x ∈ A, else not.

Example 1st and 7th row consistent with a y that has
23rd bit-0, 32nd bit-0, 37th bit-0, 38th bit-0, 40th bit-0,
41st bit-1, 74th bit-1, 75th bit-1

Make a Table

Only put the YES’s on the table.
Bit Ans Rand Bits Queries

00001 00000001 23,32,38,40,74
00001 01000001 13,12,18,19,20
00001 01000001 3,10,32,29,29

00011 00000001 23,30,35,40,80
00011 01000101 13,12,18,19,20
00011 01100001 3,10,32,29,29
00011 01000101 23,37,38,41,75

...
...

...

Is there a y such that for all τ ∈ {0, 1}8 there is a sequence of 5
query bits that is consistent with y? If so then x ∈ A, else not.

Example 1st and 7th row consistent with a y that has
23rd bit-0, 32nd bit-0, 37th bit-0, 38th bit-0, 40th bit-0,
41st bit-1, 74th bit-1, 75th bit-1

How Hard is this Consistency Problem?

If you formalize this problem (and have L(n) random bits, not 8)
then it is a string-consistency problem that is

NP-Complete
PRO This means that the PCP theorem does not show P = NP.
Hence the Erik-Bill-Mohammad book will not be obsolete upon
publication.
CON If we DID get P = NP we could solve lots of things quickly.
I WONDER The PCP theorem can be intrepted as-

NP is easier than we thought
and hence evidence that P = NP.

How Hard is this Consistency Problem?

If you formalize this problem (and have L(n) random bits, not 8)
then it is a string-consistency problem that is

NP-Complete

PRO This means that the PCP theorem does not show P = NP.
Hence the Erik-Bill-Mohammad book will not be obsolete upon
publication.
CON If we DID get P = NP we could solve lots of things quickly.
I WONDER The PCP theorem can be intrepted as-

NP is easier than we thought
and hence evidence that P = NP.

How Hard is this Consistency Problem?

If you formalize this problem (and have L(n) random bits, not 8)
then it is a string-consistency problem that is

NP-Complete
PRO This means that the PCP theorem does not show P = NP.
Hence the Erik-Bill-Mohammad book will not be obsolete upon
publication.

CON If we DID get P = NP we could solve lots of things quickly.
I WONDER The PCP theorem can be intrepted as-

NP is easier than we thought
and hence evidence that P = NP.

How Hard is this Consistency Problem?

If you formalize this problem (and have L(n) random bits, not 8)
then it is a string-consistency problem that is

NP-Complete
PRO This means that the PCP theorem does not show P = NP.
Hence the Erik-Bill-Mohammad book will not be obsolete upon
publication.
CON If we DID get P = NP we could solve lots of things quickly.

I WONDER The PCP theorem can be intrepted as-
NP is easier than we thought

and hence evidence that P = NP.

How Hard is this Consistency Problem?

If you formalize this problem (and have L(n) random bits, not 8)
then it is a string-consistency problem that is

NP-Complete
PRO This means that the PCP theorem does not show P = NP.
Hence the Erik-Bill-Mohammad book will not be obsolete upon
publication.
CON If we DID get P = NP we could solve lots of things quickly.
I WONDER The PCP theorem can be intrepted as-

NP is easier than we thought
and hence evidence that P = NP.

