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TSP cannot be
Approximated
Unless P=NP



TSP



Notation

In this slide packet G is always a weighted graph with natural
number weights



TSP

Recall TSP is the following problem

1. Input G and k ∈ N.

2. Output YES if there is a Ham Cycle in G of weight ≤ k , NO
otherwise.

This is a Decision Problem which has a YES-NO answer.

What we really want is to find the optimal Ham Cycle.

Since TSP is NPC, finding the optimal is likely hard.

But what about approximating it? Need to define this carefully.
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An α-Approx For TSP

Def OPT(G ) is the weight of the lowest weight Ham Cycle of G .

Clearly if finding OPT(G ) is in P then P = NP.

Def Let α > 1. An α-approx for TSP is a poly time algorithm
that, on input G , returns a cycle that is ≤ αOPT(G ).

What if we can get better and better approximations?

Def A Poly time Approx Scheme (PTAS) for TSP is a poly
time algorithm that, on input (G , ε), returns a cycle that is

≤ (1 + ε)OPT(G ). Run time depends on ε. Can be bad: n2
1/ε2

.

VOTE assuming P 6= NP.

1) There is a PTAS for TSP.

2) There is an α such that (1) TSP has an α-approx but (2) for all
β < α there is no β-approx for TSP.

3) There is no such α. E.g., there is no (1 + 1
21000

)-approx for TSP.

ANSWER: 3, no approx. But there is approx for subcases.
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Approximating TSP

1. Metric TSP: TSP problem restricted to weighted graphs that
are symmetric and satisfy the triangle inequality:
w(x , y) + w(y , z) ≥ w(x , z). Christofides (1976) and
Serdyukov (1978) gives a 3

2 -approximation to metric TSP.

2. Karlan, Klein, Oveis-Gharan (2020) got the first improvement
over 3

2 -approx: a (3
2 − ε)-approx to the metric TSP

(ε < 10−36).

3. Euclidean TSP: TSP problem when the graph is a set of
points in the plane and the weights are the Euclidean
distances. Arora (1998) and Mitchell (1999) showed that, for
all ε, there is an (1 + ε)-approximation in time
O(n(log n)O(1/ε)).

4. Arora and Mitchell actually have an algorithm that works on n

points in Rd that runs in time O(n(log n)O(
√
d/ε)d−1

).
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TSP Does Not have an
α-Approx



If TSP has an approx then HAMC is in P

Assume TSP has an α-approx via Program M. α > 1.

1) Input G , an unweighted Graph on n vertices.
2) Let G ′ be the weighed graph where every edge in G has weight
1 and every non-edge has weight B where we determine B later.
Comment
If G has a HAMC then OPT(G ′) ≤ n.
If G has no HAMC then OPT(G ′) ≥ B.
3) Run the α-approx on G ′.
Comment
If G has a HAMC then OPT(G ′) ≤ n so M(G ′) ≤ αn.
If G has no HAMC then OPT(G ′) ≥ B so M(G ′) ≥ B.
Need to set B such that αn < B. B = n2 will suffice.
4)
Case 1: If M(G ′) ≤ αn then output YES.
Case 2: If M(G ′) ≥ B then output NO.
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We can Do Better

We showed:
Thm Let α ≥ 1. If there is an α-approx for TSP then P=NP.

If you look at the proof more carefully you can prove this:
Thm Let α(n) be a polynomial. If there is an α(n)-approx for TSP
then P=NP.
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Summary of Other
Non-Approx Results



History: 1971-1997

1. The TSP result goes back before 1978 and is folklore.

2. Before 1990 there were a few other non-approx results: Ind
set, Coloring, Knapsack, Prob others. All had elementary
though clever proofs, like the TSP result.

3. In 1991 a paper came out that showed:

3.1 Many results like: f has a PTAS IFF g has a PTAS.
3.2 A class MAXSNP of functions that seemed to not have PTAS

was defined.
3.3 The problem:
MAX3SAT(φ) = max numb of clauses that can be satisfied

was shown complete for MAXSNP.
But this was not very satisfying: it is plausible all these
problems in MAXSNP had a PTAS.
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History: 1998-2021

1. Motivated by (among other things) trying to find lower
bounds on approx, the class PCP(q(n), r(n)ε(n)) was defined.

2. In 1998 it was shown that NP = PCP(O(1),O(log n), 1n ).
This implied (with a lot of additional work):

2.1 If MAX3SAT has a PTAS then P = NP.
2.2 If CLIQ can be well approximated then P = NP.
2.3 If SET COVER has an (1− o(1)) ln(n) approx then P = NP.

(It is known to have a ln(n)-approx. This took about 10
papers with many intermediary results.
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