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Introduction 

​ The fact that there are an infinite number of primes in domain N has been proved since 

around 300 B.C. by Euclid. Since then, hundreds of new proofs that claim infinitude of primes in 

domain N and Z have been discovered by numerous mathematicians. However, there are many 

domains that do not have an infinite number of primes. The domains of interest to us are Integral 

domains, especially rational numbers Q, domain whose elements are fully simplified rational 

numbers with odd denominators Q2, and domain whose elements are complex number with form 

a+bi where a and b are integers, or Gaussian Integers Z[i].  

​ Our objectives were to investigate whether a domain has an infinite number of primes by 

applying Euclid’s proof and four proofs that show infinitude of primes in N that use Ramsey 

Theory to the 3 domains and find out why they fail in the domains with finite number of primes. 

 

Definitions 

Integral Domains 

​ An integral domain D is a ring that satisfies the following rules: 

1.​ It must have a multiplicative identity, 1. 

2.​ Multiplication must be commutative 

3.​ For any a, b ∈ D, if a ⋅ b = 0, then either a = 0 or b = 0. (No zero divisor) 

​ For example, integers Z, rational numbers Q, and real numbers R are integral domains. 

Q2 and Z[i] are also integral domains. However, natural numbers N is not an integral domain 

because it does not qualify as a ring. Some integers modulo n Zn are not integral domains either. 

When n is composite, Zn has zero divisors. For example, in Z6, since 2 ⋅ 3 = 0, 2 and 3 are zero 

divisors and do not follow rule 3 of the integral domain.  



 

Unit 

​ A unit is an element of D that has a multiplicative inverse. For example, the only units in 

Z are 1 and -1, as no other integers can be multiplied by any integer to obtain multiplicative 

identity, 1. On the other hand, all elements of Q and R excluding 0 are units because they all 

have multiplicative inverse. In Z[i], the units are 1,-1,i, -i.  

Irreducibles 

​ An irreducible p is a non-unit element of D such that if there exists a, b ∊ D - {0} and p = 

ab, either a or b is a unit. Primes are a type of irreducibles: a prime p is a non-unit element of D 

such that if p|ab for a, b ∊ D - {0}, either p|a or p|b. In all integral domains, all primes are 

irreducible, but not all irreducibles are prime. However, for our purpose in the paper, all 

irreducibles are prime.  

Composites 

​ A composite number is an element of D that is not either unit, prime, or 0, meaning that it 

is a non-unit element of D - {0}, n, such that there exists non-unit a, b ∊ D - {0} where n = ab.  

(Infinite) Unique Factorization Domain 

​ A unique factorization domain is an integral domain in which every element can be 

factored uniquely up to units into primes. An infinite unique factorization domain is a unique 

factorization domain with an infinite number of elements. 

Number of Primes in each Integral Domain 

​ Defining the number of primes in each integral domain casts a question. Z has an infinite 

number of primes, but does it have twice as many as the prime number of N, since the negative 

counterparts of primes in N are also prime in Z? Are 2 and -2 same or different prime numbers?  



 

​ For our purpose, the answer is no, and 2 and -2 are the same prime numbers in Z. We 

define an equivalence class of prime numbers so that it contains primes p, q ∊ D if and only if 

there exists a unit u ∊ D such that p = uq. We say that D has an infinite number of primes if and 

only if it has an infinite number of equivalence classes of primes.  

​ In Q, there are no prime numbers since all elements of Q are units. In Q2, the units are 

the elements with odd numerators, since their multiplicative inverse exists while elements with 

even numerators do not have multiplicative inverse within the domain. The primes in the domain 

are 2/1, 2/3, 2/5, …. However, these are all in the same equivalence class. Therefore, Q2 has 

finite number (1) of primes. In Z[i], the primes are 1+i, 4k + 3 for an integer k such that 4k + 3 is 

prime in Z, s + ti and s - ti such that s2 + t2 = 4k+1 for an integer k and is a prime in Z. Since 

there is an infinite number of primes p  in Z such that p ≡ 3 (mod 4), Z[i] has an infinite number 

of primes.  

 

Notations 

​ Let vp (n) denote the largest integer k for n and prime p ∊ D such that pk|n. For example, 

v2(36) = 4. where p is all prime numbers in D.  vp  satisfies the following rules for all a, b ∊ D:​

​ 1. vp (ab) = vp (a) + vp (b) 

​ 2. vp (a+b) = min(vp (a), vp (b)) if vp (a) ≠ vp (b) 

​ 3. vp (a+b) ≥ min(vp (a), vp (b)) if vp (a) = vp (b) 

We will leave out the proofs of these, as they are trivial. Also, for the sake of convenience, let 

vp(0) = ∞ for all prime p.  



 

​ Let COL(n) denote the color of n where n is an element of a domain such that all 

elements are colored with a certain number of colors. We say n and m are monochromatic if 

COL(n) = COL(m). 

 

Lemma 

​ The following theorems are necessary to understand this paper: 

1.​ Fermat’s Last Theorem (FLT): For all n ≥ 3 ∊ Z , xn + yn = zn has no nonzero solution in 

Z. 

2.​ Fermat’s 4-square Theorem: There are no four distinct squares in arithmetic progression 

3.​ The Fundamental Theorem of Arithmetic (FTA): For all n, n = ∏p(pvp (n)) is a unique prime 

factorization if n ∊ N 

4.​ Schur’s Theorem: if positive integers are colored with c colors, there exists x, y, z ∊ N  

such that x + y = z and x, y, z are monochromatic. 

5.​ van der Waerden’s Theorem (VDW): If N is colored with c colors for a finite integer c, for 

all k > 0, there exists a, d ∊ N such that a, a + d, a + 2d, … a + kd are monochromatic. In 

other words, for a given positive integer k, there exists an arithmetic progression of length 

k+1 containing monochromatic integers in a finite coloring of positive integers. 

6.​ Generalized Polynomial van der Waerden’s Theorem (GPVDW): If the elements of an 

infinite integral domain D are colored with c colors, for all t , k ∊ N such that t  ≤ k, if ft(x) 

are polynomials in D[x] with ft (0) = 0, then there exist a, d ≠ 0 ∊ D such that all a and a 

+ ft(d) are monochromatic. 

​  



 

Now, we will show that primes are infinite in N through 5 different proofs. Since Q and Q2 do 

not have infinite primes, we will find out where the proofs fail when applied to these domains. 

Since Z[i] has infinitely many primes, we will apply the proofs to Z[i] and find out if they work. 

 

Euclid’s Proof 

Theorem: There are infinitely many primes in N. 

Proof: 

Suppose there are a finite number of primes in N.  Let k be the number of primes. Denote 

the primes as p1, p2, …, pk in an increasing order. Now consider a number n = p1p2…pk+1. Since 

2 is a prime, n ≥ 3 > 1. Therefore, n is either prime or composite. If n is a prime, since n is 

greater than pt for all integers 1 ≤ t ≤ k, n is not in the list of all prime in N. This is a 

contradiction. If n is a composite, there exists a prime p such that p|n. However, for all integers 1 

≤ t ≤ k, pt does not divide n. Therefore, this causes contradiction. Therefore, there are infinitely 

many primes in N. ◼ 

​ Euclid’s proof works in N since the newly considered number n is always prime or 

composite. However, in Q or Q2, n can be a unit. In fact, since every element is a unit in Q, n is a 

unit in Q. Also, in Q2, the only prime is 2, so n = 2+1 = 3, which is also a unit in Q2. Therefore, 

we cannot conclude that there are infinitely many primes in these domains.  

However, in Z[i], the proof still holds. All elements of this domain have their norm 

greater than 1 unless they are unit or 0. So, multiplying two non-unit nonzero elements will 

increase their norm. Since 3 is a prime in Z[i], the norm of all products of prime is greater than 2. 

Therefore, the norm of n is greater than 1, meaning that n cannot be a unit. Contradiction occurs 



 

for both cases where n is prime or n is composite due to the same reason with Euclid's proof on 

N. Therefore, there are infinitely many primes in Z[i].  

 

The following four proofs that show infinitude of primes use Ramsey Theory. These proofs will 

be called by Elsholtz-Gasarch (EG), Alpoge, Granville, and Göral-Özcan-Sertbaş (GOS) proofs, 

named after their authors.  

 

EG Proof 

Theorem: FLT and Schur’s Theorem imply that there are infinitely many primes in N. 

Proof: 

​ Suppose there are a finite number of primes in N. Let k be the number of primes. Denote 

the primes as p1, p2, …, pk in an increasing order. Consider a number n ∊ D.  Let qi, ri ∊ N such 

that vpi(n) = 3qi + ri
  and 0 ≤ ri ≤ 2. Then, n = ∏i=1

k pi
3qi+ri. Now, define Q(n) = ∏i=1

k (pi
qi)3 and 

R(n) = ∏i=1
k pi

ri. Then n = Q(n)R(n), where Q(n) is a cube of an integer. Then, color all elements 

n in D by the vector <r1, r2 ,..., rk>. There are 3k possible colors, which is a finite integer. 

Therefore, by Schur’s Theorem, there exists x, y, z ∊ N such that x, y, and z are monochromatic 

and x + y = z. Therefore, these 3 numbers share the same <r1, r2, …, rk>. In other words, R(x) = 

R(y) = R(z). Since x + y = z, Q(x)R(x) + Q(y)R(y) = Q(z)R(z) and Q(x) +Q(y) = Q(z). However, 

all Q(n) are cubes of nonzero integers, thus contradicting FLT. Therefore, there are infinitely 

many primes in N. ◼ 

​ EG proof works in N because of FLT. Therefore, when this proof is applied to other 

integral domains, the application of FLT on the domains must be validated in order to 

successfully apply the proof. Since n = uQ(n)R(n) for a unit u in domain D, the application of 



 

FLT should claim that for any n ≥ 3, uxXn + uyYn = uzZn has no solutions in domain D where ux, 

uy, and uz are units in D. However, this equation has a solution in Q and Q2. In both domains, X = 

Z = 1, Y = 2, and ux = uy = 1, uz = 2n + 1 is one solution for all n ≥ 3. Therefore, the proof fails 

to apply on Q and Q2.  

​ Now, consider domain Z[i]. We will show that the application of FLT in Z[i] for n = 3 is 

equivalent to the following statement: X3 + Y3 = Z3 has no nonzero solution in Z[i]. From the 

equation in the application of FLT, if the units ux, uy or uz  are either -1 or -i, substitute X, Y, or Z, 

respectively, with its negative counterpart to obtain a unit of 1 or i. Then, if the unit is i, 

substitute X, Y, or Z with -i3X, -i3Y, or -i3Z, respectively to obtain a unit of 1. Therefore, we have 

proved the equivalence. Additionally, it is known that X3 + Y3 = Z3 has no nonzero solution in 

Z[i], according to Elias Lampakis’s study in 2008. Therefore, the application still holds and the 

EG proof is valid on Z[i], proving that there are infinitely many primes in Z[i].  

 

Granville Proof 

Theorem: VDW and Fermat’s 4-square Theorem imply that there are infinitely many primes. 

Proof: 

Suppose there are a finite number of primes in N. Let k be the number of primes. Denote the 

primes as p1, p2, …, pk in an increasing order. Consider an integer n ∊ D. Let qi, ri ∊ N such that 

vpi(n) = 2qi + ri
  and 0 ≤ ri ≤ 1. Then, n = ∏i=1

k pi
2qi+ri. Now, define Q(n) = ∏i=1

k (pi
qi)2 and R(n) = 

∏i=1
k pi

ri. Then n = Q(n)R(n), where Q(n) is a square of an integer. Then, color all elements n in 

D by the vector <r1, r2 ,..., rk>. There are 2k possible colors, which is a finite integer. Therefore, 

by VDW, there exists a, d ∊ N such that a, a + d, a + 2d, and a + 3d  are monochromatic. 

Therefore, these 4 numbers share the same <r1, r2, …, rk>. In other words, R(a) = R(a + d) = R(a 



 

+2d) = R(a+3d). Therefore, Q(a), Q(a + d), Q(a + 2d), and Q(a + 3d) form an arithmetic 

sequence. However, all Q(n) are squares of nonzero integers, thus contradicting Fermat’s 

4-square Theorem. Therefore, there are infinitely many primes in N. ◼ 

​ Granville proof works in N because of Fermat’s 4-square Theorem. Therefore, when this 

proof is applied to other integral domains, the application of Fermat’s 4-square Theorem on the 

domains must be validated in order to successfully apply the proof. Since n = uQ(n)R(n) for a 

unit u in domain D, the application of Fermat’s 4-square Theorem should claim that uxX2, uyY2, 

uzZ2, and uwW2 does not form an arithmetic sequence given that ux, uy, uz, and uw are units and X, 

Y, Z, and W are elements of D. However, this equation has a solution in Q and Q2. In both 

domains, X = Y = Z = W = 1, and ux = 1, uy = 3, uz = 5, and uw = 7 is one example that forms an 

arithmetic sequence. Therefore, the proof fails to apply on Q and Q2.  

 

Alpoge Proof 

Theorem: VDW and FTA imply that there are infinitely many primes. 

Proof:  

Suppose there are a finite number of primes in N. Let k be the number of primes. Denote the 

primes as p1, p2, …, pk in an increasing order. Consider an integer n ∊ N. Let qi, ri, si ∊ N such that 

vpi(n) = 2qi + ri
 , 0 ≤ ri ≤ 1, and si = 1 if vpi(n) >0 and 0 otherwise. Then, n = ∏i=1

k pi
2qi+ri. Then, 

color all elements n in N by the vector <r1, r2 ,..., rk, s1, s2, …, sk>. There are 4k possible colors, 

which is a finite integer. Therefore, for an arbitrary positive integer r > pk, by VDW, there exists 

a, d ∊ N such that a, a + d, a + 2d, …, a + rd  are monochromatic. Now, consider all p ∊ {p1, p2, 

…, pk} such that p|a. Since COL(a) = COL(a + d), p|a + d. Therefore p|(a + d) - a = d.  



 

Now, we will show that vp(a) < vp(d). Suppose for some p, vp(a) > vp(d). Then, vp(a+d) = vp(d). 

Since COL(a) = COL(a + d) , vp(a) ≡ vp(a+d) =vp(d) (mod 2). Therefore, vp(d)+2 ≤ vp(a). Now 

consider vp(pd). vp(pd)= vp(d) + vp(p) = vp(d)+1 < vp(d)+2 ≤ vp(a). Then, vp(a + pd) = min(vp(a), 

vp(pd)) = vp(pd) = vp(d)+1. Since COL(a + pd) = COL(d), vp(d) ≡ vp(a + pd) = vp(d)+1 (mod 2). 

This is a contradiction. Now, suppose for some p, vp(a) = vp(d). Then, let v = vp(a) = vp (d), A, D 

∊ N such that a = Apv, d = Dpv. Since gcd(D, p) = gcd(D, p2) = 1, D has an inverse modulo p2. 

Let the inverse be t. Then, there exists c ∊ N such that c ≤ p2 and A + cD ≡ p (mod p2) since c ≡ 

t(p - A) (mod p2) satisfies A + cD ≡ p (mod p2). Now, there also exists b ∊ N such that A + cD = 

bp2 + p = p(bp + 1). Then, vp(a + cd) = vp(pv(A + cD)) = v + vp(p(bp+1)) = v+1 + vp(bp+1) = 

v+1 = vp(a)+1. Since vp(a+cd) ≡ vp(a) (mod 2), we get vp(a)+1 ≡ vp(a) (mod 2). This is a 

contradiction. Therefore, vp(a) < vp(d). Then vp(a + d) = vp(a) for all prime p dividing a. This 

means that a and a + d are distinct integers with same prime factorization, contradicting FTA.  

Therefore, there are infinitely many primes. ◼ 

​ Alpoge proof works in N because of FTA. Therefore, when this proof is applied to other 

integral domains, the application of FTA on the domains must be validated in order to 

successfully apply the proof. In domain D, the application of FTA should claim that For all n, n = 

u∏p(pvp (n)) is a unique prime factorization for a unit u and all primes p in D. Therefore, the proof 

fails to apply on all integral domains with multiple units, including Q, Q2, and Z[i], as the same 

vector <vp1(n), vp2(n), …, vpk(n)> does not guarantee the same n.  

​ However, Z[i] does have an infinite number of primes. Therefore, a slight adjustment is 

required to make Alpoge proof work in Z[i]. In the polar plane, multiplying i into a point rotates 

the point counterclockwise by π/2. Therefore, by multiplying any point on the polar plane by 0~4 

times, we can rotate the point so that it lies on the first quadrant. Multiplying i multiple times 



 

only changes the unit, so it does not affect the prime factorization. By placing all elements on the 

first quadrant, unique prime factorization is now guaranteed, and the Alpoge proof works.  

 

GOS Proof 

Theorem: For an infinite unique factorization domain D and its subset containing all units U, 

GPVDW implies that there are infinitely many primes in D given that |U| is finite. 

Proof:  

Let s be the number of units. Denote the units as u1, u2, …, us in an increasing order. Suppose 

there are a finite number of primes in D. Let k be the number of primes. Denote the primes as p1, 

p2, …, pk in an increasing order. Let P = p1p2…pk. Consider an integer n ∊ D. Let qi, ri, si ∊ N such 

that vpi(n) = 2qi + ri
 , 0 ≤ ri ≤ 1, and si = 1 if vpi(n) >0 and 0 otherwise. Then, n = ∏i=1

k pi
2qi+ri. 

Then, color all elements n in D by the vector <r1, r2 ,..., rk, s1, s2, …, sk>. There are 4k possible 

colors, which is a finite integer. Now, define fi(x) = uix and fs+i(x) = uiPx for integer 1 ≤ i ≤ s. For 

integer 1 ≤ i ≤ 2s, fi(0) = 0. Therefore, by VDW, there exists a, d ≠ 0 ∊ N such that a and all a + 

fi(d) for integer 1 ≤ i ≤ 2s are monochromatic. In other words, a, all a + uid, and all a + uiPd for 

integer 1 ≤ i ≤ 2s are monochromatic. Now, we will show that a ≠ 0.  

Suppose a = 0. Then, the color of a, all a + uid, and all a + uiPd for integer 1 ≤ i ≤ 2s will 

be <∞, ∞, …, ∞, 1, 1, …, 1>. The only element of D that is colored with such is 0, which means 

that all a + uid, and all a + uiPd for integer 1 ≤ i ≤ 2s are 0. Since ui and d cannot be 0, this is a 

contradiction. 

Now, we will show that vp(a) ≤ vp(d). Suppose for some p, vp(a) > vp(d). Then, vp(a+d) = 

vp(d). Since COL(a) = COL(a + d) , vp(a) ≡ vp(a + d) =vp(d) (mod 2). Therefore, vp(d)+2 ≤ vp(a). 

Now consider vp(pd). vp(pd)= vp(d) + vp(p) = vp(d)+1 < vp(d)+2 ≤ vp(a). Then, vp(a + pd) = 



 

min(vp(a), vp(pd)) = vp(pd) = vp(d)+1. Since COL(a + pd) = COL(d), vp(d) ≡ vp(a + pd) = 

vp(d)+1 (mod 2). This is a contradiction. Therefore, vp(a) ≤ vp(d). Then vp(a) < vp(d)+1 = 

vp(uiPd) for all integers 1 ≤ i ≤ s. So, vp(a + uiPd) = vp(a) for all integers 1 ≤ i ≤ s. This equality also 

holds for all p that does not divide a since their st for all integers 1 ≤ t ≤ k will be equally 0. So the 

equality holds for all primes in D. Also, u1 and d cannot be 0, so a ≠ a + u1d. However they have equal 

factorization, which is a contradiction. Therefore, there are infinitely many primes in D. ◼ 

​ GOS proof is based on the assumption that the number of units in D is finite. However, 

this is not the case in Q and Q2. Therefore, the proof fails to apply for these 2 domains. On the 

other hand, Z[i] does have a finite number of units (4). Therefore, this domain satisfies the 

assumption, and the proof applies.  
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