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1 Introduction

Abstract The Manhattan Metric is a concept of distance that can be applied
to spaces such as Rn. Unlike the concept of Euclidean distance given by√
x2
1 + ...+ x2

n, Manhattan distance is defined by |x1|+ ...+ |xn|. The goal of
this paper is to study Euclidean Ramsey Theory where we use the Manhattan
Metric instead of the Euclidean metric.

Keywords Euclidean Ramsey Theory; Manhattan Metric; Colorings;
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Notation 1.1 A c-coloring of the plane COL : Rn → [c] is a function that
associates each point in Rn one of c different colors

Notation 1.2 d(a, b) - the Manhattan distance between points a and b

Notation 1.3 Rn → (lm, ln) means that for any 2-coloring of Rn there exists
either a red lm or a blue ln. (Note: for all 2-colorings we will refer to the
colors as red and blue)

Def 1.4 The chromatic Number of the plane or χ The smallest number of
colors, such that, there exists a coloring R2 → [χ] such that for all points a, b
such that if d(a, b) = 1 then COL(a) ̸= COL(b)
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Def 1.5 A monochromatic k cycle or Ck is a set of k points a1, ..., ak such
that set of edges between vertices are all the same color, and the first and
last vertex are the same. R(Cm, Cn) means you either have a monochromatic
red Cm or a blue Cn

Def 1.6 A Monochromatic Square is 4 vertices with the same color, whose
edges form right angles, and have the same distance (Note: Only the vertices
themselves have to be the same color, not the segments between them)

2 Chromatic Number of R2

Lemma 2.1 χ ≥ 4

Proof:
Consider the following points (0, 0), (1

2
, 1
2
), (−1

2
, 1
2
), (0, 1). By the Pigeonhole

Principle, if we try and 3 color 4 points then we are guaranteed that at least
2 points will share a color. Since the manhattan distance between any 2
distinct points is 1 this implies that χ ≥ 4.

Theorem 2.2 χ = 4

Proof:
Consider a circle under the manhattan metric.

Circles under the Manhattan metric have flat edges, and the plane can
be divided into circles unlike in the Euclidean plane.
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Consider the tesselation shown above. If each circle has diameter 1, then the
tesselation fails only at the edges and vertices between colors. However this
can be patched by alternating the colors between each edge and vertex in
the following manner.

If you treat the center of each square as the entire interior being that color,
then the following pattern of alternating the colors of each edge and vertex
allows us to find a valid 4 coloring of the plane where no 2 points 1 inch apart
are the same color. Therefore χ = 4.

3 R2 → (lm, ln)

Theorem 3.1 R2 → (l2, l4)
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Consider the following configuration of points:

The case where all 8 points surrounding the red point are blue is the only
interesting one, because every other case results in an immediate red l2. In
order to prevent a blue l4 every collinear point a unit distance away from
each blue l3 must be red.

However trying to prevent a blue l4 causes us to create 4 red l2. There-
fore, for any 2 coloring of the plane under the Manhattan Metric, we are
guaranteed (l2, l4).

Theorem 3.2 R2 ̸→ (l2, l5)

Proof:
Consider the following configuration of points:

4



Each line segment represents that the two points are a distance of 1 unit
apart. The 3 blue points are colored the way they are, because in any other
case, there would already be a red l2. We know that on at least one side of
the blue l3 we need a red point (whichever side we choose doesn’t matter,
because of symmetry), and following the same logic of preventing a red l2
this forces 2 more points to be blue.

Continuing this train of logic leads us into the following symmetric pat-
tern:
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You can notice that this pattern repeats itself by looking at the red points,
they all lie on the corners of a rotated square, so it can be used to completely
tile the plane. This pattern has no red l2 or blue l5 making it a valid coun-
terexample.

Theorem 3.3 R2 ̸→ (l3, l3)

Proof: Consider this arrangement of points:

Unlike in (l2, ln) the points lying on the circle are not forced to be all
blue, in fact they can’t be, since that would result in a blue l3. In order
to prevent an l3 of either color, each set of 3 collinear points must have at
least 1 red and 1 blue. We can consider all possible starting colors and then
branch off into cases. It turns out there are 4 cases (up to symmetry) that
don’t immediately have an l3
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Case 1:

For every single red l2 we have to make sure the points on either side have
to be blue, and vice versa.

We see that following the steps does result in a blue l3.

Case 2:

Following the same train of logic as before leads us to this configuration.
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Which does have a forced blue l3.

Case 3:

Leading to the following forced blue l3.

Case 4:

As noted by us going through every other possible case and finding a forced
l3 this configuration is the only one (up to rotational and translational sym-
metry) where an l3 of any kind isn’t forced.
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The tiling shown below when extended to the entire plane avoids all
possible l3.

Therefore, there is a coloring of the plane such that there doesn’t exist either
a red or a blue l3, but this coloring is unique up to rotational and transla-
tional symmetry.

(Side note: Cases that appear to be missed, such as the one with only a
red point at the vertex of the triangle, actually force other cases, such as
Case 3 to occur, and the same logic as the previously described 4 cases also
holds if the colors are swapped.)

Open Problem 3.4 Find a function f such that Rn → (l3, lf(n)) and Rn ̸→
(l3, lf(n)+1).

4 Proof of Monochromatic Square in R5

Theorem 4.1 For all COL : R6 → [2] there exists a monochromatic square

Proof:
p1,2 = (1

2
, 1
2
, 0, 0, 0, 0).

p1,3 = (1
2
, 0, 1

2
, 0, 0, 0).

...
p5,6 = (0, 0, 0, 0, 1

2
, 1
2
).
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Define a new coloring COL′(i, j) = COL(pi,j)
We use the property that R(C4, C4) = 6, which guarantees any COL : K6 →
[2] to have a 4-cycle.
Since the dot product of the vectors between points is 0, we know that they
all form right angles. In addition, since the distance between adjacent points
is 1, this implies that any C4 would have to be a monochromatic square.
Therefore any COL : R6 → [2] contains a monochromatic square.

Theorem 4.2 For all COL : R5 → [2] there exists a monochromatic square

Proof:
We use the previously established points pi,j. All of the points satisfy the
equation x1 + x2 + x3 + x4 + x5 + x6 = 1 which is a hyperplane in R5. Using
this, there exists a rotation and translation mapping the points pi,j to points
ki,j ∈ R5.

Theorem 4.3 There exists a COL : R2 → [2] such that there is no monochro-
matic square

Proof: Consider the counter-example:

The tiling when extended to the entire plane ensures that there are no
monochromatic unit squares.

Open Problem 4.4 For all COL : R4 → [2] does there exist a monochro-
matic square?

Open Problem 4.5 For all COL : R3 → [2] does there exist a monochro-
matic square?
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