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Abstract

Cryptography has long relied on both the strength of encryption tech-
niques and the effectiveness of decryption strategies. One such decryption
method, commonly known as the common character method, evaluates
whether a piece of text is written in English by analyzing the frequency
of its letters and comparing them to standard English letter frequency
distributions. This common letter approach has proven useful in iden-
tifying plain texts during frequency analysis attacks on classical ciphers
such as the Caesar cipher. In this paper, we explore the principles behind
the isEnglish method and extend its application beyond English. By de-
veloping common languages, including other languages such as German,
Spanish, and Chinese, we test whether similar methods can accurately
determine the language of a given cipher text or plain text. This research
provides a foundation for further exploration of statistical language de-
tection in cryptographic contexts and contributes to the broader field of
classical cryptanalysis.

1 Introduction

Cryptography, the science of secure communication, often relies not only on
the strength of encryption techniques but also on the ability to identify and
interpret encrypted messages. One fundamental approach to breaking classical
ciphers involves frequency analysis, the study of how often letters appear in a
language. The isEnglish method is a statistical tool that uses this concept by
using character frequencies of a given text and those of standard English letter
frequencies. If the result is of similar ranking, the text is likely to be in English
or in whatever language is being tested. This method has proven particularly
useful in detecting successful decryption of mono-alphabetic ciphers such as the
Caesar cipher.

In this paper, we expand upon the traditional isEnglish method by asking:
Can this technique be generalized to detect multiple languages using the same
frequency-based approach? We hypothesize that, since each language has a



distinct letter frequency profile, it is possible to construct similar character
frequency-based methods for other languages, such as Spanish, German, and
Chinese. Furthermore, we predict that the precision of this classification will
correlate with the uniqueness of the frequency distribution of a language.

To evaluate how well character frequency-based language verification gener-
alizes beyond English, we conducted an experiment using artificially encrypted
texts in several languages. For each case, the character frequency distribution
of the text was ranked and compared to a reference profile for the language in
which it was claimed to be written. This process used a modified version of the
isLanguage method, which compares ranked character frequencies. The goal
was not to identify the language of an unknown text, but to assess whether the
frequency signature of a language is strong and distinct enough to verify the
claimed language of a text.

Our findings indicate that the method performs reasonably well across mul-
tiple languages, particularly when the texts are sufficiently long to yield stable
frequency patterns. For example, the method worked reliably with English and
Spanish texts. In contrast, languages with more subtle or overlapping frequency
profiles, such as French, posed greater challenges. These results suggest that
frequency-based verification, while originally designed for English, can be ex-
tended to other languages with varying levels of accuracy.

2 isEnglish Method using the Common Charac-
ter Approach

To explore statistical language detection in cryptographic analysis, we first de-
veloped a program that implements the isEnglish method using the common
characters approach. This technique relies on the premise that letters in lan-
guages follow consistent frequency distributions. For example, in English, the
letters ‘E’, “T’, ‘A’; and ‘O’ are significantly more common than letters like ‘Q’
or ‘Z’. By modeling and comparing these distributions, we can statistically esti-
mate the likelihood that a decrypted message belongs to a particular language.

2.1 Character Ranking Comparison Method

Instead of computing frequency vectors with exact proportions, our approach
relies on the relative ranking of letters by frequency within a given text. For
a cleaned input text T, we count the occurrences of each letter A-Z and sort
them in descending order of frequency. This produces a ranked list:

Riext = [r1,72,. .., 726]

where ry is the most frequent letter in 7', 7o is the second most frequent, and
SO on.
Each language L has a known standard ranking of letters based on typical



usage patterns, denoted as:
R = [s1,52,..., S2]

To compare the text to its expected language profile, we compute a similarity
score based on how closely the observed ranking Ryt aligns with Rp. One
simple method is to count the number of top-k letters that overlap between the
two rankings:

Scorer, = [{r1,r2, ..., 7} N{s1,52,..., Sk}

A higher score indicates a stronger match between the text and the expected
language profile. A threshold 6 is selected such that:

true, if Scorer, > 0

isLanguage(T, L) =
guage(T, L) {false, otherwise

This rank-based method avoids reliance on precise frequency values and
instead focuses on the relative ordering of character occurrences, making it
simpler and potentially more robust across different languages and text lengths.

2.2 Results of the isEnglish Method

After implementing and testing the isEnglish method on a dataset of Caesar-
encrypted English texts, we observed both expected and unexpected behav-
iors when determining whether decrypted outputs resembled English based on
ranked letter frequency.

Expected Results

The method performed as intended under most controlled conditions:

e Correct Decryption Identification: When applied to English texts
encrypted with a Caesar cipher, the method consistently identified the
correct decryption key by selecting the version of the text whose ranked
list of most frequent letters best matched the standard ranking of English
letters.

e Longer Text Performance: For texts longer than approximately 100
characters, the isEnglish function showed high reliability. The larger
text size provided a more stable and representative ranking of charac-
ter frequencies, leading to consistent matches with the expected English
ranking.

e Low False Positives: When run on random strings or non-English texts,
the method rarely produced a close match to the standard English rank-
ing, and correctly returned false, indicating the text was unlikely to be
English.



Unexpected Results

Despite overall success, several limitations and anomalies were observed:

e Short Text Inaccuracy: For texts shorter than 50 characters, the ob-
served character ranking was often too unstable to reliably match the En-
glish profile. In such cases, incorrect decryptions or non-English strings
occasionally matched enough top-ranked letters to be falsely identified as
English.

e Coincidental Overlaps: Some non-English texts produced letter rank-
ings that happened to align with English (e.g., high frequency of E, T, A),
resulting in false positives.

e Unusual English Texts: Texts composed of obscure English vocabulary,
acronyms, or technical terms skewed the letter rankings away from typical
English patterns, sometimes leading to false negatives.

These results highlight that the ranking-based isEnglish method is effective
for general use but sensitive to input length and letter distribution noise.

3 How Is This Applied to Other Languages?

The original isEnglish method depends on the observation that some letters
occur more frequently in English than others. To extend this idea, we tested
whether comparing the **ranked list of most frequent letters** in a text to the
**standard ranking for a given language™* could work across multiple languages.

Standard Letter Rankings by Language

Each language has a characteristic ranking of letters based on typical usage.
For example:

e English: E, T, A, 0, I, N, S, H, R, D
e Spanish: E, A, 0, S, R, N, I, D, L, C
e Chinese (Romanized Text): A, I, 0, N, E, G, H, R, Z, S
e German: E, N, I, S, R, A, T, D, H, U

These standard rankings serve as reference profiles for each language.

Ranking Comparison Approach

Our multilingual adaptation proceeds as follows:

1. Count the occurrences of each letter (A-Z) in the input text.



2. Sort the letters in descending order by frequency to produce a ranked list.

3. Compare the top k letters in the text’s ranking to the top k letters in the
standard ranking for the target language.

4. Compute a similarity score by counting the number of overlapping letters
in the top k positions.

For example, if 7 of the top 10 letters in the input text match the top 10
letters in the standard Spanish ranking, the similarity score would be 7.

Decision Rule for Language Verification

A threshold 0 is defined for the minimum number of matching letters required
to consider a text consistent with a given language. For instance:

true, if |Top,(T") N Top,(L)| > 0

isLanguage(T’, L) = {false otherwise

This method does not attempt to identify the language from among many
options but instead tests whether a text matches the **expected ranking** of
a **known language™*.

Practical Adaptations

To ensure reliable performance, several adjustments were made:

e Normalization of Accented Characters: Accented letters (e.g., é, 1)
were mapped to their unaccented equivalents (e.g., e, n) to align with
standard rankings.

e Text Length Threshold: The comparison was only applied to texts with
at least 100 characters, to reduce the impact of letter ranking instability.

e Alphabet Consistency: Only languages using the 26-letter Latin alpha-
bet were included, allowing direct comparison across languages without
requiring character set adjustments.

Results of Multilingual Application

After adapting the isEnglish method to handle other languages by comparing
the frequencies of their most common letters, we tested the approach on en-
crypted and decrypted texts in English, Spanish, German, and Chinese (Pinyin).
The experiment evaluated whether the method could correctly confirm the tar-
get language of a text after decryption. Overall, the method showed strong
alignment with the expected frequency rankings of each language, while reveal-
ing several practical limitations.



Expected Results

When texts were sufficiently long (greater than 150 characters), the most fre-
quent letters in the decrypted outputs closely matched the standard rankings
for each language, making detection reliable:

English: Texts consistently followed the expected order of E, T, A, and
0. The prominence of T and H in particular made English distributions
distinct from those of the Romance languages.

Spanish: Results reflected the ranking E, A, 0, and S. The especially
high counts of A and 0 clearly separated Spanish texts from English and
German, which rely more on T and N.

German: Decrypted German texts displayed strong frequencies of E, N,
I, and S, with U ranking noticeably higher than in English or Spanish.
This alignment with the German profile enabled consistent detection.

Chinese (Pinyin): Recognition worked well due to the heavy use of
vowels (A, I, 0) and the distinct presence of N, G, and Z, which created a
profile unlike the European languages.

Decryption alignment: When paired with the Caesar cipher process,
the method often confirmed the correct shift by showing that the decrypted
text’s letter frequencies fell into the expected ranking for the target lan-
guage.

Cross-Language Comparisons

Although the method was not primarily designed to compare languages against
each other, we tested whether texts might be misclassified when analyzed against
multiple profiles:

Correct separation at high thresholds: For longer texts and stricter
similarity measures, each language consistently detected only itself. Even
when distributions appeared superficially close (e.g., Spanish and Pinyin
both having high vowel counts), the finer ordering of letters such as S, R,
and G provided separation.

Apparent similarities at low thresholds: For shorter texts (under 100
characters), fluctuations blurred distinctions. For example, Pinyin sam-
ples lacking Z or G sometimes looked closer to Spanish, and English with
unusually high A or 0 usage occasionally resembled Spanish distributions.

Unexpected Results

Some factors outside of raw length also impacted stability:



e Accented characters: In Spanish and German, accented letters were
normalized to their unaccented equivalents (e.g., & — a, i — u). This
often inflated already frequent vowels, making Spanish texts appear more
vowel-heavy and pushing German U counts higher than expected. While
detection still succeeded on long samples, this occasionally shifted results
for shorter ones.

e Stylistic variation: Texts dominated by proper nouns or specialized
terminology disrupted typical frequency patterns, reducing accuracy when
the vocabulary did not reflect the language’s standard distribution.

e Mixed-language samples: In bilingual outputs, the frequency curves
flattened into hybrids (e.g., a mix of Spanish vowels with German conso-
nants), producing near-equal matches across two profiles.

Summary of Findings

Across all tests, the adapted method successfully identified English, Spanish,
German, and Chinese (Pinyin) texts when samples were long enough to re-
flect their characteristic letter rankings. While shorter samples, accent nor-
malization, and mixed-language inputs introduced variability, higher thresholds
ensured that each language reliably recognized itself and not another. These
results suggest that letter-frequency profiling remains a strong tool for language
verification in cryptographic contexts, provided its known limitations are taken
into account.



