
Cracking General Substitution Ciphers with an n-gram
based isEnglish Heuristic

William Zhang1

1Montgomery Blair High School

October 8, 2025

Abstract

We define an isEnglish heuristic–which scores
if a given text is likely to be english–using
n-gram character frequency analysis from
Google Books. We evaluate this heuristic
against others in brute-force-attackable ci-
phers to validate its capability of differenti-
ating English plaintext from English cipher-
text. We then suggest multiple ways of im-
plementing this heuristic to solve a general
substitution cipher.

1 Introduction

It’s often that perfect ciphers do not exist.
Claude Shannon proved that one-time pads
are a way to achieve perfect secrecy. To date,
this is the only known perfectly secret ci-
pher. However, it’s often impractical to ex-
change unique keys larger than the size of the
communication prior to any communication,
and have to change them between communi-

cations. [Sha49] Shannon showed that other
ciphers could be broken based on the entropy
of the key and plaintext. [Sha48]

When the number of possible keys is small,
the simplest way to solve a cipher is to brute
force all possible plaintexts given a specific ci-
phertext. With a shift cipher, there are only
26 possible inputs to check, and a human can
easily identify which text is likely plaintext
English. To make this problem more difficult,
we can send the ciphertext without any spac-
ing information, to make cracking more diffi-
cult. This makes using wordlists less trivial.
The subset of decryption problems that do
not rely on spacing information is the prob-
lem we are addressing in this paper.

Substitution ciphers have been important
throughout history. Going all the way back to
Caesar, WWII’s Enigma, to modern ciphers
like AES, which implement many substitu-
tion ciphers at different points within their
encryption processes. Most of these meth-
ods aren’t vulnerable to the methods that

1

are used here, which depend on the English
language being the input to the substitu-
tion. The Enigma was solved with a similar
method, hill climbing. It forms the basis for
many local search methods in cryptography
today. [LKW19] At a fundamental level, if we
can thoroughly and efficiently break substitu-
tion ciphers, it doesn’t break existing ciphers,
but can cause implications throughout future
cipher development.
The goal is to solve a general monoal-

phabetic substitution cipher automatically.
This is difficiut because the key space is 26!,
which is impossible to search in a reasonable
amount of time.
Frequency analysis can solve many simple

ciphers. If we know that E is the most com-
mon letter in the English alphabet, we can
quickly figure out a likely candidate letter for
what E encrypts to in the ciphertext. Our
estimations only get better as text length in-
creases, as the statistical averages converge.
Shannon’s reference to redundancy and en-
tropy explains why this difference exists at
all. We extend this concept of frequency anal-
ysis to n-gram frequency distributions, which
count the frequency of continuous sequences
of n letters in a given text.
Typically, automated frequency analysis

implements a scoring algorithm, combined
with a search algorithm, to find the key. Fre-
quency analysis is simply only using the 1-
gram, but we can do better. Past research has
shown that using n higher than 1 can be more
effective in solving the general substitution ci-
pher. Wertheimer found that 2-gram analysis
combined with an English dictionary is more
effective than using 1-grams. Using a higher

n in n-gram resulted in a higher difference
between scores in a correct decryption ver-
sus a transposition of the correct decryption,
which we replicate. Since we are using (1–9)-
grams, we essentially have the same benefit
as an English dictionary but with the added
benefit of numerical frequency data. [Wer21]
Genetic algorithms have also been shown

to work for solving simple substitution ci-
phers. Using digrams and monograms, Spill-
man, et al. showed that there was a high de-
gree of success when using a genetic mating
algorithm with fitness being scored as abso-
lute differences with an exponential amplifi-
cation. [SJNK93]
Prior results have shown a decent level of

accuracy in automated substitution cipher
analysis. However, these techniques relied on
word breaks and punctuation to generate a
”mask” for each unique pattern of letter co-
occurrences. This method is computationally
intensive and doesn’t produce great results.
[RAT93]
Transposition, a different problem, has

been shown to be effectively solved with
heuristics in combination with ant colony op-
timization. They use both bigrams and an
English dictionary as heuristics, and build a
key using an ant colony system. Since their
problem boils down to a graph, essentially,
it can be very efficient to search in this way.
[RCS03] Similar to our search space, it grows
factorially. Additionally, if we break down
the substitution cipher into a problem of lo-
cal search, we are also on a graph.
We would like to know if a given text is

English or not. Instead of just using 1-grams
or 2-grams, we go further to n-grams as our

2

heuristic of choice. Given an n-gram char-
acter frequency analysis of the English lan-
guage, we propose and evaluate multiple ways
for its use on simpler ciphers, namely, the
shift and affine ciphers. Given a Euclidean
normalized vector of n-gram character fre-
quencies, we test three scores: (1) sum of
absolute differences, (2) mean squared error,
and (3) cosine similarity. We evaluate each
of these heuristics on correctness (i.e., identi-
fying the correct plaintext), and differentiat-
ing capability (i.e., the ratio between the cor-
rectly identified plaintext and incorrect plain-
texts). Lastly, to apply this to the general
substitution cipher, we examine probabilistic
techniques using the n-gram heuristic to gen-
erate a decryption dictionary. We evaluate
the length of input text and its relation to
performance.

A solution or an improvement in this space
doesn’t necessarily mean finding a singular
method which is better. As previous meth-
ods have shown, sometimes a hybrid method
is optimal to find the tradeoff between explo-
ration and exploitation.

2 Data

We use Norvig’s dataset of English letter fre-
quencies. [Nor13] This dataset was assem-
bled from the Google Books Ngrams dataset
of word frequencies. The data was then
cleaned and character-level n-gram analysis
for n = 1–9. An example of the most fre-
quent n-grams can be seen in Figure 1.

Of course, not all (1–9)-gram combinations
of characters are found in actual English text.

n n-gram Frequency
1 E 445 155 370 175
2 TH 100 272 945 963
3 THE 69 221 160 871
4 TION 16 665 142 795
5 ATION 8 733 604 406
6 ATIONS 1 788 439 780
7 PRESENT 824 742 877
8 DIFFEREN 670 872 632
9 DIFFERENT 462 529 606

Figure 1: Examples of the most frequent
character n-grams for n = 1–9.

We compare the actual character n-grams we
see to the theoretical length (26n). Figure 2
lists the lengths of each file.

n Length
Theoretical

Length
% Covered

1 26 26 100.0000%
2 669 676 98.9645%
3 8,653 17 576 49.2319%
4 42,171 456 976 9.2283%
5 93,713 1.19× 107 0.7887%
6 114,565 3.09× 108 0.0371%
7 104,610 8.03× 109 0.0013%
8 82,347 2.09× 1011 0.0000%
9 59,030 5.43× 1012 0.0000%

Figure 2: Lengths of character n-grams for
n = 1–9.

For test plaintexts, we choose English lan-
guage texts of a variety of lengths. A list of
texts used can be seen in Figure 3. We clean
the data by removing all non-alphabetical
characters, whitespace, and converting all
characters into lowercase.

3

Text Length (chars)
Cryptography* 2.6K
Decl. of Independence 6.6K
Bee Movie Script 37K
Romeo and Juliet 110K
A Tale of Two Cities 580K
Moby-Dick 960K

Figure 3: English test plaintexts used.
*Sourced from the Wikipedia Introduction

Additionally, we sourced a set of Wikipedia
articles from English-Corpora and cleaned
the data in the same manner. In this case,
some HTML tag remnants are left behind,
but this is acceptable because it is English
text. The summary statistics for this set can
be seen in Figure 4

Statistic Value
N 4,396 articles
Min 26 chars
Q1 279 chars
Median 818 chars
Q3 2,100 chars
Max 87,677 chars

Figure 4: Summary statistics for Wikipedia
texts.

Lastly, as another baseline measure, we
sourced Google’s 10,000 most frequently used
words in English from Google’s Trillion Word
Corpus.

3 Shift Cipher

3.1 Methods

Given each input plaintext from the
Wikipedia dataset, we shift it by a random
amount. Then, we pass this ciphertext into
one of two ’decryption’ methods.

The first method is counting the total num-
ber of occurrences of each of the top 40 most
frequently used words according to Google’s
10,000 word list. The highest score is chosen.

The second method is to count each of the
(1–9)-grams present in the text, then to com-
pute the cosine similarity to the (1–9)-grams
sourced from Norvig. We then sum each of
the cosine similarities and pick the highest
score.

Each of these methods are then evaluated
on their accuracy rate and their differentiat-
ing capability. If the metric is a higher-is-
better metric, we compute its differentiating
capability as the highest value divided by the
second highest value. If the metric is a lower-
is-better metric, we compute its differentiat-
ing capability as the second lowest value di-
vided by the lowest value. This way, all ratios
are greater than one and comparable.

Finally, we plot this differentiating capa-
bility versus the length of the text.

Additionally, we checked the value of using
higher n in the n-grams. We used a composite
score of the sum of cosine similarities for n
up to a certain amount. We used the first
n = 100 Wikipedia articles and tested them
each on using only 1-grams, using 1-grams
and 2-grams, all the way up to including (1–
9)-grams.

4

3.2 Results

For correct and incorrect results, we measure
both the mean differentiating capability (M.
Dif. Cap.) and the mean length (M. Len.).
See Figure 5.

Method
Common
Words

N-gram

Correct 4,384 4,394
M. Dif. Cap. 2.091 2.630
M. Len. 1978.1 1972.5
Incorrect 12 2
M. Dif. Cap. 1.074 1.059
M. Len. 65.7 2768.5

Figure 5: Results for shift ciphers.

Note that there were 2 incorrect results for
the N-gram method. One text was length 96
and the other was length 5,441, resulting in a
high mean length. Length 96 makes sense as
it’s hard to determine whether a short piece
of text is correctly decrypted. The text with
length 5441 was a highly irregular Wikipedia
article list of United States Navy Landing
Craft Infantry, with lots of repeats of the text
”USS LCI(L)-(#)” where # is a number.
We record the distribution of correct score

ratios in Figure 6. We observe that the distri-
bution for the N-gram scores is consistently
higher than the distribution for the Com-
mon Words scores. Since the N-gram method
both has less incorrect results and provides
a higher differentiating capability for correct
answers, we choose the N-gram analysis for
further study in the Affine method.
For the incremental addition of higher n,

all composite scoring methods achieved 100%

Figure 6: Distributions of correct shift cipher
differentiating capability scores.

5

N M. Dif. Cap
1–1 1.413
1–2 1.895
1–3 2.400
1–4 2.666
1–5 2.837
1–6 2.940
1–7 3.013
1–8 3.067
1–9 3.104

Figure 7: Incremental scoring for shift ci-
phers.

correctness. However, we can still measure
their differentiating capability in Figure 7.
We can see that adding higher n increases
the differentiation, but it levels off towards
higher n. Overall, the n-gram heuristic is
measurably better than the common words
heuristic, and only improves as we increase
n.

4 Affine Cipher

4.1 Methods

Since Affine ciphers are much more complex
(312 vs. 26 possible ciphers), it is more com-
putationally expensive to use the Wikipedia
dataset. Thus, we use the first 5 of the 6
test plaintexts as a stand-in. We randomly
choose a combination (a, b) such that the en-
crypted text is E(x) = (ax + b) mod n. We
do not choose a = 1 as a possibility, because
that would just be a shift cipher. We in-
dependently run each plaintext 10 times per

method (N = 10× 5× 3 = 150).
We explore different scoring. First, we use

the cosine similarity of the vectors produced
by n-gram analysis. Second, we use the ab-
solute differences of each component of the
n-gram vectors. Third, we use the squared
differences of each component of the n-gram
vectors. We separately evaluate the differen-
tiating capability for each of the (1–9)-grams.

4.2 Results

We display the accuracy (for N = 10 per
text-method combination) and the mean dif-
ferentiating capability (M. Dif. Cap.) for
each method in Figure 8.
Looking into the results more closely, no

matter what we encrypt the specific affine
text with, we will always get back the same
text with the highest score (the plaintext),
but we will also get back the same second-
best and third-best text. Even though each of
the 10 runs per plaintext have different keys,
and therefore ciphertexts, the set plaintexts
we get back each time are identical.
Note that the differentiating capability in-

creases significantly as we use higher n for
n-gram analysis for cosine similarity, while
they decrease with difference-based metrics.
As we increase n, we get larger and larger
word fragments that can only be a part of
actual English. That means for incorrect
decryptions, we may get almost-zero scores,
but for difference-based methods, there is less
penalty.
This means that increasing n in n-grams

only helps the differentiation when we are us-
ing the cosine similarity method. This analy-

6

Method Accuracy M. Dif. Cap.

Cosine Similarity
Composite 100.0% 2.99
1 100.0% 1.27
2 100.0% 2.09
3 100.0% 6.95
4 100.0% 21.39
5 100.0% 71.64
6 100.0% 281
7 100.0% 2448
8 100.0% 35 947
9 100.0% 174 445

Absolute Differences
Composite 100.0% 1.13
1 100.0% 5.41
2 100.0% 3.02
3 100.0% 1.93
4 100.0% 1.43
5 100.0% 1.20
6 100.0% 1.11
7 100.0% 1.07
8 100.0% 1.04
9 100.0% 1.03

Squared Differences
Composite 100.0% 1.52
1 100.0% 27.98
2 100.0% 7.63
3 100.0% 3.76
4 100.0% 1.90
5 100.0% 1.41
6 100.0% 1.23
7 100.0% 1.16
8 100.0% 1.11
9 100.0% 1.08

Figure 8: Results for affine ciphers.

Figure 9: Score ratios of affine scoring meth-
ods vs. text length.

sis without combining the scores shows the
differing value of different n-gram lengths.
Since all methods produce different levels of
differentiation at different lengths, we con-
clude that using n-grams of more than one
length are useful.
Additionally, we evaluate the effect of text

length and type on encryption success for
each of the three methods. Using the compos-
ite score, we plot score ratio vs. text length
in Figure 9. We additionally find no sta-
tistically significant correlation between text
length and score ratio (p ≫ 0.05).

5 General Substitution

Cipher

5.1 Methods

We randomly encrypt a general substitution
cipher by creating a random permutation of
26 letters. Like previous methods, we strip

7

information about whitespace and punctua-
tion.
As there are 26! possible permutations of

the alphabet, and thus, 26! possible keys, it’s
not feasible to bruteforce every key.
Our heuristics allow us to measure the

’goodness’ of any particular ’decryption’ text.
Thus, we randomly swap characters of the
decryption dictionary according to a prede-
termined strategy. We propose four different
strategies.
First, we use beam search with a beam

width of 10, maintaining a candidate search
space of 10 at a given time. Using a
frequency-ordered list of the characters, we
iteratively try each key. Each of the 10 keys
is tacked on with one of the remaining letters,
then, the 10 best keys are selected to move on
to the next round. At each round, the partial
keys are scored with the log probability of the
fully mapped n-grams. Since not every char-
acter is mapped at each round, we only score
based on contiguous groups of fully mapped
n-grams.
The other three methods use local search.

We start off with a random permutation and
iteratively improve on each of them one swap
at a time. We still score using the log proba-
bility with all (1–9)-grams.
Hill climbing will only accept a random

change if it improves the score.
Simulated annealing starts with an initial

temperature and cools over time, always ac-
cepting improving changes and randomly ac-
cepting worse changes according to current
temperature. We initially used parameters
T0 = 10 and α = 0.9995. The probability we
accept a worse change is P = e−∆score/T , and

temperature is updated according to Tn =
Tn−1 ∗ α
Monte Carlo Markov Chains (MCMC) is

similar to simulated annealing, but it does
not depend on a temperature. A worse
change is accepted with probability P =
e−∆score.
We precompute the log probability of

different n-grams in English using Norvig.
Then, with sliding windows of size n = 1–9,
we add the log probability log count/total of
that specific n-gram to the total for the text.
If an n-gram isn’t found, we assign it a low
floor value of log 0.01/total where total repre-
sents sum of all frequencies of n-grams of that
particular size (thus, 0.01 is the ’count’ for
0). Thus, we gain the benefit of all n-grams.
We chose this method over cosine similarity,
as it is much less computationally expensive
compared to the vector-based methods. Even
though cosine similarity is very powerful, ini-
tial tests showed that log probability is as
good a heuristic as cosine similarity (mean
differentiating capability in between cosine
similarity and squared differences).
We used a standard number of iterations

as n=10 000 for each of the three local search
methods. We present both average execution
time, and also an adjusted execution time.
This execution time is adjusted by the last
iteration where there was an improvement in
score timeadj = time ∗ iters/10000
We measure success of a given ’decryption’

by comparing the original plaintext to the
decrypted plaintext. Comparing decryption
keys is insufficient, as it’s possible for multi-
ple characters to not be used in the original
plaintext, making it impossible for there to

8

be a single correct answer.
We ran these on the first n = 1000

Wikipedia article texts.
Based on these intial results, we then mod-

ified the protocol by testing a variety of pa-
rameters. Instead of initially setting the de-
cryption dictionary with just a random map-
ping, we start local search using the result
from beam search. We then pass it into
MCMC, as it explored the largest search
space. We did collected data on the first
n = 100 articles from the Wikipedia dataset,
and individually analyze inaccuracies.
We also collected data on checking if in-

creasing using higher n for the n-gram scoring
was valuable on the same n = 100 dataset.
We evaluated both the accuracy and the
speed of convergence, measured in mean iter-
ations before convergence on the final answer.
We choose parameters for the beam search +
MCMC method based on the results from the
previous mini-study.

5.2 Results

Hill climbing, MCMC, and Simulated An-
nealing deliver broadly similar results with
similar runtimes, as seen in Figures 11 and 12.
Beam search stands out as the most accurate
method and overall fastest method, when not
adjusting times.
Accuracy improves with character length,

as is visible in Figures 10 and 11. Addition-
ally, in Figure 10, we see that after using all
four methods, only 19.5% of results were not
correctly decrypted by any of them.
Based on the belief that MCMC explored

the largest search space, we further used

Methods
Correct

Count
Average
Length

0 195 736.8
1 123 1533.3
2 184 2853.9
3 289 4648.3
4 209 7032.8

Total 1000 3670.6

Figure 10: Overall correctness results for gen-
eral substitution ciphers.

Method Accuracy (>1k chars)
Hill Climb 53.8% (67.6%)
MCMC 51.8% (67.0%)
Sim. Anneal. 55.4% (70.0%)
Beam Search 58.4% (71.9%)
n 1000 (676)

Figure 11: Individual correctness results for
general substitution ciphers.

Method Time (Adjusted)
Hill Climb 305.2 (57.2)
MCMC 303.4 (59.3)
Sim. Anneal. 303.8 (57.2)
Beam Search 164.9

Figure 12: Average time (in seconds) per ar-
ticle.

MCMC with a starting dictionary from beam
search. We tested beam widths of 10 or 20,
and 2000, 5000, or 10000 iterations, with re-
sults shown in Figure 13. We are able to
get significantly better performance with less
runtime than local search methods with the
10/2000 combination, and are able to achieve
even higher performance with 20/10000.

9

Of the 12 articles that no method got cor-
rect, 10/12 had a higher log probability score
of the plaintext than the proposed plaintext.
This indicates that we would be able to sig-
nificantly improve accuracy without chang-
ing our heuristic, we just need to be able to
search a larger space.

Beam Width Iterations Accuracy
10 2000 80%
10 5000 83%
10 10000 83%
20 2000 84%
20 5000 85%
20 10000 85%

Figure 13: Beam search + MCMC results.

For the incremental study, we choose the
beam width 10 and 2000 iterations. This has
an acceptable level of performance, while be-
ing quick to run. Additionally, since the per-
formance is not clustered towards the top,
hopefully, it’ll allow us to see a larger differe-
tiation between the incremental n additions.
We display the results of our incremen-

tal scoring in Figure 14. Note that for the
first row, simple frequency analysis never got
it right, which is why its mean iterations
towards convergence was zero: the beam
search just creates the frequency key, and the
MCMC isn’t able to improve the score. There
is an increase in accuracy up until around 6.
Additionally, there is a decrease in iterations
until convergence up until around 5. There is
a clear increase in accuracy as we add higher
n, but there is decreasing marginal value in
adding n higher than 6 for balancing accuracy
and compute time.

N Accuracy
Mean

Iterations
1–1 0% 0
1–2 47% 472.6
1–3 54% 464.2
1–4 68% 469.7
1–5 76% 403.6
1–6 80% 407.1
1–7 79% 396.1
1–8 81% 407.6
1–9 80% 413.7

Figure 14: Incremental scoring for general
substitution ciphers.

6 Conclusion

We show that initial results are promising for
the use of n-gram analysis as a heuristic for
solving the general substitution cipher.

Accuracy of cryptanalysis methods is still
highly correlated with text length. Our hy-
brid approach, seeding MCMC with beam
search produced the highest success rate of
85%.

We believe that the main improvement we
can make in future iterations is to find ways
to efficiently expand the search space to pro-
duce better results.

References

[LKW19] George Lasry, Nils Kopal, and
Arno Wacker. Cryptanalysis
of enigma double indicators
with hill climbing. Cryptolo-
gia, 43(4):267–292, July 2019.

10

https://doi.org/10.1080/

01611194.2018.1551253.

[Nor13] Peter Norvig. English letter fre-
quency counts: Mayzner revisited
or etaoin srhldcu, 2013. https:

//norvig.com/mayzner.html.

[RAT93] R S Ramesh, G Athithan, and
K Thiruvengadam. An auto-
mated approach to solve simple
substitution ciphers. Cryptolo-
gia, 17(2):202–218, April 1993.
https://doi.org/10.1080/

0161-119391867872.

[RCS03] M.D. Russell, J.A. Clark, and
S. Stepney. Making the most
of two heuristics: breaking trans-
position ciphers with ants. In
The 2003 Congress on Evolu-
tionary Computation, 2003. CEC
’03., volume 4, pages 2653–2658
Vol.4, 2003. https://doi.org/

10.1109/CEC.2003.1299423.

[Sha48] C. E. Shannon. A mathemat-
ical theory of communication.
The Bell System Technical
Journal, 27(3):379–423, 1948.
https://doi.org/10.1002/j.

1538-7305.1948.tb01338.x.

[Sha49] C E Shannon. Communica-
tion theory of secrecy sys-
tems. Bell Syst. Tech. J.,
28(4):656–715, October 1949.
https://doi.org/10.1002/j.

1538-7305.1949.tb00928.x.

[SJNK93] Richard Spillman, Mark Janssen,
Bob Nelson, and Martin Kep-
ner. Use of a genetic algorithm
in the cryptanalysis of simple sub-
stitution ciphers. Cryptologia,
17(1):31–44, January 1993.

[Wer21] Phil Wertheimer. On the difficulty
of breaking substitution ciphers.
Digital Repository at the Univer-
sity of Maryland, 2021. https://

doi.org/10.13016/zlm4-mkns.

11

https://doi.org/10.1080/01611194.2018.1551253
https://doi.org/10.1080/01611194.2018.1551253
https://norvig.com/mayzner.html
https://norvig.com/mayzner.html
https://doi.org/10.1080/0161-119391867872
https://doi.org/10.1080/0161-119391867872
https://doi.org/10.1109/CEC.2003.1299423
https://doi.org/10.1109/CEC.2003.1299423
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.13016/zlm4-mkns
https://doi.org/10.13016/zlm4-mkns

	Introduction
	Data
	Shift Cipher
	Methods
	Results

	Affine Cipher
	Methods
	Results

	General Substitution Cipher
	Methods
	Results

	Conclusion

