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Abstract In Ramsey Theory, many problems ask for the minimum size
of a structure such that a smaller substructure is guaranteed to exist. This
is the case with Van der Waerden’s theorem, which studies monochromatic
arithmetic progressions inside of {1, 2, . . . , n}. Historically, the true values
of the Van der Waerden numbers have been difficult to find, with only a few
being known despite almost a century passing since the theorem was proven.
Consequently, the next-best options are to either find rigorous bounds on
the Van der Waerden numbers or find empirical approximations for the num-
bers. In this paper, we define and empirically estimate the Random Van der
Waerden numbers to gain a better understanding of where the true Van der
Waerden numbers lie.

1 Introduction

In 1926, Bartel Leendert van der Waerden discovered a conjecture made by
Pierre Joseph Henry Baudet. A year later, Waerden proved the conjecture
to be true, leading to it being named after him [3].

Theorem 1.1 Van der Waerden’s theorem states that for any k, c ∈ Z+,
there exists an n such that for all c-colorings of {1, . . . , n}, there must be a
monochromatic arithmetic progression with length at least k.

Def 1.2 Let the Van der Waerden number W (c, k) be the smallest integer
n such that for all c-colorings of {1, 2, . . . , n}, there is guaranteed to be a
monochromatic arithmetic progression of length k.
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Since 1927, only 7 non-trivial Van der Waerden numbers have been found.
Additionally, the best asymptotic upper and lower bounds are still relatively
loose. For example, it was only in 1988 that the first primitive recursive
upper bound was found by Shelah [2]. Since then, Gowers used complicated
math techniques to find the tighter bound [1]

W (c, k) ≤ 22
c2

2k+9

.

Due to the current difficulty of finding a new Van der Waerden number
or tightening the bounds, the next-best option is to explore similar problems
to give more insight on the Van der Waerden numbers.

In this paper, we define the Random Van der Waerden numbers, em-
pirically approximate them, and focus on using them as stand-ins for the
unknown Van der Waerden numbers. Specifically, these approximate values
of the Random Van der Waerden numbers can be used as stand-ins for the
true Van der Waerden numbers when in scenarios which can tolerate error.
In addition to finding the empirical values, we found a general lower bound
for the Random Van der Waerden numbers, further enabling the use of these
numbers in non-rigorous settings.

2 Definitions and Notation

Notation 2.1 Let [n] denote the set {1, . . . , n}.

Notation 2.2 An arithmetic sequence of length k is said to be a k-AP.

Def 2.3 Let the Random Van der Waerden number WR(c, k, p) be the small-
est n such that the probability of a random c-coloring of [n] containing a
monochromatic k-AP is at least p. Note that WR(c, k, 1) = W (c, k).

Def 2.4 Let A(n, k) denote the amount of k-AP’s in [n].
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3 Lower Bound Proof

We seek to find a lower bound on the Random Van der Waerden number
WR(c, k, 1) for k ≥ 2. We begin by finding A(n, k).

Claim 3.1 A(n, k) = n
⌊

n
k−1

⌋
− ⌊ n

k−1⌋(⌊ n
k−1⌋+1)(k−1)

2

Proof: We will do a summation over the common difference of the k-
AP’s. Notably, the total amount of k-AP’s with a valid common difference
d is n− d(k − 1). Summing over all valid common differences, we get

A(n, k) =

⌊ n
k−1⌋∑
d=1

n− d(k − 1)

=

⌊ n
k−1⌋∑
d=1

n− (k − 1)

⌊ n
k−1⌋∑
d=1

d

= n

⌊
n

k − 1

⌋
−

⌊
n

k−1

⌋ (⌊
n

k−1

⌋
+ 1

)
(k − 1)

2

Since the exact value of A(n, k) is hard to use due to the floors, we bound
A(n, k) by using the fact that ⌊x⌋ ≤ x.

Claim 3.2 A(n, k) ≤ n2

2(k−1)

Proof:

n

⌊
n

k − 1

⌋
−

⌊
n

k−1

⌋ (⌊
n

k−1

⌋
+ 1

)
(k − 1)

2
=

⌊
n

k−1

⌋ (
2n−

(⌊
n

k−1

⌋
+ 1

)
(k − 1)

)
2

≤
⌊

n
k−1

⌋
(n+ 1− k)

2

≤ n2

2(k − 1)
− n

2

≤ n2

2(k − 1)
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Since the probability of a k-AP being monochromatic is c1−k, we use the
union bound to find an upper bound on p in terms of some arbitrary n, c,
and k. From that, we rearrange terms to find a lower bound of n.

p ≤ A(n, k)c1−k ≤ n2

k
c1−k

pkck−1 ≤ n2√
pkck−1 ≤ n = WR(c, k, p)

4 Empirical Data

In addition to finding a lower bound for the Random Van der Waerden num-
bers, we also ran random simulations in an attempt to estimate the Random
Van der Waerden numbers for p =1, 0.95, and 0.5.

To empirically find WR(c, k, p), we binary searched to find the smallest
n in which the observed fraction of k-AP’s which are monochromatic was
greater than p. We also did not compute any values with n ≥ 2000, as it
would take over a second to check if there was a monochromatic k-AP in the
randomly colored set. While binary searching, we ran as many simulations as
possible in 30 seconds for every (n, c, k) tuple to ensure that we adequately
represented the true p value for all values of n, c, k that we are computing.

Below are the estimates empirically determined for p =1, 0.95, and 0.5.
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Table 1: Data Values for Different p Values

(a) p = 1.0

c
k 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 9 29 49 82 123 193 273 426 619 768 1213 1635
3 4 22 52 104 190 342 616 998 1797
4 5 30 74 188 373 712 1510
5 6 40 104 248 573 1322

(b) p = 0.95

c
k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 3 8 16 26 43 69 104 159 235 352 516 769 1096 1677
3 4 12 26 55 105 201 370 692 1261 2177
4 5 16 39 93 204 444 928 2046
5 5 20 53 139 342 841 1991

(c) p = 0.5

c
k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 2 5 9 15 23 36 53 80 118 173 253 375 538 800 1125 1695
3 3 7 14 28 53 98 181 334 601 1104 1922
4 3 9 20 46 99 216 458 992 2088
5 3 10 27 68 166 399 962

Despite the known Van der Waerden numbers growing rapidly, the num-
bers from these simulations don’t grow nearly as quickly. Consequently, if
the objective is just to have high probability that no monochromatic k-AP
exists, then a lower value could be used.

If the Van der Waerden numbers become applicable in real-life environ-
ments, such as architecture or general infrastructure, knowing approximate
Random Van der Waerden numbers would be useful, as significantly lower-
ing n many times only slightly increases the probability of a monochromatic
k-AP appearing.

5 Conclusion

In this paper, we found a lower bound for the Random Van der Waerden
numbers and empirically estimated the Random Van der Waerden numbers.
While Ramsey Theory and the Van der Waerden numbers are currently not
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heavily used, in the future, if a researcher needs to have high certainty that a
monochromatic k-AP will not appear in a c-color of [n], they can use a much
smaller value than the true Van der Waerden number to have similar results.

Additionally, depending on the tolerance for error required, different val-
ues of p can be used. For example, if a researcher needs to be relatively
confident that a monochromatic k-AP won’t appear, they could use the loose
WR values that we empirically found for p = 0.95. On the other hand, if the
researcher could tolerate more frequent occurences of a monochromatic k-AP,
they could use our values for p = 0.5 instead. By generating these values,
others can now use them as loose estimates for the true Van der Waerden
numbers depending on the level of precision needed.
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