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SUMMARY 1 

This research paper analyzes imperfect play in the game of Nim. More specifically, it questions 2 

whether player ability or the influence of winning starting positions is more important in game 3 

outcomes. We also research the required ability differential needed for a player to win from a 4 

losing position. We hypothesize that when the pile size is large, the initial position has minimal 5 

impact on win probability and player ability becomes the primary determinant under imperfect 6 

play. This paper presents several computational game simulations and a derived mathematical 7 

model for win percentages, both of which verify our hypothesis. Our results show that a winning 8 

starting position only benefits a player until a certain point during imperfect play, then has 9 

negligible effect. This research holds significance because, according to the Sprague-Grundy 10 

Theorem, any impartial game is equivalent to a single pile game of Nim. Additionally, it also has 11 

potential applications in the field of reinforcement learning, as it provides data on imperfect play, 12 

which is necessary to create robust models, as seen priorly.  13 

 14 

INTRODUCTION 15 

Nim consists of two players taking turns removing sticks from a pile containing n number of 16 

sticks. Players can remove a certain number of sticks from the pile per turn, and the player who 17 

removes the last stick wins. 18 

 19 

There are many variations of Nim (1). However, we research a specific one in this paper. Let A 20 

be a finite set of natural numbers representing the allowed moves in a turn. For this paper, we 21 

use a common variant of the game: |A| = 3 and 1 ∈ A. And where the starting position is the 22 

number of sticks in each pile at the start of the game. 23 

 24 

To illustrate the nature of the game, consider A = {1, 2, 3} as an example. It is apparent that the 25 

player with 4 sticks left at the time of their turn is always going to lose. If they remove 1, their 26 

opponent can remove 3 and win; if they remove 2, their opponent can remove 2 and win; if they 27 

remove 3, their opponent can remove 1 and win. Hence leaving the opponent with 4 sticks left is 28 

ideal. This applies to any multiple of 4 as well. Each position (remaining number of sticks in the 29 

pile) is calculated to be winning for a certain player if they play perfectly. This paper, however 30 

focuses on when both players play imperfectly. Before we explain the solution to the game 31 

under perfect play (which is still relevant), it is important to consider the context of the 32 
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surrounding research.  33 

Nim was first invented in 1905, but there is still active research on it and its variants (2). These 34 

include models incorporating economic elements like taxation (3), systems utilizing bidding for 35 

turn rights (4, 5) and other abstract versions (6). Further studies have examined Candy Nim, 36 

where a secondary goal of resource collection is introduced; analyzed the computational 37 

complexity of winning positions; and proposed novel variants such as Veto-Nim and Large Nim 38 

(7, 8, 9). A common foundational assumption uniting this extensive body of work is that all 39 

players execute perfect play. This paper addresses a significant gap in the literature by 40 

investigating scenarios where players do not play perfectly. Apart from simply answering the 41 

question of what was more relevant to game outcomes: being a better player, or having a better 42 

position, this research has an application to the field of reinforcement learning. This approach is 43 

advocated by Gleave et al. and Pinto et al., among others, who argue that robust adversarial 44 

learning requires training an AI against a diverse set of opponents, including many imperfect 45 

ones (10,11). The rationale is that this exposes the AI to a much broader set of positions; 46 

conversely, if an AI is trained solely against perfect or expert players, many positions 47 

encountered in actual play may be unfamiliar, leaving the AI unable to respond effectively. This 48 

principle is exemplified by AlphaGo and AlphaZero, which utilized self-play that, especially in its 49 

early stages, involved clearly non-expert gameplay. Additionally, this research holds 50 

significance because, according to the Sprague-Grundy Theorem, any impartial game is 51 

equivalent to a single pile game of Nim (12). 52 

 53 

Regarding perfect play, to calculate the winner at any given position for any value of A, Grundy 54 

numbers are utilized (13). The Grundy numbers for the game of Nim are defined as 55 

 56 

𝐺(𝑛) = {
0                                                                 , 𝑛 = 0
 𝑚𝑒𝑥 {𝐺(𝑛 − 𝑎) ∶ 𝑎 ∈ 𝐴, 𝑛 − 𝑎 ≥ 0}, 𝑛 ≥ 1

   (Equation 1) 57 

 58 

where G(n) is recursively defined for each position n and mex returns the smallest natural 59 

number that is not in the set (14). It indicates which player the position is winning for through a 60 

recursive piecewise function that ultimately returns either 0, 1, 2 or 3. If G(n) = 0, n is a winning 61 

position for the player who just made their move.  Additionally, if G(n) = 0 at the start of the 62 

game, the position is winning for player 2. The opposites apply respectively if G(n) ≠ 0. Each 63 

starting position and value for A affects whether the position is winning for player 1 or 2.  64 



 

4 

 

 65 

Let A = {1, 2, 3}. G(1) = 1 since the set of Grundy numbers of reachable positions is {G(0)} = {0}, 66 

the least natural number that is not in it is 1. Since G(1) ≠ 0, this starting position is winning for 67 

player 1. Then, G(2) = 2 since the set of Grundy numbers of reachable positions is  68 

{G(0), G(1)} = {0, 1}, and the least natural number not in it is 2. Since G(2) ≠ 0, this starting 69 

position is winning for player 1. Similarly, G(4) = 0 since the set of Grundy numbers of reachable 70 

positions is {G(1), G(2), G(3)} = {1, 2, 3}, and the least natural number not in it is 0. Since  71 

G(4) = 0, this starting position is winning for player 2. 72 

 73 

Grundy numbers can be expanded to multi pile Nim (15). Let A1, . . ., Ak be k finite sets of 74 

naturals representing the valid moves in pile i where 1 ≤ i ≤ k. Let Gi(ni) be the Grundy function 75 

for Nim-Ai. Then the Grundy function for the Nim-(A1, . . ., Ak) is 76 

 77 

𝐺(𝑛1, … , 𝑛𝑘) =⊕𝑖=1
𝑘 𝐺𝑖(𝑛𝑖)                      (Equation 2) 78 

 79 

Where ⊕ is the bitwise XOR function. Gi(ni) is represented in base 2 (15). 80 

The Sprague-Grundy Theorem explains the results of this: 81 

player 1 wins the game starting from position (n1, n2, . . . , nk) if and only if 82 

G(n1, n2, . . . , nk) ≠ 0 (12). 83 

 84 

To illustrate the Sprague-Grundy Theorem, consider a game with two piles. Let A1 = {1, 2, 3} 85 

and n1 = 17. Let A2 = {1, 3, 4} and n2 = 5. The Grundy numbers for each pile are: 86 

𝐺1(𝑛1) = 𝑚𝑒𝑥 {𝐺(17  −  𝑎) :  𝑎  ∈  𝐴1,  17  −  𝑎  ≥  0}                      [Eqn 1] 87 

𝐺2(𝑛2) = 𝑚𝑒𝑥 {𝐺(5  −  𝑎) :  𝑎  ∈  𝐴2,  5  −  𝑎  ≥  0}                      [Eqn 1] 88 

Hence, G1(n1) = 1 and G2(n2) = 3, then 89 

𝐺(𝑛1,  𝑛2)  =  𝐺1(𝑛1) ⊕ 𝐺2(𝑛2)  =  1 ⊕ 3 = 2 ≠ 0                       [Eqn 2] 90 

 91 

Hence Player 1 wins in this configuration. We use a simple algorithm that plays the game 92 

perfectly given a winning position for both single and multi-pile Nim.              93 

 94 

When both players play optimally, the player in the initial winning position at the start will always 95 

win (e.g., with A = {1, 2, 3}, player 1 will always win if n is not a multiple of 4) (Table 1 & 2). Our 96 

research focuses on the game’s outcomes when players make imperfect moves.  97 

 98 
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Our methodology consists of computationally simulating a large number of games with varying 99 

levels of imperfect play and starting positions to draw empirical conclusions from its results. 100 

Specifically, we examine scenarios where player 1 plays the optimal move with probability of P1, 101 

and player 2 with probability of P2, analyzing the percent of games each player wins at various 102 

starting positions and value of P1 and P2. The optimal moves are calculated using Grundy 103 

Numbers (Eqn 1 & 2). Additionally, we research how much better a player must be for them to 104 

win from a losing position. We find that when n is large the initial position has minimal impact on 105 

win probability and player ability becomes the primary determinant under imperfect play. 106 

 107 

RESULTS 108 

We simulated 106 games given the ability of players (the probability of making the optimal 109 

move), P1 and P2, and the set of allowed moves, A. This program then computed the 110 

percentage of games each player won (W1 for player 1 and W2 for player 2) at each starting 111 

position n, where n ∈ {1, . . . , 300}. This is also known as a Monte Carlo Simulation, and is 112 

highly effective for these tests since they involve many simulations with varying game values 113 

(16). Once analyzed, it became clear that the win percentages trended toward stable values, 114 

eventually exhibiting negligible change (Figures 1 & 2). 115 

 116 

Single Pile 117 

Using moving averages, we computed the stabilization points ns at the value n where the win 118 

percentages stopped changing significantly. The data confirmed that in games where player 1 119 

played at a higher ability than some player 2, W1 always stabilized to a greater value than W2, 120 

and vice versa regardless of whether n was a winning position for them or not (given that n > ns) 121 

(Figure 1). We formalize these observations as the conjecture below. 122 

 123 

Conjecture 1.1 124 

If P1, P2  (0%, 100%) and P1 > P2, then as n  ∞, W1 > W2. 125 

Conversely, if P2 > P1, then as n  ∞, W2 > W1. 126 

 127 

Empirical evidence from simulations of all considered different game configurations strongly 128 

supports this conjecture as the player with the higher ability wins a greater number of games as 129 

n increases than the other player, independent of winning and losing positions.  130 

 131 
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These stabilization values remained consistent within each game type. For example, in single 132 

pile Nim, regardless of the value of A, if P1 = 90% and P2 = 80%, and if n ≥ ns, W1 ≈ 70% and W2 133 

≈ 30% (Figures 1.A & 1.D). 134 

  135 

If Player 1 and Player 2 played at equivalent ability, W1 and W2 both stabilized at 50%, meaning 136 

that, as n → ∞, both players would win approximately an equal number of games regardless of 137 

whichever values of n were ideal for each player (Figures 1.C & 1.B). We formalize these 138 

observations as the conjecture below. 139 

 140 

Conjecture 1.2 141 

If P1, P2  (0%, 100%) and P1 = P2, then as n  ∞, W2 = W1. 142 

 143 

Even though the values of A do not affect the fact that stabilization occurs, they do affect the 144 

value of ns. For example, if P1 = 90% and P2 = 80%, in (1, 2, 3)-Nim, ns = 61, however in          145 

(1, 4, 5)-Nim, ns = 120 (Figures 1.A & 1.D).  146 

 147 

Incidentally, we discovered that there was a strong direct relationship between the ability of both 148 

players (P1 & P2) and ns (Figure 2). These best fits had R2 values of 0.887 (Figure 2.A) and 149 

0.911 (Figure 2.B), respectively. Though their shape was slightly different depending on A, they 150 

consistently maintained a general hyperbolic paraboloid shape. We formalize these 151 

observations as the conjecture below. 152 

 153 

Conjecture 1.3 154 

The value of ns if minimized, but not necessarily to 0 when P1 + P2 ≈ 100%. 155 

Furthermore, combinations where both P1 and P2 are either high or both low result in higher 156 

values of ns, i.e., ns is maximized when P1, P2  0% or P1, P2  100%. 157 

 158 

Winning from a losing position 159 

We researched the ability difference required for Player 1 to have a higher win rate (W1 > W2) in 160 

losing positions for Player 1. To achieve this, we developed a program that simulated 106 161 

games for each combination of P1 and P2 in 1% increments, and determined the minimum 162 

difference min(P1−P2) for which W1 > W2 for every iteration of P1. The results revealed that there 163 

was a decrease in minimum difference as n increased; furthermore, as n increased, the lower 164 
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bound decreased (Figure 3): in summary, as n increased, the ideal position’s influence over the 165 

game diminished. 166 

 167 

The relationship between Player 1 ability and Minimum Difference was strong for (1, 2, 3)-Nim 168 

with an average coefficient of determination being 0.986 (Figure 3.A). And stronger for            169 

(1, 3, 4)-Nim: 0.994 (Figure 3.B). 170 

 171 

There were visible differences between games, however. The minimum difference at  the lowest 172 

value of P1 in (1, 2, 3)-Nim were roughly equivalent to the minimum difference at the greatest 173 

value of P1 (Figure 3.A). In (1, 3, 4)-Nim, the lowest value of P1’s minimum difference were 174 

significantly lower than that of the greatest value of P1 (Figure 3.B). Also, while the curves’ 175 

vertices in (1, 2, 3)-Nim were around the center of their domain, the curves’ vertices in (1, 3, 4)-176 

Nim were left of the center (Figure 3.B & 3.A). 177 

 178 

2 Pile Nim 179 

We simulated 105 games given the ability of players, P1 and P2, and the sets of allowed moves, 180 

A1 and A2. This program then computed the percentage of games each player won at each 181 

starting position n1, n2, where n1, n2 ∈ {1, . . ., 100}. As with 1 pile Nim, 2 pile Nim stabilized as 182 

n1, n2 increased (Figure 4). The stabilization points identified in the graphs represent the 183 

coordinates where W1 and W2 stop changing significantly. This implies Conjecture 1.1 can be 184 

extended to more than 1 pile. 185 

 186 

DISCUSSION 187 

We researched the comparative importance of player ability versus ideal starting positions in 188 

single and multi pile nim games. Our computations show that as the number of sticks increases, 189 

the significance of having an ideal starting position diminishes (given that both players play 190 

imperfectly). Notably, beyond a certain number of starting sticks, W1 and W2 stabilize to specific 191 

values (Figure 1, 2, 4). In particular, when P1 = P2, both W1 and W2 stabilize to 50%. Moreover, 192 

our analysis revealed that the player with a higher ability will always stabilize to a higher win 193 

rate, despite that player having to start in losing positions. (Figure 1). This was anticipated 194 

because as n increases, so does the probability of player mistakes. Hence, before the 195 

stabilization point, ideal positions have a greater influence on win percentages due to fewer 196 

opportunities for mistakes. This highlights the importance of player ability over positional 197 

advantage in certain scenarios, especially after ns. Additionally, our results show that the greater 198 
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the values of A, the greater the value of ns. This is because fewer number of moves will be 199 

required at any starting position as a greater number of sticks will be removed each move which 200 

means that ns increases to accumulate enough optimal and sub-optimal moves. Both are 201 

needed to negate the advantage of ideal starting positions. 202 

 203 

Examining stabilization points further, we found that ns are minimized when P1 +P2  ≈ 100% and 204 

maximized when both abilities are either high or low (Figure 2). This is because if both players 205 

play with greater ability, a greater number of moves are required for imperfect moves to 206 

accumulate. Conversely, if both players play less accurately, a greater number of moves are 207 

required for optimal moves to accumulate.  208 

 209 

Our data shows that the minimum ability differential required for a player in a losing position to 210 

win more than 50% games is highly dependent on their ability and is not constant (Figure 3). 211 

Furthermore, our data revealed that with each incremental increase in sticks towards non-ideal 212 

positions for Player 1, the minimum difference decreased. This is because since there are a 213 

greater number of moves to be made; it is more likely that the winning player will make a 214 

mistake, hence a lower difference in ability is required. The minimum difference happened to 215 

decrease similarly to a reverse Fibonacci sequence as n increased (Figure 3).  216 

 217 

While our experiment effectively demonstrated various properties inherent to Nim, we 218 

encountered several limitations that warrant further consideration. Due to computational 219 

constraints, we were only able to simulate 105 (two pile) and 106 (one pile) games for each 220 

game position. A greater number of simulations would give more accurate data, with little to no 221 

significant anomalies. In addition, we were not able to compute data related to stabilization 222 

points for more than two piles, since it resulted in 102p+5 game simulations for p number of piles. 223 

Access to more powerful computers would have allowed us to compute data for more piles. Our 224 

playing algorithm also used a specific strategy (see Materials and Methods) that affected the 225 

win percentages for both players.  226 

 227 

This research provides a framework for understanding how player ability and starting positions 228 

influence win probabilities in impartial games. According to the Sprague-Grundy theorem, all 229 

impartial games are equivalent to single pile Nim (12). Hence, these results may extend to 230 

games like Tic Tac Toe, Sprouts, Kayles, Quarto, and Chomp (15). 231 

 232 
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Impartial game logic is also relevant in reinforcement learning, where agents must learn 233 

strategies in structured, turn-based environments (17). By modeling how imperfect decisions 234 

accumulate over repeated interactions, this work may offer a basis for exploring learning 235 

behavior in systems where agents are not guaranteed to act optimally (17). 236 

 237 

Although this paper focuses on empirical evidence, we found an equation to estimate the 238 

stabilized win percentage (win percentage after ns) for both players as n approaches ∞: 239 

𝑎

𝑎+𝑏
=

𝑃1(100−𝑃2)

𝑃1(100−𝑃2)+𝑃2(100−𝑃1)
 ∙ 100                       (Equation 3) 240 

It uses the statistical formula that calculates the probability of an event a happening before 241 

event b to do so. Since this equation does not contain any variables related to winning positions, 242 

it does directly support our hypothesis, granted it is most accurate for smaller values of A. For 243 

example, the stabilized win percentage for 1,2,3-Nim (P1 =90% and P2 = 80%) was computed to 244 

be approximately 69.29% and the equation’s estimate was 69.23% (Figure 1 & Eqn. 3). Notably, 245 

it also does not involve any variables related to Nim, which may indicate its application in other 246 

impartial games such as those mentioned above. Possible future experiments could explore the 247 

similarities between imperfect play in Nim and said other games.   248 

 249 

This paper computationally and mathematically shows that the effect of ideal starting positions 250 

fade, and player ability becomes the primary driver of performance. While our research is 251 

grounded in Nim, the findings may offer broader insights into imperfect play in other settings 252 

such as training AI models and other impartial games.  253 

 254 

MATERIALS AND METHODS 255 

 256 

Stabilization point of single pile Nim 257 

To find the stabilization point in a single pile game, the derivative (represented as the ‘) of a 258 

moving average MA with a window size of 10 is used. The stabilization point is defined using a 259 

threshold of 0.06: 260 

𝑛𝑠 = arg min
𝑖∈[𝑖,𝑖+10)

(max(𝑀𝐴′) − min(𝑀𝐴′) < 0.06) + 5                        (Equation 4) 261 

Argmin returns the lowest number of sticks that satisfies the condition:  the range of the 262 

derivatives < 0.06 in a 10 stick window where i is the number of sticks at the start of the window 263 

and i+10 is the number of sticks at the end of the window. The range is calculated by 264 

subtracting the lowest derivative (min(MA’)) from the greatest in the window (max(MA’)). 265 
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 266 

Stabilization point of 2 Pile Nim 267 

To find the stabilization point in a 2 pile game, a Gaussian smoothing with Σ = 0.1 is applied and 268 

then gradient magnitudes (║∇║) are computed: 269 

𝑛𝑠 = arg min
(𝑖,𝑗)∈𝑊𝑖, 𝑗

(max ∥ ∇𝑍 ∥ − min ∥ ∇𝑍 ∥ < 1)                      (Equation 5) 270 

 271 

Argmin returns the lowest combination of number of sticks that satisfy the condition: the range 272 

of the gradient magnitudes < 1 in a window where W is the region from the combination of 273 

starting number of sticks (i, j) to the point where the starting number of sticks in both piles are 274 

100.  275 

 276 

Game Simulation 277 

A Java program calculates the optimal move by testing every single possible move in every 278 

single pile until the Grundy number computes to 0 (winning). If there are no such moves it 279 

chooses the smallest move possible It makes this move in the first pile by default. If there is 280 

more than one optimal move, it chooses the biggest move. It tallies up the total number of wins 281 

for each player and divides by the total number of games played. When playing sub optimally, 282 

Player 1 choses this optimal move with a probability of P1 and Player 2 with a probability of P2. 283 

 284 

Software and Packages 285 

The Java Programming Language (Version 1.8.0 51) was used for the Monte Carlo simulations 286 

and game calculations (Grundy numbers and Optimal move calculation) (16). Java’s Util 287 

Package was utilized for hash maps, hash sets, sets, scanners, and random number methods 288 

(18). Java IO was used for file writing functionality (19). For stabilization point calculations and 289 

graphing, the Python Programming Language (Version 3.10) was used. The NumPy package 290 

(Version 1.26.4) was used for mathematical calculations (20). Matplotlib (Version 3.7.1) was 291 

used for graphing (21). The Scipy package (Version 1.13.1) was used for Gaussian filters and 292 

linear algebra functions (22). 293 

 294 
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 366 

 367 

 368 

Figures and Figure Captions 369 

 370 

 371 

Figure 1. Win Percentages of Player 1 (W1) and Player 2 (W2) vs. Starting Number of 372 

Sticks (n). Scatter plot , moving averages, and stabilization points [Eqn 4] for win percentages 373 

in different game configurations:  A) A = {1, 2, 3}, P1 = 90%, and P2 = 80%; B) A = {1, 5, 6}, P1 = 374 

70%, and  P2 = 70%; C) A = {1, 3, 4}, P1 = 85%, and P2 = 85%; D) A = {1, 4, 5}, P1 = 90%, and 375 

P2 = 80%. 106 simulations. Win percentages were calculated using a simulation algorithm that 376 

recorded the proportion of wins for each player. 377 

 378 
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 379 

 380 

Figure 2. Player 1 ability (P1) and Player 2 ability (P2) vs. Number of Sticks Needed for 381 

Stabilization (ns). Scatterplots and 2nd order 3-dimensional best-fit surfaces for ns for 2 game 382 

configurations: A) A = {1, 2, 3}; B) A = {1, 3, 4}. Stabilization points were calculated using 383 

Equation 4 on win percentages from the game simulator.  384 

 385 

 386 

Figure 3. Minimum ability difference (P1 − P2) where W1 > W2 vs. Player 1 ability (P1) in 387 

ideal positions for Player 2. Scatter plots and parabolic regressions for 2 game configurations: 388 

A) A = {1, 2, 3}; B) A = {1, 3, 4}. All values of n are losing positions for Player 1. Minimum 389 

difference was found by simulating games per P1–P2 pair (1% increments) and identifying the 390 

smallest (P1 − P2) where Player 1 outperformed Player 2.  391 
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 392 

Figure 4. Number of Sticks in Pile 1 (n1) and Number of Sticks in Pile 2 (n2) vs. Player 1 393 

and Player 2 Win Percentages (W1, W2). Scatterplots and stabilization points [Eqn 5] for 2 394 

game configurations: A) and B) A1 = {1, 3, 4}, A2 = {1, 4, 5}, P1 = 80%, P2 = 70%, though A) 395 

represents W1 while B) represents W2. Graphs C) and D) A1, A2 = {1, 2, 3}, P1 = 90%, P2 = 80%, 396 

though C) represents W1 while D) represents W2. 105 simulations. Win percentages were 397 

calculated using a simulation algorithm that recorded the proportion of wins for each player. 398 

 399 

Tables with Captions 400 

Number of Sticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Winner 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 

Table 1. Win table of 0 − 16 sticks. Computed using game logic mentioned in the introduction 401 

where A = {1, 2, 3}. 402 
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Number of Sticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Grundy Number 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 

Table 2: Grundy numbers of 0 − 16 sticks. Computed using equation 1 where A = {1, 2, 3}. 404 

 405 

Appendix  406 

GitHub link: github.com/newrohansinha/NIM. This repository contains all the code used in this 407 

paper and the raw data. 408 
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