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Abstract

The Prime Number Theorem is a well-known asymptotic estimate
for the number of primes. It states that the number of primes ≤ to
a given number x is approximately x

ln(x) . In this paper, we investi-
gate the distribution of primes for congruence monoids and the circle
of Gaussian integers in Z[i]. We develop computational methods to
count primes in both cases and compare their growth rates with the
classical logarithmic model. Our results provide empirical evidence
on the degree to which these primes follow x

ln(x) , and where significant
deviations occur.

Keywords: Prime Number Theorem, Gaussian Integers, Circles, and
Primes.

1 Introduction

In 1896, Jacques Hadamard and Charles-Jean de la Vallée Poussin both
independently discovered that the number of primes ≤ x was roughly x

ln(x)

using complex analysis. This was built off of earlier work done by Pafnuty
Chebyshev in the 1850s. This equation could be multiplied by any number
x to determine the number of primes ≤ to x. The equation has been written
as π(x). Later proofs have been created for the Prime Number Theorem by
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Paul Erdős and Atle Selberg in 1948. Their proof is elementary, only using
calculus, hence why they reproved it.

In Section 2 we present the Congruence Monoid primes, Gaussian primes,
and other important definitions. In Section 3 we present models for estimat-
ing the number of primes in the congruence monoid of 1 (mod d) based on
the Prime Number Theorem and also analyze the data surrounding it. In
Section 4, we shift to Gaussian primes where we estimate the number of
Gaussian primes within a Circle of radius r using a different model and also
analyze its data. In section 5, we compare both cases to the classical loga-
rithmic model and explain the differences and limitations. In Section 6, we
present some open problems.

2 Key Definitions

Def 2.1 [Prime] Let D ⊆ N. A prime in D is a number p ∈ D such that
p > 1 and the only positive divisors of p that lie in D are 1 and p itself.

Def 2.2 [Unit] An element u ∈ D is called a unit (with respect to multipli-
cation in D) if there exists v ∈ D such that u · v = v · u = 1.

Def 2.3 [Irreducible] Let element r ∈ D is called irreducible in D if r is not
a unit of D and whenever r = a · b with a, b ∈ D, then at least one of a or b
is a unit in D.

Def 2.4 [Congruence Monoid Prime] Let d ∈ N with d ≥ 2. Define the set

A = {n ∈ N | n ≡ 1 (mod d)}.

An element p ∈ A is called a congruence monoid prime if whenever p = ab for
some a, b ∈ A, then either a = 1 or b = 1. Factorizations involving elements
outside A are not considered.

Def 2.5 [Congruence Monoid Unit] An element p ∈ A is called a congruence
monoid unit if there exists v ∈ D such that u · v = v · u = 1. The only
congruence monoid unit is 1.
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Def 2.6 [Gaussian Integer] A Gaussian integer is a complex number of the
form a + bi, where a, b ∈ Z. The set of all Gaussian integers is denoted by
Z[i].

Def 2.7 [Gaussian Prime] A Gaussian integer π ∈ Z[i] is a Gaussian prime
if it is nonzero, not a unit (i.e., not ±1 or ±i), and whenever π = αβ for
α, β ∈ Z[i], then α or β is a unit, which means it is the same as a Gaussian
irreducible. That is, when π is irreducible in Z[i].

Def 2.8 [Gaussian Unit] A Gaussian integer π ∈ Z[i] is a Gaussian unit if
it can be multiplied by another Gaussian integer to equal 1.

Def 2.9 [Norm of a Gaussian Integer] For z = a + bi ∈ Z[i], the norm of z
is defined as

N(z) = a2 + b2.

Def 2.10 [Norm Circle in C] For a fixed r ∈ N, the norm circle of radius r
in the complex plane is the set of all complex numbers z = a+ bi ∈ Z[i] such
that the norm N(z) =

√
a2 + b2 ≤ r. Geometrically, these points lie within

and on the circle centered at the origin with radius r.

3 Congruence Monoid Prime Estimation

Recall the set from Def 2.4

A = {n ∈ N | n ≡ 1 (mod d)}.

Let πd(x) denote the number of primes ≤ x that lie in A, i.e.,

πd(x) = #{p ≤ x | p ∈ A and p prime}.

An estimate for πd(x) , is given by:

Ed(x) =
x

d(log x) 1/d
.
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This formula modifies the classical Prime Number Theorem to the congruence
monoid context, accounting for the arithmetic constraint n ≡ 1 (mod d).

The exponent 1
d
and the d term in the denominator were chosen to balance

the sparser distribution of primes in A against the growth of x and were then
verified empirically.

To evaluate the fit between the empirical count πd(x) and the estimation
Ed(x), the following normalized accuracy ratio is used:

Rd(x) =
πd(x)

Ed(x)
.

A value of Rd(x) ≈ 1 indicates strong alignment between empirical and
estimated counts.

The table below displays the accuracy of the estimation across several
values of d for primes ≤ x = 104. The mean absolute percentage deviation
(MAPE) measures the accuracy of a forecasting model, which in this case is
Ed(x). The corresponding graphs provide a visual comparison of πd(x) and
Ed(x) over the full range of x for a few values of d from the table.

d Largest Prime Actual Count Estimate Rd |Rd − 1| MAPE (%)
3 10000 1380 1590.21 0.86781 0.13219 9.05
5 9996 1210 1282.34 0.94358 0.05642 3.81
7 9997 1009 1039.97 0.97022 0.02978 2.45
9 10000 851 868.19 0.98020 0.01980 2.28
11 10000 745 742.93 1.00279 0.00279 2.88
13 9998 653 648.33 1.00720 0.00720 3.10
21 9997 438 428.29 1.02268 0.02268 3.88
50 9951 196 190.38 1.02953 0.02953 3.03

Table 1: Comparison of Actual and Estimated Dd-Prime Counts up to 104
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Figure 1: Actual prime count π3(x) (blue) versus the estimate E3(x) (orange)
for d = 3.

The estimation very minorly underestimates until x ≈ 800, then increas-
ingly starts to overestimate.

Figure 2: Actual prime count π7(x) (blue) versus the estimate E7(x) (orange)
for d = 7.

Similar to figure 1, the estimate very minorly underestimates until x ≈
4100 and then increasingly starts to overestimate.
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Figure 3: Actual prime count π13(x) (blue) versus the estimate E13(x) (or-
ange) for d = 13.

Same phenomenon described above except at x ≈ 13800 (not shown in
graph).

Figure 4: Actual prime count π50(x) (blue) versus the estimate E50(x) (or-
ange) for d = 50 up to x = 10 000.

Same phenomenon described above except at x ≈ 330, 000 (not shown in
graph).
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Unlike the Prime Number Theorem, where the estimation becomes more
accurate as x grows (in fact, becomes perfect as x approaches infinity), the
accuracy of our estimation is not as straightforward. The estimation becomes
increasingly accurate up to a certain value of x (almost exact) and then
diverges from the actual count.

4 Gaussian Prime Estimation

Recall we are counting the number of Gaussian primes within and on the
norm circle in Z[i] with a radius r. That is, all z = a+ bi ∈ Z[i] whose norm
N(z) =

√
a2 + b2 satisfies N(z) ≤ r. Using the norm circle provides a clear

and finite boundary, making it possible to study the distribution of Gaussian
primes up to a specific size, analogous to counting up to x in section 3 and
for the classical PNT.
The number of Gaussian primes in and on the norm circle is πG. We empiri-

cally found an estimate for πG, EG(r) =
4r

ln(r)
. This is likely due to the fact

that there are 4 units in the Gaussian integer domain compared to 1 in the
natural number domain.

Figure 5: Actual Gaussian prime count for 0 < r2 ≤ 107 (blue) versus the
the estimate EG(r) (orange).
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Radius (r) MAPE (%)
103 14.95
104 12.63
105 10.31
106 8.50
107 7.21

Table 2: Mean absolute percentage deviation (MAPE) of the estimate πG(r)
at various radii.

Since our estimate EG(r) =
4r

ln(r)
was shown to be accurate as the radius

increased, future research that could rigorously prove our suggested estimate
for Gaussian primes would be beneficial.

5 Conclusion

We analyzed primes in congruence monoids and Gaussian integers. For
monoids of the form n ≡ 1 (mod d), we proposed the estimate Ed(x) =

x
d(log x)1/d

, which fits well for small x but diverges as x grows. Its accuracy

is not as straightforward as the classical PNT rather gets maximized at a
certain point for each specific value of d. The value of x grew as d grew as
seen in the graphed examples. For Gaussian integers, we found the classical
model undercounts primes and adjusted it with a scaling factor C ≈ 4 for an
accurate fit. Just like the classical PNT, the accuracy of this estimate also
increases as x increases. Both cases show prime-like elements follow modified
versions of the prime number theorem, but need domain-specific corrections.

6 Open Problems

1. Rigorously prove the suggested estimate for congruence monoid primes.

2. Solve for the intersection point between the estimate and the actual
number of congruence monoid primes.

3. Rigorously prove the suggested estimate for Gaussian primes.
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