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Abstract

This paper investigates the growth and behavior of two-player achievement games based on
Ramsey Theory on undirected graphs. We use a Monte Carlo, Python simulation to empirically
study the growth patterns of Ramsey-type structures and draw thresholds that can serve as
benchmarks for graph coloring algorithms. We define a win as the first player to create a
monochromatic k-clique on a graph of n nodes. Moreover, we find that, with more nodes, the
graph better approximates a logistic growth pattern. Our results across simulations show a
positive relationship between n and its draw threshold, with a stepwise pattern that is best
modeled logarithmically. We propose these draw thresholds as markers of meaningful zones of
complexity for future research and help AI coloring agents, Ramsey solvers, and other related
algorithms avoid trivial game setups. Finally, we hope that the dataset we created will serve as
a valuable starting point for future studies to analyze and base new conjectures off of.

1 Introduction

Theorized by mathematician Frank Ramsey in 1930, Ramsey Theory is the study of the patterns
and order that emerge in structures as they become larger and more complex. The field of study is
more focused on discovering new Ramsey Numbers, R(Ks,Kt) = n, which state that in a graph of
size n, a monochromatic Ks or Kt must exist. A monochromatic Ks describes a clique or complete
subgraph of size s where all vertices are connected by edges of the same color. Two well-known
Ramsey numbers are R(3, 3) = 6 and R(4, 4) = 18. Beyond discovering better thresholds for
Ramsey Numbers, Ramsey Theory also has robust applications to other fields, including computer
science, number theory and topology. We are most interested in its applications to game theory.

Since its conception, many variations of graph coloring games based on Ramsey Theory have
arisen. One of the first such games, the ”Game of Sim”, was proposed by Gustavus Simmons in
1969[2], wherein two players attempt to two-color a hexagon and force their opponent to create a
monochromatic triangle in the opposing color. Simmons’ game is a classic example of an avoidance
game because the goal is to avoid creating a monochromatic triangle in one’s color. In contrast,
in the achievement variation of Ramsey Games, as later introduced by Frank Harary in 1982 [3],
the win condition was changed to be the first player to create a monochromatic triangle in their
color. Multiple other versions have been proposed since then, including online, two-round, and
offline variations [4], among others.

This paper focuses on two-player achievement games, and a win is defined as the first player to
create a monochromatic k-clique on a graph of size n. We are interested in the draw threshold of such
games, denoted by D(n) = kd where n is the number of nodes in the graph and kd is the smallest
clique size that results in all draws across all combinations of strategies. Similarly to Ramsey
Theory, we hope to find a point where order supersedes chaos: regardless of what strategy each
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player uses and their respective advantages, the game will necessarily end in a draw. By identifying
these transition points and examining trends among them, we hope to obtain the following: a)
a fresh perspective on the growth and behavior of Ramsey-type structures and b) the natural
performance limits that can serve as benchmarks for graph coloring algorithms. Additionally, the
draw thresholds we propose could mark meaningful zones of complexity for future research and
help AI coloring agents, Ramsey solvers, and other related algorithms avoid trivial game setups.
Finally, we hope that our dataset can serve as a valuable starting point for future studies.

2 Methods

Our experiment uses a Monte Carlo, Python simulation to empirically study Ramsey two-player
games on undirected graphs with 6 ≤ n ≤ 59 and 3 ≤ k ≤ 11. Note that the bounds of k were
adjusted at times to avoid running unnecessary long simulations because, although the problem is
PSPACE complete [5], the time complexity still increases exponentially with n and k. Each player
was assigned one of four strategies:

Strategy Abbreviation Logic

Win → Block → Random W + B + R if exists edge that allows you to win:

choose that edge to win

else if exists edge that stops opponent’s win:

choose that edge to block

else:

choose a random edge

Win → Random W + R if exists edge that allows you to win:

choose that edge to win

else:

choose a random edge

Block → Random B + R if exists edge that prevents opponent’s win:

choose that edge to block

else:

choose a random edge

Random R choose a random edge

Table 1: Above are the strategies and psuedo-code assigned to each of the two players. All com-
binations of strategies (i.e. ”P1: W+B+R vs P2: W+B+R”, ”P1: W+B+R vs P2: W+R”, ... ,
”P1: R vs P2: B+R”, ”P1: R vs P2: R”) were simulated across configurations of (n, k).

For each configuration of (n, k), we tested all 16 combinations of the defined strategies (see Table
1) for Player 1 and Player 2. Each combination of strategies was simulated 100 times using different
seeds, but this set of seeds was kept consistent across simulations to ensure data reproducibility.
After the initial test, we revisited several configurations, specifically those that deviated from the
general trends or appeared near a draw threshold and increased the number of simulations to
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1000 to achieve more reliable results. We recorded the proportion of Player 1 wins, Player 2 wins
and draws and pay special attention to the smallest k such that, regardless of the combination
of simulated strategies, trying to create a monochromatic k-clique within the n nodes will always
result in a draw. This was recorded as the draw threshold, D(n).

3 Results

3.1 Draw Frequency vs Clique Size of Various Strategies

Keeping n constant, we noticed that increasing target clique size k increased the number of
draws. The frequency of draws increased to 100% as we approached the draw threshold D(n).

3



Figure 2: Comparison of draw frequencies for the 16 combinations of strategies across different
clique sizes and numbers of nodes.

As the number of nodes increases, the graph shifts naturally to the right because the draw
threshold increases. Moreover, by comparing the shape of the graph where n = 6 to that where
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n = 59, we observe that the graph better approximates a logistic growth pattern for larger values
of n. Shifting our focus to the specific combinations of strategies, we notice that ”P1: B+R vs P2:
B+R” (light pink) sticks out in every graph and deviates from general trend because it consistently
results in higher draw frequencies than the other combinations of strategies. Additionally, the
combinations of strategies ”P1: B+R vs P2: W+B+R” (brown) and ”P1: W+B+R vs P2: B+R”
(orange) consistently overlay one another, indicating that they share similar draw frequency growth
patterns.

3.2 Draw Threshold Function

Our results across simulations show a positive relationship between draw thresholds and n and a
stepwise, increasing pattern in draw thresholds as n increases. We attempted to fit the data to
various functions, such as exponential, power, logarithmic and polynomials, and used R2 as our
goodness of fit measure.

(a) Fit curves for a variety of different function types.
The logarithmic function proved to be the best fit
curve with the power function as a close second, while
the exponential function performed the worst.

(b) Fit curves for polynomial functions of varying de-
grees (2-10). Fit increases as degree of the polynomial
increases, indicating a positive correlation. However,
this could be a result of unnecessary complexity.

Figure 3: Plots of n vs D(n) fitted with various candidate functional forms and evaluated by
comparing their R2 values.

While the data appears to increase stepwise, a stepwise function is ill-fit to generalize it because
we are unable to provide sufficiently accurate bounds for each step - the steps increase in length
inconsistently making it difficult to predict how they will grow. We find that a logarithmic function
fits the data best among the selected functional forms in Figure 2(a). However, the logarithmic fit
curve is outperformed by higher order polynomials (degree > 3). We observe a positive correlation
between polynomial order and R2. Fitting the data to a 10th-order polynomial yields R2 = 0.9703,
while a linear model only yields R2 = 0.9027. We examine this correlation further using the
equations and R2 values for each of the functional forms above to check for unnecessary complexity.

We observe that the coefficients of the higher order polynomials (degree ≥ 3) are often of
magnitude 10−5 and smaller. This indicates that these functions are likely too complex for our
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Equation Type Equation R2

Linear 0.08889x+ 5.963 0.9027

Polynomial (2nd) −0.001297x2 + 0.1732x+ 4.908 0.9400

Polynomial (3rd) 6.072× 10−5x3 − 0.007217x2 + 0.3391x+ 3.686 0.9553

Polynomial (4th) −7.995× 10−7x4 + 1.647× 10−4x3 − 0.01179x2 + 0.4164x+
3.285

0.9558

Polynomial (5th) 2.269×10−7x5−3.767×10−5x4+0.002378x3−0.07179x2+
1.13x+ 0.4237

0.9630

Polynomial (6th) 3.628× 10−9x6 − 4.807× 10−7x5 +1.623× 10−5x4 +3.538×
10−4x3 − 0.03298x2 + 0.7773x+ 1.578

0.9633

Polynomial (7th) −6.784×10−10x7+1.58×10−7x6−1.473×10−5x5+7.022×
10−4x4 − 0.018x3 + 0.2362x2 − 1.193x+ 7.044

0.9654

Polynomial (8th) −4.445× 10−11x8+1.088× 10−8x7− 1.097× 10−6x6+5.9×
10−5x5−0.001842x4+0.03426x3−0.3805x2+2.584x−2.047

0.9670

Polynomial (9th) −3.982×10−12x9+1.12×10−9x8−1.344×10−7x7+8.998×
10−6x6−3.686×10−4x5+0.009526x4−0.1538x3+1.47x2−
7.156x+ 18.68

0.9693

Polynomial (10th) −2.029×10−13x10+6.194×10−11x9−8.173×10−9x8+6.108×
10−7x7 − 2.846 × 10−5x6 + 8.579 × 10−4x5 − 0.01679x4 +
0.2091x3 − 1.586x2 + 6.941x− 8.217

0.9703

Exponential 6.382e0.009728x 0.8745

Power 3.39x0.2842 0.9516

Logarithmic 2.362 ln(x) + 0.9905 0.9527

Table 2: Fitted equations and R2 values for each model type.

data as the higher order terms contribute very little to the overall equation. In contrast, the
coefficients for the other functional forms, like logarithmic, power and second-degree polynomial,
have much more reasonable coefficients, indicating a more reasonable level of complexity that fits
our data. Thus, based on our data, the draw threshold D(n) is best approximated by a logarithmic
function: D(n) ≈ 2.362 ln(n) + 0.9905.

3.3 ”Player 1: W+B+R vs Player 2: R” as a Meaningful D(n) Marker

While the other strategies had interesting properties, ”Player 1: W+B+R vs Player 2: R” was a
key indicator of whether or not we were at a draw threshold. If Player 1 had a 0% win rate, it
almost always indicated that all other strategies would result in all draws as well. In the cases that
this wasn’t immediately apparent, increasing from 100 to 1000 trials revealed this nuance. ”Player
1: W+B+R vs Player 2: R” is the strategy where Player 1’s advantage is most pronounced because
Player 1 has first move advantage and uses a more complex strategy against Player 2’s completely
random approach to selecting nodes.
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4 Discussion

Our results show interesting patterns in draw frequencies and thresholds as both n and k increase.
Firstly, for larger n, the draw frequencies increase logistically with k. Additionally, the draw
threshold D(n) exhibits a stepwise increasing pattern that is best approximated with a logarithmic
function. This aligns with classical Ramsey theory results which demonstrate that in sufficiently
large graphs, complete disorder is impossible [6]. While the Ramsey Numbers seek to converge on
the point where a k-clique must be present, our paper examines the point where a k-clique cannot
arise. Thus, it makes sense that, while the Ramsey Numbers grow in an exponential pattern, our
fit curve was the inverse of that, an logarithmic curve.

Moreover, looking back at our function for modeling the draw threshold: D(n) ≈ 2.362 ln(n) +
0.9905, we prove mathematically that this function makes sense. Recall that 2k/2 ≤ R(k) ≤ 22k.
Hence it is true that any 2-coloring of K22k has a mono k-clique. Let n = 22k. It follows that
log2(n) = 2k and k = 0.5 log2(n). Since log2(n) is approx ln(n)/0.7 we have k = (5/7) ln(n), which
is roughly 0.714 ln(n). Thus, D(n) ≥ 0.714 ln(n), which is true of our function.

While exploring various combinations of strategies wasn’t the focus of this paper, we mentioned
some interesting patterns that arose earlier. In general, ”P1: B+R vs P2: B+R” resulted in a higher
proportion of games that ended in draws. This conclusion makes sense as both players always choose
to block one another, but don’t necessarily choose the winning edge when it is available (that is
left up to chance if they end up randomly choosing an edge). Moreover, it makes sense that ”P1:
W+B+R vs P2: B+R” and ”P1: B+R vs P2: W+B+R” would result in similar draw frequencies
, but both less than that of ”P1: B+R vs P2: B+R”. Since one player is programmed to win
when possible, it makes sense that there are less draws than when neither player is programmed
to do so. However, they nonetheless exhibit similar draw frequencies because the odds of either
player becoming advantaged enough to win (i.e. not being blocked by the other and successfully
setting up an almost-monochromatic k-clique through randomly selecting edges) decreases as n and
k increase.

While we focused on draws, the dataset our simulations produced can serve as a springboard for
future studies and conjectures about strategy performance and underlying patterns. Although our
dataset includes data for 3 ≤ k ≤ 12 for up to n = 59, which is a more robust dataset than previously
proposed by other studies, our optimized algorithm was limited by computational constraints on
larger graphs. Given more computing power, we likely could have ran 1000 simulations instead
of 100 for all configurations and increased n to be larger to find a better fitting approximation
of D(n). Additionally, based on the observation made in Results section 3.3, we could have also
ran simulations on just ”Player 1: W+B+R vs Player 2: R,” using it as our indicator of draw
thresholds. This would have greatly cut down on computing time and allowed us to increase the
number of nodes n, gather more data points and create a more accurate function for D(n).

Future studies could look into simulating games on larger graphs or ones with more complex
strategies that are more calculated than randomly choosing an edge in the worst case. Win condi-
tions could be changed to be not just cliques, but cycles or specific shapes, like stars. This could
then be extended to more practical, real-world applications such as social networks and tournament
brackets. We are also interested in potentially training AI players to play the game and exploring
how our proposed draw frequencies aid their training process by avoiding trivial configurations of
n and k. An open problem remains how to train AI models, using reinforcement learning, deep
neural networks or other techniques, to play Ramsey Games. The strategies used in our study were
simple compared to how decision making often works in real-time game play. For example, future
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studies could use strategies that are more nuanced than just ”R” (Random); they could have the
players pick edges that include nodes with the highest/lowest degree and examine how that affects
D(N) and overall performance.

In conclusion, by quantitatively modeling Ramsey Games, we provide novel insights into the
growth patterns of draw frequencies and thresholds. Our study improves upon known patterns
within such games and lays the groundwork for future investigation into optimal Ramsey Game
strategy and how that changes as n and k get bigger.
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