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1 Introduction

1.1 Overview of the Field of Study
The Boolean Satisfiability Problem, commonly called SAT, is a key puzzle in computer

science and mathematics. It asks whether a logical formula, written as a combination of state-
ments connected by “and,” “or,” and “not,” can be made true by choosing the right true or false
values for its variables. For example, consider the formula (x∨ y)∧ (¬x∨ z), where ∨ means
OR, ∧ means AND, and ¬ means NOT. This means “(x or y) and (not x or z).” The goal is to
find values for x, y, and z (true or false) that make the whole formula true. If such values exist,
the formula is “satisfiable”; if not, it is “unsatisfiable.”

SAT is important because it is a very hard problem to solve for large formulas. In 1971,
a researcher named Stephen Cook showed that SAT is “NP-complete,” meaning that while
checking a solution is quick, finding one can take a very long time because the number of
possible combinations grows rapidly [Cook, 1971]. This makes SAT a benchmark for testing
how well computers can handle tough problems.

SAT is useful in many areas. In software development, SAT solvers (programs that solve
SAT problems) help find bugs in code by checking if a program behaves correctly. In hardware
design, they ensure circuits work as intended before they are built. In artificial intelligence, SAT
helps robots plan actions or solve puzzles. It is also used in cryptography to test security and
in biology to study things like protein shapes or DNA sequences. It is also used in scheduling
problems, the Traveling Salesman Problem, and Integer Programming. Improving SAT solvers
can make these tasks faster and more reliable.

SAT solvers have come a long way. In 1962, researchers developed the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm, which systematically tries different variable assign-
ments [Davis et al., 1962]. DPLL uses tricks like “unit propagation,” which means automat-
ically setting a variable when only one choice makes sense (e.g., if a clause is just “x,” then
x must be true). Another trick is “pure literal elimination,” where if a variable only appears
as true (or false), it can be set that way without guessing. Later, in the 1990s, solvers added
“conflict-driven clause learning” (CDCL), which learns from mistakes to avoid repeating them.
Modern solvers like MiniSat, Glucose, and Kissat can handle huge problems with millions of
variables, but some special cases, like those based on mathematical principles, remain very
hard.
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1.2 Scientific Justification for the Research
This project is motivated by the fact that SAT problems are extremely difficult to solve, even

for powerful computers. SAT solvers often struggle with large or cleverly structured formulas,
where the number of possible variable combinations is enormous—like 2100 for 100 variables,
which is more than the number of atoms in the universe. A classic example of this difficulty is
the pigeonhole principle (PHP), which is simple to understand but very hard for solvers. The
PHP says that if you have more pigeons (n) than holes (m), with n greater than m, at least
one hole must have more than one pigeon. When turned into a SAT formula, this is always
unsatisfiable, but proving it requires the solver to check a huge number of options, making it a
tough test case that shows the limits of SAT solving techniques.

To explore this difficulty, I tested how different strategies, called “heuristics,” affect how
fast a SAT solver can work. A heuristic is like a rule of thumb that helps the solver decide
which variable to try next when guessing true or false. Choosing the right variable can make
the solver much faster by reducing unnecessary guesses. I focused on PHP formulas because
they are a good way to show SAT’s challenges. I tested five heuristics: Random, DLIS, CDF,
MOM, and JW. These heuristics are defined in the methodology section. I ran these on PHP
formulas with varying n and m.

This research matters because SAT solvers are used in real-world tasks like scheduling
workers, designing secure systems, or planning AI actions. By finding out which heuristics
work best on hard problems like pigeonhole, we can make solvers better at handling difficult
cases. The project also helps understand why some problems are harder than others and how to
improve solver designs.

2 Methodology
The SAT solver was built in Python 3 using the DPLL algorithm. The SAT solver was

developed in Python using the DPLL algorithm as the main framework. In the implementa-
tion, DPLL operates recursively: it selects an unassigned variable and explores both true and
false assignments. During this process, unit propagation is applied, forcing assignments when
a clause reduces to a single literal. If a contradiction arises, the algorithm backtracks and con-
tinues along a different branch until either a satisfying assignment is found or all possibilities
are exhausted.Two key techniques make it faster:

- Unit Propagation: When a clause (a group of variables connected by “or”) has only one
variable left, that variable must be set to make the clause true. For example, if a clause is
just (x), then x must be true. The solver applies this rule repeatedly to simplify the formula. -
Backtracking: If a choice leads to a contradiction (e.g., a clause becomes impossible to satisfy),
the solver goes back and tries a different choice.

Five heuristics were used to choose which variable to try next:

- Random: Picks a variable randomly, like flipping a coin. This is simple but not very smart.

- Dynamic Largest Individual Sum (DLIS): Counts how often each variable appears in the
remaining clauses and picks the most frequent one, hoping to simplify the formula quickly.

- Conflict-Driven Frequency (CDF): Tracks which variables cause conflicts (dead ends) and
picks the one with the most conflicts. If no conflicts are recorded, it uses DLIS.
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- Maximum Occurrences in Minimum-length clauses (MOM): Looks at the shortest clauses
(which are harder to satisfy) and picks the variable that appears most in them.

- Jeroslow-Wang (JW): Gives each clause a score based on its length (shorter clauses get higher
scores, e.g., score = 2−length), adds up scores for each variable, and picks the highest. These
were coded in a file called methods.py.

The JW heuristic code is shown in Code Block 1.

Block 1: The JW heuristic code
1 from collections import Counter

2

3 def jw_method(clauses , unassigned , conflict_counts):

4 if not unassigned:

5 return None

6 scores = Counter ()

7 for clause in clauses:

8 weight = 2 ** -len(clause)

9 for literal in clause:

10 var = abs(literal)

11 if var in unassigned:

12 scores[var] += weight

13 return max(unassigned , key=lambda x: scores[x]) if scores

else None

Block 2: The pigeonhole formula generation code
1 def generate_pigeonhole(n, m):

2 num_vars = n * m # Variables x_ij for i=1 to n, j=1 to m

3 clauses = []

4

5 # Constraint 1: Each pigeon is in at least one hole

6 for i in range(1, n + 1):

7 clause = [(i - 1) * m + j for j in range(1, m + 1)]

8 clauses.append(clause)

9

10 # Constraint 2: No two pigeons are in the same hole

11 for j in range(1, m + 1):

12 for i1 in range(1, n + 1):

13 for i2 in range(i1 + 1, n + 1):

14 var1 = (i1 - 1) * m + j

15 var2 = (i2 - 1) * m + j

16 clauses.append([-var1 , -var2])

17

18 return clauses , num_vars

The solver itself is in sat.py, which manages the DPLL process. For brevity, only the key
structure is shown, but it handles clauses, assignments, and recursion.

For creating pigeonhole formulas P(n,m), I used pigeonhole.py. These use n×m variables
xi j, where xi j means pigeon i is in hole j. The formula has two rules: - Each pigeon must be in
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at least one hole: for each pigeon i, a clause like (xi1 ∨ xi2 ∨ ·· · ∨ xim). - No two pigeons can
share a hole: for each hole j and pigeons i1, i2, a clause like (¬xi1 j ∨¬xi2 j).

The code that builds these formulas is shown in Code Block 2.
Since n > m, P(n,m) is always unsatisfiable. Experiments were run using an updated script

that tests different families of P(pigeons, holes) instances, stopping when any heuristic ex-
ceeded 10 minutes (600 seconds) for an instance. This allowed us to see how time scales with
size and classify if it’s polynomial-like (slow growth) or exponential-like (fast growth). The
families tested are P(n, n-1) (pigeons = n, holes = n-1), P(2n, n) (pigeons = 2n, holes = n), and
P(10, n) (pigeons = 10, holes = n). All unsatisfiable instances have null assignment; satisfiable
ones have an assignment dictionary (truncated for space). Tests were run on a standard desktop
computer.

The maincode.py script is the main control program. With two arguments (n m), it solves
a specific P(n,m); otherwise, it runs experiments with m=5 (adjustable). Tests were run on a
standard desktop computer.

3 Results
The results were collected by running the updated script for the pigeonhole experiments.

Below are the detailed results for each experiment, showing how long each heuristic took and
whether each formula was satisfiable.

3.1 Pigeonhole Experiments
The pigeonhole experiments were conducted to test different families of P(pigeons, holes)

instances, stopping when any heuristic exceeded 10 minutes (600 seconds) for an instance. This
allowed us to see how time scales with size and classify if it’s polynomial-like (slow growth)
or exponential-like (fast growth). The families tested are P(n, n-1) (pigeons = n, holes = n-1),
P(2n, n) (pigeons = 2n, holes = n), and P(10, n) (pigeons = 10, holes = n). All unsatisfiable
instances have null assignment; satisfiable ones have an assignment dictionary (truncated for
space).

P(n, n-1) Family (Pigeons = n, Holes = n-1, Start n=5) This is unsatisfiable since
pigeons > holes. Methods ran until n=11, where some timed out.

Random:

n Time (s)

5 0.000801
6 0.007432
7 0.076580
8 0.940765
9 12.470848
10 186.783055
11 null

DLIS:
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n Time (s)

5 0.000756
6 0.005384
7 0.040805
8 0.344360
9 3.372826
10 40.964139
11 524.746007

CDF:

n Time (s)

5 0.000883
6 0.007581
7 0.075375
8 0.801038
9 10.031276
10 140.296020
11 null

MOM:

n Time (s)

5 0.001044
6 0.008887
7 0.087848
8 1.040972
9 13.537162
10 214.038100
11 null

JW:

n Time (s)

5 0.000795
6 0.005680
7 0.042291
8 0.367461
9 3.508375
10 45.712554
11 551.670325
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n DLIS JW MOM CDF Random

10 40.964139 45.712554 214.038100 140.296020 186.783055
11 524.746007 551.670325 null null null

From the results, DLIS and JW perform significantly better than Random, CDF, and MOM,
with shorter times for larger n. For example, at n=10, DLIS took 40.96s while Random took
186.78s. Given their efficiency, these heuristics could potentially be tested on larger instances
like n=12, though they might still take considerable time.

Growth Classification: All methods show exponential-like scaling (ratios >1.5).
P(2n, n) Family (Pigeons = 2n, Holes = n, Start n=2) This is unsatisfiable for all tested

n (pigeons > holes). Methods ran until n=9, where some timed out.
Random:

n Time (s)

2 0.000040
3 0.000346
4 0.004832
5 0.049846
6 0.953052
7 14.752042
8 297.328010
9 null

DLIS:

n Time (s)

2 0.000046
3 0.000388
4 0.003319
5 0.024375
6 0.266352
7 2.639716
8 28.771470
9 340.844093

CDF:

n Time (s)

2 0.000053
3 0.000502
4 0.004182
5 0.038775
6 0.500602
7 6.557919
8 93.360501
9 null
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MOM:

n Time (s)

2 0.000046
3 0.000393
4 0.003591
5 0.037159
6 0.534982
7 7.609976
8 113.870322
9 null

JW:

n Time (s)

2 0.000049
3 0.000418
4 0.003632
5 0.029749
6 0.326885
7 3.181734
8 34.562265
9 422.863442

n DLIS JW MOM CDF Random

8 28.771470 34.562265 113.870322 93.360501 297.328010
9 340.844093 422.863442 null null null

DLIS and JW again outperform the others, with DLIS taking 340s at n=9 compared to
Random timing out.

Growth Classification: All methods show exponential-like scaling (ratios >1.5).
P(10, n) Family (Pigeons = 10, Holes = n, Start n=5) This is unsatisfiable for n <

10 (pigeons > holes) and satisfiable for n ≥ 10 (pigeons ≤ holes, with assignment shown
truncated). Methods ran until n=205, where some timed out.

Random:

n Time (s)

5 0.055811
6 0.421436
7 3.01267

204 2.59045
205 2.51181

DLIS:
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n Time (s)

5 0.028572
6 0.146372
7 0.931863

204 9.46762
205 9.8673

CDF:

n Time (s)

5 0.045672
6 0.285943
7 2.24635

204 9.39065
205 9.54054

MOM:

n Time (s)

5 0.052012
6 0.363920
7 2.797236

204 599.207
205 null

JW:

n Time (s)

5 0.026734
6 0.162191
7 0.954462

204 10.4183
205 10.6577

For the unsatisfiable cases (n < 10), times increase exponentially, with JW and DLIS being
fastest. For satisfiable (n ≥ 10), times are polynomial-like and similar across heuristics, though
MOM timed out at n=205.

Growth Classification: For unsat part (n < 10), exponential-like; for sat part (n ≥ 10),
polynomial-like (times stabilize as n increases, since satisfiable and easy to find assignment).

4 Analysis
The pigeonhole results for P(n, n-1) show exponential-like growth for all methods, with

times multiplying as n increases (e.g., Random from 0.0008s at n=5 to 186s at n=10). This
confirms PHP’s hardness, as the solver must explore a growing search tree to prove unsat.
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For P(2n, n), similar exponential growth, e.g., DLIS from 0.000046s at n=2 to 340s at n=9,
showing that doubling pigeons amplifies difficulty quickly.

For P(10, n), when unsat (n < 10), exponential-like (times rise sharply); when sat (n ≥ 10),
polynomial-like (times flat, 0.0002s, as easy to find assignment). This highlights that unsat
cases are harder.

The solver worked correctly for all tests, proving the DPLL code is reliable. However, it
could be improved by adding CDCL (Conflict-Driven Clause Learning, which analyzes con-
flicts to learn new clauses that prevent similar mistakes in future searches, thus pruning the
search space more effectively) or rewriting it in a faster language like C++ instead of Python,
which is slower for big calculations.

5 Conclusion
This project shows that the choice of heuristic makes a big difference for hard, unsatisfiable

pigeonhole problems. DLIS and JW were much faster than Random, CDF, and MOM in the
tested cases. The experiments successfully demonstrated how problem size affects solving
time, with exponential growth for unsatisfiable cases and polynomial growth for satisfiable
ones.

These results matter because SAT solvers are used in important tasks like AI planning and
checking software. Better heuristics could save time in these areas. In the future, I could add
CDCL (Conflict-Driven Clause Learning, which analyzes conflicts to learn new clauses that
prevent similar mistakes in future searches, making the search more effective) to make the
solver smarter, try bigger values of m, or combine heuristics to get even faster results.
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