The Muffin Problem - Data Analysis of Exceptions By Dan Smolyak

1 Introduction

Throughout the previous sections of this paper, we have discussed methods of finding f(m, s)and specifically, finding what f(m, s) is when the Floor-Ceiling Theorem, and the patterns determined by it, aren't matched by the actual f(m, s). We now analyze these exceptions to the Floor-Ceiling theorem, investigating the following aspects:

- How often do exceptions occur?
- For which m do these exceptions occur? (Given a single s)
- What is the maximum m for which exceptions occur? (Given a single s)

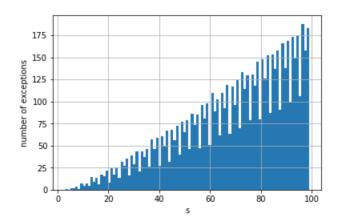
2 The Muffin Data

As a brief explanation, we collected data by first running all of the various exception-detecting programs on f(m, s), for s ranging from 0 to 60, where for each s, we tested each m from s + 1 to s^2 . We chose s^2 as an upper bound relatively arbitrarily, but you'll see later on that it was a good starting bound. Once we found the actual approximate bounds on the maximum m with an exception for a given s, we used these bounds to find more data for s from 61 to 100, thus bootstrapping to find new results.

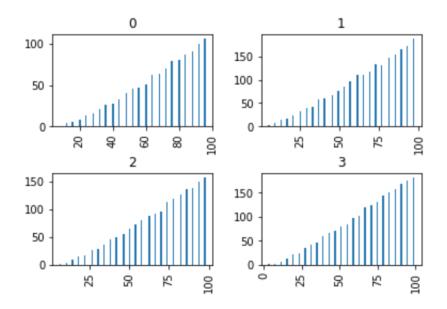
3 Frequency of Exceptions

As s increases, the number of exceptions tends to increase linearly. Within each $s \mod 4$, the increase is linear, but there are spikes up and down between different $s \mod 4$.

Below is the number of exceptions per s:



From above, we see mod patterns where certain s have consistently higher/lower number of exceptions. The graph below shows the number of exceptions at each $s \mod 4$. Make sure to look at the y-axis for each graph.



We can now see the directly linear trend in each $s \mod 4$. Notice 1 and 3 are the same, while 2 is slightly smaller, and 0 is much smaller. We will see the same trend in the next section as well.

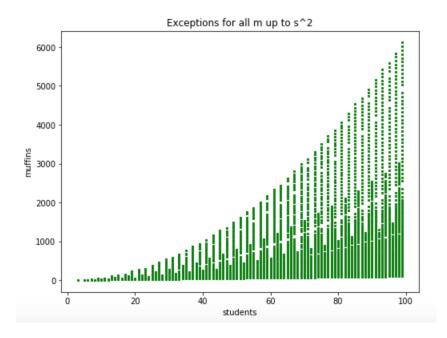
Below are the actual equations for the linear trend of each $s \mod 4$ (the R-squared for each of those was $\geq .98$):

8	freq
$s \mod 2 \equiv 1$	2.00s - 17.08
$s \mod 4 \equiv 2$	1.75s - 18.75
$s \mod 4 \equiv 0$	1.21 <i>s</i> - 16.10

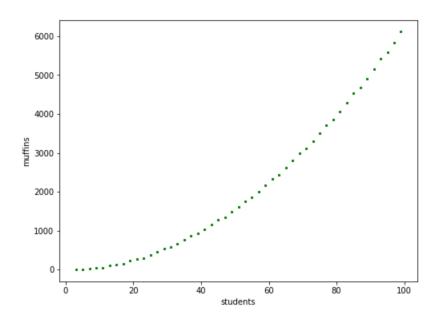
4 Maximum Exceptions

The maximum m with an exception increases quadratic with s. Once again, there are differences between each $s \mod 4$.

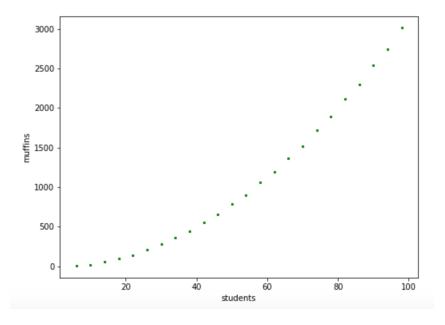
Below we plot all of the exceptions for each s:



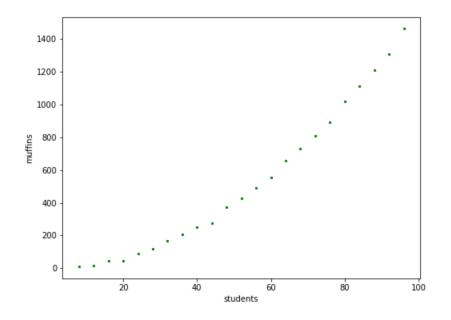
Once again, a mod 4 pattern seemed to appear, with the odd s having exceptions appearing at consistently higher m. We now plot the odd s:



Now the s mod $4 \equiv 2$:



Now the s mod $4 \equiv 0$:



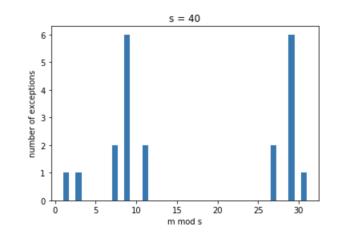
We then ran polynomial regression on each of these cases and found the below constants (The R-squared for each of these was ≥ 0.999):

s	freq
$s \mod 2 \equiv 1$	$.63s^2 + 0.00s - 8.31$
$s \mod 4 \equiv 2$	$.31s^2 + 0.11s - 5.33$
$s \mod 4 \equiv 0$	$.16s^2 - 0.03s - 3.16$

From above, it is clear that the s^2 constant differs drastically for each mod, while the s and intercept terms are more arbitrary. While we don't know why, there does seem to be a halving in the s^2 term for each mod.

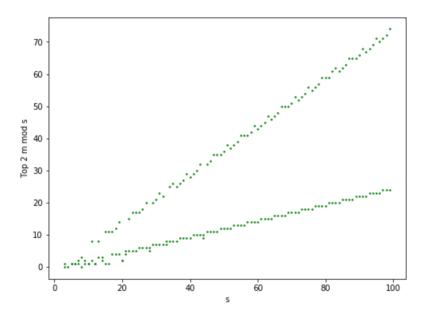
5 Common *m*'s for Exceptions

The two most common $m \mod s$ for exceptions to occur, for a given s, increase linearly. Alan Frank, the original creator of the Muffin problem, had conjectured that there was a relation between s and the $m \mod s$ where most exceptions occurred. This indeed was the case.

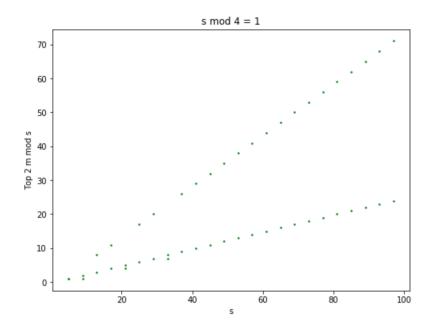


Below we show the $m \mod s$ at which exceptions occur for s = 40:

As you can see there are two major spikes at certain $m \mod s$. Specifically, f(m, 40)when $m \mod 40 \equiv 9$ (m = 49, 89, ...) and when $m \mod 40 \equiv 29$ (m = 69, 109, ...) are more likely to be exceptions than other $m \mod s$. Below is plotted the two $m \mod s$ for each s, that had the largest number of exceptions:



These two values clearly increase linearly with s. To get the exact trend, we once again separated s values out by their value of s mod 4. Below is the plot for s mod $4 \equiv 1$ (the others look very similar):



Once we separated these values, trimmed any values below a certain threshold (s < 20 for $s \mod 4 \equiv 0$ but lower threshold for others), and took only the maximum value, if two appeared for the smaller trend, we then ran linear regression.

$s \mod 4 \equiv \dots$	$m_{max} = \dots$
0	.25s - 1.00
1	.25s - 0.25
2	.25s - 0.50
3	.25s - 0.75

These are the expressions for the lower trend (R-squared = 1):

These are the expressions for the upper trend (R-squared $\geq 0.999):$

$s \mod 4 \equiv \dots$	$m_{max} = \dots$
0	.75 <i>s</i> − 1.55
1	.75 <i>s</i> − 1.75
2	.75s - 1.40
3	.75s - 0.25

Clearly, these are the overall trends:

$$small
ightarrow m_{max} = .25s$$

 $large
ightarrow m_{max} = .75s$

Thus, when $m \mod s$ is approximately .25s or .75s there are going to be greater numbers of exceptions for those f(m, s), such as with $m \mod s \equiv 9$ or $m \mod s \equiv 29$ when s = 40.