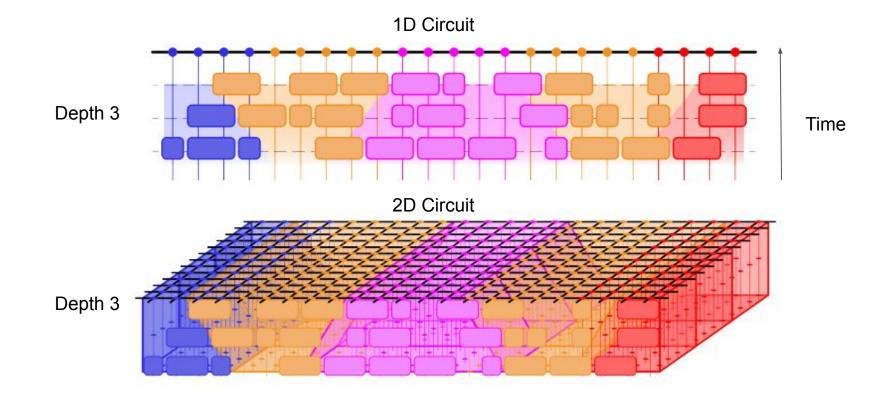
Simulation of Low-Depth Quantum Circuits

Matthew Coudron QuICS Gorjan Alagic QuICS

Sangheon Choi Rose-Hulman Institute of Technology

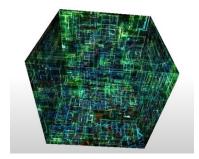
Suchetan Dontha UIUC Celia Morral Vassar College Shi Jie Samuel Tan Haverford College

Introduction to Quantum Circuits

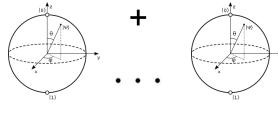


Problem Setup

Simulated 3D Quantum Circuit



$\approx P(x \in \{0,1\}^n)$



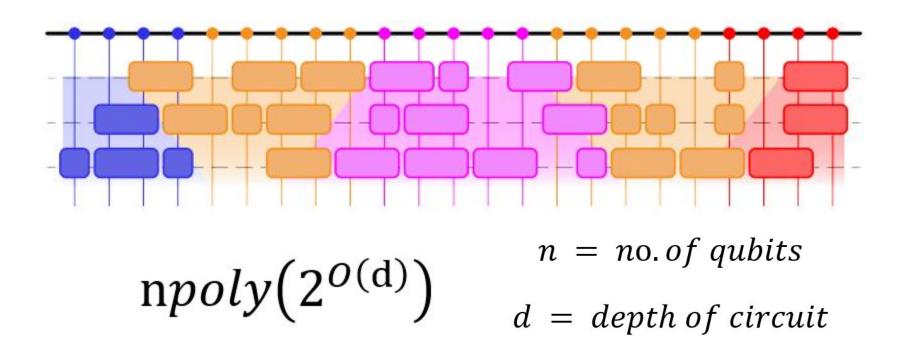
N qubits

Given a 3D geometrically-local, poly-log depth quantum circuit with *n* qubits, what is the probability of outputting some bitstring x, given a series of 0 qubits?

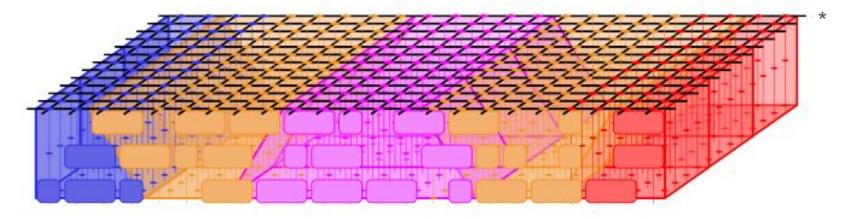
Why is this problem important

One interesting and important question is whether a quantum computer solves problems faster than a classical computer.

Past results (1D Quantum Circuits)



Past results (2D low-depth geometrically-local QC)



$$n = no. of qubits$$

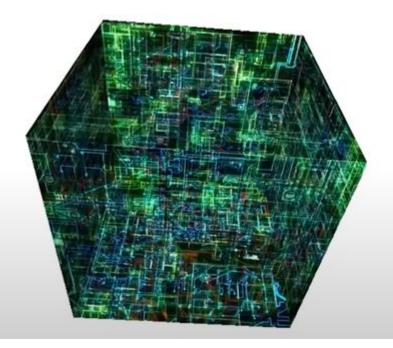
$$n\delta^{-2}2^{O(d^2)}$$
 $d = depth of circuit$

$$\delta = error$$

*N. J. Coble and Coudron, M., "Quasi-polynomial Time Approximation of Output Probabilities of Constant-depth, Geometrically-local Quantum Circuits", Accepted to QIP 2021, 2020.

Sergey Bravyi, David Gosset, and Ramis Movassagh, 2020

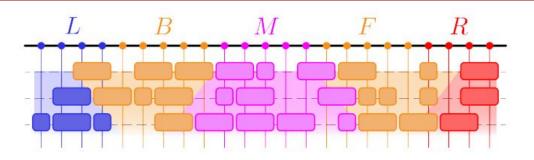
Current results (3D low-depth geometrically-local QC)

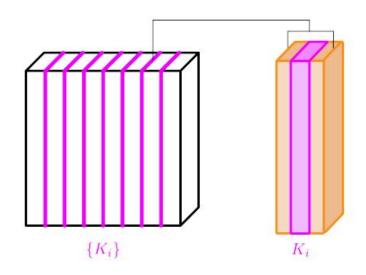


 $\delta^{-2} 2^{d^3 polylog(n)(1/\delta)^{1/log^2(n)}}$ $n = no. of \ qubits$ $d = depth \ of \ circuit$ $\delta = error$

Matthew Coudron and Nolan Coble, 2021

Current approach for 3D QC





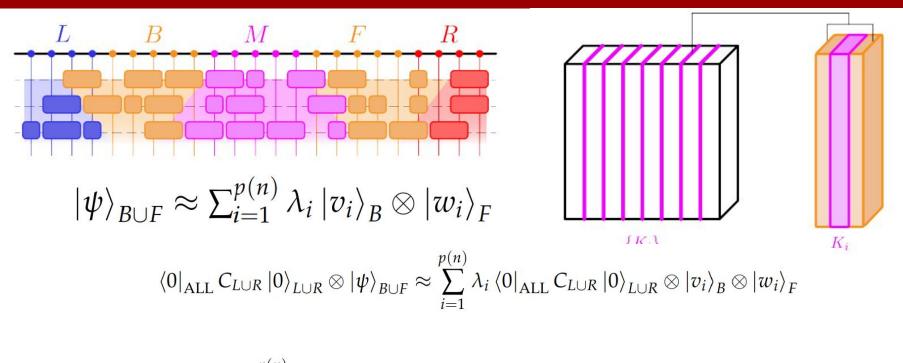
Schmidt Decomposition

Theorem 2.7: (Schmidt decomposition) Suppose $|\psi\rangle$ is a pure state of a composite system, AB. Then there exist orthonormal states $|i_A\rangle$ for system A, and orthonormal states $|i_B\rangle$ of system B such that

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle, \qquad (2.202)$$

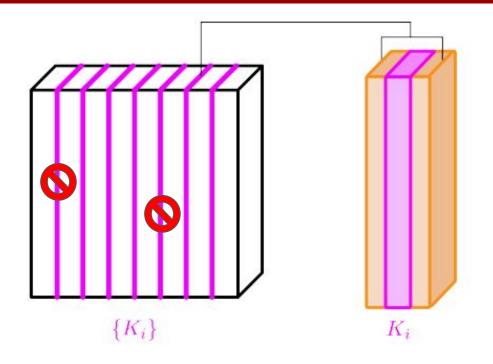
where λ_i are non-negative real numbers satisfying $\sum_i \lambda_i^2 = 1$ known as *Schmidt* co-efficients.

Current approach for 3D QC



$$=\sum_{i=1}^{p(n)}\lambda_i\left\langle 0
ight
vert_{L\cup B}C_L\leftert 0
ight
angle_L\otimes \leftert v_i
ight
angle_B\cdot\left\langle 0
ightert_{F\cup R}C_R\leftert 0
ight
angle_R\otimes \leftert w_i
ight
angle_F,$$

Reasons why 3D algorithm is quasi-polynomial



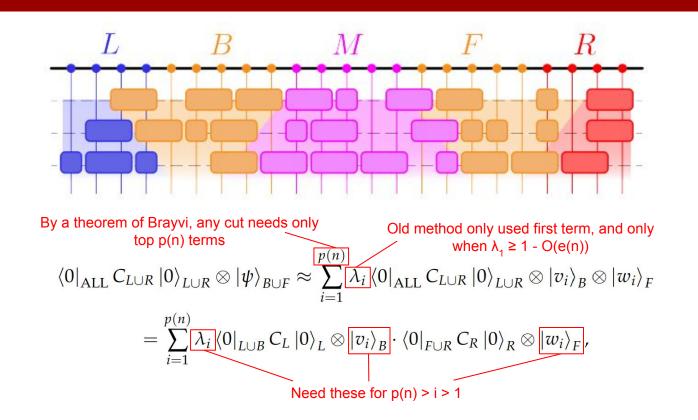
Current work

Two approaches

-Using Chebyshev polynomials to approximate Schmidt vectors for efficient divide and conquer algorithm

-Using a modified divide and conquer algorithm as a base case for induction to higher dimensions

Primary Methodology



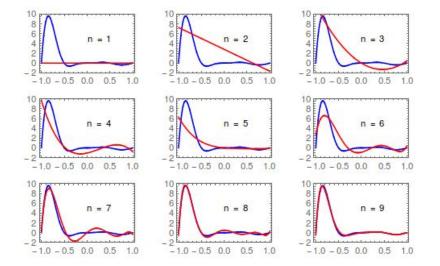
Chebyshev Series Approximation

$$I_{[a,b]}(x) = \begin{cases} 0 & x \notin [a,b] \\ 1 & x \in [a,b] \end{cases}$$

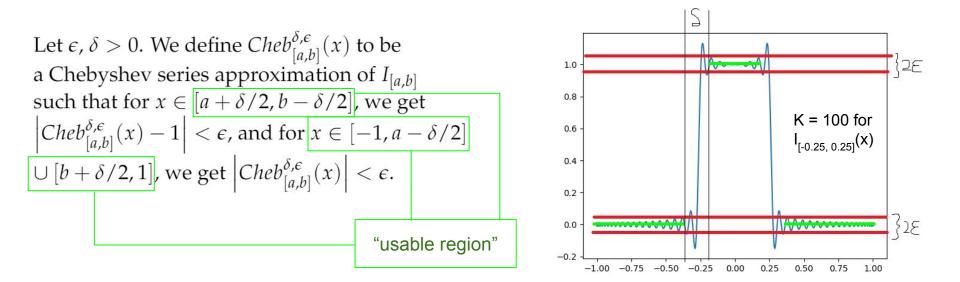
We approximate $I_{[a,b]}(x)$ with a degree K Chebyshev series

$$\sum_{k=0}^{K} c_k T_k(x), \text{ where }$$

$$c_{k} = \frac{2}{k\pi} \left(\sin\left(k\cos^{-1}(a)\right) - \sin\left(k\cos^{-1}(b)\right) \right) \text{ and}$$
$$T_{k}(x) = 2xT_{k-1}(x) - T_{k-2}(x), T_{0}(x) = 1, T_{1}(x) = x$$
Chebyshev series approximations are near optimal



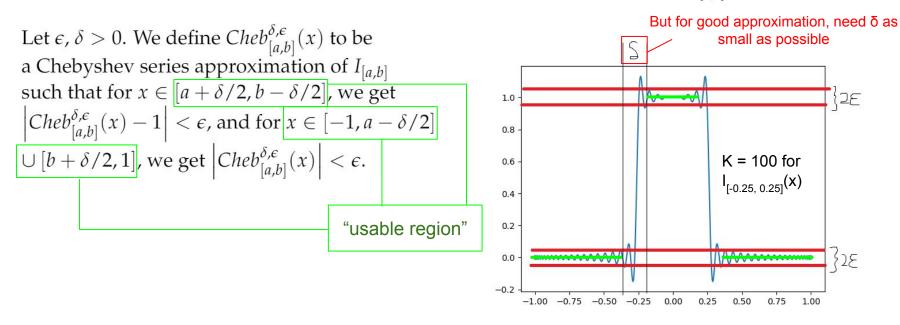
Chebyshev Series Approximation



Conjecture: We can achieve $Cheb_{[a,b]}^{\delta,\epsilon}(x)$ with $K = \Theta(\frac{1}{\epsilon \cdot \delta})$

Chebyshev Series Approach

For poly(n) time algorithm to find λ_{i} , need K = O(log $\frac{1}{2}(x)$) $\Rightarrow \delta = \Omega(log \frac{1}{2}(x))$ Conjecture: We can achieve $Cheb_{[a,b]}^{\delta,\epsilon}(x)$ with $K = \Theta(\frac{1}{\epsilon \cdot \delta})$



Induction to higher dimensions

Current algorithm: divide and conquer approach to split 3D circuit into 2D slices, using BGM as a base case for 2D

Goal: Simplify algorithm so that it can be generalized for any dimension circuit



-Use the current algorithm to break 3D into 2D with a constant width in the 3rd dimension

-Use this method again for the 2D case

-Use the 1D algorithm to solve this case

Current progress

-Generalizing language so it can apply to other dimensions

-Starting with 2D case

-Modifying 3D algorithm to run on a 2D circuit

-Making sure lemmas and proofs hold in other dimensions

-Analyze runtime of new algorithm

-Apply to higher dimensions

Analysis of this approach

-Likely not a faster runtime than using BGM

-Only one algorithm

-Can incorporate other improvements to the algorithm

-Applications to real circuits

-Chebyshev approach

-Induction approach

Acknowledgements

Matthew CoudronGorjan AlagicWilliam GasarchStephen SmithNolan CobleReferences:

M. Nielsen, I. Chuang. Quantum Computation and Quantum Information.

N. Coble, M. Coudron. Quasi-polynomial time approximation of output probabilities of geometrically-local, shallow quantum circuits.

Geek3. "Quantum X Gate." Wikipedia, 19 July 2015, commons.wikimedia.org/w/index.php?curid=41692959.

Bender2k14. "CNOT Gate." Wikipedia, 10 Mar. 2011, commons.wikimedia.org/wiki/File:CNOT_gate.svg.

YCombinator. "Scott Aaronson on Computational Complexity and Quantum Computers." Youtube, 29 June 2018, www.youtube.com/watch?v=0jrybODBUpA.

Sergy Bravyi, David Gosset, and Ramis Movassagh. Classical algorithms for quan- tum mean values. QIP, 2020. URL: https://arxiv.org/abs/1909.11485.