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Problem Setup

Given a 3D geometrically-local, poly-log depth quantum circuit with n qubits, what is the probability of outputting some 
bitstring x, given a series of 0 qubits?
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Why is this problem important

One interesting and important question is whether a 
quantum computer solves problems faster than a 

classical computer.



Past results (1D Quantum Circuits)

 



Past results (2D low-depth geometrically-local QC)

Sergey Bravyi, David Gosset, and Ramis Movassagh, 2020

*

*N. J. Coble and Coudron, M., “Quasi-polynomial Time Approximation of 
Output Probabilities of Constant-depth, Geometrically-local Quantum 
Circuits”, Accepted to QIP 2021, 2020.



Current results (3D low-depth geometrically-local QC)

Matthew Coudron and Nolan Coble, 2021



Current approach for 3D QC 



Schmidt Decomposition



Current approach for 3D QC 



Reasons why 3D algorithm is quasi-polynomial



Current work

Two approaches

-Using Chebyshev polynomials to approximate Schmidt vectors for efficient 
divide and conquer algorithm

-Using a modified divide and conquer algorithm as a base case for induction 
to higher dimensions



Primary Methodology

By a theorem of Brayvi, any cut needs only 
top p(n) terms

Old method only used first term, and only 
when λ1 ≥ 1 - O(e(n))

Need these for p(n) > i > 1



Chebyshev Series Approximation



Chebyshev Series Approximation

“usable region”

K = 100 for 
I[-0.25, 0.25](x)



Chebyshev Series Approach

For poly(n) time algorithm to find λi, need K = O(log ½ (x)) ⇒ δ = Ω(log -½ (x))

But for good approximation, need δ as 
small as possible 

“usable region”

K = 100 for 
I[-0.25, 0.25](x)



Induction to higher dimensions

Current algorithm: divide and conquer approach to split 3D circuit into 2D slices, 
using BGM as a base case for 2D

Goal: Simplify algorithm so that it can be generalized for any dimension circuit

1D circuit* 2D circuit*

*N. J. Coble and Coudron, M., “Quasi-polynomial Time Approximation of Output Probabilities of Constant-depth, Geometrically-local Quantum Circuits”, Accepted to QIP 2021, 2020.



Method

-Use the current algorithm to break 3D into 2D with a constant width in the 3rd 
dimension

-Use this method again for the 2D case

-Use the 1D algorithm to solve this case



Current progress

-Generalizing language so it can apply to other dimensions

-Starting with 2D case

-Modifying 3D algorithm to run on a 2D circuit

-Making sure lemmas and proofs hold in other dimensions

-Next: 

-Analyze runtime of new algorithm

-Apply to higher dimensions



Analysis of this approach

-Likely not a faster runtime than using BGM

-Only one algorithm

-Can incorporate other improvements to the algorithm

-Applications to real circuits



Summary

-Chebyshev approach

-Induction approach
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