
On SAT Solvers and Ramsey-type Numbers

Burcu Canakci∗

Microsoft Research

burcanakci@gmail.com

Hannah Christenson†

Asana

Robert Fleischman‡

TASH

robbyef98@gmail.com

William Gasarch§

Univ of MD

gasarch@umd.edu

Nicole McNabb¶

Wallmart Global Tech

Daniel Smolyak‖Univ of MD

dsmolyak@gmail.com

Abstract

We created and parallelized two SAT solvers to find new bounds on some Ramsey-type
numbers. For c > 0, let Rc(L) be the least n such that for all c-colorings of the [n] × [n]
lattice grid there will exist a monochromatic right isosceles triangle forming an L. Using a
known proof that Rc(L) exists we obtained R3(L) ≤ 2593. We formulate the Rc(L) problem as
finding a satisfying assignment of a boolean formula. Our parallelized probabilistic SAT solver
run on eight cores found a 3-coloring of 20 × 20 with no monochromatic L, giving the new
lower bound R3(L) ≥ 21. We also searched for new computational bounds on two polynomial
van der Waerden numbers, the ”van der Square” number Rc(V S) and the ”van der Cube”
number Rc(V C). Rc(V S) is the least positive integer n such that for some c > 0, for all c-
colorings of [n] there exist two integers of the same color that are a square apart. Rc(V C) is
defined analogously with cubes. For c ≤ 3, Rc(V S) was previously known. Our parallelized
deterministic SAT solver found R4(V S) = 58. Our parallelized probabilistic SAT solver found
R5(V S) > 180, R6(V S) > 333, and R3(V C) > 521. All of these results are new.

1 Introduction

The following is often the first theorem taught in a lecture on Ramsey Theory. If there are six
people at a party and for each pair of people either they know each other or neither knows the
other, then there are either three people who all know each other or three people who all do not
know each other. The reader can prove this by looking at cases.

Is this condition also true for a five-person party? How many people must we have to ensure
that either four people all know each other or all don’t know one another? Let n represent the
total number of people at the party. Let Kn be the graph on n vertices where every pair of vertices
has an edge between them. Note that the party problem stated above can be restated as follows:
for every 2-coloring of the edges of K6 there exists a set of three points such that all of the edges
between them are the same color.

∗Microsoft Research at Cambridge, UK
†Asana
‡TASH
§University of MD at College Park, Dept of CS
¶Walmart Global Tech
‖University of MD at College Park, Dept of CS

1

Notation. N is the set of natural numbers. If n ∈ N, let [n] be the set {1, 2, ...n}.

Definition. Let Kn be a complete graph on n vertices. Let V = [n] be the vertices of Kn and E
the edges of Kn. Let c ∈ [n]. A c-coloring of the edges of Kn is a function f : E → [c].

Definition. Let G be a subgraph of Kn. If in a coloring of the edges of Kn there is a monochro-
matic copy of G, then we will just say that there is a monochromatic G. We can again restate out
party problem as follows: for every 2-coloring of the edges of K6 there is a monochromatic K3.

This party problem introduces the premise of Ramsey’s Theorem, initially proven by Ramsey [6]
(though easier proofs are easily found on the web) which we state now:
Theorem 1.1. Ramsey’s Theorem.

Let a and b be positive integers. Then there exists a smallest positive integer R(a, b) such
that all 2-colorings of a complete graph on R(a, b) vertices contain a monochromatic red Ka or a
monochromatic blue Kb.

We will refer to R(a, b) as the Ramsey number for (a, b). If a = b, we will just refer to the
Ramsey number as R(a).

The general theme of Ramsey Theory is that if you finitely color a big enough object then some
monochromatic subobject of a given size will always happen.

Van der Waerden’s theorem is in this spirit. It was initially proven by Van der Waerden [7]
(though proofs in English are easily found on the web). and are closely related to the numbers we
will discuss.
Theorem 1.2. Van der Waerden’s Theorem.
Let k and c be fixed positive integers. Then there exists a smallest positive integer n such
that all c-colorings of [n] contain a monochromatic arithmetic sequence of integers of the form
{a, a+ d, a+ 2d, ...a+ (k − 1)d} for some positive integers a and d less than n.

We will refer to W (c, k) as the van der Waerden number with respect to c and k.

In this paper, we will discuss two variants of Ramsey numbers we studied. We will intro-
duce previously published theorems and results for each Ramsey-type number. Following previous
results, we will present our new computational and theoretical results and current bounds.

2 Theoretical Bounds on the L Number

Definition. Let n ∈ N. Consider an [n]× [n] grid of lattice points. An L is a subgrid of the form
L = (i, j), (i, j + t), (i+ t, j + t), or the isoscoles right triangle formed by the top left, bottom left,
and bottom right corners of any square in the grid.

Theorem 2.1. L Number Theorem.
Let c be a positive integer. Then there exists a positive integer n with n > c such that all c-colorings
of an [n]× [n] grid of lattice points contain a monochromatic L.

We will refer to the integer n guaranteed by the theorem above as the L number, and denote
it as Rc(L) for a given c.

2

The first proof of the L number theorem was given independently by Gallai (as reported by
Rado [4], [5]) and Witt [9] as a corollary to a more general theorem on Ramsey numbers. This
proof gave an enormous upper bound for Rc(L). A lower upper bound was found by Graham and
Solymosi [3]. The proof for Theorem 2.3, given below, was obtained through careful analysis of
Graham and Solymosi’s proof. Alexnovich & Manske [1] proved the specific case R2(L) through
careful case analysis. There results is Theorem 2.2.
Theorem 2.2. R2(L) = 5.
Theorem 2.3. R3(L) ≤ 2593.
Proof For any 3-colored [n]× [n] grid, by the Pigeon-hole Principle there exists a color that occurs
at least n

3 times along the diagonal. Without loss of generality, let this color be red. If there is no

monochromatic L, then there must be
(n

3
2

)
= n(n−3)

18 points below the diagonal that are not colored
red so as to avoid conflict with the red points on the diagonal. Let these points be colored blue
and green.

Since there are n−1 subdiagonals below the main diagonal, there exists a subdiagonal that contains
at least n(n−3)

18(n−1) points that are one of c2 or c3. Therefore, there are at least n(n−3)
36(n−1) points on this

diagonal that are all blue or all green. Without loss of generality, assume that there are n(n−3)
36(n−1)

points colored blue. In order to continue to avoid a monochromatic L, there are
(n(n−3)

36(n−1)

2

)
points

below this diagonal that must be green, as they cannot be red or blue by our coloring of higher
diagonals.

Therefore, there exists a subdiagonal with
(

n(n−3)
36(n−1)

2
)

n−2 points that must be green, since there are
at most n − 2 subdiagonals below the second diagonal in consideration. However, if this number
is greater than 1, then there is a subdiagonal with at least 2 points colored green, in which case
the corner of the L that they help form cannot be red, blue or green to avoid a monochromatic L.

Because that point must be colored in some way, if
(

n(n−3)
36(n−1)

2
)

n−2 > 1, then it is guaranteed that there is
a monochromatic L in the grid. If we take into account that we can round up to the nearest whole
number when working with a number of points, the smallest n such that this is the case is 2593.

3 New Computational Bounds on L

To our knowledge, no computational lower bounds on R3(L) were previously known. In order to
find lower bounds on the 3-colored L number, we created two k-SAT solvers. Both solvers create
a boolean formula in 3-CNF form by indexing the lattice points of an [n] × [n] grid. The first
solver evaluates the formula and attempts to create a satisfying assignment deterministically using
the framework of the classic DPLL algorithm. The basic steps of our algorithm are outlined in
the pseudocode below. When any variable is set, the formula is reduced accordingly. 2SAT is an
asymptotically linear time 2-SAT algorithm. Technically, the ”most common variable” that the
algorithm chooses is both weighted and considers positive and negative occurences of a variable
separately. This means that we keep track of a separate ”weight” for both x and ¬x. Each time
x occurs, if the size of the clause we are considering is s, we add 1

s to the weight of x. We then
choose the literal with the highest weight as the ”most common variable.” This yielded the best
results in our comparisons of a few different heuristics.

3

Algorithm 1 DPLL(formula f, partial assignment a)

1: for var in unit clause in f do
2: a[var]← true
3: if clause in f becomes unsatisfiable then return false

4: if f is satisfied then return true

5: if f in 2-CNF then return 2SAT(f,a)

6: for clause in f do
7: size← length of clause
8: if size = 2 then
9: a[clause[0]]← true

10: if DPLL(f, a) then
11: return true
12: else
13: a[clause[0]]← false
14: return DPLL(f,a)

var← most common variable in f
15: a[var]← true
16: if DPLL(f, a) then
17: return true
18: else
19: a[var]← false
20: return DPLL(f,a)

By running this serial recursive algorithm on a single processor, dual-core computer, we found
a 3-coloring of a 14 × 14 lattice grid without a monochromatic L. Thus, our computational lower
bound given by our serial DPLL algorithm is n ≥ 15.

Our second k-SAT solver uses a local search algorithm based on a description of the Walksat
algorithm. The algorithm generates a random assignment, and then flips a predetermined number
of variables in an attempt to find a satisfying assignment. This algorithm is run a calculated
large number of times in the solver. If an assignment is not found, the solver indicates that the
formula is unsatisfiable. Note that since local search is a probabilistic algorithm, even if a satisfying
assignment exists, the solver may not find it and will return unsatisfiable. The pseudocode below
outlines the local search algorithm.

4

Algorithm 2 LocalSearch(formula f, int maxflips, double p)

1: a← random coloring assignment
2: u← initial unsatisfied clauses of f evaluated on a
3: for maxflips times do
4: if u = empty then return true

5: x← rand(0,1)
6: if x < p then
7: var← random variable from an unsatisfied clause
8: else
9: var← variable with ”best flipping effect”

10: a[var] = ¬a[var]
11: u← u updated with recent flip

12: return u = empty

The variable with the ”best flipping effect” is the variable that, when flipped, results in the
greatest decrease in the number of unsatisfied clauses. The local search algorithm as originally
implemented performed slightly better than our implementation of DPLL. However, many clauses
of the L formula only serve to ensure that exactly one color could be assigned to each lattice point
in the grid. Each of the n2 points in the grid corresponds to 3 variables: one representing red, one
representing blue, and one representing green. Exactly one of these variables must be true in a
satisfying assignment that represents a valid coloring of the grid. In light of this, we modified our
algorithm in a few ways.

First, we modified each randomly generated assignment so that only the clauses relating to the
presence of a monochromatic L, and not those that guarantee a valid coloring, could be unsatisfied.
In addition, when we flip a variable, we flip one of the corresponding variables for that spot in the
grid in order to maintain the invariant that the assignment respresents a valid coloring. We take
into account the net effect of these multiple flips when choosing the variable, and when we have
an option of which color-representing variable to flip, we also pick the ”better” one by this metric.
This modified local search algorithm, run on the same single processor computer, found a satisfying
assignment for n = 19, though it returned unsatisfiable for all of the tests that we ran on n = 20.
Because local search is a probabilistic algorithm, its inability to find a satisfiying assignment for
higher values of n does not imply that they do not exist.

Next, we parallelized both solvers because we were able to run them on an 8-core virtual ma-
chine cluster. We parallelized the local search algorithm by simply running local search many times
at once, with different random seeds, allowing the solver to search for assignments in parallel. In
the deterministic solver, we created explicit threads at the first few steps of the DPLL recursion,
which then completed in parallel. Our parallelized DPLL algorithm only found a satisfying as-
signment for n = 15, which was slightly better than our result from our serial DPLL algorithm,
though not as good as the result achieved by our serial local search algorithm. Our parallelized
local search algorithm found satisfying assignments for n = 20, one of which is shown in Figure 1
below. Therefore, our current lower bound for the L-number is 21.

Theorem 3.1.
21 ≤ R3(L) ≤ 2593.

Proof. By Theorem 2.3, R3(L) ≤ 2593. Our parallelized local search algorithm run on an 8-
core virtual machine cluster found satisfiable 3-colored 20 × 20 lattice grids. Thus, R3(L) ≥ 21 is

5

our lower bound by computation.

Figure 1: A 20 × 20 grid with no monochromatic L.

4 Theoretical Bounds on Polynomial van der Waerden Numbers

Theorem 4.1. General Polynomial van der Waerden Theorem.
Let c ∈ N. For all sets of polynomials {p1, ...pk} in Z[x] with a zero constant term, there exists an
n ∈ N where n > c such that for all c-colorings of [n], there exist positive integers a and d that
guarantee a monochromatic arithmetic sequence of the form {a, a+ p1(d), ...a+ pk(d)}.

The above theorem, which generalizes van der Waerden’s theorem to polynomials with zero
constant term, was first proven by Bergelson and Liebman [2]. Walters [8] gave the first construc-
tive proof for the polynomial van der Waerden theorem, which gave explicit, albeit extremely large,
upper bounds. In this paper, we focus on two specific polynomial van der Waerden numbers intro-
duced in the corollaries below.

Corollary 4.1. Van der Square Numbers.
Let c ∈ N. Then there exists an n ∈ N, n > c, such that every c-coloring of [n] contains two
monochromatic integers x2 distance apart for some integer x.

Corollary 4.2. Van der Cube Numbers.
Let c ∈ N. Then there exists an n ∈ N, n > c, such that every c-coloring of [n] contains two
monochromatic integers y3 distance apart for some integer y.

The proofs for these corollaries follow directly from Theorem 4.1. We will denote the van
der Square number defined in Corollary 4.1 by Rc(V S) for a given c. Similarly, we will denote the
van der Cube number defined in Corollary 4.2 by Rc(V C) for a given c.

6

Theorem 4.2.
R2(V S) = 5.

Proof. First, let us prove R2(V S) ≤ 5. Without loss of generality, assume 1 is colored red.
Then each subsequent number in the sequence must be colored the opposite of the number before
it, as consecutive numbers are 12 apart. Thus, we color 2 blue, 3 red, 4 blue, and 5 red. However,
5 is 22 apart from 1 and they are both colored red. If 5 was blue, 5 and 4 would be the same color,
and they are separated by 12. Therefore, in any 2-coloring of [5], there is a monochromatic pair of
integers separated by a square, so R2(V S) ≤ 5.

The table below shows a possible 2-coloring of a length 4 sequence with no monochromatic pair
of numbers a square apart. Thus, R2(V S) = 5.

Table 1: Sample 2-coloring of a sequence of length 4
1 2 3 4

R B R B

Theorem 4.3.
R3(V S) ≤ 68.

Proof. We will attempt to color a sequence of 1 through 68 without a monochromatic pair of
numbers separated by a square, in order to show that such a task is impossible. Without loss of
generality, assume 10 is colored red. Then 1 and 26 cannot be red because they are a square apart
from 10. 1 and 26 also cannot be the same color since they are a square apart, thus, without loss
of generality, color 1 blue and color 26 green. Next, 17 is a square apart from both 1 and 26,
forcing it to be red. When this process is repeated, all numbers that are 7 apart from 10 to 59,
{10, 17, 24, ..., 59} must be red. However, 10 and 59 are 72 apart. 59 was forced to be red by the
forced green and blue color of the numbers 68 and 43. Therefore, R3(V S) ≤ 68.

Table 2: Forced number colorings in any 3-coloring
1 10 17 26

B R R G

5 New Computational Bounds on Polynomial van der Waerden
Numbers

Using our k-SAT solvers with the heuristics discussed in a previous section, we found computational
results and lower bounds for some polynomial van der Waerden numbers. The table below sum-
marizes the current known values and bounds on Rc(V S). The bolded values represent the results
given by our k-SAT solvers, which were previously unknown. Rc(V S) for c ≤ 3 were previously
known.

In addition, our parallelized local search algorithm was able to find that R3(V C) > 521 using
the heuristics discussed earlier in the paper. It is easy to see that R2(V C) = 9 in a proof parallel to
that presented for R2(V S) = 4. However, our DPLL algorithm was not able to provide reasonable

7

Table 3: Known van der Waerden square numbers
c 1 2 3 4 5 6

n 2 5 29 58 >180 >333

bounds for R3(V C) or other van der Cube numbers for higher values of c. In the future, we hope
to continue to improve both of our parallelized algorithms and to gain additional computational
power in order to compute tighter bounds on polynomial van der Waerden numbers in addition to
still unknown Ramsey and L numbers.

References

[1] M. Axenovich and J. Manske. On monochromatic subsets of a rectangular grid. Integers,
8(1):A21, 2008. http://orion.math.iastate.edu/axenovic/Papers/Jacob-grid.pdf and
http://www.integers-ejcnt.org/vol8.html.

[2] V. Bergelson and A. Leibman. Set-polynomials and polynomial extension of the Hales-Jewett
theorem. Annals of Mathematics, 150:33–75, 1999.
http://www.math.ohio-state.edu/~vitaly/.

[3] R. Graham and J. Solymosi. Monochromatic equilateral right triangles on the integer grid. Top-
ics in Discrete Mathematics, Algorithms and Combinatorics, 26, 2006. www.math.ucsd.edu/~/
ron/06_03_righttriangles.pdf or www.cs.umd.edu/~/vdw/graham-solymosi.pdf.

[4] R. Rado. Studien zur Kombinatorik. Mathematische Zeitschrift, 36:424–480, 1933. http:

//www.cs.umd.edu/~gasarch/TOPICS/vdw/vdw.html. Includes Gallai’s theorem and credits
him.

[5] R. Rado. Notes on combinatorial analysis. Proceedings of the London Math Society, 48:122–160,
1943. http://www.cs.umd.edu/~gasarch/TOPICS/vdw/vdw.html. Includes Gallai’s theorem
and credits him.

[6] F. Ramsey. On a problem of formal logic. Proceedings of the London Math Society, 30(1):264–
286, 1930.

[7] B. van der Waerden. Beweis einer Baudetschen Vermutung (in dutch). Nieuw Arch. Wisk.,
15:212–216, 1927.

[8] M. Walters. Combinatorial proofs of the polynomial van der Waerden theorem and the poly-
nomial Hales-Jewett theorem. Journal of the London Mathematical Society, 61:1–12, 2000.
http://jlms.oxfordjournals.org/cgi/reprint/61/1/1.

[9] E. Witt. Ein kombinatorischer satz de elementargeometrie. Mathematische Nachrichten, 6:261–
262, 1951. http://www.cs.umd.edu/~gasarch/TOPICS/vdw/vdw.html. Contains Gallai-Witt
Theorem, though Gallai had it first so it is now called Gallai’s theorem.

8

